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Abstract: Logo detection is a technology that identifies logos in images and returns their locations.
With logo detection technology, brands can check how often their logos are displayed on social media
platforms and elsewhere online and how they appear. It has received a lot of attention for its wide
applications across different sectors, such as brand identity protection, product brand management,
and logo duration monitoring. Particularly, logo detection technology can offer various benefits for
companies to help brands measure their logo coverage, track their brand perception, secure their
brand value, increase the effectiveness of their marketing campaigns and build brand awareness
more effectively. However, compared with the general object detection, logo detection is more
challenging due to the existence of both small logo objects and large aspect ratio logo objects. In this
paper, we propose a novel approach, named Discriminative Semantic Feature Pyramid Network with
Guided Anchoring (DSFP-GA), which can address these challenges via aggregating the semantic
information and generating different aspect ratio anchor boxes. More specifically, our approach
mainly consists of two components, namely Discriminative Semantic Feature Pyramid (DSFP) and
Guided Anchoring (GA). The former is proposed to fuse semantic features into low-level feature maps
to obtain discriminative representation of small logo objects, while the latter is further integrated
into DSFP to generate large aspect ratio anchor boxes for detecting large aspect ratio logo objects.
Extensive experimental results on four benchmarks demonstrate the effectiveness of the proposed
DSFP-GA. Moreover, we further conduct visual analysis and ablation studies to illustrate the strength
of the proposed DSFP-GA when detecting both small logo objects and large aspect logo objects.

Keywords: object detection; discriminative semantic features; small logo; large aspect ratio logo;
logo detection

MSC: 68T45

1. Introduction

Researches related to logo detection have been widely carried out in multimedia and
beyond [1-7]. Logo detection is an important task for its various applications, such as
vehicle logo recognition for intelligent transportation and protection of intellectual property
for commercial research [8,9] to mention but a few.

Many current logo detectors directly adopt object detection methods, and thus lack the
refinement to the issues of logo detection based on the characteristics of logos. For example,
many logo detection methods directly use feature maps extracted by CNNs [10,11]. As a
result, the semantic information of low-level feature maps for detecting small logo objects
is insufficient. Because the influence of low-level feature maps is low, and the semantic
information is thus not fully extracted. Moreover, existing models use the preset anchor
mechanism [12-14], and thus cannot effectively deal with the different aspect ratio (the
ratio of maximum side to minimize side of object) logo objects, making it difficult to detect
large aspect ratio logo objects.
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In feature representation, high-level feature maps have detailed information to detect
large logo objects, but may miss small logo objects due to their huge influence. However,
low-level feature maps contain less semantic information [15,16], which makes it difficult
to distinguish between foreground and background, resulting in insufficient training of
small logo objects. Although Feature Pyramid Network (FPN) [15] as shown in Figure 1a,
is proposed to build a feature pyramid by sequentially combining two adjacent layers via
top-down and lateral connections for object detection, the top-down pathway doesn’t fully
integrate rich semantic information into low-level feature maps.
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(a) FPN (b) DSFP

Figure 1. (a) FPN introduces a top-down pathway and lateral connections to fuse multi-level fea-
tures from level 2 to 5 (P2-P5). (b) Our DSFP adds high-to-low aggregating pathways and lateral
connections, and it mainly can enrich semantic information of low-level feature maps.

In order to obtain efficient feature representation in object detection, existing meth-
ods [17-21] usually adopt preset anchor boxes in training. However, large aspect ratio
objects exist all the time for logos in reality. As shown in Figure 2a, logos like “napapijri”
and “coffee beanery” are extremely wide, while logos like “luciano soprani” and “simple
human” are extremely tall, making it challenging for logo detectors to detect these kinds
of logo objects. Figure 2b shows LogoDet-3K dataset [22], there are about 35% logo ob-
jects with an aspect ratio greater than 3. This challenge leads to the inefficiency of logo
detection using the preset anchor boxes, which may produce a large number of regions of
negative samples.

The main contributions of this work can be summarized as follows:

*  We propose a novel logo detection method DSFP-GA, which can obtain discriminative
semantic features and generate large aspect ratio anchor boxes to simultaneously
address the issues of detecting small logo objects and large aspect ratio logo objects.

¢ We design the DSFP to obtain discriminative semantic features for small logos, which
can be embedded into any detection models.

¢ To the best of our knowledge, DSFP-GA is the first work to focus on the issue of large
aspect ratio logo objects.

e  Extensive evaluations demonstrate the effectiveness of the proposed DSFP-GA over a
wide range of state-of-the-art detection models on four logo datasets, namely LogoDet-
3K, LogoDet-3K-1000, QMUL-OpenLogo, and FlickrLogos-32.

The remainder of this paper is organized as follows. The related work about object
detection and logo detection is described in Section 2. We describe the detailed framework
design in Section 3. Experimental results and analysis are reported in Section 4. Finally, we
conclude the paper and propose our future research of logo detection in Section 5.
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Figure 2. (a) Four illustrative large aspect ratio logo images. Categories (1) to (4). Category (1)
“napapijri”, max/min equals 6.1; Category (2) “coffee beanery”, max/min equals 7.9; Category (3)
“luciano soprani”, (the left box) max/min equals 7.7, (the right box) max/min equals 6.5; Category (4)
“simple human”, (the left box) max/min equals 5.8, (the right box) max/min equals 4.7. Blue boxes:
ground-truth boxes. Histogram (b) of is the number of boxes vs the ratio of maximum dimension
to minimum dimension of the object on the LogoDet-3K dataset. The value of max/min accounts
for 65.1% in the range of (1-2.9), the value of max/min accounts for 23.1% in the range of (3-4.9),
the value of max/min value greater than 5 accounts for 11.8%.

