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Abstract: A fully parametric accelerated failure time (AFT) model with a flexible, novel modified
exponential Weibull baseline distribution called the extended exponential Weibull accelerated failure
time (ExEW-AFT) model is proposed. The model is presented using the multi-parameter survival
regression model, where more than one distributional parameter is linked to the covariates. The
model formulation, probabilistic functions, and some of its sub-models were derived. The parameters
of the introduced model are estimated using the maximum likelihood approach. An extensive
simulation study is used to assess the estimates’ performance using different scenarios based on the
baseline hazard shape. The proposed model is applied to a real-life right-censored COVID-19 data
set from Sudan to illustrate the practical applicability of the proposed AFT model.

Keywords: baseline hazard; survival regression model; maximum likelihood; Monte Carlo simula-
tion; COVID-19 data
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1. Introduction

Over the past few decades, the semi-parametric Cox model has been extensively
adopted in the analysis of survival data. Modifications to remove the assumption of
“proportional hazards (PH)” are discussed in Cox’s original paper [1]. Many efforts have
been made to increase the adaptability of hazard-based regression models using flexible
functions for both the baseline hazard and the inclusion of time-dependent parameters,
primarily using modified probability distributions [2–5].

The two most popular techniques for parametric hazard-based regression models of
survival data are PH models and accelerated failure time (AFT) models [6,7]. Specifically,
under the parametric PH assumption, only a few probability models are closed, and none
of them are flexible enough to explain a large range of survival data [8]. In some cases,
and under certain probability distributions, the AFT model is a more valuable and realistic
option than the PH model [9]. However, the basic structure of such models remains the
same: the PH model is written as a baseline hazard rate function (HRF), multiplied by the
exponential function of the covariates [10], in the following form:

h(t; xxx) = h0(t) exp (xxx′βββ),
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where h(t; xxx) is the HRF for a subject xxx = (x1, x2, . . . xn)
′ is the vector of covariates, h0(t) is

the baseline HRF obtained with xxx = 0, and βββ =
(

β1, β2, . . . βp
)′ represents the regression

coefficients. The intercept β0 can be included in this vector, but we leave it out for clarity.
Other alternative PH models have been proposed, and they can directly account for

the time-dependent effects of covariates. The AFT model is a notable example of these
earliest alternatives to the PH [11]. According to the AFT model, the covariates have a
direct effect on the time to event, as opposed to the PH model, where the covariates affect
the HRF only [12].

Some medical studies have shown that AFT models are frequently used to analyze
survival data [13]. In comparison to the interpretation of a hazard rate, which denotes a
relative rise or decrease in the event rate, the interpretation of an acceleration factor can
be thought of as being more obvious because it directly affects the survival time, either by
increasing it or decreasing it [14].

Additionally, parametric survival models are essential for assessing survival data [15].
These models can be applied to various applications [14,16,17]. For instance, (i) when the
baseline hazard is theoretically expected in a healthcare data set, a survival analysis can be
applied to produce a relatively better estimation, (ii) the survival models are applicable
to the spatial models that predict disease prevalence, (iii) the models can provide better
estimates for mixed effects in the clustered survival data-sets, and (vi) the survival rates
can be estimated using the random effects-frailty models, which are part of the parametric
survival models.

Furthermore, to formulate the parametric AFT model framework, the Weibull, log-
logistic, and log-normal distributions are commonly utilized as baseline HRFs [8]. The
Weibull family can accommodate monotone HRFs (i.e., increasing and decreasing), while
log-logistic and log-normal can accommodate non-monotone HRFs [18,19]. These distribu-
tions cannot accommodate both monotone and non-monotone HRFs [20]. To address this
problem, we looked for a baseline distribution that can accommodate different HRFs as
well as be closed under the AFT model framework.

The foundation for the PH models is the idea that the hazard ratio will remain constant
throughout time [21]. However, in some cases, this assumption is flawed [22].

Results that are skewed and deceptive may emerge from violating this premise [23].
The authors in [24–27] provide inspiring examples of comorbidity studies with COVID-19
patients. This study aims to determine whether covariates within a patient affect how long
the patient stays in the hospital. The standardized Schoenfeld residuals, along with the
proportional hazards assumption of the Cox model for covariates (comorbidity and sex),
are used. Figure 1 shows that all covariates reject the null hypothesis of the test of PH,
so the Cox PH models can’t be used to study the influence of COVID-19’s covariates on
discharge time.

Based on the above argument, in this research study, we proposed a more flexible
parametric survival regression model called the extended-exponential-Weibull (ExEW)
AFT model.

The main contribution of this study is to offer a useful addition to the toolkit for
analyzing survival data that can be used with different hazard regression models in a more
general way. There are several reasons why this work focuses on the extension of the AFT
model under the ExEW HRF baseline. Firstly, although some classical distributions closed
under the AFT model framework exist, none of them are versatile enough to include both
monotone and non-monotone HRFs. Secondly, the parametric AFT model may produce
more accurate estimates than the semi-parametric PH model. Thirdly, the use of the flexible
distribution, which captures both monotone and non-monotone HRFs, is what makes our
work distinctive and more appealing.
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Figure 1. The conventional Schoenfeld residuals from the application of the coronavirus disease 2019
(COVID-19) data set while taking the test p-value for the sex and comorbidity covariates into account.

The motivations for the study can be briefly summarized as follows:

• To propose an ExEW-AFT model that is quite adaptable and can easily accommodate
a variety of applications in reliability and survival analysis.

• The ExEW-AFT model could be viewed as a multiple-parameter survival regression,
which is perhaps more adaptable than the common single-parameter survival regres-
sion model, including the Weibull and exponential AFT models.

• The results obtained with the application are considered the main contributions of this
work.

• COVID-19 data from Sudan are used in the proposed model to determine how the
disease risk factors affect the length of hospital stays.

The subsequent sections of the paper are structured as follows: The model formulation
is presented in Section 2, and baseline HRFs are discussed in Section 3. The proposed model
is examined in Section 4. Section 5 discusses the estimation of parameters. Section 6 presents
the results of the simulation study. Application of the proposed model to COVID-19 data
is offered in Section 7. Discussion is given in Section 8. In Section 9, some conclusions
are cited.

2. AFT Model Formulation

For regression analysis of time-to-event data, there are two prevalent classes: odds-
based and hazard-based regression models [2]. While the formulation in hazard-based
models is dependent on the tractability of the baseline distribution’s HRF and cumulative
HRF (CHRF), the formulation in odds-based models is dependent on the tractability of the
odds function and its derivative [28].

The three common regression models in the context of hazard-based regression models
are: PH [2], AFT [18], and accelerated hazard (AH) [20] models. On the other hand, the
three most popular regression models in the context of odds-based regression models are
proportional odds (PO) [29], accelerated odds (AO) [28], and AFT models. Hence, the AFT
model is the only survival regression model that is closed under both odds-based and
hazards-based regression models. The formulation of the AFT model is defined as follows:

Let xxx be a vector of explanatory variables, and ψ(x′βx′βx′β) be the link function for the
explanatory variables, where βββ is a vector of regression coefficients. The HRF and survival
function (SF) of the AFT model are expressed as follows:

h(t; xxx) = h0
(
tψ(xxx′βββ)

)
ψ(xxx′βββ), t ≥ 0 (1)
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and
S(t; xxx) = S0

(
tψ(xxx′βββ)

)
. (2)

The link function has the following properties:

(i) ψ(x) > 0 for all x 6= 0.
(ii) ψ(x) is a one-to-one monotone function.
(iii) ψ(0) = 1.

