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Abstract: The problem of robust state estimation for a class of uncertain nonlinear systems with
Markov jump is investigated. The uncertain nonlinear system under consideration is represented by
the Takagi–Sugeno (T–S) fuzzy model because it is difficult to describe. Firstly, different from the
traditional T–S fuzzy modeling method, the deviation of the linear system approaching a nonlinear
system is considered, which is represented as a model error in system modeling. Secondly, through a
robust state estimation method based on the sensitivity penalty, we develop a robust state estimator
for linear subsystems, and the fuzzy robust state estimator is obtained by fuzzy rules. Thirdly, the
stability and boundedness of the fuzzy robust state estimator are proved under the assumption
conditions to ensure the reliability of the obtained estimator. Finally, some numerical examples are
given to verify the effectiveness of the fuzzy robust state estimator.
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1. Introduction

The state estimation problem for nonlinear systems is always challenging and compli-
cated in system control and signal processing [1,2]. There has been extensive research on
the methods of dealing with nonlinear systems, such as the Lipschitz continuity method
and the smoothness approach. As a feasible solution to nonlinear problems, T–S fuzzy tech-
nology has received extensive attention in the field of control, due to its perfect combination
of linear systems and fuzzy logic reasoning theory. The nonlinear system is approximated
to the local linear system with a membership function by fuzzy rules. Then, the relatively
mature linear system theory is used for further analysis and synthesis. Reference [3] studied
the problem of reliable switching controllers for a class of discrete-time T–S fuzzy systems
with randomly distributed delay sums and actuator failures. In reference [4], using the prop-
erties of matrix and norm measurement, new sufficient conditions for delay-independent
and delay-dependent robust stability of uncertain fuzzy time-delay systems based on an
uncertain T–S fuzzy model are given. In reference [5], the problem of fault estimation for
a class of T–S fuzzy systems with state latency was investigated. Reference [6] studied
the filtering problem of T–S fuzzy nonlinear systems under the premise of random per-
turbations and state switching. So far, a large number of studies on stability analysis and
controller/estimator design have been published [7–9]. For example, ref. [10] analyzed the
optimal decentralized adaptive fuzzy control problem of strict-feedback interconnected
nonlinear large-scale systems with unknown nonlinear functions by fuzzy logic theory.
Reference [11] studied the problem of robust filtering for discrete-time 2-D T–S fuzzy sys-
tems with uncertainties and random mixed delays. However, the above research is only
applicable to the known system model, and the effect on the system with abrupt changes in
structure and parameters is unknown.
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In practical engineering, the parameters or structures of many dynamic systems will
inevitably mutate due to external disturbance, sensor failure, subsystem interconnection
and other uncertain sudden factors. The Markov processes have satisfactory characteristics
for the uncertainty changes of a modeling system, so they are often used to simulate
dynamic systems with random mutations in the structure or parameters. Reference [12]
investigated the problem of robust passive sliding mode control for uncertain singular
systems with semi-Markov switch and actuator faults by the sliding mode control method.
The emphasis was on designing a common sliding mode surface to weaken the jump effect,
and designing a slip controller to accommodate actuator failures to passivate the exotic
semi-Markov jump system. Reference [13] discussed the predictive control of constrained
discrete-time Markov jump linear systems. The system jumps between finite pattern sets
according to the Markov probability transition/observation model, so as to minimize
the average cost. The problem of quantitative control design for a class of semi-Markov
hopping systems with repeated scalar nonlinearity was investigated in [14]. However,
it needs to transform the semi-Markov system into a related Markov system through
supplementary variable technology and plant transformation. In [15], the non-fragile
guaranteed cost control problem for discrete-time T–S fuzzy Markov jump systems with
time-varying delays was studied. However, it must be ensured that the closed-loop system
is asymptotically stable and has sufficient conditions for the upper bound of the guaranteed
cost index through the Lyapunov–Krasovskii functional method. Markov jump systems
have not only been widely used in controllers, but have also achieved satisfactory results in
filter design. The reduced order H∞ and H2 filtering problems of discrete-time Markov with
an uncertain transition probability matrix were studied in [16], and new design conditions
that can be solved by LMI relaxation are provided. The problem of optimal statistical
filtering in general non-linear non-Gaussian Markov dynamic systems was analyzed in [17].
In [18], H∞ and H-2 filtering for Markov jump linear systems with uncertain transition
probability are studied. The l2-l∞ filter has been studied for discrete random Markov jump
systems with random sensor nonlinearity in [19]. For Markov jump Lur’e systems with
redundant channels, a distributed H∞ filter was designed, considering the mode mismatch
between the plant in [20] and the proposed filter.

Therefore, the study of T–S fuzzy Markov jump systems has become a hot topic,
and a considerable number of research results have been achieved. The T–S fuzzy model
is actually a kind of fuzzy dynamic model, which uses a set of fuzzy rules to describe
the global nonlinear system as a set of local linear models, and these local linear models
are smoothly connected through fuzzy membership functions. The T–S fuzzy modeling
method provides another method for describing complex nonlinear systems and greatly
reduces the number of rules for modeling high-order nonlinear systems. Therefore, T–S
fuzzy models are less prone to the curse of dimensionality than other fuzzy models. More
importantly, some analysis methods in linear systems can be effectively extended to T–S
fuzzy systems, including quantitative feedback control [21] and network fuzzy control [22]
for fuzzy Markov jump systems. Ref. [23] describes nonlinear non-homogeneous Markov
jump systems with norm-bounded parameter uncertainty through the T–S fuzzy model,
and discusses its robust fuzzy l2-l∞ filtering problem. The reliable dissipative control
problem of Takagi–Sugeno fuzzy systems with Markov jump parameters is studied in [24].
Ref. [25] proposes a H∞ filter control method for discrete T–S Markov jump systems with
time-varying delays and packet loss.

