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Abstract: We provide an effective simulation to investigate the solution behavior of nine-dimensional
chaos for the fractional (Caputo-sense) Lorenz system using a new approximate technique of the
spectral collocation method (SCM) depending on the properties of Gegenbauer wavelet polynomials
(GWPs). This technique reduces the given problem to a non-linear system of algebraic equations.
We satisfy the accuracy and efficiency of the proposed method by computing the residual error
function. The numerical solutions obtained are compared with the results obtained by implementing
the Runge–Kutta method of order four. The results show that the given procedure is an easily applied
and efficient tool to simulate this model.

Keywords: chaotic Lorenz model; Caputo differential operator; Gegenbauer wavelet polynomials;
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1. Introduction

The year 1963 was the beginning of the emergence of what is termed the phenomenon
of chaos when Lorenz observed it in the behavior of the solution of differential equations
that represent the phenomenon of weather [1]. Many of these non-linear chaotic and
hyper-chaotic systems have been explained and applications developed in science and
engineering. The complexity of hyper-chaotic behavior involves several positive Lyapunov
exponents in a single system, whereas an essentially chaotic system contains only one
positive Lyapunov exponent. The hyper-chaotic system reformer was first described in
1976 when Roessler detected it while studying solutions to a system of ODEs for modeling
chemical reactions [2]. Based on these two concepts, scientists have been able to study
many chaotic and hyper-chaotic systems occurring in different fields. In general, hyper-
chaotic systems have more complex dynamic behaviors than those of ordinary chaotic
systems [3]. The difficulty in undertaking numerical analysis of chaotic dynamical systems
is a consequence of their high level of sensitivity to the initial conditions and rapidly
changing solutions. The Lorenz equations can represent and govern simplified models for
lasers [4], dynamos [5], thermosyphons [6], electric circuits [7], and chemical reactions [8].
In the past, many numerical and approximate techniques were applied to solve systems of
differential equations expressing these chaotic models, including the method of differential
quadrature [9], the multi-step differential transform method [10], and the Lagrange inter-
polation collocation method [11]. Since most of these direct numerical methods show slow
convergence in obtaining the desired solutions to the problem under investigation, many
scientists have sought to apply other methods with rapid convergence and highly accurate
solutions.
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Fractional calculus (FC) is a branch of mathematical analysis that deals with the study
of this important topic in many real-life applications, for example, use of the fractional
Klein–Gordon equation [12] and the fractional COVID-19 model [13]. Recently, interest has
increased in the use of fractional calculus in the study of many models, the most well-known
of which relate to biological questions. The scaling power law appears in some definitions
of fractional differentiation and represents a more appropriate empirical description of
these complex phenomena, as expressed in the fractional Fisher equations [14], fractional
electrical R-L circuits [15], and others [16]. One of these mathematical equations is the
chaotic Lorenz system. A modification was added to the Lorenz model to produce the
so-called fractional Lorenz model. Many studies have been undertaken using this biological
model, for example [17].

Gegenbauer wavelet polynomials (GWPs) were implemented with the spectral collo-
cation method (SCM) to numerically solve many problems that are represented as fractional
ordinary or partial differential equations, including non-linear delay differential equations
of fractional order [18] and the coupled system of Burgers’ equations with a time-fractional
derivative [19]. To the best of our knowledge, this is the first application of the spectral
collocation approach based on the Gegenbauer wavelet polynomials for solving the frac-
tional Lorenz model. One of the most important features of this method is that there is no
need to discretize the domain of the problem under study, as in the finite difference method
or the finite element method, as well as no need to approximate the non-linear terms in
the equation, as in the Adomian decomposition method or the modified homotopy per-
turbation method. The SCM with the Gegenbauer wavelet polynomials offers advantages
for handling this class of problems in which the Gegenbauer coefficients of the solution
can exist very easily after using the numerical programs. For this reason, this method is
much faster than the other methods. In addition, when applying this method, the system
of differential equations are converted to a non-linear system of algebraic equations for
the unknown coefficients called Gegenbauer’s coefficients. The values of these coefficients
can be found by solving this system using an appropriate numerical method that has great
accuracy, which, in turn, enables finding the approximate solution to the original equation.