In this study, we employed the link function as a standard exponential function. Hence,
the HRF and SF of the AFT model can be re-written as follows:

h(t; xxx) = h0

(
tex′βx′βx′β

)
ex′βx′βx′β (3)

and
S(t; xxx) = S0

(
tex′βx′βx′β

)
. (4)

3. The Baseline ExEW Distribution

In this study, we consider a very flexible lifetime distribution as the baseline distribu-
tion: the four-parameter ExEW distribution, also denoted as ExEW(a, b, c, α) distribution,
as presented in Mastor et al. [30] (with some corrections). Some background on it is given
below. To begin, the cumulative distribution function (CDF) of the ExEW distribution takes
the form

F(z) = 1− exp[−α(a z + b zc)], z > 0, (5)

where a > 0, c > 0 and α > 0 are shape parameters, and b > 0 is a scale parameter. The
probability density function (PDF) corresponding to Equation (4) reduces to

f (z) = α(a + b czc−1) exp[−α(a z + b zc)], z > 0. (6)

The SF of the ExEW distribution is

S(z) = exp[−α(a z + b zc)], z > 0. (7)

The HRF of the ExEW distribution is expressed as

h(z) = α(a + b czc−1), z > 0. (8)

The corresponding CHRF is obtained as

H(z) = α(a z + b zc), z > 0. (9)

By following the CDF in Equation (5), the HRF and CHRF for the baseline distribution
have been corrected from the original equations in the original paper [30].

4. The Proposed Model

The proposed AFT model is developed by extending the ExEW(a, b, c, α) distribution
to incorporate covariates. The corresponding SF with covariate vector xxx is given by

S(t; xxx) = exp
{
−α
[

a
(

tex′βx′βx′β
)
+ b
(

tex′βx′βx′β
)c]}

, t > 0, (10)

which corresponds to the SF of the ExEW distribution under the following configuration:

a∗ = aexxx′βββ and b∗ = b
(

exxx′βββ
)c

, that is

S(t; xxx) = exp[−α(a∗t + b∗tc)], t > 0.

This demonstrates that, under the AFT model framework, the ExEW distribution is
closed in the distributional sense.
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Furthermore, the HRF with covariates xxx is written as follows:

h(t; xxx) = α

[
a + b c

(
texxx′βββ

)c−1
]

exxx′βββ, t > 0. (11)

The PDF with covariates vector xxx is given by

f (t; xxx) = α

[
a + b c

(
texxx′βββ

)c−1
]

exp
{
−α
[

a
(

texxx′βββ
)
+ b

(
texxx′βββ

)c]}
exxx′βββ, t > 0. (12)

Single-parameter hazard-based regression (SPHBR) models are commonly used to
relate covariates to one parameter of specific interest. In these SPHBR models, the role
of the other (explanatory independent variables) parameters are often little more than
to give the model sufficient generality to adapt to the data. A more tractable method is
to relate these other parameters to covariates; this method is known as multi-parameter
hazard-based regression (MPHBR) models [31–34]. The primary focus of this paper is the
development of MPHBR models in the context of time-to-event analysis.

In our case, this is a multi-parameter AFT model, which is different from a single-
parameter AFT model, like the Weibull AFT model or the log-logistic AFT model, among oth-
ers, where only the scale parameter is changed. As a result, except for the α parameter,
the covariates influence the majority of the baseline distribution parameters. This is what
makes our work unique and different from the common classical AFT models.

5. Estimation of the ExEW-AFT Parameters

To estimate the model parameters, maximum likelihood estimation (MLE) is used. Let
T1, T2, . . . , Tn be the lifetimes of n individuals. If the data are subject to right censoring, then
ti = min(Ti, Ci), where Ci > 0 corresponding to a potential censoring time for individual i.
Suppose that δi = I(Ti ≤ Ci) = 1 for Ti ≤ Ci and δi = 0 otherwise. Hence, the observed
data for an individual i consists of {ti, δi}, for i = 1, 2, . . . , n, where ti is a censoring time
or lifetime according to whether δi = 0 or 1, respectively and xxxi = (xi1, xi2, . . . , xin) is a
column vector of n external covariates for the ith individual.

In this scenario, non-informative censoring is assumed to be in place, meaning that
neither the distribution of survival times nor the distribution of censoring times can be
inferred from one another.

It is important to note that the assumption of non-informative censoring is justifiable
when censoring is random (it is assumed that the failure rates for observations that are
censored, uncensored, and remain in the risk set are equal) and/or independent (in other
words, censorship is supposed to be random within any interested subgroup); for additional
information on the non-informative censoring, see [35].

In this setting, the censored likelihood function is therefore defined as follows:

L(ϑ) =
n

∏
i=1

[ f (t; xxxi)]
δi [S(t; xxxi)]

1−δi , (13)

where ϑ is the vector of the involved parameters.
Based on Equation (13), the log-likelihood function for a parametric AFT model is

defined as follows:

`(ϑ) =
n

∑
i=1

δi log[ f (t; xxxi)] +
n

∑
i=1

(1− δi) log[S(t; xxxi)], (14)

The Newton-Raphson optimization procedure can be used to directly optimize this,
and interval estimates of the model parameters and hypothesis testing are both possible
under the approximative normally distributed MLE estimates [8].
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The likelihood function in the ExEW-AFT model is given by

L(θ, D) =
n

∏
i=1

[ f (ti; a, b, c, α, βββ, xxxi)]
δi [S(ti; a, b, c, α, βββ, xxxi)]

1−δi , (15)

where S(t; a, b, c, α, βββ, xxx) and f (t; a, b, c, α, βββ, xxx) of the ExEW-AFT model are derived from
Equations (10) and (12), θ = (a, b, c, α, βββ), D = ((t1, δ1, xxx1), (t2, δ2, xxx2), . . . , (tn, δn, xxxn)). We
recall that the censoring indicator satisfies δ = 0 if the observation is censored and δ = 1 if
the observation is failed, and xxxi is the matrix of covariates, which is known as the design
matrix or model matrix. After expressing the PDF in terms of HRF and SF and taking
the logarithm of both sides of the likelihood function, the log-likelihood can be written
as follows:

`(θ; D) =
n

∑
i=1

[δi log h(ti; a, b, c, α, βββ, xxxi) + log S(ti; a, b, c, α, βββ, xxxi)]. (16)

As a result, the full log-likelihood function for the ExEW-AFT model can be written
as follows:

`(θ; D) =
n

∑
i=1

δi log
[

α

(
a + b c

(
texixixi

′βββ
)c−1

)
exixixi
′βββ
]
+

n

∑
i=1

(
−α
[

a
(

texixixi
′βββ
)
+ b
(

texixixi
′βββ
)c])

. (17)

The MLE vector estimate of θ can be obtained by maximizing Equation (17) directly,
with respect to the parameter vector θ. It is denoted by θ̂ = (â, b̂, ĉ, α̂, β̂), so that â, b̂,
ĉ, α̂, and β̂ are the MLEs of a, b, c, α and β, respectively. By directly maximizing the
total log-likelihood function with the aid of the tools R, MATHEMATICA, and MATLAB,
the parameter estimations can be derived. R software is the program that is utilized in this
work.

6. Simulation Study

In this section, we demonstrate the inferential capabilities of the proposed model
using simulation results. Here, we demonstrate parameter estimation, the inclination to
recover baseline HRF shapes using standard error (SE), average bias (AB), mean square
error (MSE), and relative bias (RB) to pick models that accurately reflect the underlying
HRF shape, and the effect of censoring proportions on the model’s inferential features.

6.1. Simulation Designs and Data Generation

Assuming the AFT regression model framework presented in Equation (11), we specif-
ically simulated n = 1000 and 5000 data sets. Four variables were taken into account
in the simulation study when we considered covariates. Two binary covariates, x1 and
x2, are produced using the Bernoulli (0.5) distribution, while two continuous covariates,
x3 and x4, were produced using the standard normal distribution. The covariate vector
xxx = (x1, x2, x3, x4)

′ corresponds to the values for the AFT regression coefficients, which are
selected to be (−2, 0.75,−0.75, 0.5,−0.5). Using the inverse transform technique, the expo-
nentiated Weibull (EW) distribution is used to simulate lifetime data from the AFT model
framework [36].

In the regression equation, the effects of the covariates and the intercept are presump-
tive.

The PDF of the EW distribution takes the form

f (t; a, b, c) = abc(bt)a−1(1− e−(bt)a
)c−1e−(bt)a

, t > 0, (18)

where a, b, c > 0 are the distribution’s parameters.
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6.2. Simulation Algorithm for the Proposed AFT Model

The following are the steps for executing the proposed AFT model:

(i) Set the parameters of the model’s initial values,
(ii) Utilize the inverse transform technique, create the lifetime data by inverting the CHRF

of the proposed model,
(iii) Utilize the various estimates to evaluate the estimations’ values,
(iv) Analyze the inferential properties of the estimates, taking into account the SE, AB,

MSE, and RB.

