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Abstract: Localizing stroke may be critical for elucidating underlying pathophysiology. This study
proposes a ridge regression–meanshift (RRMS) framework using electromagnetic signals obtained
from 16 antennas placed around the anthropomorphic head phantom. A total of 608 intracranial
haemorrhage (ICH) and ischemic (IS) signals are collected and evaluated for RRMS, where each
type of signal contains two different diameters of stroke phantoms. Subsequently, multiple ridge
regression predictors then give the target distances from the antennas and mean shift is used to
cluster the predicted stroke location based on these distances. The test results show that the training
time and economic cost are significantly reduced as the average prediction time only takes 0.61 s to
achieve an accurate result (average position error = 0.74 cm) using a conventional laptop. It has great
potential to be used as an auxiliary standard medical method, or rapid diagnosis of stroke patients in
underdeveloped areas, due to its rapidity, good deployability, and low hardware cost.

Keywords: antenna array; electromagnetic signal; machine learning; mean-shift; ridge regression;
stroke; vector network analysis
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1. Introduction

Stroke is a medical emergency in which poor blood flow to the brain causes cell death
and may result in permanent disability or death if not treated in a timely manner. According
to the Australian Bureau of Statistics, stroke was recorded as the underlying cause of 8,400
deaths in 2018, accounting for 5.3% of all deaths in Australia [1]. Apart from identifying the
type of stroke, which can be either intracerebral hemorrhage (ICH) or ischemic stroke (IS),
a critical task is to retrieve stroke position in order to implement the medical intervention
as soon as possible. At present, clinical diagnosis of stroke mainly includes X-ray computed
tomography (X-ray CT) and magnetic resonance imaging (MRI). However, both types of
devices have poor portability, where the former has ionizing radiation and the latter has
high cost and slow diagnosis.

In recent years, the feasibility of microwave radio frequency (RF) detecting brain
stroke, breast tumors, and other internal lesions has been studied and demonstrated in
many works, as dielectric properties of normal human tissue and diseased tissue vary
greatly under microwave frequency [2–6]. Relatively, RF technology has not only the
advantages of non-ionizing radiation, short scanning time, etc. but also great deployability
in mobile clinics or ambulances [7]. Generally, the RF localization method can be divided
into two categories: microwave imaging (MWI) and artificial intelligence (AI). In the MWI
method, the antenna array transmits electromagnetic (EM) waves to penetrate the area
to be measured and receive scattered signals to reconstruct the dielectric distribution of
the area to be measured. A conventional delay and sum (DAS) with coherence weighting
is reported to reconstruct hemorrhagic stroke images in a simulated 3D head model [3].
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Another representative example of the MWI method is microwave tomography (MWT)
based on the DBIM-TwIST algorithm [8]. However, the inherent non-linearity and ill-
posedness of inverse scattering reconstructing images remain challenging; problems such
as artifacts, low resolution, and long reconstructing time prevent their practical use in most
clinical and non-clinical situations.

Reliable stroke location with immediate feedback without human visual discrimination
is a challenge in the field. The application of AI methods to the classification of stroke
subtypes has been explored [7,9,10]. Over the years, AI methods have also been increasingly
applied to stroke location prediction and have shown great potential [9–12]. Many studies
focus on the localization of hemorrhagic stroke and made progress [9,11,12]. For example,
a framework for stroke detection on a deep-learned stochastic model was proposed recently,
achieving mean and median IoU (intersection over union) of 0.84 and 0.94, respectively [9].
A few works have validated the localization of ischemic stroke. In 2021, Salucci et al.
proposed a Multi-Step Learning-by-Examples Strategy for Real-Time Brain Stroke, where
support vector regression (SVR) is used to estimate stroke coordinates [10]. However, only
25 possible stroke positions are considered in the experiment, and only stroke phantoms of
the same size are used in simulation, lacking generality and scalability when applied in
real situations. Therefore, the research gap in the development of localization algorithms
that are not limited by stroke phantom size, sub-type, and locations is generated.