The paper is organized as follows: We first present some preliminary discussion about
fractional calculus and Gegenbauer wavelet polynomials in Section 2. We then discuss the
procedure of the solution by implementing the proposed method in Section 3. We describe
the numerical simulations in Section 4. We present the conclusions in Section 5.

2. Preliminaries
2.1. Fractional Calculus

In this subsection, we give the most important definitions in the development of frac-
tional calculus theory which are the Riemann–Liouville and Caputo derivative definitions.

Definition 1. The fractional-integral operator Iν of order ν due to Riemann and Liouville ψ(t) is
defined by [20]:

Iνψ(t) =
1

Γ(ν)

∫ t

0
(t− τ)ν−1ψ(τ) dτ, t > 0, ν ∈ R+, (1)

where Γ(.) is the gamma function.
This operator is linear i.e,

Iν(c1 ψ1 + c2 ψ2) = c1 Iν ψ1 + c2 Iν ψ2(t), (2)

for some constants, c1 and c2. It is well-known that the use of the Riemann–Liouville definition in
modeling real-world issues has some drawbacks. Therefore, the Caputo definition was introduced to
address such shortcomings, and is formulated as follows.
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Definition 2. The Caputo-derivative Dν of the fractional order of a function ψ(t) is given as
follows [21]:

Dνψ(t) =
1

Γ(n− ν)

∫ t

0

ψ(n)(τ)

(t− τ)ν−n+1 dτ, n− 1 < ν < n, n ∈ N. (3)

This operator is linear (for some constants, c1 and c2):

Dν(c1 ψ1(t) + c2 ψ2(t)) = c1 Dν ψ1(t) + c2 Dν ψ2(t). (4)

2.2. Some Concepts on the Wavelets

The continuous wavelets can be obtained by translation and dilation of the mother
wavelet φ(t) as follows [22]:

φγ,τ(t) = |γ|−1/2 φ

(
t− τ

γ

)
, γ, τ ∈ R, γ 6= 0, (5)

where τ and γ are the translation parameter and dilation parameter.
We can get the discrete wavelets [23] if we take the parameters γ = γ−h̄

0 and τ =

ε τ0 γ−h̄
0 , where γ0 > 1, τ0, ε, h̄ > 0, in the following form:

φh̄,ε(t) = γh̄/2
0 φ(γh̄

0 t− ε τ0), (6)

which gives a basis in L2(R). If γ0 = 2, τ0 = 1, then we get the orthonormal basis [24]:

φh̄,ε(t) = 2h̄/2φ(2h̄ t− ε). (7)

2.3. Properties of Gegenbauer Polynomials

The nth order Gegenbauer polynomials, Gκ
n(t), are set by using the formula [25]:

Gκ
n+1(t) =

1
n + 1

(2(n + κ) t Gκ
n(t)− (n + 2κ − 1) Gκ

n−1(t)), n = 1, 2, . . . , (8)

where Gκ
0(t) = 1, Gκ

1(t) = 2κ t. The parameter κ > −0.5 is called the ultraspherical
parameter. We can find different wavelets for different values of κ. With κ = 1/2, κ = 0
and κ = 1, we can get the Legendre and the first and second kinds of Chebyshev wavelets,
respectively. These polynomials are orthogonal on [−1, 1]:

∫ 1

−1
w̃(t) Gκ

i (t) Gκ
j (t) dt =

{
π 21−2κ Γ(i+2κ)
i! (i+κ)(Γ(κ))2 , i = j;

0, i 6= j.
(9)

where w̃(t) = 1
(1−t2)0.5−κ is a weight function.