2. Related Work
2.1. Object Detection

Object detection is an important task in computer vision research, and the develop-
ment of deep learning has vastly improved the performance of object detection. A mod-
ern detector is usually composed of two parts: the backbone that is pre-trained on Ima-
geNet [23], and a detection head that is used for predicting localization and classification
of objects. For those detectors, their backbones include VGG, ResNet, SpineNet, ResNeXt,
and DenseNet, etc. As to the detection head, it is generally divided into two kinds, i.e., one-
stage detectors and two-stage detectors.

One-stage detectors include YOLO series [18,19,24], RetinaNet [25], SSD [17] and
M2Det [16], etc. They are simpler and faster than two-stage detectors but have lags in
performance. The classical detectors generally use preset anchor boxes for object detection.
However, manually setting the scale and proportion of the anchor boxes lead to inefficiency
in detection tasks of different scenes. Recently, anchor-free methods [26-29], and methods
of transformers [30,31] for object detection have been proposed. Anchor-free methods drop
the preset anchor boxes. They learn key points according to the characteristics of the objects,
such as the center point or 4 corners of the object, and then automatically generates the
anchor boxes. Methods based on transformers mainly introduce self-attention, which can
better extract features.

Two-stage detectors include R-CNN series [32-35], and ThunderNet [36], etc. Faster
R-CNN employs the RPN to generate Regions of Interest (Rols) by modifying preset anchor
boxes and this improves the efficiency of detectors. Moreover, many methods have been
introduced to enhance Faster R-CNN from different aspects. Cascade R-CNN [37] extended
Faster R-CNN to a multi-stage detector through the cascade architecture. Mask R-CNN [38]
replaced the RolPool layer with the RolAlign layer using bilinear interpolation. Soft
NMS [39] was proposed to improve NMS. We on the other hand, apply the object detection
method to logo detection. Unlike these methods, we fully consider the characteristics of
logo objects. For the issue of small logo objects, we introduce the DSFP to enhance semantic
information of low-level feature maps and improve the performance of small logo objects.
For the issue of large aspect ratio objects, we adopt the GA, which can generate large
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aspect ratio anchor boxes to accurately match these logo objects and effectively improve
the efficiency of detection.

2.2. Logo Detection

Logo detection is a special case of object detection, and it can be applied to many fields
and has great commercial value. Hence, logo detection has attracted extensive attention
from researchers. Early logo detection methods were established on hand-crafted visual
features (e.g., SIFT and HOG) and conventional classification models (e.g., SVM). Inspired
by the recent advances in object detection using deep learning methods, a remarkable
progress has been made in logo detection. Some existing detectors often insert some
network layers between the backbone and detection head, and these layers are usually
used to collect feature maps from different levels and are helpful to improve the detection
performance of small logo objects. Normally, it is composed of several bottom-up paths
and several top-down paths. Detectors equipped with this mechanism include Feature
Pyramid Network (FPN) [15], Path Aggregation Network (PANet) [40], and Balanced
Feature Pyramid (BFP) [41]. FPN used lateral connections and a top-down pathway to
enhance the semantic information of shallow layers. After that, PANet brought in a bottom-
up pathway to further increase the detailed information in deep layers. MFDNet [5] used
BFP to integrate balanced semantic features to strengthen original features.

Unlike these feature pyramid networks, our approach relies on integrated rich seman-
tic features to low-level feature maps, which can enrich the discriminative semantic features
of these feature maps to detect small logo objects and then bring improvement for logo
detection. In addition, whether logo detectors are improved from one-stage or two-stage
methods, almost all of them use preset anchor boxes [42,43] to obtain Rols. However,
consider that there are many logos with large aspect ratios, the proposed method generates
anchor boxes according to anchor location branch and anchor shape branch by learning
features of logo objects instead of using preset anchor boxes. Compared with the existing
logo detectors, our proposed DSFP-GA is more effective for small logo objects and large
aspect ratio logo objects.

3. Approach

The overall network architecture of DSFP-GA is shown in Figure 3, which is mainly
divided into four parts: namely feature extractor, feature pyramid, guided anchoring,
and classification and regression. Specifically, the feature maps of input logo images
are extracted by the backbone network. Then the DSFP is used to obtain the semantic
information of low-level feature maps for small logo objects. In the region proposal stage,
the GA is adopted to yield a set of Rols. And then each Rol is pooled into a fixed-size
feature map through Rol Pooling. In the phase of the classification and regression, feature
maps are mapped to a feature vector by a fully connected (FC) layer, and then a feature
vector is inputted into the classifiers and bounding box regressors. Finally, the model
outputs classification and localization of logo images. The code and models can be found
at https:/ /github.com/Zhangbaisong/DSFP-GA.

3.1. Discriminative Semantic Feature Pyramid

In order to address the issue of detecting small logo objects accurately, we propose the
DSEFP to obtain discriminative semantic features via integrating high-level and middle-level
features with rich semantic information to low-level feature maps. As shown in the bottom
of Figure 3, the whole process mainly includes three steps: lateral connection, multiple
up-sampling, and feature fusion.


https://github.com/Zhangbaisong/DSFP-GA
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Figure 3. Overview of the proposed Discriminative Semantic Feature Pyramid Network with Guided
Anchoring (DSFP-GA). Feature Extractor: we use the ResNet-50 as the backbone to extract feature
information. Discriminative Semantic Feature Pyramid: we propose the DSFP to obtain discriminative

semantic features. It mainly contains lateral connection, multiple up-sampling, and feature fusion.
Here Ci denotes the feature map from stage i of the CNN backbone, and Pi denotes the corresponding
feature pyramid level on DSFP. Guided Anchoring: we adopt the GA to generate anchor boxes that
can detect a large aspect ratio, and then determine whether it belongs to foreground or background
and then apply preliminary bounding box regression. Classification and Regression: output the
corresponding category and the final localization.