Under the premise of ideal modeling, the state estimation problem of T–S Markov
jump systems is studied. Because complex manufacturing processes and modeling in-
accuracies often lead to modeling errors, a variety of robust state estimators have been
derived that do not significantly deteriorate performance when actual plant parameters
deviate reasonably from their nominal parameters [26,27]. In particular, when parameter
uncertainty nonlinearly affected the plant state space model, an analytical robust state
estimator was derived in [28], based on the simultaneous minimization of the nominal



Mathematics 2023, 11, 487 3 of 14

estimation error and its sensitivity. Therefore, it is more meaningful for T–S Markov jump
systems to consider model uncertainty in practical applications.

In this paper, we investigate the robust state estimations for T–S fuzzy Markov jump
systems with parametric uncertainties. For T–S fuzzy Markov jump systems composed
of uncertain linear subsystems, a robust state estimator, based on a nominal estimation
performance and sensitivity penalty for parameter change estimation errors, is adopted.
The analytic expression of the fuzzy robust state estimator under Markov jump strategy is
derived. The boundedness and stability of the proposed estimator are proved under given
conditions. The numerical results show that the fuzzy fusion estimator has better estimation
performance than the estimator based only on the nominal parameters of the system.

The rest of this paper is organized as follows. In Section 2, we describe this problem
and give some preliminary results. The fuzzy robust state estimator is derived in Section 3
based on Markov jump strategy. Some important properties such as stability are discussed
in Section 4. In Section 5, some numerical simulation cases are provided to verify its
effectiveness. Finally, Section 6 concludes this paper.

Notation: The Euclidean norm
√

xTx and weighted norm
√

xTVx are represented by
‖x‖ and ‖x‖V , respectively, where x is the vector and V is the positive definite matrix. The
expectation of the vector matrix is indicated by E(∗)/E{∗}, and the stack of vectors or
matrices is indicated by col

{
xj
}

. ξtj is the Kronecker delta function. The maximum singular
value of the matrix is expressed as σ̄(.).

2. Problem Formulation and Some Premliminaries

Consider the following discrete-time nonlinear Markov jump systems, modeled by
the T–S fuzzy approach,

Plant Rule l : IF ζ1(t) is ξl1, ζ2(t) is ξl2, and . . . , and ζs(t) is ξls
THEN{

x(t + 1) = Al,t,η(t)(εt)x(t) + Bl,t,η(t)(εt)u(t) + Cl,t,η(t)(εt)w(t),
y(t) = Dl,t,η(t)(εt)x(t) + v(t),

(1)

where x(t), y(t), u(t), w(t) and v(t) are, respectively, the state vector, output vector, control
input, process noise and measurement error. xl(0), w(t) and v(t) are uncorrelated ran-
dom vectors, and E(w(t)) = 0, E(v(t)) = 0, E

{
col{xl(0)− E(xl(0)), w(t), v(t)}(∗)T

}
=

diag
{

Πl,0, Ql,tδl,tj, Rl,tδl,tj

}
, where Ql,t, Rl,t and Πl,0 are positive definite matrices. It is

known that matrices Al,t,η(t)(εt), Bl,t,η(t)(εt), Cl,t,η(t)(εt) and Dl,t,η(t)(εt) have appropriate di-
mensions and are differentiable functions of the model error, εt. In addition, εt is composed
of L real value scalar uncertainties εt,k, k = 1, · · · , L. System (1) has r(l ∈ R = {1, 2, . . . , r})
fuzzy rules and l means the l − th rule. ζe(t)(e = (1, 2, . . . , s)) is the premise variable,
and ξle is the fuzzy set. The transfer matrix, η(t), is described as [Π]a,b = πa,b, in which
πa,b = Pr{η(t + 1 = b)|η(t = a)} represents the transition probability from time, t, model
a to time, t + 1, model b. Note that πa,b is not related to the fuzzy rules.

Through the T–S fuzzy method, we get the normalized membership function
µl(ζ(t)) =

∏s
e ξle(ζe(t))

r
∑

l=1
∏s

e ξle(ζe(t))
and ζ(t) = [ζ1(t), ζ2(t), . . . , ζs(t)], where ξle(ζe(t)) is the grade of

membership, ζe(t), in ξle and satisfies condition ∏s
e ξle(ζe(t)) ≥ 0. So, we can easily get

µl(ζ(t)) ≥ 0, and
r
∑

l=1
µl(ζ(t)) = 1.

For analysis convenience, we describe µl(ζ(t)) as µl .
According to [29], the fuzzy system can be inferred from System (1) as:

x(t + 1) = Aµη(t)x(t) + Bµη(t)u(t) + Cµη(t)w(t),

y(t) = Dµη(t)x(t) +
r
∑

l=1
µl(z(t))v(t),

(2)
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where
Aµη(t) =

r
∑

l=1
µl Al,t,η(t), Bµη(t) =

r
∑

l=1
µl Bl,t,η(t),

Cµη(t) =
r
∑

l=1
µlCl,t,η(t), Dµη(t) =

r
∑

l=1
µl Dl,t,η(t).

Since Equation (2) represents a time-varying nonlinear system, the state vector and
output vector of the local system are constructed to estimate the state of the local linear
time-varying system,

xl(t) = µl x(t),
yl(t) = µly(t).