In this study, a ridge regression–meanshift (RRMS) framework is proposed to localize
brain stroke regions using EM signals. Firstly, scatter parameters in 751 frequency points
are collected through a 16-port antenna array vector network analysis (VNA). Secondly,
multiple ridge regression (RR) predictors are constructed based on the scattering features
from EM signals. Based on the predicted distances, the mean shift clustering method (MS) is
used to find the densest point clusters, and take the cluster centroid as the center coordinate
of the predicted target. The main contributions of this paper are as follows: Firstly, this
paper uses experimental data rather than simulated data, covering more than 100 different
stroke clot locations for modeling. Secondly, stroke classification is not required in advance
in the training phase, but two different stroke subtypes, ICH and IS, and stroke clots of
different sizes (20mm and 30mm) are mixed to improve the robustness of the model. Finally,
it bypasses traditional image reconstruction, providing the location of the stroke blood clot
in a shorter period of time without artifacts and low-resolution interference.

This paper’s structure is organized as follows: The description of the experimental
environment and methods are given in Section 2. Then the experiment procedures are
provided in Section 3; Section 4 reports representative experiment results to verify the
effectiveness of the proposed method. Finally, we summarize our findings and discuss
comparisons with existing similar studies, as well as future work, in Section 5.

2. Experimental Environment

The data used in this experiment were obtained from phantom measurements, the an-
thropomorphic head model used is EMvision 3B headset, and the vector network analyzer
(VNA) used was M9800A.

2.1. Anthropomorphic Brain Stroke Model

As shown in Figure 1a, the anthropomorphic head phantom was implemented by a
skin–skull bucket (SSB), being filled with the average brain-emulating liquid which was
used to mimic the average dielectric measurements of human brain tissue. Additionally,
solid emulating cylinders of different sizes and specifications were used to mimic various
stroke targets, which provided a more realistic design approach to represent stroke data
in real-world situations. Figure 1b shows the brain stroke targets (phantoms) we used
in our experiments, which were coded as HL, HM, IM, and IL from left to right, where
H was hemorrhagic and I was ischemic, L referred to large size target and M referred to
medium size target. A ground truth example can be seen in Figure 1c The descriptions
and specifications of these stroke phantoms are shown in Table 1.
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(a) (b) (c)

Figure 1. (a) Anthropomorphic head model within the array imaging domain upside-down, filled
with average brain-emulating liquid. (b) solid cylinders HL, HM, IM, and IL from left to right. (c)
An example of a ground truth image of an HL target positioned close to the periphery of the head
phantom.

Table 1. The specifications of 608 brain stroke targets used in experiments.

Feature Description Sample Diameter

HL ICH Stroke(Target Type: L) 134 30 mm
HM ICH Stroke(Target Type: M) 170 20 mm
IL IS Stroke(Target Type: L) 134 30 mm
IM IS Stroke(Target Type: M) 170 20 mm

2.2. RF Data Collection

All signals were generated and received using the VNA controlled by a laptop. To ob-
tain the data, A 16-antenna array was designed and placed around the SSB. Among them,
each antenna was both a transmitter and a receiver. The operating frequency of the antenna
array was between 0.5–2 GHz, and a total of 751 frequency points were collected with 2
MHz steps. Therefore, a total of 751 × 16 × 16 scattering parameters (data points) were
captured for each case. In microwave RF signals, the dielectric properties of different stroke
locations in the head can be reflected in the scattering parameters. Therefore, the scattering
parameter matrix was collected in each movement and stored as a Touchstone format file by
moving these targets along an 8 mm spaced grid pattern in X-coordinate and Y-coordinate.

2.3. Methodology

In this study, a novel two-stage stroke localization method is proposed that eschews
traditional electromagnetic imaging methods.

Ridge regression (RR) is a biased estimation regression method proposed by Ho-
erl and Kennard [13], dedicated to linear data analysis. RR is essentially an improved
least-squares estimation method. It prevents parameter overfitting by adding L2 regu-
larization terms to standard linear regression. Assuming that dataset D has N samples,
D = {(X1, y1), (X2, y2), . . . , (Xn, yn)}, where Xi = (Xi1, Xi2, . . . , Xip) is the ith input vari-
able (dimension=p). The solution of the ridge regression coefficients depends on the
optimization:

β̂ = argminβ

 N

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

β2
j

, (1)

where yi is defined as the corresponding distance between the stroke target from antenna
port i. xij here refers to power transferred from other ports to port i when i is matched. βi
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and β0 are parameters determined during learning process, where β j is the coefficient term
and β0 is the regression error term. The penalty function of the L2-norm is represented by
λ ∑

p
j=1 β2

j , where λ is the penalty coefficient, determined by grid search in the experiment.