The Inverse Transform Technique

A popular probabilistic approach for creating datasets using regression survival mod-
els is the inverse transform technique [37–40]. This technique is based on the association
between the CHRF of a lifetime random variable and a standard uniform random variable.
Whenever the CHRF of the baseline distribution has an explicit form solution, it may be
used, reversed, and easily used in R.

The CDF is derived from the SF as follows:

F(t; x) = 1− S(t; x). (19)

Given this, when generating data, if Y is a random variable that has this CDF, then
U = F(Y) follows a uniform distribution throughout the range [0; 1] and [1 − U] also
follows a uniform distribution U[0, 1]. At the end, for a realization u of U, by using the
baseline CHRF H0(t; x), we get

1− u = exp{−H0(t; x)}. (20)

The inverse of the CHRF must only be calculated if the baseline HRF is strictly positive
for every t to simulate lifetime data. An expression of the random live corresponding to
the AFT model is as follows:

T =
H−1

0 (− log(1−U))

exxx′βββ . (21)

In this study, we used the EW baseline distribution to generate survival times that
can accommodate all of the basic HRF shapes, including decreasing, constant, increasing,
unimodal, and bathtub shapes. The EW distribution is likewise closed in the context of the
AFT regression model [18].

As a last comment, we recall that the CHRF of the EW model is

H0(t; a, b, c) = − log
[
1−

(
1− e−(bt)a

)c]
. (22)

and thus the inverse of the CHRF is written as follows:

H−1
0 (t; a, b, c) =

(
− log

[
1−

(
1− e−t)1/c

])1/a

b
. (23)

6.3. Simulated Scenarios

Based on the shapes in Figure 2, we provide the results of four simulation scenarios
based on non-monotone HRF (bathtub or unimodal), and monotone HRF (decreasing or
increasing) to evaluate the performance of the ExEW-AFT model in comparison with the
Weibull AFT (W-AFT), log-logistic AFT (LL-AFT), and EW-AFT models and to investigate
the impact of the baseline HRF shape specification on the AFT model’s inferential qualities.

Scenario 1: monotone (increasing) HRF :
The lifetime data for this scenario are created using the EW model, and the parameter for
(a = 1.0, b = 1.5, and c = 1.5). The censoring times are generated from the exponential
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distribution with rate parameter λ:
For n = 1000, λ = 0.33 and 0.2.
For n = 5000, λ = 0.4 and 0.22

Scenario 2: monotone (decreasing) HRF:
The EW model was used to create the lifetime data for this scenario, and the parameter
values for (a = 0.80, b = 0.80, and c = 1.9). The censoring times are generated from the
exponential distribution with rate parameter λ:
For n = 1000, λ = 0.38 and 0.25
For n = 5000, λ = 0.47 and 0.25

Scenario 3: non-monotone (bathtub) HRF:
The EW model was used to create the lifetime data for this scenario, and the parameter
values for (a = 0.75, b = 1.50, and c = 2.0). The censoring times are generated from the
exponential distribution with rate parameter λ:
For n = 1000, λ = 0.33 and 0.2
For n = 5000, λ = 0.65 and 0.22

Scenario 4: non-monotone (unimodal) HRF:
The EW model was used to create the lifetime data for this scenario, and the parameter
values for (a = 1.65, b = 1.50, and c = 0.95). The censoring times are generated from the
exponential distribution with rate parameter λ:
For n = 1000, λ = 0.29 and 0.18
For n = 5000, λ = 0.47 and 0.21

Figure 2 shows the four Scenarios 1–4 (increasing (blue line), decreasing (red line), bathtub
(green line), and unimodal (purple line) respectively), depending on the parameter values
we chose, there were, on average, 20 and 30 percent censored observations.

Figure 2. HR shapes for generated distribution for all scenarios.

6.4. Analyses of Simulated Data

To evaluate the inferential properties of the proposed models in all simulated scenarios,
the ExEW-AFT model is fitted to the appropriate true generating model from the EW-AFT
model. We also fitted the sub-models into each scenario. Furthermore, the estimates of the
regression coefficients for each model are evaluated for stability based on the SE, RB, MSE,
and the AB. These quantities are given by

AB =
1
n

n

∑
i=1

(υ̂i − υ), (24)

MSE =
1
n

n

∑
i=1

(υ̂i − υ)2 (25)
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and

RB =
1
n ∑n

i=1(υ̂i − υ)

υ
, (26)

where υ denotes each of the considered parameters.
Instead of examining the properties of the optimization process, our purpose was to

examine the qualities of the estimates.
In all circumstances, we used the parameter values from the generating model as our

optimization step starting points. The R programming language is used to do the analysis.
With the aid of the R software “nlminb()”, the optimization stage is complete.

6.5. Performance Measures

The flexibility of the models for the covariates is evaluated in this study using measures
such as the mean (estimated), AB, MSE, RB, and SE.

6.6. Simulation Results

According to the findings of scenario 1 in Tables 1–4 the SE, AB, MSE, and RB indicate
that the proposed model performed better than others. Furthermore, it appears that
sample size and censoring percentage have an effect on how well models match data.
When censoring and sample size are increased, our proposed ExEW-AFT model often
outperforms the W-AFT and LL-AFT models. As anticipated, all models equally integrated
the growing HRF. However, our proposed model performs better in the case of heavy
censoring. Theoretically, the findings of scenario 2 in Tables 5–8 show that all of the
competing models can take into account the decreasing HRF shape. Our proposed ExEW-
AFT model outperformed the W-AFT and LL-AFT models, and even the genuine produced
model in terms of SE, AB, MSE, and RB. Moreover, when the censoring and sample size
increase, our proposed model is once again the best-suited one and makes a wise choice of
heavy censoring. The results of scenario 3 in Tables 9–12 reveal that the only model that
has the lowest value in terms of SE, AB, MSE, and RB is our proposed ExEW-AFT model.
Generally, the W-AFT and LL-AFT models generated the least accurate estimates for AB,
MSE, and RB according to Scenario 3, as expected (i.e., bathtub hazard). The findings of
scenario 4 in Tables 13–16 show that the proposed ExEW-AFT model produced estimates
that had the lowest SE, AB, MSE, and RB values for all the regression coefficients while
producing estimates that are equivalent to the genuine. Finally, the proposed AFT model
outperforms the other competing models in all circumstances, including heavy censoring.



Mathematics 2023, 11, 460 10 of 26

Table 1. Simulation study for scenario 1 (n = 1000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −1.118 10.444 0.882 −2.749 −0.441
β1 0.75 1.144 0.057 0.394 0.746 0.525
β2 −0.75 −1.233 0.062 −0.483 0.958 0.644
β3 0.50 0.924 0.116 0.424 0.604 0.848
β4 −0.50 −0.789 0.116 −0.288 0.371 0.576
a 1.0 −8.288
b 1.50 8.463
c 1.50 1.010
α 0.033 0.165

EW βo −2.0 −3.381 85.370 −0.880 4.293 0.440
β1 0.75 1.179 0.066 0.429 0.828 0.572
β2 −0.75 −1.265 0.069 −0.515 1.037 0.687
β3 0.50 0.952 0.127 0.452 0.657 0.904
β4 −0.50 −0.813 0.122 −0.313 0.411 0.626
a 1.0 1.027
b 1.50 0.827
c 1.50 1.784

W-AFT βo −2.0 −2.288 44.235 −0.288 1.236 0.144
β1 0.75 1.206 0.060 0.456 0.891 0.608
β2 −0.75 −1.268 0.066 −0.518 1.046 0.691
β3 0.50 0.974 0.122 0.474 0.698 0.948
β4 −0.50 −0.815 0.119 −0.315 0.414 0.630
a 1.0 1.288
b 1.50 0.685

LL-AFT βo −2.0 −2.288 2.785 −0.288 1.236 0.144
β1 0.75 1.206 0.066 0.456 0.891 0.608
β2 −0.75 −1.268 0.068 −0.518 1.046 0.691
β3 0.50 0.974 0.013 0.474 0.698 0.948
β4 −0.50 0.012 0.815 −0.315 0.414 0.630
a 1.0 1.288
b 1.50 0.685