(3)

From the fuzzy system model, we have the following derivation,

x(t + 1) =
r
∑

l=1
µl Al,t,η(t)(εt)x(t) +

r
∑

l=1
µl Bl,t,η(t)(εt)u(t) +

r
∑

l=1
µlCl,t,η(t)w(t)

=
r
∑

l=1
Al,t,η(t)(εt)xl(t) +

r
∑

l=1
µl Bl,t,η(t)(εt)u(t) +

r
∑

l=1
µlCl,t,η(t)(εt)w(t)

=
r
∑

l=1
xl(t + 1),

y(t) =
r
∑

l=1
µl Dl,t,η(t)(εt)x(t) +

r
∑

l=1
µl(z(t))v(t)

=
r
∑

l=1
Dl,t,η(t)(εt)xl(t) +

r
∑

l=1
µl(z(t))v(t)

=
r
∑

l=1
yl(t).

(4)

Then, the uncertain linear subsystem is rewritten as follows,

{
xl(t + 1) = Al,t,η(t)(εt)xl(t) + µl Bl,t,η(t)(εt)w(t) + µlCl,t,η(t)(εt)w(t),
yl(t) = Dl,t,η(t)(εt)xl(t) + µlv(t).

(5)

3. Design of the State Estimator for T–S Fuzzy Markov Jump Systems

To take into account the influence of deviation when linear systems approach nonlin-
earity, and obtain better state estimation performance, the state estimation method based
on the sensitivity penalty in [28] was improved to obtain local estimates x̂l(t|t), under
different models for each subsystem. The robust state estimator is derived based on the
relationship between the Kalman filter and the regularized least squares, as well as the sen-
sitivity penalty for the estimation error of the parameter changes. It takes exactly the same
form as the Kalman filter, but it has modified parameters and comparable computational
complexity. To achieve a balance of importance between the the importance of the nominal
estimation performance and its degradation due to model error, the design parameter, γl,t,
is given. The research shows that there is a large range of design parameters that enable
the state estimator to obtain satisfactory estimation performance, and the optimal value is
proposed based on experience. It should be noted that when γl,t = 1, that is, the robust state
estimator proposed in [28] degenerates into a standard Kalman filter without considering
the penalty of the estimation error for the parameter changes. In order to obtain the local
robust state estimation of the l − th subsystem, the matrices Sl,t, Tl,1t and Tl,2t, respectively,
are defined as follows, which plays a key role in the derivation of the robust state estimator
and its stability analysis.

Sl,t =

 Sl,t,1(0, 0)
...
Sl,t,L(0, 0)

, Tl,1t =

 Tl,1t,1(0, 0)
...
Tl,1t,L(0, 0)

, Tl,2t =

 Tl,2t,1(0, 0)
...
Tl,2t,L(0, 0)

, (6)
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in which,

Sl,t,k(εt, εt+1) =

 ∂Dl,t,η(t)(εt+1)

∂εt+1,k
Al,t,η(t)(εt)

Dl,t,η(t)(εt+1)
∂Al,t,η(t)(εt)

∂εt+1,k

,

Tl,1t,k(εt, εt+1) =

 ∂Dl,t,η(t)(εt+1)

∂εt+1,k
µl(z(t))Bl,t,η(t)(εt)

Dl,t,η(t)(εt+1)
∂µl(z(t))Bl,t,η(t)(εt)

∂εt+1,k

,

Tl,2t,k(εt, εt+1) =

 ∂Dl,t,η(t)(εt+1)

∂εt+1,k
µl(z(t))Cl,t,η(t)(εt)

Dl,t,η(t)(εt+1)
∂µl(z(t))Cl,t,η(t)(εt)

∂εt+1,k

.

To simplify the derivation, let λl,t =
1−γl,t

γl,t
. The state estimation of the l− th subsystem

can be obtained through the following iteration.
(1) Initialization. Define matrices Pl,0|0 and x̂l(0|0) as Pl,0|0 =

(
(∏̂l,0)

−1
+ DT

l,0,η(0)(0)

R−1
l,0 Dl,0,η(0)(0)

)−1
and x̂l(0|0) = Pl,0|0DT

l,0,η(0)(0)R−1
l,0 yl(0) respectively, where

∏̂l,0 =
(

∏−1
l,0 +λl,0

L
∑

k=1
(

∂(DT
l,0,η(0)(ε0))

T

∂ε0,k
)(

∂(DT
l,0,η(0)(ε0))

∂ε0,k
)|ε0=0

)−1

.

(2) Parameter modification. The subsystem parameter matrices are defined as follows,

T̂l,2t = Tl,2t − λl,tSl,t P̂l,t|tST
l,tTl,2t,

Âl,t(0) =
(

Al,t,η(t)(0)− λl,tĈl,t,η(t)(0)Q̂l,tTT
l,2tSl,t

)(
I − λl,t P̂l,t|tST

l,tSl,t

)
,

Ĉl,t,η(t)(0) = µl(z(t))Cl,t,η(t)(0)− λl,t Al,t,η(t)(0)P̂l,t|tST
l,tTl,2t,

B̂l,t,η(t)(0) = µl(z(t))B̄l,t,η(t)(0)− λl,t

(
Al,t,η(t)(0)P̂l,t|tST

l,t + Ĉl,t,η(t)(0)Q̂l,tTT
l,2t

)
Tl,1t,

P̂−1
l,t|t

= P−1
l,t|t + λl,tST

l,tSl,t,

Q̂−1
l,t = Q−1

l,t + λl,tTT
l,2t

(
I + λl,tSl,tPl,t|tST

l,t

)−1
Tl,2t.