2.4. Definition the Gegenbauer Wavelet Polynomials

Secer and Ozdemir [26] defined the Gegenbauer wavelet polynomials (GWPs) on [0, 1]
as follows:

φκ
ε,n(t) =

{
1√
Lκ

n
2h̄/2 Gκ

n(2h̄t− 2 ε + 1), if 2 ε−2
2h̄ ≤ t ≤ 2 ε

2h̄ ,
0, otherwise,

(10)

where ε = 1, 2, . . . , 2h̄−1, n = 0, 1, . . . , N − 1 for N > 0. The integer parameter h̄ is called
the level of resolution.

The first four GWPs are calculated and listed here by choosing κ = 30, N = 4, and
h̄ = 1 as follows:

φ30
1,0(t) = 2.49122, φ30

1,1(t) = 39.2318 t− 19.6159,
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φ30
1,2(t) = 447.481 t2 − 447.481 t + 110.066, φ30

1,3(t) = 4264.91 t3 − 6397.36 t2 + 3148.7 t− 508.124.

Any function θ(t) may be expanded by the following double infinite sums of GWPs:

θ(t) =
∞

∑
i=1

∞

∑
j=0

cij φij(t), (11)

where cij are Gegenbauer wavelet coefficients. To obtain the approximate solutions, we will
approximate θ(t) by the following truncating series:

θ(t) ∼=
2h̄−1

∑
i=1

N−1

∑
j=0

cij φij(t) = CTΦ(t). (12)

Here, C and Φ(t) are 2h̄−1 N × 1 matrices given by:

CT = [c10, . . . , c1(N−1), c20, . . . , c2(N−1), . . . , c2h̄−10, . . . , c2h̄−1(N−1)], (13)

Φ(t) = [φ10, . . . , φ1(N−1), φ20, . . . , φ2(N−1), . . . , φ2h̄−10, . . . , φ2h̄−1(N−1)]. (14)

3. Numerical Implementation

Here, we introduce and implement the proposed technique to solve numerically the
non-linear fractional 9D Lorenz model. We focus on the model and how it is derived, as
well as on some of the stability properties. The model is expressed by the following system
of equations:

Dνy1(t) = −σb1y1 − σb2y7 − y2y4 + b4y2
4 + b3y3y5, (15)

Dνy2(t) = −σy2 − 0.5σy9 + y1y4 − y2y5 + y4y5, (16)

Dνy3(t) = −σb1y3 + σb2y8 + y2y4 − b4y2
2 − b3y1y5, (17)

Dνy4(t) = −σy4 + 0.5σy9 − y2y3 − y2y5 + y4y5, (18)

Dνy5(t) = −σb5y5 + 0.5y2
2 − 0.5y2

4, (19)

Dνy6(t) = −b6y6 + y2y9 − y4y9, (20)

Dνy7(t) = −ry1 − b1y7 + 2y5y8 − y4y9, (21)

Dνy8(t) = ry3 − b1y8 − 2y5y7 + y2y9, (22)

Dνy9(t) = −ry2 + ry4 − y9 − 2y2y6 + 2y4y6 + y4y7 − y2, (23)

where the constant parameters bi are defined as:

b1 = 4 1+a2

1+2a2 , b2 = 1+2a2

2(1+a2)
, b3 = 2 1−a2

1+a2 , b4 = a2

1+a2 , b5 = 8a2

1+2a2 , b6 = 4
1+2a2 .

With the following initial conditions:

yk(t) = yk,0, k = 1, 2, . . . , 9. (24)

Let us approximate the unknown functions yk(t) in terms of GWPs, by yk,pq(t), k =
1, 2, · · · , 9, as follows:

yk,pq(t) =
2h̄−1

∑
p=1

ℵ−1

∑
q=0

ak
pq ypq(t), k = 1, 2, · · · , 9. (25)
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Next, by using the property that Dν = Ds Is−ν for s− 1 < ν < s, as well as the property
of linearity for each Ds in (2), and Is−ν in (4), we can obtain the following approximation of
the fractional derivative Dνyk,pq(t):

Dνyk,pq(t) =
2h̄−1

∑
p=1

ℵ−1

∑
q=0

ak
pq Ds Is−ν [ypq(t)], k = 1, 2, · · · , 9. (26)

By substitution from (25) and (26) in the system (15)–(23), we get:

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a1
pq Ds Is−ν [ypq(t)] = −

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

(σb1 a1
pq + σb2 a7

pq) ypq(t)

)
−
(

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)
.