Table 2. Simulation study for scenario 1 (n = 5000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −1.356 1.507 0.644 −2.161 −0.322
β1 0.75 1.255 0.028 0.505 1.013 0.673
β2 −0.75 −1.297 0.029 −0.547 1.120 0.729
β3 0.50 0.948 0.054 0.448 0.649 0.896
β4 −0.50 −0.830 0.053 −0.330 0.439 0.660
a 1.0 −6.156
b 1.50 6.649
c 1.50 1.026
α 0.033 0.083

EW-AFT βo −2.0 −3.288 11.628 −0.811 3.900 0.406
β1 0.75 1.283 0.031 0.533 1.083 0.711
β2 −0.75 −1.321 0.032 −0.571 1.181 0.761
β3 0.50 0.973 0.057 0.473 0.697 0.946
β4 −0.50 −0.852 0.056 −0.352 0.476 0.704
a 1.0 1.034
b 1.50 0.744
c 1.50 2.078

W-AFT βo −2.0 −1.931 12.884 −1.224 6.394 0.612
β1 0.75 1.253 0.029 0.503 1.008 0.671
β2 −0.75 −1.299 0.030 −0.549 1.126 0.732
β3 0.50 0.937 0.055 0.437 0.628 0.874
β4 −0.50 −0.823 0.054 −0.323 0.428 0.646
a 1.0 1.961
b 1.50 1.241

LL-AFT βo −2.0 −2.310 4.515 0.141 −0.543 −0.070
β1 0.75 1.292 0.029 0.503 1.009 0.671
β2 −0.75 −1.322 0.032 −0.557 1.146 0.743
β3 0.50 0.985 0.057 0.479 0.709 0.958
β4 −0.50 −0.866 0.057 −0.359 0.487 0.718
a 1.0 1.310
b 1.50 0.688
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Table 3. Simulation study for scenario 1 (n = 1000) with about 30% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −0.694 6.442 1.306 −3.518 −0.653
β1 0.75 1.053 0.043 0.303 0.546 0.404
β2 −0.75 −1.087 0.045 −0.337 0.619 0.449
β3 0.50 0.756 0.087 0.256 0.322 0.512
β4 −0.50 −0.821 0.089 −0.321 0.424 0.642
a 1.0 −8.194
b 1.50 8.315
c 1.50 1.013
α 0.033 0.195

EW-AFT βo −2.0 −2.329 13.650 −0.296 1.271 0.148
β1 0.75 1.067 0.047 0.317 0.576 0.423
β2 −0.75 −1.099 0.048 −0.349 0.645 0.465
β3 0.50 0.746 0.090 0.246 0.306 0.492
β4 −0.50 −0.837 0.092 −0.337 0.451 0.644
a 0.50 1.572
b 1.50 0.920
c 1.50 1.821

W-AFT βo −2.0 −1.121 11.686 0.879 −2.743 −0.440
β1 0.75 1.043 0.044 0.293 0.526 0.391
β2 −0.75 −1.087 0.045 −0.337 0.619 0.449
β3 0.50 0.730 0.088 0.230 0.283 0.460
β4 −0.50 −0.822 0.089 −0.322 0.426 0.644
a 1.0 7.959
b 1.50 1.385

LL-AFT βo −2.0 −1.963 8.908 0.037 −0.148 −0.018
β1 0.75 1.083 0.047 0.333 0.610 0.444
β2 −0.75 −1.104 0.048 −0.354 0.656 0.472
β3 0.50 0.745 0.089 0.245 0.304 0.490
β4 −0.50 −0.841 0.090 −0.341 0.458 0.682
a 1.0 0.963
b 1.50 0.601

Table 4. Simulation study for scenario 1 (n = 5000) with about 30% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −1.839 2.163 0.161 −0.618 −0.080
β1 0.75 1.130 0.018 .380 0.714 0.507
β2 −0.75 −1.149 0.017 −0.399 0.758 0.532
β3 0.50 0.828 0.039 0.328 0.436 0.656
β4 −0.50 −0.766 0.039 −0.266 0.337 0.532
a 1.0 −4.313
b 1.50 5.871
c 1.50 1.105
α 0.033 0.093

EW-AFT βo −2.0 −2.495 6.116 −0.495 2.227 0.248
β1 0.75 1.142 0.022 0.392 0.742 0.523
β2 −0.75 −1.157 0.022 −0.407 0.776 0.543
β3 0.50 0.828 0.040 0.328 0.435 0.656
β4 −0.50 −0.771 0.039 −0.271 0.344 0.542
a 1.0 1.277
b 1.50 0.862
c 1.50 2.032

W-AFT βo −2.0 −1.194 102.989 0.806 −2.575 −0.403
β1 0.75 1.119 0.023 0.369 0.690 0.492
β2 −0.75 −1.143 0.022 −0.393 0.745 0.524
β3 0.50 0.804 0.039 0.304 0.396 0.608
β4 −0.50 −0.749 0.041 −0.249 0.311 0.498
a 1.0 7.893
b 1.50 1.377

LL-AFT βo −2.0 −2.698 2.097 −0.698 3.281 0.349
β1 0.75 1.144 0.022 0.394 0.746 0.525
β2 −0.75 −1.170 0.021 −0.420 0.807 0.560
β3 0.50 0.850 0.041 0.350 0.473 0.700
β4 −0.50 −0.750 0.042 −0.250 0.312 0.500
a 1.0 0.297
b 1.50 0.574



Mathematics 2023, 11, 460 12 of 26

Table 5. Simulation study for scenario 2 (n = 1000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −2.190 0.287 −0.190 0.798 0.095
β1 0.75 1.431 0.197 0.681 1.486 0.908
β2 −0.75 −1.447 0.171 −0.697 1.531 0.929
β3 0.50 1.104 0.169 0.605 0.970 1.210
β4 −0.50 −1.103 0.168 −0.603 0.968 1.206
a 0.80 −0.977
b 0.80 1.427
c 1.90 0.701
α 0.09 0.114

EW-AFT βo −2.0 −2.529 0.275 −0.529 2.394 0.264
β1 0.75 1.433 0.285 0.683 1.491 0.911
β2 −0.75 −1.445 0.286 −0.695 1.526 0.927
β3 0.50 1.126 0.207 0.626 1.018 1.252
β4 −0.50 −1.114 0.180 −0.614 0.990 1.228
a 0.80 0.816
b 0.80 0.263
c 1.90 3.846

W-AFT βo −2.0 −2.864 0.288 −0.864 4.202 0.432
β1 0.75 1.450 0.323 0.700 1.540 0.933
β2 −0.75 −1.454 0.319 −0.704 1.552 0.939
β3 0.50 1.135 0.222 0.635 1.039 1.270
β4 −0.50 −1.110 0.181 −0.610 0.982 1.220
a 0.80 1.664
b 0.80 1.368

LL-AFT βo −2.0 −2.864 0.278 −0.864 4.201 0.432
β1 0.75 1.450 0.288 0.700 1.539 0.933
β2 −0.75 −1.454 0.290 −0.704 1.551 0.939
β3 0.50 1.135 0.210 0.635 1.038 1.270
β4 −0.50 −1.110 0.180 −0.610 0.982 1.220
a 0.80 1.663
b 0.80 1.368

Table 6. Simulation study for scenario 2 (n = 5000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −2.190 0.279 −0.190 0.798 0.095
β1 0.75 1.431 0.111 0.681 1.486 0.908
β2 −0.75 −1.447 0.109 −0.697 1.531 0.929
β3 0.50 1.105 0.167 0.605 0.970 1.210
β4 −0.50 −1.103 0.170 −0.603 0.968 1.206
a 0.80 −0.087
b 0.80 0.719
c 1.90 0.743
α 0.09 0.074

EW-AFT βo −2.0 −2.529 4.844 −0.529 2.394 0.264
β1 0.75 1.433 0.123 0.683 1.491 0.911
β2 −0.75 −1.445 0.125 −0.695 1.526 0.927
β3 0.50 1.126 0.235 0.626 1.018 1.252
β4 −0.50− −1.114 0.235 −0.614 0.990 1.228
a 0.80 0.816
b 0.80 0.263
c 1.90 3.846