(7)

(3) State estimate updating. Calculate Pl,t+1|t+1 and x̂l,t+1|t+1, respectively.

Pl,t+1|t = Al,t,η(t)(0)P̂l,t|t AT
l,t,η(t)(0) + Ĉl,t,η(t)(0)Q̂l,tĈT

l,t,η(t)(0),
Rl,e,t+1 = Rl,t+1 + Dl,t+1,η(t)(0)Pl,t+1|tDT

l,t+1,η(t)(0),

Pl,t+1|t+1 = Pl,t+1|t − Pl,t+1|tDT
l,t+1,η(t)(0)R−1

l,e,t+1Dl,t+1,η(t)(0)Pl,t+1|t,

x̂l,t+1|t+1 = B̂l,t,η(t)(0)u(t) + Âl,t,η(t)(0)x̂l,t|t + Pl,t+1|t+1

(
DT

l,t+1,η(t)(0)
)

R−1
l,t+1

×
[
yl(t + 1)− Dl,t+1,η(t)(0)

(
Âl,t,η(t)(0)x̂l,t|t + B̂l,t,η(t)(0)u(t)

)]
.

(8)

Finally, the state estimation of the nonlinear system is obtained through the fuzzy
rules and the above derivation process.

x̂(t|t) =
r

∑
l=1

x̂l(t|t) (9)

4. Some Properties of the Fuzzy State Estimator

In this section, we investigate the asymptotic properties of the T–S fuzzy fusion estima-
tion based on Markov jump strategy. It is assumed that Al,t,η(t)(0), Bl,t,η(t)(0), Cl,t,η(t)(0),
Dl,t,η(t)(0), Rl,t, Ql,t, Sl,t, Tl,1t, Tl,2t and γl,t are time invariant. The model errors are normal-
ized and constitute sets G, that is G =

{
ε
∥∥εt,k| ≤ 1, k = 1, · · · L

}
. In addition, the following

two assumptions will be used in the derivation of the fuzzy estimator.
(A1) The uncertainty subsystem (5) is exponentially stable in the Lyapunov sense.

The matrices Al,t,η(t)(εt), Bl,t,η(t)(εt), Cl,t,η(t)(εt), Dl,t,η(t)(εt), Rl,t, Ql,t and Πl,0 are bounded
at t > 0 and εt ∈ G.
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(A2) For each subsystem,
(

Al,t,η(t)(0), Dl,t,η(t)(0)
)

can be detected and
(

Al,t,η(t)(0)−

λl,tµl(z(t))Cl,t,η(t)(0)Ql,tTT
l,2t

(
I + λl,tTl,2tQl,tTT

l,2t

)−1
Sl,t,µl(z(t))Cl,t,η(t)(0)Q

1/2
l,t (I + λl,t

Q1/2
l,t TT

l,2tTl,2tQ
1/2
l,t

)−1/2
)

can be stabilized.

Theorem 1. Suppose that the assumptions (A1) and (A2) hold. Then, for the arbitrary ∏l,0 > 0
and 0 < γl,t ≤ 1, Pl,t|t−1 converges exponentially into a unique positive semidefinite matrix P,
while Al,pt,η(t) converges into a constant stable matrix Al,p. The T–S fuzzy state estimator of this
paper converges into a time-invariant and stable system, in which

Al,pt,η(t) = Al,t,η(t)(0)− (Al,t,η(t)(0)Pl,t|t−1
_

D
T
l,t,η(t) +

_

Bl,t,η(t) Jl,t)(Wl,t +
_

Dl,t,η(t)Pl,t|t−1
_

D
T
l,t,η(t))

−1

×
_

Dl,t,η(t), Al,p = Al,t,η(t)(0)− (Al,t,η(t)(0)P
_

D
T
l,t,η(t) +

_

Bl,t,η(t) Jl,t)(Wl,t +
_

Dl,t,η(t)P
_

D
T
l,t,η(t))

−1

×
_

Dl,t,η(t),
_

Bl,t,η(t) = Bl,t,η(t)(0)Q
1/2
l,t , Jl,t =

[
0 λ1/2

l,t Q1/2
l,t TT

l,2t

]
, Wl,t =

[
I 0
0 I+λl,tTl,2tQl,tTT

l,2t

]
,

_

Dl,t,η(t) =

[
R−1/2

l,t Dl,t,η(t)(0)
λ1/2

l,t Sl,t

]
.

Proof of Theorem 1. Equation (8) can be rewritten as follows,

x̂l(t + 1|t + 1) = Al, f t,η(t) x̂l(t|t) +
[

Bl, f ,η(t)tPl,t+1|t+1DT
l,t+1|t+1,η(t)(0)R−1

l,t+1

][
uT(t)yT

l,t+1

]T
(10)

where
Al, f t,η(t) = [I − Pt+1|t+1DT

l,t+1,η(t)(0)R−1
l,t+1Dl,t+1,η(t)(0)]Âl,t,η(t)(0),

Bl, f ,η(t)t = [I − Pt+1|t+1DT
l,t+1,η(t)(0)R−1

t+1Dl,t+1,η(t)(0)]B̂l,t,η(t)(0).

We know that the convergence of Pl,t|t−1 is equivalent to that of Pl,t|t from the relation
between Pl,t|t−1 and Pl,t|t . Therefore, the derived robust state sub-estimator converges to
a time-invariant stable system when the conditions of Theorem 1 are satisfied. We then
consider the biasness of estimation and boundedness of estimation errors for this T–S fuzzy
robust state estimator.