(1) Lateral Connection. Multi-level feature maps generated by the feature extractor are
fed into the DSFP. In Figure 3, {C2, C3, C4, C5} are multi-level features from level 2 to 5,
and these feature maps are recorded as {Temp_P2, Temp_P3, Temp_P4, P5} through lateral
connections. Feature maps transform as follows:

Ci 1 x 1 conv Pi i=5 (1)
Temp_Pi 2<i<4

where Ci is the feature map from level i of the CNN backbone. Lateral connections contain
a 3 x 3 convolutional layer on each merged feature map to reduce the aliasing effect of
up-sampling and integration.

(2) Multiple Up-sampling. To integrate multi-level features and preserve semantic
information, we need to up-sample feature maps {P5, Temp_P4, Temp_P3} to the corre-
sponding size, and the specific operations are as follows.

3 times upsample C5 4
p5 = PTPS LC53
C5_2
Temp_P4 2 times upsample { gj_g @
Temp_P3 1 times upsample { C3.2

where P5 and Temp_Pi are feature maps of level i after lateral connections. Up-sampling
P5 for three times corresponds to the size of feature maps {Temp_P4, Temp_P3, Temp_P2}
respectively, and the three obtained feature maps are denoted as {C5_4, C5_3, C5_2}. Here
we use the classical nearest interpolation function for up-sampling. Up-sampling Temp_P4
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twice correspond to the size of feature maps {Temp_P3, Temp_P2} respectively, and the
two obtained feature maps record as {C4_3, C4_2}. Up-sampling Temp_P3 once corre-
spond to the size of the feature map Temp_P2 and one obtained feature map record C3_2.
Through this step, we can get the rich semantic information of multi-level feature maps in
different resolutions.

(3) Feature Fusion. In this step, we integrate the same size feature maps. The specific
operations are as follows.

Pi=Temp Pi+Y/=,,Cjii 2<i<4 3)

where Temp_Pi denotes the feature map from stage i after lateral connections, and Cj;
denotes the feature map from the up-sampled Temp_Pi, P; denotes the corresponding
feature pyramid level on DSFP. Feature maps C5_4 and Temp_P4 are integrated to get P4.
Feature maps C5_3, C4_3, and Temp_P3 are integrated to get P3. Feature maps C5_2, C4_2,
C3_2, and Temp_P2 are integrated to get P2. Afterward, we append a 3 x 3 convolutional
layer on {P2, P3, P4} to reduce the aliasing effect. P2 and P3 share the same representation
level with the original C2 and C3 but contains more regional details due to their higher
resolution. And the smaller receptive field in P2 and P3 also helps to better locate small
logo objects. Feature maps {P2, P3, P4, P5} of final outputs are used for logo detection
following the same feature pyramid pipeline.

The proposed DSFP via cross layer fusion from top to bottom, which can ensure that the
semantic information of high-level and middle-level feature maps can be directly fused with
low-level feature maps. The DSFP achieves the fusion of different levels features through
the above three steps, which can obtain discriminative semantic features for detecting small
logo objects, and then further improve the performance of the logo detection task.

3.2. Guided Anchoring

GA scheme can predict the aspect ratios of objects at different locations [44], we
adopt the GA to adaptively generate the width and height of anchor boxes via learning
the features of the logo objects. It mainly consists of two branches; anchor location and
anchor shape.

(1) Anchor Location. This branch is used to predict which region could be the center
regions of the logo objects. This branch yields a probability map p(x, y||F;) of the same size
as the input feature map Fj, where x and y are the center coordinates of the anchor boxes.
Each entry p(x,y| Fr) corresponds to the location on the image I as follows,

X —x-8+ %

2 4
y—>y-s+ 5
where s is the stride of the feature map. Through a 1 x 1 convolutional layer, we get
the mapping of objectness scores, and we use the sigmoid function to transform it into a
probability value. Based on the generated probability map, we determine the possible area
of the object by selecting the location with the corresponding probability value higher than
the threshold.

(2) Anchor Shape. After determining the possible location of the logo object, our
method will predict the shape of the logo objects accurately. The goal of this branch is to
predict the width (w;) and height (h,,) of anchor boxes. Because of great varying range, wy,
and h, are transformed as follows:

dw
=S - wp
wp S-e

©)

_ d,
hy =s-e'r
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This branch is used to predict the shapes of anchor boxes, and it also containsa 1 x 1
convolutional layer and can produce the mapping of two channels, including dy, and dj,
values, through the formula of conversion to the corresponding w, and h;, values. And it
is difficult to calculate the w and h of objects separately, therefore we directly utilize the
Bound IoU Loss [45] as the supervisor of this branch to learn w and h.

Through these methods, we can obtain the location, w and #, so that we can generate
the anchor boxes according to w and h at the most appropriate location. In this way, the logo
object can be accurately located and the interference from the complex background informa-
tion can be reduced. The essential difference between the design of guided anchoring and
preset anchor boxes is that each position is related to only one anchor box of dynamically
predicted shapes instead of a series of preset anchor boxes. Through the two branches of
anchor location and anchor shape, our framework can obtain large aspect ratio anchor
boxes, and then drastically improve the performance of the logo detection.

3.3. Loss Function

In the training of the DSFP-GA framework, the overall optimization loss function is
defined as:
£ == EC’S + Ergg (6)

where L5 and Ly, are losses of classification and localization, respectively. The classifica-
tion loss is defined as follows:

£cls = Lloc + ’Cng_ClS + £head_cls (7)

where Lg; ¢js and Lpeqq_c1s are classification losses of the GA and the detection head, £, is
used for anchor location branch. Since the center of the anchor usually accounts for a small
portion of the whole feature map, we use the Focal Loss [25] to mitigate the imbalance of
positive and negative samples.