W-AFT βo −2.0 −5.213 49.582 −3.213 23.173 1.606
β1 0.75 1.417 0.114 0.667 1.446 0.889
β2 −0.75 −1.449 0.117 −0.699 1.537 0.932
β3 0.50 1.077 0.227 0.577 0.911 1.154
β4 −0.50 −1.101 0.228 −0.601 0.963 1.202
a 0.80 0.823
b 0.80 0.640

LL-AFT βo −2.0 −2.864 0.124 −0.864 4.201 0.432
β1 0.75 1.450 0.129 0.700 1.539 0.933
β2 −0.75 −1.454 0.130 −0.704 1.551 0.939
β3 0.50 1.135 0.178 0.635 1.038 1.270
β4 −0.50 −1.110 0.175 −0.610 0.982 1.220
a 0.80 1.664
b 0.80 1.368
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Table 7. Simulation study for scenario 2 (n = 1000) with about 30% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −2.029 0.522 −0.029 0.118 0.015
β1 0.75 1.212 0.076 0.462 0.907 0.616
β2 −0.75 −1.187 0.052 −0.437 0.848 0.583
β3 0.50 0.822 0.156 0.322 0.426 0.644
β4 −0.50 −0.930 0.158 −0.430 0.614 0.860
a 0.80 0.869
b 0.80 −0.556
c 1.90 1.082
α 0.09 0.583

EW-AFT βo −2.0 −0.422 17.156 1.577 −3.821 −0.788
β1 0.75 1.254 0.098 0.504 1.011 0.672
β2 −0.75 −1.375 0.101 −0.625 1.328 0.833
β3 0.50 1.056 0.189 0.556 0.866 1.112
β4 −0.50 −1.185 0.192 −0.685 1.154 1.370
a 0.80 1.301
b 0.80 0.244
c 1.90 5.801

W-AFT βo −2.0 −4.290 75.287 −2.290 14.406 1.145
β1 0.75 1.247 0.089 0.497 0.992 0.663
β2 −0.75 −1.389 0.094 −0.639 1.366 0.852
β3 0.50 1.038 0.183 0.538 0.828 1.076
β4 −0.50 −1.176 0.186 −0.676 1.132 1.352
a 0.80 1.099
b 0.80 0.699

LL-AFT βo −2.0 −2.524 59.316 −0.524 2.371 0.262
β1 0.75 1.278 0.095 0.528 1.071 0.704
β2 −0.75 −1.386 0.053 −0.636 1.359 0.848
β3 0.50 1.056 0.185 0.556 0.866 1.112
β4 −0.50 −1.184 0.184 −0.684 1.152 1.368
a 0.80 1.324
b 0.80 1.210

Table 8. Simulation study for scenario 2 (n = 5000) with about 30% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −3.402 0.169 −1.402 7.573 0.701
β1 0.75 1.106 0.011 0.356 0.661 0.475
β2 −0.75 −1.159 0.021 −0.409 0.781 0.545
β3 0.50 0.888 0.040 0.388 0.539 0.776
β4 −0.50 −0.768 0.037 −0.268 0.340 0.536
a 0.80 −0.391
b 0.80 1.464
c 1.90 1.234
α 0.09 1.067

EW-AFT βo −2.0 −1.541 7.520 0.459 −1.624 −0.2304
β1 0.75 1.142 0.022 0.392 0.742 0.523
β2 −0.75 −1.157 0.022 −0.407 0.776 0.543
β3 0.50 0.828 0.040 0.328 0.435 0.656
β4 −0.50 −0.771 0.040 −0.271 0.344 0.542
a 0.80 3.314
b 0.80 0.862
c 1.90 2.032

W-AFT βo −2.0 −1.795 117.420 0.205 −0.776 −0.102
β1 0.75 1.119 0.020 0.369 0.690 0.492
β2 −0.75 −1.143 0.020 −0.393 0.745 0.524
β3 0.50 0.804 0.038 0.304 0.396 0.608
β4 −0.50 −0.749 0.038 −0.249 0.311 0.498
a 0.80 4.324
b 0.80 1.377

LL-AFT βo −2.0 2.086 21.810 −0.086 0.353 0.043
β1 0.75 1.153 0.022 0.403 0.767 0.537
β2 −0.75 −1.158 0.021 −0.408 0.777 0.544
β3 0.50 0.836 0.040 0.336 0.449 0.672
β4 −0.50 −0.783 0.039 −0.283 0.363 0.566
a 0.80 0.886
b 0.80 0.594
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Table 9. Simulation study for scenario 3 (n = 1000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −2.204 0.762 −0.204 0.857 0.102
β1 0.75 1.114 0.046 0.364 0.678 0.485
β2 −0.75 −1.170 0.045 −0.420 0.807 0.560
β3 0.50 0.786 0.092 0.286 0.368 0.572
β4 −0.50 −0.707 0.091 −0.207 0.249 0.414
a 0.50 −0.925
b 1.50 1.351
c 2.0 1.171
α 1.0 0.449

EW-AFT βo −2.0 −1.580 8.413 0.420 −1.503 −0.210
β1 0.75 1.116 0.051 0.366 0.683 0.488
β2 −0.75 −1.150 0.052 −0.400 0.760 0.533
β3 0.50 0.821 0.095 0.321 0.423 0.642
β4 −0.50 −0.770 0.093 −0.270 0.343 0.540
a 0.50 2.788
b 1.50 0.849
c 2.00 2.572

W-AFT βo −2.0 −1.769 38.554 0.231 −0.871 −0.116
β1 0.75 1.071 0.046 0.321 0.584 0.428
β2 −0.75 −1.134 0.049 −0.384 0.723 0.512
β3 0.50 0.777 0.094 0.277 0.353 0.554
β4 −0.50 −0.750 0.093 −0.250 0.313 0.500
a 0.50 4.3492
b 1.50 1.588

LL-AFT βo −2.0 −2.263 69.060 −0.263 1.123 0.132
β1 0.75 1.133 0.094 0.383 0.722 0.511
β2 −0.75 −1.151 0.048 −0.401 0.763 0.535
β3 0.50 0.830 0.093 0.330 0.440 0.660
β4 −0.50 −0.777 0.092 −0.277 0.354 0.554
a 0.50 0.763
b 1.50 0.524

Table 10. Simulation study for scenario 3 (n = 5000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −2.510 0.172 −0.510 2.300 0.255
β1 0.75 1.137 0.023 0.387 0.731 0.516
β2 −0.75 −1.231 0.022 −0.481 0.953 0.641
β3 0.50 0.863 0.041 0.363 0.495 0.726
β4 −0.50 −0.733 0.040 −0.233 0.288 0.466
a 0.50 −0.485
b 1.50 2.241
c 2.00 1.414
α 1.00 0.249

EW-AFT βo −2.0 −1.550 9.767 0.450 −1.597 −0.225
β1 0.75 1.205 0.026 0.455 0.888 0.607
β2 −0.75 −1.229 0.026 −0.479 0.949 0.639
β3 0.50 0.906 0.046 0.406 0.571 0.812
β4 −0.50 −0.793 0.045 −0.293 0.378 0.586
a 0.50 2.105
b 1.50 0.788
c 2.00 2.763

W-AFT βo −2.0 −0.755 9.161 1.245 −3.429 −0.623
β1 0.75 1.172 0.023 0.422 0.810 0.563
β2 −0.75 −1.207 0.024 −0.457 0.894 0.609
β3 0.50 0.868 0.044 0.368 0.503 0.736
β4 −0.50 −0.765 0.043 −0.265 0.336 0.530
a 0.50 9.709
b 1.50 1.541

LL-AFT βo −2.0 −2.145 29.658 −0.145 0.601 0.072
β1 0.75 1.210 0.026 0.460 0.901 0.613
β2 −0.75 −1.229 0.029 −0.479 0.947 0.639
β3 0.50 0.909 0.047 0.409 0.577 0.818
β4 −0.50 −0.800 0.045 −0.300 0.390 0.600
a 0.50 0.645
b 1.50 0.542
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Table 11. Simulation study for scenario 3 (n = 1000) with about 30% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −2.273 0.381 −0.273 1.165 0.136
β1 0.75 0.906 0.019 0.156 0.258 0.208
β2 −0.75 −0.970 0.023 −0.220 0.378 0.293
β3 0.50 0.645 0.035 0.145 0.167 0.290
β4 −0.50 −0.621 0.036 −0.121 0.135 0.242
a 0.50 −0.165
b 1.50 0.953
c 2.00 2.311
α 1.00 0.851