To simplify the analysis equation, the matrices x̄l(t),
^x l(t|t) and _x l(t|t) are defined as

[I + Ωl,t(0)]xl(t), [I + Ωl,t(0)]x̂l(t|t) and x̄l(t) −
^x l(t|t), respectively, in which,

Ωl,t(εt) = Pl,t|t−1DT
l,t,η(t)(0)R−1

l,t Dl,t,η(t)(εt).
According to the fuzzy rules and Equation (8), the following formula is obtained,[

^x(t + 1 | t + 1)
_x(t + 1 | t + 1)

]
=

r
∑

l=1

(
Ãl,t,η(t)(εt, εt+1)

[
^x l(t | t)
_x l(t | t)

]
+ C̃l,t,η(t)(εt, εt+1)

[
w(t)

v(t + 1)

]
+B̃l,t,η(t)(εt, εt+1)u(t)

) (11)
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where,

Ãl,t,η(t)(εt, εt+1) =

(I + Ωl,t+1(0))Al,t,η(t)(εt) (I + Ωl,t+1(0))Al,t,η(t)(εt)

(I + Ωl,t(0))
−1 −Ωl,t+1(εt+1) × (I + Ωl,t(0))

−1 −Ωl,t+1(εt+1)

×Al,t,η(t)(εt)(I + Ωl,t(0))
−1 × Al,t,η(t)(εt)(I + Ωl,t(0))

−1

−Âl,t,η(t)(0)(I + Ωl,t(0))
−1

Ωl,t+1(εt+1)Al,t,η(t)(εt)(I + Ωl,t(0))
−1 Ωl,t+1(εt+1)Al,t,η(t)(εt)(I + Ωl,t(0))

−1

+Âl,t,η(t)(0)(I + Ωl,t(0))
−1


,

C̃l,t,η(t)(εt, εt+1) =

 ((I + Ωl,t+1(0))−Ωl,t+1(εt+1)) − Pl,t+1|tDT
l,t+1,η(t)(0)R−1

l,t+1
×µl(z(t))Cl,t,η(t)(εt)

Ωl,t+1(εt+1)µl(z(t))Cl,t,η(t)(εt) Pl,t+1|tDT
l,t+1,η(t)(0)R−1

l,t+1

,

B̃l,t,η(t)(εt, εt+1) =

 ((I + Ωl,t+1(0))−Ωl,t+1(εi+1))µl(z(t))
×Bl,t,η(t)(εt)− µl(z(t))Bl,t,η(t)(0)

Ωl,t+1(εt+1)µl(z(t))Bl,t,η(t)(εt) + B̂l,t,η(t)(0)

.

Considering the whiteness and irrelevance of w(t) and v(t), it can be obtained from
Formula (11),∥∥∥∥∥E

{[
^x(t + 1 | t + 1)
_x(t + 1 | t + 1)

]}∥∥∥∥∥
=

∥∥∥∥∥E

{
r
∑

l=1
(Ãl,t,η(t)(εt, εt+1)

[
^x l(t | t)
_x l(t | t)

]
+ C̃l,t,η(t)(εt, εt+1)×

[
w(t)

v(t + 1)

]
+ B̃l,t,η(t)(εt, εt+1)u(t)

}
×
[

w(t)
v(t + 1)

]
+ B̃l,t,η(t)(εt, εt+1)u(t))

}∥∥∥∥
=

∥∥∥∥∥E

{
r
∑

l=1
(Ãl,t,η(t)(εt, εt+1)

[
^x l(t | t)
_x l(t | t)

]
+ B̃l,t,η(t)(εt, εt+1)u(t))

}∥∥∥∥∥
=

∥∥∥∥∥ r
∑

l=1

([
t

∏
m=0

Ãl,m,η(m)(εm, εm+1)

]
E

{[
^x l(0 | 0)
_x l(0 | 0)

]}
+

[
t

∏
m=1

Ãl,m,η(m)(εm, εm+1)

]
×u(0) +

[
t

∏
m=2

Ãl,m,η(m)(εm, εm+1)

]
B̃l,1,η(1)(εt, εt+1)u(1) + · · ·

+

[
t

∏
m=t

Ãl,m,η(m)(εm, εm+1)

]
× B̃l,t−1,η(t−1)(εt, εt+1)u(t− 1) + B̃l,t,η(t)(εt, εt+1)u(t)

)∥∥∥∥
≤
∥∥∥∥∥ r

∑
l=1

([
t

∏
m=0

Ãl,m,η(m)(εm, εm+1)

]
E

{[
^x l(0 | 0)
_x l(0 | 0)

]})∥∥∥∥∥
+

∥∥∥∥ r
∑

l=1

([
t

∏
m=1

Ãl,m,η(m)(εm, εm+1)

]
u(0)

)∥∥∥∥
+

∥∥∥∥ r
∑

l=1
(

[
t

∏
m=2

Ãl,m,η(m)(εm, εm+1)

]
B̃l,1,η(1)(εt, εt+1)u(1))

∥∥∥∥
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+ · · ·+
∥∥∥∥ r

∑
l=1

(

[
t

∏
m=t

Ãl,m,η(m)(εm, εm+1)

]
×B̃l,t−1,η(t−1)(εt, εt+1)u(t− 1))

∥∥∥
+

∥∥∥∥ r
∑

l=1
(B̃l,t,η(t)(εt, εt+1)u(t))

∥∥∥∥
≤
∥∥∥∥∥ r

∑
l=1

([
t

∏
m=0

Ãl,m,η(m)(εm, εm+1)