Lioe = LrL 8)
_ e -y)Plogy L y=1
Fre = { ~(1-a)yPlog(1-y'), y=0 ©

where y € {£1} is a ground-truth class and y’ € [0, 1] is the model’s estimated probability
by an activation function. Focus loss introduces two factors « and §, where « is used to
balance positive and negative samples, while f focuses on the difficult samples. For Lg; s
and Lyeqq 15, we adopt the Cross Entropy Loss to calculate the classification loss.

The regression loss is defined as:

£r€g = Eshape + Lga_reg + ﬁhead?reg (10)

where Lgq reg, Lspape, and Lpeaq_req are regression losses of the GA, anchor shape branch,
and the detection head, respectively. For Ly, and Lgq req, we adopt the Smooth Ly and
the Bounded IoU Loss respectively.

For Ehmdﬂg, we further incorporate the CloU Loss to obtain more accurate regression
results on logo detection. The CloU loss considers four geometric factors in the process of
regression, including the overlap rate, the central point distance, the aspect ratio, and the
penalty, and thus can accurately regress the localization of the logo objects and then improve
the performance of the logo detection task.

L:head_reg = ECIOU
=1-—1IToU+ RCIOU(Bp/ Bg)

by, b 4 w w
= (pZ% + tx?(mctunh—gg - arctanh—;’)z

(11)
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where Rcj, is a penalty term for the predicted box B, and ground-truth box Bg, by, and by
denote the central points of B, and By, ¢(-) is the Euclidean distance, and c is the diagonal
length of the smallest enclosing box covering the two boxes. « is a positive trade-off
parameter. w and h are the width and height of the predicted box, respectively.

4. Experiment

In this section, we present a performance evaluation of the proposed method and
other trend leading baselines on four logo datasets.

4.1. Experimental Setting

(1) Datasets. We conducted our experiments on four logo datasets with different
scales. Most of the experiments were performed on the large-scale LogoDet-3K [22] dataset,
which contains 113,710 images for training, 28,432 for validation and 16,510 for testing
(Training Set: A set of examples used for learning, which is to fit the parameters [i.e.,
weights] of the classifier. Validation Set: A set of examples used to tune the parameters
[i.e., architecture, not weights] of a classifier, for example to choose the number of hidden
units in a neural network. Testing Set: A set of examples used to assess the performance
[generalization] of a fully specified classifier [46]. It is noted that validation set which
is independent of testing dataset is used for hyperparameter tuning so as to avoid any
biasing in choice of hyperparameters. Thus, when the network is completely trained,
evaluation is done on completely unseen testing set). To assess the robustness of the
DSFP-GA method, experiments were also performed on the LogoDet-3K-1000 [22] dataset,
the middle-scale QMUL-OpenLogo [47] dataset, and the small-scale FlickrLogos-32 [48]
dataset. The LogoDet-3K-1000 dataset is sampled from the LogoDet-3K dataset, and it
consists of 53,049 images for training and 9559 images for testing. The QMUL-OpenLogo
dataset contains 27,083 images from 352 logo categories (by aggregating and refining
several existing logo datasets). The FlickrLogos-32 dataset consists of 2240 images from
32 logo categories. The detailed statistics of the four datasets are shown in Table 1.

Table 1. Statistics of Four Logo Datasets.

Datasets Supervision #Classes #Images #Objects #Trainval #Test

LogoDet-3K [22] Object-level 3000 158,652 194,261 142,142 16,510
LogoDet-3K-1000 [22]  Object-level 1000 85,344 101,345 75,785 9559
QMUL-OpenLogo [47]  Object-level 352 27,083 51,207 18,752 8331
FlickrLogos-32 [48] Object-level 32 2240 3405 1478 762

(2) Implementation Details. The proposed approach is implemented based on the
ResNet-50 backbone, which is pre-trained on the ImageNet [23]. For a fair comparison,
all baseline detectors are re-implemented based on the publicly available mmdetection
toolbox [49] via the same codebase. All models are trained on the training set and validated
on the validation set. We adopt the widely used mAP (mean Average Precision) [50] to
evaluate the performance of the logo detection. In order to highlight the performance of our
method in different sized logos, we also adopt the following evaluation metrics:APs is the
Average Precision (AP) for small logo objects (area < 322), APy is the AP for medium logo
objects (322 < area < 96), APy is the AP for large logo objects (area > 962). The threshold
of Intersection over Union (IoU) between the predicted bounding box and ground-truth
bounding box is 0.5. We train these detectors with an initial learning rate of 0.002 and the
input images are resized to 1000 x 600. All other hyper-parameters follow the settings in
the mmdetection toolbox.

4.2. Ablation Study

In this part, we provide empirical analysis for each component in DSFP-GA, DSFP, GA,
and CloU loss. We report the overall ablation studies on the LogoDet-3K dataset shown in
Table 2, in which the first row lists the experimental results conducted on Faster R-CNN
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with ResNet-50-FPN. Furthermore, the results of the ablation studies on the LogoDet-3K-
1000, the QMUL-OpenLogo, and the FlickrLogos-32 datasets as are shown in Tables 3-5.
These results as illustrated in the tables above, clearly indicate the effectiveness of our
method in many aspects on different logo datasets.

Table 2. Evaluating Individual Component on the LogoDet-3K Dataset. Discriminative Semantic
Feature Pyramid (DSFP), Guided Anchoring (GA), Complete IoU Loss (CloU Loss).

DSFP GA CIoU Loss mAP(%) APs(%) APy (%) AP (%)
83.8 44.7 76.8 87.7
v 84.5 51.8 78.6 88.0
v v 86.6 54.7 81.8 89.5
v v v 87.7 56.2 83.1 90.5

Table 3. Evaluating Individual Component on the LogoDet-3K-1000 Dataset. Discriminative Semantic

Feature Pyramid (DSFP), Guided Anchoring (GA), Complete IoU Loss (CIoU Loss).