EW-AFT βo −2.0 −2.074 4.228 −0.074 0.303 0.037
β1 0.75 0.902 0.020 0.152 0.252 0.203
β2 −0.75 −0.917 0.0207 −0.167 0.279 0.223
β3 0.50 0.607 0.038 0.107 0.119 0.214
β4 −0.50 −0.636 0.038 −0.136 0.154 0.272
a 0.50 0.993
b 1.50 1.886
c 2.00 2.253

W-AFT βo −2.0 −1.182 7.313 0.818 −2.603 −0.409
β1 0.75 0.884 0.018 0.134 0.220 0.179
β2 −0.75 −0.906 0.019 −0.156 0.258 0.208
β3 0.50 0.590 0.037 0.090 0.099 0.180
β4 −0.50 −0.629 0.037 −0.129 0.146 0.258
a 0.50 3.165
b 1.50 3.148

LL-AFT βo −2.0 −1.857 14.83 0.1437 −0.551 −0.072
β1 0.75 0.911 0.020 0.161 0.268 0.215
β2 −0.75 −0.923 0.021 −0.173 0.289 0.231
β3 0.50 0.611 0.038 0.111 0.124 0.222
β4 −0.50 −0.634 0.039 −0.134 0.152 0.268
a 0.50 0.357
b 1.50 0.252

Table 12. Simulation study for scenario 3 (n = 5000) with about 30% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −2.233 0.628 −0.233 0.987 0.116
β1 0.75 0.999 0.013 0.249 0.436 0.332
β2 −0.75 −0.987 0.012 −0.237 0.412 0.316
β3 0.50 0.729 0.019 0.228 0.280 0.456
a 0.50 −0.051
b 1.50 0.919
c 2.00 2.192
α 1.00 0.302

EW-AFT βo −2.0 −1.285 7.195 0.715 −2.350 −0.358
β1 0.75 0.994 0.011 0.244 0.426 0.325
β2 −0.75 −1.006 0.013 −0.256 0.450 0.341
β3 0.50 0.690 0.024 0.190 0.226 0.380
β4 −0.50 −0.664 0.024 −0.164 0.191 0.328
a 0.50 3.459
b 1.50 1.625
c 2.00 1.703

W-AFT βo −2.0 −1.191 26.590 0.809 −2.581 −0.404
β1 0.75 0.980 0.012 0.230 0.397 0.307
β2 −0.75 −0.997 0.012 −0.247 0.431 0.329
β3 0.50 0.676 0.023 0.176 0.207 0.352
β4 −0.50 −0.652 0.023 −0.152 0.175 0.304
a 0.50 4.701
b 1.50 2.325

LL-AFT βo −2.0 −2.038 13.067 −0.038 0.153 0.019
β1 0.75 1.007 13.202 0.257 0.452 0.343
β2 −0.75 −1.012 0.015 −0.262 0.461 0.349
β3 0.50 0.704 0.024 0.204 0.246 0.408
β4 −0.50 −0.678 0.024 −0.177 0.208 0.354
a 0.50 0.539
b 1.50 0.350
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Table 13. Simulation study for scenario 4 (n = 1000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −1.704 2.801 0.296 −1.097 −0.148
β1 0.75 1.310 0.092 0.560 1.154 0.747
β2 −0.75 −1.410 0.093 −0.660 1.425 0.880
β3 0.50 1.115 0.174 0.615 0.993 1.230
β4 −0.50 −1.019 0.176 −0.519 0.789 1.038
a 1.650 3.176
b 1.500 −2.714
c 0.95 1.021
α 0.90 0.178

EW-AFT βo −2.0 −3.877 33.412 −1.877 11.033 0.939
β1 0.75 1.303 0.093 0.553 1.136 0.737
β2 −0.75 −1.413 0.096 −0.663 1.433 0.884
β3 0.50 1.114 0.181 0.614 0.992 1.228
β4 −0.50 −1.013 0.178 −0.513 0.776 1.026
a 1.65 1.851
b 1.50 0.730
c 0.95 1.205

W-AFT βo −2.0 −5.793 14.192 −3.793 29.562 1.897
β1 0.75 1.289 0.097 0.539 1.100 0.719
β2 −0.75 −1.405 0.094 −0.655 1.412 0.873
β3 0.50 1.101 0.178 0.601 0.962 1.202
β4 −0.50 −1.004 0.176 −0.504 0.758 1.008
a 1.65 0.318
b 1.50 0.844

LL-AFT βo −2.0 −2.328 38.052 −0.328 1.419 0.164
β1 0.75 1.343 0.095 0.593 1.242 0.791
β2 −0.75 −1.419 0.96 −0.669 1.452 0.892
β3 0.50 1.144 0.181 0.644 1.059 1.288
β4 −0.50 −1.022 0.183 −0.522 0.794 1.044
a 1.65 1.978
b 1.50 1.046

Table 14. Simulation study for scenario 4 (n = 5000) with about 20% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo −2.0 −3.163 3.356 −1.163 6.002 0.582
β1 0.75 1.576 0.054 0.826 1.920 1.101
β2 −0.75 −1.633 0.055 −0.883 2.103 1.177
β3 0.50 1.208 0.102 0.708 1.210 1.416
β4 −0.50 −1.095 0.101 −0.595 0.950 1.190
a 1.650 −0.715
b 1.500 3.136
c 0.95 0.744
α 0.90 0.107

EW-AFT βo −2.0 −0.047 6.920 1.953 −3.998 −0.977
β1 0.75 1.591 0.057 0.841 1.968 1.121
β2 −0.75 −1.644 0.058 −0.894 2.142 1.192
β3 0.50 1.270 0.105 0.770 1.363 1.540
β4 −0.50 −1.139 0.105 −0.639 1.047 1.278
a 1.65 7.015
b 1.50 0.245
c 0.95 4.711

W-AFT βo −2.0 −3.650 16.810 −1.650 9.324 0.825
β1 0.75 1.572 0.058 0.822 1.909 1.096
β2 −0.75 −1.639 0.057 −0.889 2.124 1.185
β3 0.50 1.191 0.104 0.691 1.169 1.382
β4 −0.50 −1.084 0.103 −0.584 0.925 1.168
a 1.65 5.055
b 1.50 0.655

LL-AFT βo −2.0 −2.540 96.820 −0.540 2.451 0.270
β1 0.75 1.600 0.056 0.850 1.998 1.133
β2 −0.75 −1.646 0.057 −0.896 2.147 1.195
β3 0.50 1.257 0.106 0.757 1.329 1.514
β4 −0.50 −1.133 0.105 −0.633 1.034 1.266
a 1.65 2.190
b 1.50 1.316



Mathematics 2023, 11, 460 17 of 26

Table 15. Simulation study for Scenario 4 (n = 1000) with about 30% censored observations is used
to compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −2.197 3.087 −0.197 0.828 0.098
β1 0.75 1.144 0.066 0.394 0.747 0.525
β2 −0.75 −1.235 0.069 −0.485 0.963 0.647
β3 0.50 0.887 0.132 0.387 0.538 0.774
β4 −0.50 −0.931 0.133 −0.431 0.618 0.862
a 1.650 −5.965
b 1.500 6.806
c 0.95 0.989
α 0.9 0.260

EW-AFT βo −2.0 −3.049 25.049 −1.049 5.294 0.524
β1 0.75 1.151 0.067 0.401 0.763 0.535
β2 −0.75 −1.237 0.069 −0.487 0.967 0.649
β3 0.50 0.894 0.133 0.394 0.549 0.788
β4 −0.50 −0.940 0.134 −0.440 0.634 0.880
a 1.65 1.648
b 1.50 0.724
c 0.95 1.397

W-AFT βo −2.0 −1.975 33.399 0.025 −0.101 −0.013
β1 0.75 1.137 0.069 0.387 0.731 0.516
β2 −0.75 −1.229 0.070 −0.479 0.947 0.639
β3 0.50 0.880 0.138 0.380 0.524 0.760
β4 −0.50 −0.924 0.140 −0.424 0.603 0.848
a 1.65 6.545
b 1.50 0.922

LL-AFT βo −2.0 −1.909 18.106 0.091 −0.356 −0.046
β1 0.75 1.169 0.071 0.419 0.803 0.559
β2 −0.75 −1.234 0.072 −0.484 0.959 0.645
β3 0.50 0.900 0.141 0.400 0.561 0.800
β4 −0.50 −0.961 0.142 −0.461 0.674 0.922
a 1.65 1.559
b 1.50 0.928

Table 16. Simulation study for scenario 4 (n = 5000) with about 30% censored observations is used to
compare model performance.