]
E

{[
^x l(0 | 0)
_x l(0 | 0)

]})∥∥∥∥∥
+

∥∥∥∥ r
∑

l=1

([
t

∏
m=1

Ãl,m,η(m)(εm, εm+1)

]
u(0)

)∥∥∥∥
+

(
r
∑

l=1

∥∥∥∥[ t
∏

m=2
Ãl,m,η(m)(εm, εm+1)

]∥∥∥∥∥∥∥B̃l,1,η(1)(εt, εt+1)u(1)
∥∥∥)

+ · · ·+
r
∑

l=1

(∥∥∥∥[ t
∏

m=t
Ãl,m,η(m)(εm, εm+1)

]∥∥∥∥
×
∥∥∥B̃l,t−1,η(t−1)(εt, εt+1)u(t− 1)

∥∥∥)+ ∥∥∥∥ r
∑

l=1
(B̃l,t,η(t)(εt, εt+1)u(t))

∥∥∥∥
≤
∥∥∥∥∥ r

∑
l=1

(

[
t

∏
m=0

Ãl,m,η(m)(εm, εm+1)

]
E

{[
^x l(0 | 0)
_x l(0 | 0)

]}
)

∥∥∥∥∥
+

∥∥∥∥ r
∑

l=1

([
t

∏
m=1

Ãl,m,η(m)(εm, εm+1)

]
u(0)

)∥∥∥∥
+

(
r
∑

l=1

(∥∥∥∥[ t
∏

m=2
Ãl,m,η(m)(εm, εm+1)

]∥∥∥∥+ · · · ∥∥∥∥[ t
∏

m=t
Ãl,m,η(m)(εm, εm+1)

]∥∥∥∥)+1
)

×max
{

r
∑

l=1

∥∥∥B̃l,1,η(1)(εt, εt+1)u(1)
∥∥∥, · · · ,

r
∑

l=1
B̃l,t,η(t)(εt, εt+1)u(t)

}
,

(12)

reference [30] pointed out that, when a single uncertain linear system is exponentially stable,

lim
t→∞

∥∥∥∥∥
[

t
∏

m=0
Ãl,m,η(m)(εm, εm+1)

]
E

{[
^x l(0|0)
_x l(0|0)

]}∥∥∥∥∥ = 0 and lim
t→∞

∥∥∥∥[ t
∏

m=1
Ãl,m,η(m)(εm, εm+1)

]
u(0)‖ = 0 exists if the conditions K1, K2, K3 and 0 ≤ ρ3 < 1 are satisfied and make∥∥∥∥∥
[

k2
∏

m=k1

Ãl,m,η(m)(εm, εm+1)

]∥∥∥∥∥ ≤ (3+
√

5)
√

K2
1+K2

2+(k2−k1+1)2K2
3

2 ρk2−k1
3 .

According to the fuzzy fusion rule, then

r
∑

l=1
lim
t→∞

∥∥∥∥∥
[

t
∏

m=0
Ãl,m,η(m)(εm)

]
E

{[
^x l(0|0)
_x l(0|0)

]}∥∥∥∥∥ = 0,

r
∑

l=1
lim
t→∞

∥∥∥∥[ t
∏

m=1
Ãl,m,η(m)(εm)

]
u(0)

∥∥∥∥ = 0.
(13)

It’s easy to get
+∞
∑

n=0

(3+
√

5)
2

{
K2

1 + K2
2 + (n + 1)2K2

3

}
ρn

3 = N1 < +∞ based on lim
n→∞

(
1
2

(3 +
√

5)
√

K2
1 + K2

2 + (n + 1)2K2
3ρn

3

) 1
n
= ρ3 lim

n→∞

(
(n + 1) (3+

√
5)

2

√
K2

1+K2
2

(n+1)2 + K2
3

) 1
n

= ρ3 <

1, where N1is a finite positive constant, Al,t,η(t)(εt) and Bl,t,η(t)(εt) are bounded to get
Ãl,t,η(t)(εt, εt+1) and B̃l,t,η(t)(εt, εt+1). In addition, there’s a normal number, N2, that makes

inequality lim
t→∞

∥∥∥∥∥E

{[
^x(t + 1|t + 1)
_x(t + 1|t + 1)

]}∥∥∥∥∥ ≤ N2 hold.

Therefore, the estimation error of the estimator is bounded and the proof is completed.

Based on the stability of Equation (11) and matrix Ãl,t,η(t)(εt, εt+1), and the previous
derivation, the conditions for the T–S fuzzy robust estimator are as follows:

Theorem 2. Assuming that the conditions (A1) and (A2) are satisfied, the covariance matrix of the
estimation error of the fuzzy state estimator is bounded at each time.
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Proof of Theorem 2. To analyze conveniently, we describe E


[

^x l(t|t)
_x l(t|t)

][
^x l(t|t)
_x l(t|t)

]T


as Kl,t in the following.
Using the whiteness and irrelevance of noise and Equation (11), the following deriva-

tion is obtained,

Kt+1

=
r
∑

l=1

Ãl,t,η(t)(εt, εt+1)

[
^x l(t|t)
_x l(t|t)

] r
∑

l=1

[
^x l(t|t)
_x l(t|t)

]T

ÃT
l,t,η(t)(εt, εt+1)


+Ãl,t,η(t)(εt, εt+1)

[
^x l(t|t)
_x l(t|t)

](
r
∑

l=1
uT(t)B̃T

l,t,η(t)(εt, εt+1)

)
+ C̃l,t,η(t)(εt, εt+1)

×
[

w(t)
v(t + 1)