DSFP GA CIoU Loss mAP(%) APs(%) APy (%) AP1(%)
88.2 40.7 81.3 92.6
v 88.8 52.0 81.9 924
v v 89.4 50.6 81.9 93.7
v v v 90.1 56.0 83.9 93.8

Table 4. Evaluating Individual Component on the QMUL-OpenLogo Dataset. Discriminative Seman-

tic Feature Pyramid (DSFP), Guided Anchoring (GA), Complete IoU Loss (CIoU Loss).

DSFP GA ClIoU Loss mAP(%) APs (%) APy (%) AP (%)
51.9 31.3 52.9 65.1
v 535 32,6 55.6 66.9
v v 53.7 327 55.9 66.3
v v v 54.0 33.2 56.4 66.5

Table 5. Evaluating Individual Component on the FlickrLogos-32 Dataset. Discriminative Semantic

Feature Pyramid (DSFP), Guided Anchoring (GA), Complete IoU Loss (CIoU Loss).

DSFP GA ClIoU Loss mAP(%) APs (%) APy (%) APL (%)
85.9 228 81.3 91.5
v 86.6 28.4 83.6 92.0
v v 86.7 28.7 83.7 92.1
v v v 87.1 285 83.3 92.6

(1) DSEP. We evaluate the effect of the DSFP by comparing it with FPN. The proposed
DSFP is mainly used to improve the ability to detect small logo objects, and also enhance
the semantic information of feature maps. As shown in Table 6, small logo objects and
medium logo objects account for 1.8% and 29.8% on the LogoDet-3K dataset. The DSFP
brings 0.7% mAP improvement over the Faster R-CNN on the LogoDet-3K dataset in
Table 2. Especially, the APs scores increase by 7.1%, validating the effectiveness on small
logo objects detection of the DSFP.
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Table 6. The Proportion of Object Size and Aspect Ratio on Four Datasets.

Object Size Aspect Ratio
Datasets . Range Range Range
Small — Medium  Large 145 (3049 (504
LogoDet-3K 1.8% 29.8% 68.4% 65.1% 23.1% 11.8%
LogoDet-3K-1000 1.7% 33.0% 65.3% 63.9% 24.1% 12%
QMUL-OpenLogo 23.1% 44% 32.9% 81.5% 14.2% 4.3%
FlickrLogos-32 5.4% 29.3% 65.3% 94.8% 4.3% 0.9%

Clearly, the DSFP can perform better than the FPN for logo detection tasks. This
is because that it can extract more discriminative semantic features. To verify this, we
visualize the heatmap in Figure 4, which demonstrates that the DSFP is more effective in
extracting discriminative semantic features for logo detection. The results prove that the
red areas of P2 and P3 in DSFP are more accurate and have richer semantic information
than those in the FPN. It is noteworthy that feature maps that come from the DSFP are more
representative since they have stronger activation values in the foreground and weaker
activation values in the background.
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Figure 4. Visualization comparison of the features extracted by FPN and DSFP. P2 and P3: the second
level and the third level of the feature pyramid.

Besides visualizing heatmaps, we also visualize the detection results of two images
with small logo objects in Figure 5. Compared with DSFP-GA, Faster R-CNN misses a
small logo object in the first image. It further proves the strengths of DSFP-GA in small
logo object detection. The second image has small and extremely tall objects in Figure 6.
Faster R-CNN lacks a good solution to deal with this kind of logo objects, and the detection
result is less satisfactory. In contrast, our method has the strength of detecting the small
and extremely tall logo objects.

Moreover, we validate the benefit of the DSFP on the other three datasets. Similar
to the LogoDet-3K dataset, small logo objects and medium logo objects account for 1.7%
and 33% on the LogoDet-3K-1000 datasets in Table 6. As shown in Table 3, the DSFP
increases 0.6% mAP over Faster R-CNN, especially the APg scores increase by 11.3%, which
shows that our DSFP enriches discriminative semantic information of feature maps. For
the QMUL-OpenLogo dataset, more than 23.1% are small logo objects and over 44% are
medium logo objects as shown in Table 6. It can be seen that the main challenge is the small
logo objects on the QMUL-OpenLogo dataset. The DSFP has an obvious improvement over
the baseline in Table 4. It increases by 1.6% mAP, and yields 7.1% APgs scores improvement,
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that shows the effectiveness of the DSFP in small logo detection. For the FlickrLogos-32
dataset, we can observe that less than 5.4% are small logo objects and about 29.3% are
medium logo objects in Table 6. DSFP still brings 0.7% mAP improvement and 5.6% APs
scores improvement over Faster R-CNN baseline in Table 5, which can indicate that the
DSFP has enhanced discriminative semantic information of feature maps.

- e » »

Nive,

nivea | 0.84

Faster R-CNN DSFP-GA (Faster R-CNN + DSFP)

Figure 5. Comparison of small logo detection results between Faster R-CNN and DSFP-GA. Blue
boxes: ground-truth boxes. Orange boxes: correct detection boxes.
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Faster R-CNN DSFP-GA

Figure 6. Comparison of large aspect ratio (extremely tall) logo detection results between Faster
R-CNN and DSFP-GA. Blue boxes: ground-truth boxes. Orange boxes: correct detection boxes.