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)
+ b4

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)2

+ b3

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a3
pq ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)
,

(27)

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq Ds Is−ν[ypq(t)] = −σ

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)
− 0.5σ

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a9
pq ypq(t)

)

+

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a1
pq ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)
−
(

2h̄−1

∑
p=1

ℵ−1

∑
q=0

(a2
pq − a4

pq) ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

51
pq ypq(t)

)
,

(28)

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a3
pq Ds Is−ν[ypq(t)] = −

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

( σb1 a3
pq − σb2 a3

pq) ypq(t)

)
+

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)
.

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)
− b4

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)2

− b3

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a1
pq ypq(t)

)(
N

∑
i=0

a5,i Ch∗i (t)

)
,

(29)

2`−1

∑
i=1

m−1

∑
j=0

a4
pq Ds Is−ν[ypq(t)] = −

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

(σ a4
pq − 0.5σ a9

pq) ypq(t)

)
−
(

2h̄−1

∑
p=1

ℵ−1

∑
q=0

(a3
pq − a5

pq) ypq(t)

)
.

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)
+

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a5
pq ypq(t)

)
,

(30)

2`−1

∑
i=1

m−1

∑
j=0

a5
pq Ds Is−ν[ypq(t)] = −σb5

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a5
pq ypq(t)

)
+ 0.5

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)2

− 0.5

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)2

,

(31)

2`−1

∑
i=1

m−1

∑
j=0

a6
pq Ds Is−νypq(t) = −b6

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a6
pq ypq(t)

)
+

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

(a2
pq − a4

pq) y(pqt)

)
.

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a9
pq ypq(t)

)
,

(32)

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a7
pq Ds Is−ν[ypq(t)] = −r

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a1
pq ypq(t)

)
− b1

2`−1

∑
i=1

m−1

∑
j=0

a7
pq ypq(t)


+ 2

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a5
pq ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a8
pq ypq(t)

)
−
(

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a9
pq ypq(t)

)
,

(33)

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a8
pq Ds Is−ν[ypq(t)] = r

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a3
pq ypq(t)

)
− b1

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a8
pq ypq(t)

)

− 2

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a5
pq ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a7
pq ypq(t)

)
+

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a9
pq ypq(t)

)
,

(34)



Mathematics 2023, 11, 472 6 of 12

2h̄−1

∑
p=1

ℵ−1

∑
q=0

a9
pq Ds Is−ν[ypq(t)] =

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t) (−r a2

pq − a9
pq) ypq(t)

)
− 2

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a2
pq ypq(t)

)
.

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a6
pq ypq(t)

)
+

(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

(2a6
pq + a7

pq) ypq(t)

)(
2h̄−1

∑
p=1

ℵ−1

∑
q=0

a4
pq ypq(t)

)
−
(

N

∑
i=0

a2,i Ch∗i (t)

)
.

(35)

By collocation of the previous Equations (27)–(35) at tr =
(2r−1)h

2h̄ℵ where r = 1, 2, . . . , 2h̄−1 ℵ
and 0 ≤ ti ≤ h, it will reduce to a non-linear system of algebraic-equations in the Gegen-
bauer wavelet unknowns ak

pq, k = 1, 2, · · · , 9, p = 0, 2, · · · , 2h̄−1 ℵ, q = 0, 1, . . . , ℵ − 1.
Substituting Equation (25) in (24), the initial conditions (24) are converted to the

following algebraic equations:

2h̄−1

∑
p=1

ℵ−1

∑
q=0

ak
pq ypq(0) = yk,0, k = 1, 2, · · · , 9. (36)

We implement the Newton–Raphson method to solve numerically the system (27)–(36)
for the unknowns ak

pq, k = 1, 2, . . . , 9, p = 0, 2, · · · , 2h̄−1 ℵ, q = 0, 1, . . . , ℵ − 1. This, in
turn, leads us to formulate the approximate solution by substitution in the form (25).