](
r
∑

l=1

[
w(t)
v(t + 1)

]T

C̃T
l,t,η(t)(εt, εt+1)

)
+ B̃l,t,η(t)(εt, εt+1)u(t)(

r
∑

l=1
uT(t)B̃T

l,t,η(t)(εt, εt+1)

)
+ B̃l,t,η(t)(εt, εt+1)u(t)

 r
∑

l=1

[
^x l(t|t)
_x l(t|t)

]T

ÃT
l,t,η(t)(εt, εt+1)

)

(14)

Further simplify the analysis,

Kt+1 =
r
∑

l=1

{
t

∑
k=0

{
t

∏
j=k+1

Ãl,j,η(j)
(
ε j, ε j+1

)(
C̃l,t,η(t)(εt, εt+1)

×
[

w(t)
v(t + 1)

](
r
∑

l=1

[
w(t)
v(t + 1)

]T

C̃T
l,t,η(t)(εt, εt+1)

)

+Ãl,t,η(t)(εt, εt+1)

[
^x l(t|t)
_x l(t|t)

](
r
∑

l=1
uT(t)B̃T

l,t,η(t)(εt, εt+1)

)
+B̃l,t,η(t)(εt, εt+1)u(t)

(
r
∑

l=1
uT(t)B̃T

l,t,η(t)(εt, εt+1)

)
+B̃l,t,η(t)(εt, εt+1)u(t)

 r
∑

l=1

[
^x l(t|t)
_x l(t|t)

]T

ÃT
l,t,η(t)(εt, εt+1)

(
r
∑

l=1

(
t

∏
j=k+1

ÃT
l,j,η(j)

(
ε j, ε j+1

)))}}
.

(15)

To simplify the derivation process, define the matrix N3,

N3 = sup
t≥0

sup
εt ,εt+1∈G

σ̄
(

C̃l,t,η(t)(εt, εt+1)

×
[

w(t)
v(t + 1)

](
r
∑

l=1

[
w(t)
v(t + 1)

]T

C̃T
l,t,η(t)(εt, εt+1)

)

+Ãl,t,η(t)(εt, εt+1)

[
^x l(t|t)
_x l(t|t)

](
r
∑

l=1
uT(t)B̃T

l,t,η(t)(εt, εt+1)

)
+B̃l,t,η(t)(εt, εt+1)u(t)

(
r
∑

l=1
uT(t)B̃T

l,t,η(t)(εt, εt+1)

)
+B̃l,t,η(t)(εt, εt+1)u(t)

 r
∑

l=1

[
^x l(t|t)
_x l(t|t)

]T

ÃT
l,t,η(t)(εt, εt+1)

.

(16)
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Considering the boundedness of the estimation error of the estimator and the boundedness
of the matrix system parameters Bl,t,η(t), Cl,t,η(t), Dl,t,η(t), Ql,t and Rl,t, it can be obtained that,

σ̄(Kt+1)

≤
r
∑

l=1

{
σ̄

(
t

∏
j=k+1

Ãl,j,η(j)
(
ε j, ε j+1

))
N3

×σ̄

(
r
∑

l=1

(
t

∏
j=k+1

ÃT
l,j,η(j)

(
ε j, ε j+1

)))}

≤
r
∑

l=1

(
N3

t
∑

k=0

{
σ̄

(
t

∏
j=k+1

Ãl,j,η(j)
(
ε j, ε j+1

))}r

≤
r
∑

l=1

(
N3

t
∑

k=0

{
3+
√

5
2

√
K2

1 + K2
2 + (t− k)2K2

3ρt−k
3

}r

=
r
∑

l=1

{
7+3
√

5
2 N3

{(
K2

1 + K2
2
) 1−ρ

2(t+1)
3

1−ρ2
3

+K2
3

ρ2
3(1+ρ2

3)−ρ
2(t+1)
3

[
(t+1)2−(2t2+2t−1)ρ2t

3 +t2ρ4t
3

]
(1−ρ2

3)
3

} r
2


< +∞.

(17)

5. Numerical Simulation

In this section, we compare the performance of the derived fuzzy robust state estimator
with that of the fuzzy Kalman filter based on actual parameters and nominal parameters,
respectively, through the case of a tunnel diode circuit. Each set of experiments was
simulated 500 times to calculate the variance of the overall mean estimated error at each
moment. The size of the population mean is approximated by the average of the square
of the Euclidean distance from the actual equipment state to its estimated value, that is
E||x(t)− x̂(t|t)||2 ≈ 1

500 ∑500
j=1 ||x(t)− x̂j(t|t)||2.

Firstly, consider and modify the case of a tunnel diode circuit in [31], as shown
in Figure 1, which is characterized by ID = 0.002VD(t) + 0.01V3

D(t). Let χ1(t) = Vc(t),
χ2(t) = IL(t). The following equation is given,

Cχ1(t + 1) = −0.002χ1(t)− 0.01χ3
1(t) + 0.3999 ∗ 10−3χ2(t),

Lχ2(t + 1) = −χ1(t)− Rχ2(t) + w(t),
(18)

where w(t) is the disturbance noise input, C is the capacitance, L is the inductance, and R
is the resistance.