(2) GA. We evaluate the strength of the GA on the LogoDet-3K dataset. The GA does
not implicitly limit the aspect ratio and the size of anchor boxes, thereby addressing the
issue of large aspect ratio logo objects well. For the LogoDet3K dataset, more than 35% of
logo objects have an aspect ratio greater than 3, and more than 11.8% of logo objects have
an aspect ratio greater than 5 as shown in Table 6. There are many large aspect ratio logo
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objects in the LogoDet3K dataset. As shown in Table 2, the GA improves the mAP from
84.5% to 86.6% on the LogoDet-3K dataset, which indicates the strength of our method.
We visualize the results in Figures 6 and 7 to show that our method is effective in
dealing with large aspect ratio logo objects, and the detection results of DSFP-GA are better
than that of Faster R-CNN. As shown in Figure 6, for the first image, Faster R-CNN doesn’t
detect the logo with a tilted angle on the right side of the image at all. On the contrary,
DSFP-GA detects the logo object on the right side with high accuracy, which goes to prove
that DSFP-GA is robust in detecting difficult logo objects. As for the logo object on the left
side, the accuracy of Faster R-CNN is 16% lower than DSFP-GA. In the second image, we
can see that the ground-truth boxes are small and extremely tall logo objects. DSFP-GA
detects these two logo objects with good accuracy. As shown in Figure 7, for the first two
images, DSFP-GA has more accurate detection results than Faster R-CNN. In the third
image, Faster R-CNN mistakenly identifies the logo category, and the detection accuracy of
the correct box is 26% lower than DSFP-GA. This compellingly proves the superiority of
DSFP-GA in detecting large aspect ratio logo objects as well as small logo objects effectively.

gloria jean's coffees | 0.79 gloria jean's coffees | 0.93
Gloria Jean's & Coffees| |Gloria Jearn's & Coffees

‘;’3] q;

: !!‘hhﬁ‘!i"' L -4 I.‘_. !!ﬁ]!ii‘!!l'-‘.:‘ B
.

the coffee bean & tea leaf | 0.85
@'e Cfoee‘Bear};&qga

eaf

Faster R-CNN DSFP-GA
Figure 7. Comparison of large aspect ratio (extremely wide) logo detection results between Faster

R-CNN and DSFP-GA. Blue boxes: ground-truth boxes. Orange boxes: correct detection boxes.
Yellow boxes: mistaken detection boxes.

The ablation studies on the LogoDet-3K-1000 dataset can further validate the benefit
of the GA. In Table 6, logo objects of Range (3+) account for 36.1% and logo objects of
Range (5+) account for 11.9% on the LogoDet-3K-1000 dataset. The GA yields 0.6% mAP
improvement on the LogoDet-3K-1000 dataset in Table 3, which indicates the effectiveness
of GA when addressing the issue of large aspect ratio logo objects.

The ablation studies on the QMUL-OpenLogo dataset and the FlickrLogos-32 dataset
shows the performance of the GA. As shown in Table 6, we find that more than 81.5% of
the logo objects have an aspect ratio between 1 and 2.9, and about 4.3% have an aspect ratio
greater than 5 on the QMUL-OpenLogo dataset. The GA improves the mAP from 53.5% to
53.7% as shown in Table 4. Furthermore, as shown in Table 6, there are approximately 95%
of the logo objects that have an aspect ratio between 1 and 2.9, and only about 0.9% have
an aspect ratio greater than 5 on the FlickrLogos-32 dataset. Similarly, the GA increases by
0.1% mAP as shown in Table 5. Hence, we can draw a safe conclusion that the GA has a
better performance for detecting large aspect ratio logo objects than Faster R-CNN.

(3) ClIoU Loss. We also evaluate the benefit of the CIoU loss on these four logo datasets.
The CloU loss can obtain more accurate regression results via solving the problem of
inconsistency to improve detection performance. In Table 2, the CloU loss improves the
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mAP from 86.6% to 87.7% on the LogoDet-3K dataset. The CloU loss also improves the
mAP from 89.4% to 90.1% on the LogoDet-3K-1000 dataset in Table 3. As shown in Table 6,
the ClIoU loss increases the mAP from 53.7% to 54.0% on the QMUL-OpenLogo dataset.
The CIoU loss improves the mAP from 86.7% to 87.1% on the FlickrLogos-32 dataset in
Table 5. These validate the effectiveness of our method when adopting the CIoU loss.
However, the APs and APy scores decreased slightly on the FlickrLogos-32 dataset. Our
observation is that FlickrLogos-32 contains fewer logo images, therefore, CloU loss does
not play significant roles in the APs and APy scores on this dataset.

In order to evaluate the better performance of DSFP-GA, we selected two images that
contain both small size and large aspect ratio logo objects and visualized the detection
results. As shown in Figure 8, Faster R-CNN doesn’t detect the logo object that is small
and wide in the first image. On the same image, DSFP-GA has better results in localization
and classification. In the second image, Faster R-CNN mistakenly detects two logo objects
and the accuracy of another logo object detected by Faster R-CNN is much lower than
DSFP-GA. This amply demonstrates the superior performance of DSFP-GA in both small
size and large aspect ratio logo object detections.

WAy D
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luciano séprani 0.92

biolage |
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Faster R-CNN DSFP-GA

Figure 8. Comparison of both small size and large aspect ratio logo detection results between Faster
R-CNN and DSFP-GA. Blue boxes: ground-truth boxes. Orange boxes: correct detection boxes.
Yellow boxes: mistaken detection boxes.

4.3. Comparison of State-of-the-Art Frameworks

To further validate the versatility of the proposed DSFP-GA, experiments were per-
formed with multiple top of the trend approaches. We chose several one-stage frameworks
that have good performance on general detection datasets in recent years. We also selected
a series of standard two-stage frameworks which are improved based on Faster R-CNN
and are state-of-the-art.