Model Parameter (True Value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo −2.0 −3.159 0.409 −1.159 5.982 0.580
β1 0.75 1.279 0.029 0.529 1.073 0.705
β2 −0.75 −1.279 0.030 −0.529 1.074 0.705
β3 0.50 0.925 0.056 0.425 0.605 0.850
β4 −0.50 −0.873 0.056 −0.373 0.513 0.746
a 1.650 2.843
b 1.500 1.372
c 0.95 0.835
α 0.9 0.114

EW-AFT βo −2.0 −3.107 10.417 −1.107 5.654 0.553
β1 0.75 1.297 0.032 0.547 1.119 0.729
β2 −0.75 −1.313 0.032 −0.563 1.161 0.751
β3 0.50 0.950 0.060 0.450 0.652 0.900
β4 −0.50 −0.870 0.059 −0.370 0.506 0.740
a 1.65 1.716
b 1.50 0.715
c 0.95 1.432

W-AFT βo −2.0 −2.209 0.059 −0.209 0.878 0.104
β1 0.75 1.280 0.030 0.530 1.076 0.707
β2 −0.75 −1.303 0.031 −0.553 1.134 0.737
β3 0.50 0.931 0.058 0.431 0.618 0.862
β4 −0.50 −0.855 0.057 −0.355 0.481 0.710
a 1.65 5.863
b 1.50 0.924

LL-AFT βo −2.0 −1.970 26.224 0.030 −0.119 −0.015
β1 0.75 1.313 0.032 0.563 1.162 0.751
β2 −0.75 −1.316 0.033 −0.566 1.170 0.755
β3 0.50 0.971 0.061 0.471 0.693 0.942
β4 −0.50 −0.888 0.061 −0.388 0.539 0.776
a 1.65 1.620
b 1.50 0.915
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7. Application to COVID-19 Data

In this Section, we demonstrate the adaptability and utility of the ExEW-AFT model,
considering real-world right-censored COVID-19 data from Sudan.

7.1. Sudan COVID-19 Data

COVID-19 is an infectious illness. Many studies have been conducted since it was de-
clared a global health emergency to better understand the disease’s clinical, epidemiological,
and prognostic aspects [41–45].

In Sudan, the epidemiological data are disclosed by the epidemiology department of
the federal ministry of health (FMH) www.fmoh.gov.sd(accessedon25May2022). Therefore,
according to the investigation of FMH, there are 35,321 patients who are infected with
the virus. Moreover, every positive case between 13 March 2020 and 31 December 2021 is
included in the study sample. The period from the date of admission until the date of the
sample result is considered the length of the hospital stay.

Overview of Covariates of COVID-19 Data

For each patient (i = 1, . . . , 35, 321), the following covariates are taken into account.

• y : The length of stay in the hospital (by days).
• Status: For censoring.
• x1 : Age.
• x2 : Sex group.
• x3 : The comorbidity group.

Table 17 shows some descriptive statistics of these covariates. The average hospital
stay lasts three days. The scaled total time on test (TTT) plot for the COVID-19 hazard
rate shape is displayed in Figure 3, which shows that the hazard rate shape of COVID-19
is unimodal. The initial density shape of the length of stay in the hospital is reported
using the non-parametric kernel density estimation (KDE) approach in Figure 4, beside the
histogram. It is noted that the density is asymmetrical and positively skewed, which is
a common feature for survival data and makes the normal distribution inappropriate to
analyze [46]. This is one of the points that motivated us to use the ExEW distribution as a
baseline hazard in the AFT model to fit this data. The box plot and violin plot in Figure 4
are used to identify the extremes, and they reveal that some of these extreme observations
are recorded.

Table 17. Statistical summary of the covariates for COVID-19 data.

Covariate Number of
Observations (%)

Mean (Standard
Deviation (sd))

Length of stay in the hospital (in days) - 3 (6.227)
Age (in years) - 45 (18.750)

Status 1 32,731 (92.7%) -
0 2590 (7.3%) -

Comorbidity yes 845 (2.4%) -
no 34,476 (97.6%) -

Sex male 20,654 (58.5%) -
female 14,667 (41.5%) -

Regarding the censoring status (0 is censored, 1 is observational lifetime), there is 7.3%
censored in the sample of the study. Also, age as an explanatory variable refers to the
patient’s age at diagnosis. Age is recorded as a continuous variable. Table 17 shows that
the average age in the COVID-19 data set is 45 years, and the standard deviation is 6.226.
Moreover, sex describes the gender of patients, which is a categorical variable with only
two levels. Males are assigned the value 1, while females are assigned the value 2. There
are 20,654 (58%) males and 14,667 (42%) females in the data.

www.fmoh.gov.sd (accessed on 25 May 2022)
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It is recorded that COVID-19 is more common in men as compared to women in
Sudan. Furthermore, the comorbidity status is a two-level categorical variable, with value
1 referring to a patient who has a chronic disease and value 2 referring to a patient who
does not have a chronic disease. There are 845 (2.4%) patients who have a chronic disease
in Sudan.
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Figure 3. TTT plot for the Sudan COVID-19 data.
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Figure 4. Some non-parametric plots for the Sudan COVID-19 data.

We analyze and compare the fitting of the ExEW-AFT model with that of sub-models
such as the W-AFT, the exponentiated exponential (EE) AFT (EE-AFT), and the exponential
Weibull AFT (ExW-AFT) models.

The AFT models for the competing models are as follows:

1. The W-AFT model:

fW−AFT(t; β, xβ, xβ, x) = ac
(

texxx′βββ
)a−1

exp
{
−c
(

texxx′βββ
)a}

exxx′βββ, t > 0. (27)

2. The EE-AFT model:

fEE−AFT(t; β, xβ, xβ, x) = ac
[
exp

{
−c
(

texxx′βββ
)}][

1− exp
{
−c
(

texxx′βββ
)}]a−1

exxx′βββ, t > 0. (28)
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3. The ExW-AFT model:

fExW−AFT(t; β, xβ, xβ, x) =
[

a + bc
(

texxx′βββ
)c−1

]
exp

{
−a
(

texxx′βββ
)
+ b
(

texxx′βββ
)c}

exxx′βββ, t > 0.

(29)

The aforementioned Equations (27)–(29) demonstrate how the covariates act mul-
tiplicatively on time, causing an acceleration or a deceleration of time. The analytical
measurements, such as the Bayesian information criterion (BIC), and the consistent Akaike
information criterion (CAIC) were used to decide which AFT model matches the COVID-19
data the best. Additionally, goodness-of-fit metrics like the log-likelihood ratio test are used.
The BIC is given by

BIC = k log(n)− 2` (30)

and the CAIC is provided by

CAIC =
2nk

n− k− 1
− 2`, (31)

where ` refers to the log-likelihood function calculated at the MLEs, k for the number of
model parameters, and n for the sample size.

7.2. Cox PH Model

To ascertain the relationship between survival time and the covariates thought to
affect survival time, the Cox PH model is conducted. The Cox PH model parameters
are estimated.

Table 18 shows the regression analysis of the Cox-PH model, including regression
coefficients, SE, p-value, likelihood ratio test (LRT), and BIC values. Furthermore, all of the
covariates (age, sex, and comorbidity) significantly affect the length of stay in the hospital
at a 5% level of significance.

Table 18. Results of Cox-PH model including the coefficients, SE, p-value, LRT, BIC, and CAIC.