2.4. MeanShift Clustering

MeanShift(MS) is a density-based nonparametric clustering algorithm, proposed by
Comaniciu and Meer [14]. MS works by setting a kernel function to estimate the density of
the samples. In this study, it is used to find the final centroid. Suppose there is a dataset
with n samples and d dimensions defined as D = {x1, x2, x3, . . . xn}, D ∈ Rd, then the
bandwidth parameter h can be automatically estimated using cluster.estimate_bandwidth in
sklearn package in python. The kernel density function is estimated as:

f (x) =
1

nhd

n

∑
i=1

K
(

x− xi
h

)
(2)

The effect of clustering varies with bandwidth value h. The radially symmetric kernel
is defined as :

K(x) = ck,dk
(
‖x‖2

)
,
∫

ck,d · K(x)dx = 1 (3)

where ck,d represents normalization constant which assures K(x) integrates to 1. The goal
of MS is to move the sample points in the direction of the local density increase, and the
gradient is the direction in which the function increases the fastest.

3. Experimental Procedures

This experiment is mainly divided into three steps: data preprocessing, feature selec-
tion, and ridge regression–mean shift (RRMS) localization.

3.1. Data Preprocessing

In the experiment, four types of HL, HM, IM, and IL targets are mixed together to
improve the generality and scalability of this framework and are divided into the training
set and test set according to the ratio of 7:3. Table 2 shows the specifications of the training
and test sets.

Table 2. Description of the training set and test set.

DataSet Training Data (70%) Testing Data (30%)

ICH + IS (Total: 608) 425 183

Before analyzing the scattered signal, according to the fact that most machine learning
models do not support complex-number input, all experiments mentioned in this article
extract the gain ratio(dB) of the original signal as features, where the gain ratio represents
the power loss and gain ratio of antennas.

3.2. Feature Selection

Electromagnetic signals are a relatively sophisticated ultra-high-dimensional dataset.
For each stroke data, there are 751× 16× 16 S-parameter features. There may be a large
number of irrelevant or redundant features in the dataset, and too many features may lead
to problems such as model over-fitting and long running time.

Therefore, the s parameters corresponding to each antenna port are extracted sepa-
rately before training. Afterward, the variance filtering method is used for feature selection.
The frequency points with a variance less than the threshold mean the divergence of these
features is too weak. Thus, the frequency points with low divergence and low correlation
can be filtered out. The results of the five-fold cross-validation after feature selection are
given in the next section.
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3.3. RRMS Based Localization

This section presents a two-phase stroke localization method by combining ridge
regression (RR) and meanshift clustering (MS) Specifically, RR is used to predict the
distance between each antenna and the target in the modeling phase. For each antenna
i, a predictor is built separately. The RR parameter alpha is found through grid search
on the training set to find the best parameters. For all predictors, the distances from the
target to each antenna are obtained after training, denoted as d1, d2, d3, . . ., d16. In the
localization phase, circular trajectories can be simulated with the center of the antenna i
and the radius of di. MS is used to find the densest trajectories within the target area, which
is the predicted target position. Figure 2 shows the process of the experiment.

M
ag

ni
tu

de
(d

B)

Frequency(GHz)

S parameters

P1 ...

Distance Predictors

P2 P16
Output 

d1,d2,d3...d1 6

Intersection of circles 
(possible stroke area)

Predicted 
position

Figure 2. The two stages of proposed framework: prediction and localization.

4. Experimental Results

Across all reported results, the training phase takes 46.70s, and the average test time
takes 0.61s, recorded by a standard laptop using a CPU with model AMD RyzenTM with
16 GB RAM memory.

4.1. Feature Filtering Results

Figure 3 demonstrates the performances of evaluating predictor generalization using
five-fold cross-validation (CV) after feature selection (threshold is set to 0.1). Each predictor
performs differently but all exceed an average CV score of 0.9. Among them, predictor-16
performs the best on the training set, with an average CV score of 0.996.

Figure 3. Five-fold cross validation score of d1 to d16 on training data.
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4.2. Predictor Performance on Test Set

To obtain predictors’ performances on the test set, four predictors with the highest
average scores on the training set are selected, namely port-0, port-7, port-8, and port-15.
The corresponding RMSE (root mean squared error) is given in Figure 4. The results show
that the RMSE of these four predictors on the test set is between 0.14 and 0.18.