(1) Experiment on the LogoDet-3K. Our method DSFP-GA achieves the best per-
formance on the LogoDet-3K datasets. We compared DSFP-GA with the state-of-the-art
detection approaches on the large-scale LogoDet-3K dataset in Table 7. Compared with
the existing two-stage baselines Faster R-CNN, Libra R-CNN, and Dynamic R-CNN, etc.,
the DSFP-GA significantly outperforms these state-of-the-art frameworks. Our approach
is based on modified on Faster R-CNN and achieves the best mAP of 87.7%, surpassing
the Faster RCNN baseline of 3.9% mAP, which indicates the effectiveness of our strategy.
Compared with Dynamic R-CNN, which ranks second of mAP the performance of our
method is 0.3% mAP better than it. The APs, APy and APy, scores of Dynamic R-CNN
are 53.7%, 82.0%, and 90.4% respectively, and our method scores are 2.5%, 1.1%, and 0.1%
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higher respectively. This clearly demonstrates the effectiveness of our method. In addition,
our framework also improves by 4.6% mAP compared with PANet that is equipped with
the excellent feature pyramid structure PAFPN. It can be observed that our DSFP has a
better effect on fusing the features of logo objects than PAFPN. We also compare DSFP-GA
with state-of-the-art one-stage approaches. Our framework brings 7.8% mAP improvement
over ATSS [51] and 6.5% mAP improvement over GFL [52]. This superior performance is
because, there are many large aspect ratio logo objects in this dataset, and our model is
sufficiently equipped for this challenging issue.

Table 7. Detection Results on the LogoDet-3K Dataset.

Methods Backbone mAP (%)
One-stage:
ATSS [51] ResNet-50-FPN 79.9
FSAF [27] ResNet-50-FPN 78.3
GFL [52] ResNet-50-FPN 81.2
Two-stage:
Faster R-CNN [34] ResNet-50-FPN 83.8
Soft-NMS [39] ResNet-50-FPN 82.1
PANet [40] ResNet-50-PAFPN 83.1
Generalized IoU [53] ResNet-50-FPN 84.4
Distance ToU [54] ResNet-50-FPN 83.5
Complete IoU [54] ResNet-50-FPN 82.7
Libra R-CNN [41] ResNet-50-BFP 82.4
Cascade R-CNN [37] ResNet-50-FPN 85.6
Dynamic R-CNN [21] ResNet-50-FPN 87.4
Sparse R-CNN [55] ResNet-50-FPN 74.3
DSFP-GA ResNet-50-DSFP 87.7

Detection results of DSFP-GA given in Figure 9, clearly demonstrate that our model
has superior performance in detecting all kinds of logos of various sizes and shapes. We can
see from Figure 9 that our model has better detection results on large logo objects (category
“cherry 7up”, category “walffle house”, etc.), medium logo objects (category “cheez whiz”,
category “swiss miss”, etc.), and small logo objects (category “freia”, category “nioxin”,
etc.). It is worth mentioning that there are multiple multi-scale objects in a test image
from Figure 9, where our model also can detect all logo objects accurately. These prove
our method can well detect logo objects of different sizes and has the capacity to handle
multiple logo objects within one image.
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Figure 9. Some examples of detection results of DSFP-GA. The orange box corresponds to the location
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of the logo objects. On the top of the box is the category name and its accuracy.
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(2) Experiment on the LogoDet-3K-1000. Experiment on the LogoDet-3K-1000. DSFP-
GA again has the best performance on the LogoDet-3K-1000 dataset. As shown in Table 8,
DSFP-GA achieves 90.1% mAP, which is an increase of 1.9% mAP over Faster R-CNN.
In addition, our method also improves by 1.0% mAP compared with PANet. Dynamic
R-CNN achieves 89.5% mAP, which ranks second to our method, in that, our method yields
0.6% mAP over Dynamic R-CNN. The AP, APy; and APy scores of Dynamic R-CNN are
49.7%, 82.2%, and 93.6% respectively, and our method’s scores are 6.3%, 1.7%, and 0.2%
higher respectively. Compared with the one-stage frameworks, our work yields 2.3%
mAP over ATSS and 2.4% mAP over GFL. The LogoDet-3K-1000 dataset contains a huge
number of large aspect ratio logo objects, which account for the exceptional performance
highlighting the effectiveness of our model in dealing with these kinds of logo objects.
The experiments on the LogoDet-3K-1000 dataset further vindicate the superiority of the
proposed DSFP-GA method over the evaluated state-of-the-art methods as illustrated in
Table 8 below.

Table 8. Detection Results on the LogoDet-3K-1000 Dataset.

Methods Backbone mAP (%)
One-stage:
ATSS [51] ResNet-50-FPN 87.8
FSAF [27] ResNet-50-FPN 87.3
GFL [52] ResNet-50-FPN 87.7
Two-stage:
Faster R-CNN [34] ResNet-50-FPN 88.2
Soft-NMS [39] ResNet-50-FPN 89.1
PANet [40] ResNet-50-PAFPN 89.1
Generalized IoU [53] ResNet-50-FPN 88.2
Distance IoU [54] ResNet-50-FPN 88.7
Complete IoU [54] ResNet-50-FPN 88.9
Libra R-CNN [41] ResNet-50-BFP 88.4
Cascade R-CNN [37] ResNet-50-FPN 89.1
Dynamic R-CNN [21] ResNet-50-FPN 89.5
Sparse R-CNN [55] ResNet-50-FPN 86.8
DSFP-GA ResNet-50-DSFP 90.1

(3) Experiment on the QMUL-OpenLogo. From Table 9, we can see that our method
achieves the best performance (by 54.0% mAP) on the middle-scale logo dataset. We also
list the experimental results of baselines on the middle scale QMUL-OpenLogo dataset.
Compared with Faster R-CNN, DSFP-GA obtains 2.1% mAP improvement. Our method
also improves by 1.1% mAP compared with PANet. This further shows that DSFP-GA can
handle the QMUL-OpenLogo dataset which contains small logo objects better than Faster
RCNN and PANet. Compared with Cascade R-CNN, which ranks second (by 53.1% mAP),
the performance of our method is 0.9% mAP improvement over it. The APs, APy and
APy scores of Cascade R-CNN are 32.7%, 54.0%, and 67.4% respectively, and our method’s
scores are 0.5%, 2.4%, and 0.9% higher respectively, indicating the effectiveness of our
method. Compared with the best performing one-stage method GFL, our method improves
by 4.8% mAP than it (i.e. 54.0% over 49.2%). These results indicate that our model is
efficient in dealing with the challenges of small logo objects.