4. Numerical Simulation

We establish the accuracy of the given method by presenting a numerical simulation
on a test example below, where we address the system (15)–(24) with different values of
ν, m, r. In all figures, we take the same value of σ = 0.25, and the following initial values:

y1,0 = y3,0 = y9,0 = 0.01, y2,0 = y4,0 = y5,0 = y6,0 = y7,0 = y8,0 = 0.0. (37)

Reiterer et al. [27] noted that, when the value of r is greater than 43.3, the system
displays hyper-chaotic behavior, otherwise it is still chaotic. Here, we present both chaotic
and hyper-chaotic cases of the solution of the system under study (15)–(24) for values of r
between 14.1–15.1 and r = 55, respectively. The numerical results obtained for the studied
model by applying the proposed technique are introduced in Figures 1–6.

The numerical solution via distinct quantities of ν = 1.0, 0.95, 0.85, 0.75, with m =
6, r = 14.1 is given in Figure 1; in Figure 2, we give the numerical solution via different
values of r = 14.1, 15.0, 55.0, with m = 7. Figure 3 presents a comparison between
the results obtained by the proposed method with the results that can be obtained by
implementing the Runge–Kutta method of order four (RK4) at (ν = 1) with m = 6, r = 14.1.
Figure 4 represents the residual error function (REF) [28] of the approximate solution at
ν = 0.96, r = 14.1 with different values of m = 5, 9. Finally, in Figures 5 and 6, we present
the phase projections on the y6 − y7 and y6 − y9 planes, for different values of r, with
m = 8, ν = 0.99. From these Figures 5 and 6, it can be seen that the obtained phase-portraits
are in close agreement with those of Kouagou et al. [29]. This indicates that the technique
presented is capable of handling such high-dimensional chaotic systems.

Remark 1. The chaotic and hyper-chaotic features in these figures depend on the values of the
parameter r, which exists in the last three Equations (21)–(23) of the system, so there is a chaotic
solution expected in the last four components of the solution. As is known, the Lorenz system has
chaotic solutions (but not all the solutions are chaotic).

Through Figures 1–4, it can be seen that the behavior of the approximate solution
resulting from the application of the proposed method, based on the values of m, r, and ν,
confirms that the proposed method is suitable for solving the proposed model in its frac-
tional form with the RFE operator. In addition, the proposed efficient technique improves
the accuracy of the results obtained.
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Figure 5. The hyper-chaotic situation in the case of the φ6 − φ7 plane versus different values of r.
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Figure 6. The hyper-chaotic situation in the case of the φ6 − φ9 plane versus different values of r.



Mathematics 2023, 11, 472 11 of 12

5. Conclusions

We investigated the dynamical behavior of the Lorenz mathematical model with
the help of the Caputo differential operator and used the utilities of fractional calculus.
The numerical solutions of the model under investigation were computed with distinct
quantities of the fractional-order, ν, the approximation-order, m, and the REF. In light of
these solutions, we can confirm that the proposed procedure is appropriate to effectively
simulate the given system. In addition, we can control the accuracy of the error and reduce
it by adding additional terms (increasing m) from the approximate solution series. From the
numerical solutions that were graphically isolated, we found that they were comparable
with those that can be obtained using the RK4 method. The results also showed that the
proposed method is computationally accurate and effective and represents a reliable way
to solve such complex dynamical models with chaotic and excessive behavior. We can
apply the results obtained to investigate various phenomena, including the weather, with
many applications in science and engineering. In the future, we will seek to deal with the
same model, but using another type of fractional derivative or another type of polynomial
as a generalization of this study. We will also investigate the stability and explore the
biological applications of the proposed model. The Mathematica software package was
used to perform the numerical simulation.
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