Figure 4. RMSE of predicted distance on test data.

4.3. Intersection of Localization Results

This section applies the intersection of circles to obtain the stroke targets. Line inter-
section methods have been applied in [12] to localize the stroke targets. The intersection
of at least two circular trajectories can obtain a potential existing location of the target.
Four circular trajectories based on the predicted distance d0, d7, d8, d15 of the above four
predictors are drawn, and MS is applied to estimate the target location with the highest
density of scatter points on the plane (the simulated stroke location).

The range and distribution of localization errors are given in Figure 5. It can be
observed that there is greater variability in the localizing error of the X coordinate system
and larger outliers than the localizing error of the Y coordinate system. The Mean Absolute
Error (MAE) of the test set of stroke localization in the X-coordinate and Y-coordinate
is 0.69 cm and 0.14 cm respectively, and the MAE of the localization position is 0.74
cm. Figure 6 gives a random example of the target, where Figure 6a presents a circle
intersection. Similarly, Figure 6b compares the prediction and ground truth, where the
blue area represents the predicted stroke location and the orange area represents the true
stroke location.
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Figure 5. Localization errors of test set predicted by RRMS framework.

(a) (b)

Figure 6. (a) Intersection result of circular trajectories based on the predicted distance d0, d7, d8, d15 ,
and (b) comparison of ground truth (blue area) and predicted position (orange area).

5. Discussion

This work has presented a preliminary experimental evaluation of stroke localization
based on the RRMS framework. The system utilizes S-parameters collected within a wide
frequency range of 0.5 GHz-2 GHz, and the learning process of stroke location is indepen-
dent of stroke subtype classification results and stroke phantom size. Specifically, stroke
prediction results can be fed back in a short time without prior information. In addition,
the microwave facility itself has the advantages of low hardware cost and good portability,
which indicate that it is suitable for deployment in mobile clinics, or as a decision-support
tool for rapid intervention and treatment in underdeveloped areas.

A comparison of similar studies localizing brain stroke based on EM signals is pre-
sented in Table 3. Wu et al. [11] convert it to classification by using the interconnection point
of two lines that pass the stroke. Similarly, Zhu et al. [12] use geometric methods to localize
ICH stroke which causes an asymmetric response to electromagnetic signals, based on the
assumption that the healthy brain is approximately symmetric. In contrast, the proposed
method can also be used to localize IS stroke while achieving higher prediction accuracy.
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Table 3. Comparison with existing works.

Authors Data Source Collection Proposed Method Observations Results

Wu et al. [11] Simulated data SVM+PSO 280 negative signals
168 positive signals

82.7% accuracy on s11
78.3% accuracy on s12

Zhu et al. [12] Phantom
measurement SCL 150 0.85 ± 0.08 Dice

similarity on ICH

Tobon Vasquez et al. [15] Phantom
measurement

TSVD-Based
Linear Imaging

3 cases, 12 reconstruction
images for each case

Error ranges from
0.5 mm to 38 mm on ICH

Proposed work Phantom
measurement RRMS 608 X axis error: 0.69 cm

Y axis error: 0.14 cm

Tobon Vasquez et al. [15] use the captured scatter signal through a linear imaging
algorithm to reconstruct stroke position and size, which is a conventional microwave tech-
nique to detect lesions (e.g., stroke, breast cancer). In fact, there is no reliable reconstruction
method that can generate high-quality images so far. This is because the electromagnetic
inverse scattering problem is ill-conditioned, nonlinear, and multimodal, i.e., it can have
multiple local minima during iterative optimization. In addition to this, the localization of
stroke should be obtained after image segmentation or dependent on the visual detection
of experts. Conversely, the proposed method can directly obtain stroke position in the
Cartesian coordinate system, bypassing image reconstruction and other medical procedures
that may be required.

It is worth noting that the results reported in this experiment are based on the four
highest-scoring predictors of port-0, port-7, port-8, and port-1. This part of future work
will further improve localization performance by including all 16 predictors. In addition,
the antenna array used in the experiment was placed at the same height as the stroke target
during data collection. We are currently exploring a 3D realistic experimental process, that
is, introducing Z coordinates to observe whether the change of the scattering data affects
this algorithm by changing the height of the stroke phantoms.
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