(4) Experiment on the FlickrLogos-32. Our framework also has good performance
on the small-scale FlickrLogos-32 dataset. The experimental results of baseline and our
framework on the small-scale FlickrLogos-32 dataset are summarized in Table 10. Our
method achieves 87.1% mAP that is the same as Cascade R-CNN in Table 10. Cascade R-
CNN achieves 87.0% mAP by cascading multiple detection heads. However, our framework
only uses one detection head, which achieves great performance 87.1% mAP. The APs, APy
and AP, scores of Cascade R-CNN are 17.3%, 80.5%, and 93.4% respectively, Especially the
APs and APy scores of our method are 11.2% and 2.8% better than it, This can show the
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effectiveness of our method. For the one-stage framework, our method increases 1.0% mAP
than ATSS and 0.9% mAP than GFL. Two-stage detectors have one more region proposal
network, which can improve the detection result. Although the FlickrLogos-32 dataset is
small and simple, DSFP-GA still has better detection result than one-stage frameworks.

Table 9. Detection Results on the QMUL-OpenLogo Dataset.

Methods Backbone mAP (%)
One-stage:
FoveaBox [56] ResNet-50-FPN 35.6
SSD [17] VGG-16 41.6
ATSS [51] ResNet-50-FPN 48.6
FSAF [27] ResNet-50-FPN 447
GFL [52] ResNet-50-FPN 49.2
Two-stage:
Faster R-CNN [34] ResNet-50-FPN 51.9
Soft-NMS [39] ResNet-50-FPN 52.3
PANet [40] ResNet-50-PAFPN 529
Libra R-CNN [41] ResNet-50-BFP 52.7
Dynamic R-CNN [21] ResNet-50-FPN 51.8
Cascade R-CNN [37] ResNet-50-FPN 53.1
Sparse R-CNN [55] ResNet-50-FPN 46.9
DSFP-GA ResNet-50-DSFP 54.0
Table 10. Detection Results on the FlickrLogos-32 Dataset.
Methods Backbone mAP (%)
One-stage:
FoveaBox [56] ResNet-50-FPN 84.1
SSD [17] VGG-16 80.2
RetinaNet [25] ResNet-50-FPN 78.4
ATSS [51] ResNet-50-FPN 86.1
FSAF [27] ResNet-50-FPN 82.5
GFL [52] ResNet-50-FPN 86.2
Two-stage:
BD-FRCN-M [57] VGG-16 73.5
Deep Logo [58] VGG-16 74.4
Faster R-CNN [34] ResNet-50-FPN 85.9
Soft-NMS [39] ResNet-50-FPN 86.5
PANet [40] ResNet-50-PAFPN 86.2
Libra R-CNN [41] ResNet-50-BFP 84.6
Dynamic R-CNN [21] ResNet-50-FPN 85.8
Cascade R-CNN [37] ResNet-50-FPN 87.0
Sparse R-CNN [55] ResNet-50-FPN 73.7
DSFP-GA ResNet-50-DSFP 87.1

4.4. Result Analysis

To further evaluate the performance of DSFP-GA in detecting small logo objects and
large aspect ratio logo objects, we selected two categories that small logo objects account for
a large proportion and the other two categories that large aspect ratio logo objects occupy a
substantial part in the LogoDet-3K dataset as shown in Figure 10. The Average Precision
(AP, evaluation indicators for a single category) values of four categories are shown in
Figure 11. We analyze the characteristics and AP values of these four categories below.
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Figure 10. The proportion of small, medium, and large logo objects in categories “whisper” and
“armani junior”, the proportion of different aspect ratios in categories “ben franklin store” and “sram”.

The small logo objects in the “whisper” category have 72.41% of the proportion in
Figure 10a. As shown in Figure 11, the AP value is 15.2% in this category on Faster R-CNN.
DSFP-GA improves by 10% AP over Faster RCNN. Similarly, in Figure 10b, small logo
objects account for nearly half of the proportion in the “armani junior” category. DSFP-
GA again improves by 17% AP over Faster R-CNN. It is observed that our method has
a vast performance improvement in small logo detection. As for the categories of “ben
franklin store” and “sram”, we can see that large aspect ratio logo objects account for a large
proportion (49.50% and 53.97%) in Figure 10c,d. As shown in Figure 11, DSFP-GA increases
by 12.2% and 26.4% AP over Faster R-CNN respectively. Faster R-CNN cannot deal well
with large aspect ratio logo objects through the preset anchor boxes. However, DSFP-GA
performs better in these two categories, indicating that DSFP-GA has a superiority in
detecting large aspect ratio logo objects over the state-of-the-art Faster R-CNN.
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Figure 11. The AP value of four categories in Faster R-CNN and DSFP-GA on LogoDet-3K dataset.

5. Conclusions

In this work, we propose a novel logo detection method, namely DSFP-GA, for detect-
ing both small logo objects and large aspect ratio logo objects which is a rarely explored
problem in logo detection. This work is proposed to overcome the logo detection chal-
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lenges. We have designed the DSFP component of the method to enhance discriminative
semantic features, which can improve the performance of small logo detections. The GA
component on the other hand, can generate the adaptive widths and heights of anchor
boxes accordingly and effectively deal with large aspect ratio logo objects. To the best
of our knowledge, our framework is the first work to focus on the issue of large aspect
ratio logo objects detections. We further adopt the CloU loss for regression to enhance the
performance of the framework. Extensive evaluations were conducted on four standard
logo benchmarks to validate the strengths of the proposed DSFP-GA method over selected
state-of-the-art methods. In the future, we aim to design an enhanced feature pyramid and
region proposal network to further improve the performance of logo detection systems.
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