Covariates Coefficients SE p-Value

Age −0.005 0.000 <0.022
Sex −0.103 0.011 <0.022

Comorbidity 0.792 0.044 <0.022

LRT 909.600 <0.000
BIC 621,599

Testing PH Assumption

The Schoenfeld residual is used in this study to test the PH assumption as follows:
Based on the test, the Schoenfeld residuals are obtained for age and sex as covariates.
The results in Table 19 provide evidence of the rejection of the assumption of PH for all
covariates considered in the COVID-19 data. In other words, the PH models present an
inadequate fit for this COVID-19 data.

Table 19. Chi-square (χ2) test and p-value for Schoenfeld residual test at level of significance 1%.

Covariate χ2 p-Value

Age 65.75 <−0.000
Sex 84.88 <−0.000

Comorbidity 2.07 <−0.15

Global 171.46 <0.000
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7.3. AFT Model Analysis

In this subsection, we present the analysis of the ExEW-AFT, W-AFT, EE-AFT, and ExW-
AFT models using the Sudan COVID-19 data.

We calculated the LRT statistics for the three sub-models. According to the LRT
statistics in Table 20, the ExEW-AFT model fits the COVID-19 data the best. Table 21
showed that the SE of β̂s for the ExEW-AFT, W-AFT, EE-AFT, and ExW-AFT models is
small enough. Moreover, at 5% significance level, the parameters of all AFT models are
significant, as shown in Table 22. Furthermore, the analytical measures of competing AFT
models are shown in Table 23 which reveals that the ExEW-AFT model has the lowest
BIC, and CAIC. In conclusion, the ExEW-AFT model is the best fit for the data among
the W-AFT, EE-AFT, and ExW-AFT models under consideration. Moreover, at 5% level of
significance, all the covariates (age, sex, and comorbidity) significantly influence the length
of stay at the hospital.

Figure 5 shows the Kaplan–Meier (KM) survival curve, which indicates that the differ-
ence in survival times between the comorbidity group and the sexual group is statistically
significant (p-value < 0.0001). Figure 6 depicts estimated HRFs for the competitive baseline
hazards, and Figure 7 represents the average KM estimator and population SF. All of these
figures show that our proposed ExEW-AFT model fits the data better than its competitors,
including the Cox-PH and its sub-models.

Table 20. The LRT statistics for COVID-19 data at significance level 1%.

Model Hypothesis LRT p-Value

W-AFT H0 : a = 0, and α = 1 vs H1 : H0 is false 1987.469 <0.000
EE-AFT H0 : b = 0 vs H1 : H0 is false 2197.355 <0.000

ExW-AFT H0 : α = 1 vs H1 : H0 is false 1544.978 <0.000
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Table 21. MLE fits of the ExEW, W, EW, and ExW AFT models with SE (in parentheses) for COVID-
19 data.

Model â b̂ ĉ α̂ β̂1 β̂2 β̂3

ExEW-AFT 0.469 0.568 0.977 1.516 −0.201 0.017 0.506
(0.029) (0.029) (0.001) (0.037) (0.007) (0.014) (0.021)

W-AFT 3.772 0.869 - - −0.147 −0.001 0.050
(0.615) (0.003) - - (0.005) (0.009) (0.075)

EE-AFT 1.107 0.027 - - −0.105 0.050 1.175
(0.009) (0.002) - - (0.005) (0.011) (0.032)

ExW-AFT 0.007 0.141 0.867 - −0.108 0.027 0.466
(0.016) (0.002) (0.008) - (0.006) (0.011) (0.038)

Table 22. z-value, p-value, and confidence interval (CI) for the AFT estimates for each model at the
level of significance 5%.

AFT-Model z-Value p-Value CI 95%

âExEW 16.378 <0.000 (0.412, 0.525)
b̂ExEW 19.461 <0.000 (0.510, 0.625)
ĉExEW 805.912 <0.000 (0.975, 0.979)
α̂ExEW 40.551 <0.000 (1.443, 1.589)
β̂1ExEW 27.457 <0.000 (−0.215,−0.187)
β̂2ExEW 7.482 <0.000 (0.010, 0.045)
β̂3ExEW 23.692 <0.000 (0.464, 0.548)

âW 6.136 <0.000 (2.567, 4.977)
b̂W 340.541 <0.000 (0.864, 0.874)
β̂1W −27.114 <0.000 (−0.158,−0.137)
β̂2W −0.098 <0.018 (−0.100,−0.080)
β̂3W 12.734 <0.000 (0.035, 0.065)

âEE 126.464 <0.000 (1.090, 1.124)
b̂EE 15.592 <0.000 (0.024, 0.030)
β̂1EE −19.384 <0.018 (−0.116,−0.094)
β̂2EE 4.724 <0.922 (0.029, 0.071)
β̂3EE 36.634 <0.000 (1.112, 1.238)

âExW 0.425 0.671 (−0.024, 0.037)
b̂ExW 56.618 <0.000 (0.136, 0.146)
ĉExW 108.2542 <0.000 (0.851, 0.882)

β̂1ExW −17.067 <0.000 (−0.121,−0.096)
β̂2ExW 2.493 <0.013 (0.006, 0.049)
β̂3ExW 39.738 <12.266 (0.392, 0.541)

Table 23. The analytical performance measures for comparing AFT models for COVID-19 data.

Model BIC CAIC

ExEW-AFT 147,089 147,096

W-AFT 149,056 149,061

EE-AFT 149,266 149,271

ExW-AFT 148,624 148,630
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8. Discussion

The study was designed to produce a more versatile and general model than the
Cox model. We assessed the performance of the proposed model’s estimators through a
comprehensive Monte Carlo simulation study. The proposed model was also applied to
Sudan COVID-19 Data. The choice of the AFT model is, therefore, sound as covariates
directly relate to the time to event, which eases interpretability.

Considering the four different hazard rate (HR) shapes, including (increasing, de-
creasing, unimodal, and bathtub HR shapes), the simulation results showed that the
ExEW model is capable of representing monotone decreasing, monotone increasing, uni-
modal, and bathtub HR functions more accurately than the existing AFT models such as:
exponentiated-Weibull, Weibull, and log-logistic AFT models. Additionally, the SE, AB, RB,
and MSE values showed that the proposed ExEW-AFT model performed well.

A real right-censored COVID-19 data set from Sudan reveals that it is misleading
to trust the analysis based on the usual PH model, especially when the data exhibits
characteristics such as the proportionality assumption [47]. This choice induces wrong
conclusions, which, in turn, may lead to inappropriate clinical practices in terms of the
best model that fits the data [11,48]. As demonstrated in our analysis, using different
information criteria and some goodness-of-fit tests, including the likelihood ratio test, our
proposed AFT model fits the data very well as compared to the common Cox-PH model
and some other AFT single-parameter regression models (EW-AFT, W-AFT, and LL-AFT
models). The three covariates (age, sex, and comorbidity) are significantly associated
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with the length of stay in the hospital. Previous studies have also shown the obtained
results [49–51].

The developed model provided an important contribution to the toolset for assessing
survival data and can be used with overall hazard regression models. However, our model
has some limitations. The model is unable to handle survival data with crossing survival
curves. Also, the future will see the development of residual analysis techniques and
diagnostic measures for assessing the goodness of fit of the proposed model. Additionally,
this work can be extended by proposing an AFT multi-parameter regression model for
other types of censored survival data sets, including left censoring, interval censoring,
middle censoring, and double censoring mechanisms. Furthermore, we can extend it to
more complex survival models, including competing risk models, cure models, frailty
models, and mixed effects AFT models, to apply to spatial and clustered survival data sets.
In the analysis, only age, sex, and comorbidity covariates were used. Vaccination and place
of residence (urban and rural) as variables to analyze the length of stay in the hospital
could be very useful, but no information from those variables was collected.

9. Conclusions

In conclusion, the Ex-EW-AFT multi-parameter regression model’s flexibility could be
highly helpful in representing many forms of time-to-event data that are difficult to predict
accurately. Our model can be viewed as an attractive alternative for upcoming studies
that assess censored lifetimes. As a result, the study includes a large number of simulation
scenarios for evaluating the performance of our proposed model. The results demonstrated
that the ExEW-AFT model performed effectively.

Future studies are advised to test the proposed model using other countries’ data sets
as well as validate if the same factors would be important in a lifetime analysis. Finally, we
recommend that in the future we look for a hazard-based regression model that can handle
survival data with crossing survival curves.
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