Figure 1. Tunnel diode circuit.
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In order to facilitate the analysis, we use as few rules as possible. The following two
rules are used to approximate the nonlinear systems,

Plant Rule 1 : IF ζ(t) ∈ ξ1(ζ(t)), THEN :
χ1(t + 1) = − 0.02

C1
χ1(t)− 0.01

C1
χ3

1(t) +
0.3999∗10−3

C1
χ2(t)

χ2(t + 1) = − 1
L1

χ2(t)− R
L1

χ2(t) + w(t)

Plant Rule 2 : IF ζ( t ) ∈ ξ2(ζ( t)), THEN :
χ1(t + 1) = − 0.02

C2
χ1(t)− 0.01

C2
χ3

1(t) +
0.3999∗10−3

C2
χ2(t)

χ2(t + 1) = − 1
L2

χ2(t)− R
L2

χ2(t) + w(t)

Taking into account the system error when the linear system approximates the nonlin-
ear system, it is substituted into the model in the form of a model error; then, the matrix
parameters are:

A11(εt) =

[
0.02
C1

R+∆εt

0 0.02
C1

]
,

A12(εt) =

[
0.02
C1

R+∆εt

0 0.02
C1

]
,

B11(εt) = B12(εt) =

[
R
L1

0
0 R

L1

]
,

A21(εt) =

[
0.02
C2

R+∆εt

0 0.02
C2

]
,

A22(εt) =

[
0.02
C2

R+∆εt

0 0.02
C2

]
,

B21(εt) = B22(εt) =

[
R
L2

0
0 R

L2

]
,

and the numerical values in the simulation experiment are C1 ∈ [0.2F, 0.25F], C2 ∈ [0.4F, 0.45F],
L1 ≈ 1H, L2 ≈ 1.2H, R = 0.0196 Ω. Then, the matrix parameters are as follows, where the
parameter before the model error, εt, is adjustable, which represents the “size” of the uncertainty:

A11(εt) =

[
0.9802 0.0196 + 0.99εt

0 0.9802

]
,

A12(εt) =

[
0.9904 0.0196 + 0.99εt

0 0.9904

]
,

B11(εt) = B12(εt) =

[
0.0196 0

0 0.0196

]
,

C11(εt) = C12(εt) =

[
1 0
0 1

]
, D11(εt) = D12(εt) =

[
1 −1

]
,

A21(εt) =

[
0.4901 0.0196 + 0.99εt

0 0.4901

]
,

A22(εt) =

[
0.5902 0.0196 + 0.99εt

0 0.5902

]
,

B21(εt) = B22(εt) =

[
0.0163 0

0 0.0163

]
,

C21(εt) = C22(εt) =

[
1 0
0 1

]
, D21(εt) = D22(εt) =

[
1 −1

]
,

Ql,t =

[
1.9608 0.0195
0.0195 1.9605

]
, Rl,t = 1.00000, Πl,0 =

[
1 0
0 1

]
.

Given the transition probability matrix, πa,b =

[
0.2 0.8
0.5 0.5

]
.
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In the first group of simulations, the model error, εt, is fixed at −0.8508, and the
deterministic input, u(t), is also fixed at u(t) = [1.0; 0.1]. Figure 2a shows the estimation
error variances with respect to the time samples and the T–S fuzzy state estimator design
parameter, γ. It can be clearly seen that when the design parameter, γ, is about 0.2;
the performance of the T–S fuzzy state estimator proposed in this paper is about 12 dB
different from that of the T–S fuzzy Kalman filter based on the actual parameters, but the
performance is improved by nearly 10 dB compared with that of the T–S fuzzy Kalman
filter based on the nominal parameters. The same conclusion can be drawn from Figure 2b.
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Figure 2. The model error, εt, is fixed. (a) The design parameter, γ, is fixed. (b) The sampled instant,
t, is fixed.

Figure 2b shows that, at the sampled instant t = 500, if γ takes any value between 0.1
and 1.0, the performance of the derived T–S fuzzy robust state estimator is better than that
of the T–S fuzzy Kalman filter based on the nominal parameter values.

In the second group of simulations, the uncertainty of the system model is increased,
that is, the model error, εt, changes randomly. The model error is generated by the intercept
of the Gaussian distribution, and the mean value is set to 0 and the variance is set to 1,
while the external input signals, u(t), are fixed to [1.0; 0.1]. In addition, the amplitude of
the model error cannot be greater than 1. If the given requirement is not met, it is deleted
and regenerated until the amplitude satisfies less than 1.

From Figure 3b, we can see that there exists a large interval of γ, which leads to the
T–S fuzzy robust estimator with better performance than the T–S fuzzy Kalman filter, based
on the nominal parameters at the sampled instant t = 500.
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Figure 3. The model error, εt, is not fixed. (a) The design parameter, γ, is fixed. (b) The sampled
instant, t, is fixed.

The two sets of simulation cases show that the derived fuzzy robust state estimator
performs satisfactorily compared to ignoring uncertain estimators under fuzzy rules and
the Markov jump strategy. This means that the proposed method is an effective state
estimation method in practical engineering.
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6. Conclusions

In this paper, a fuzzy robust state estimator is designed for a class of nonlinear systems
with sudden changes in the system structure and parameters due to external disturbances.
Firstly, based on Markov jump strategy, the T–S fuzzy method is used to model the non-
linear system, and the inevitable deviation of the linear subsystem when approaching the
nonlinear is taken into account, which is expressed as the model error in system modeling.
Secondly, the robust state estimation method, based on the sensitivity penalty, is used to
design sub-estimators for uncertain linear subsystems, and fuzzy robust state estimators
for nonlinear systems are obtained by fuzzy rules and membership functions. Thirdly, the
steady state analysis of the proposed fuzzy state estimator is given under certain conditions.
Finally, the numerical simulation of a tunnel diode circuit proves that the proposed fuzzy
robust state estimator has good state estimation performance.
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