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Abstract: The problem with the analysis of noise-induced transitions between patterns in dis-
tributed stochastic systems is considered. As a key model, we use the spatially extended dynamical
“phytoplankton-herbivore” system with diffusion. We perform the parametric bifurcation analysis of
this model and determine the Turing instability zone, where non-homogeneous patterns are generated
by diffusion. The multistability of this deterministic model with the coexistence of several waveform
pattern–attractors is found. We study how noise affects these non-homogeneous patterns and esti-
mate the dispersion of random states using a new technique based on stochastic sensitivity function
(SSF) analysis and the confidence domain method. To investigate the preferences in noise-induced
transitions between patterns, we analyze and compare the results of this theoretical approach with
the statistics extracted from the direct numerical simulation.

Keywords: self-organization; patterns; diffusion model; random disturbances; stochastic sensitivity;
noise-induced transitions
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1. Introduction

Self-organization processes in physics, biology, chemistry, medicine, economics, and other
fields of science have been investigated [1–5]. The well-known difficulties of studying
self-organization in observations and experiments with real systems have resulted in the
need to use mathematical modeling, computer simulation, and numerical analysis [6,7]. As
a conceptual mathematical model involved in the study of the mechanisms of pattern gener-
ation, a dynamical reaction–diffusion system is usually used [8–11]. The first fundamental
results that shed light on the reasons for pattern formation were in the work of Turing [12],
in which self-organization was presented as a consequence of diffusion instability (Turing
instability). Examples of such Turing patterns were found in biochemical systems and
population dynamics [13–16].

At present, an urgent problem in the theory of self-organization is the study of the
influence of random perturbations on the processes of generation and transformation
of spatial structures [17–23]. These investigations may reveal new phenomena, even in
well-studied deterministic models, exposing them from a new perspective.

Most of the results of the study of stochastic effects in spatially distributed diffusion
systems have been obtained using time-consuming and costly direct numerical simulation.
Under these circumstances, the development of analytical methods for studying stochastic
phenomena in self-organization processes is of paramount importance.

The question of how to analytically estimate the dispersion of random states near de-
terministic pattern–attractors or predict the conditions under which random perturbations
can transfer the system from one pattern to another remains open

In this paper, the stochastic spatially extended “phytoplankton-herbivore” model is
considered. It is shown that the deterministic system in the Turing instability zone shows
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multistable behavior: several patterns coexist for the same parameter set. This multistability
means that for different initial states, patterns of different spatial forms can be generated.
Each pattern has a unique parametric domain where it remains stable.

The main focus of the paper is the study of stochastic phenomena in this model with
diffusion. We show how the sensitivity to noise for pattern–attractors can be quantitatively
analyzed using the stochastic sensitivity function (SSF) technique. Initially, this mathemati-
cal technique was developed for local systems (see, e.g., [24]) and is now actively used in
studies of various noise-induced phenomena [25,26].

In this paper, it is demonstrated that some patterns remain relatively unchanged
by random perturbations, whereas others quickly dissipate or transform into a pattern
with another spatial form. We study the likelihood of noise-induced transitions between
patterns. In this analysis, the important role of the relationship between the stochastic
sensitivity of patterns, mutual arrangement of confidence domains, and basins of attraction
is demonstrated.

2. Turing Instability and Pattern Formation

Consider the following two variable stochastic PDE systems based on the Levin–Segel
model [27] with diffusion:

∂u
∂t

= au + eu2 − buv + Du
∂2u
∂x2 + εσ(x)ξ(t, x)

∂v
∂t

= cuv− dv2 + Dv
∂2v
∂x2 + εϕ(x)η(t, x).

(1)

Here, the variable functions u(t, x) and v(t, x) represent the population densities of
phytoplankton species and herbivore species, respectively. In terms of a reaction–diffusion
system, the former acts as an activator (increasing value intensifies the process), and the
latter acts as an inhibitor (slows down the process). The parameters a, b, c, d, and e are
all considered positive: a and e stand for the nonlinear intrinsic growth rate of prey, the
parameters b and c characterize the interactions of species, and the parameter d defines the
intra-class competition among predators. The coefficients Du and Dv are associated with
the intensity of the diffusion process.

We assume that the spatial variable x varies within the domain [0, L], L = 1. The zero-
flux boundary conditions are written as

∂u
∂x

(0, 0) =
∂u
∂x

(0, 1) =
∂v
∂x

(0, 0) =
∂v
∂x

(0, 1) = 0. (2)

The stochastic components ξ(t, x) and η(t, x) are uncorrelated white Gaussian noise
with the parameters:

Eξ(t, x) = Eη(t, x) = 0,

Eξ(t, x)ξ(t′, x′) = δ(t′ − t)δ(x′ − x),

Eη(t, x)η(t′, x′) = δ(t′ − t)δ(x′ − x).

(3)

In (1), the functions σ(x) and ϕ(x) allow one to model the dependence of random distur-
bances on the spatial variable x.

If diffusion and random noise are excluded (Du = Dv = 0, ε = 0), for any x there
is a non-extended system with the variable functions u(t) and v(t). This system has two
fixed points: trivial (0, 0) and non-trivial

(
ad

bc−ed , ac
bc−ed

)
. In order to preserve the biological

sense of the non-trivial fixed point, an additional condition bc > ed must be satisfied.
This equilibrium is stable if c > e and unstable otherwise. The trivial equilibrium is
always unstable.

In the system with diffusion, the homogeneous equilibrium is considered. In this state,
for every x, the variable values are those of the fixed point of the system without diffusion.
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If this equilibrium is unstable in System (1), (2) with ε = 0, the diffusion instability, namely
the Turing instability [12], is observed and the system will form a stable non-homogeneous
state (Turing pattern). For System (1), (2) without noise (ε = 0), the condition for the Turing
instability is as follows [27]:

Du

Dv
<

(√
b
d
−
√

b
d
− e

c

)2

. (4)

Here and subsequently, we fix a = d = e = 0.5, c = 1, and Dv = 0.02, and study this
system for varying b and Du.

The parametric zone of the Turing instability is shown in Figure 1. Within this zone, the
formation of Turing patterns is expected. An example of the process of pattern formation
from the randomly generated state is demonstrated in Figure 2.

Figure 1. Bifurcation diagram of Systems (1), (2) with a = d = e = 0.5, c = 1, Dv = 0.02, and ε = 0.
The highlighted domain is the Turing instability zone.
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Figure 2. Pattern formation in Systems (1), (2) from the randomly generated initial state. Here,
a = d = e = 0.5, b = c = 1, Du = 5× 10−4, Dv = 0.02, and ε = 0.

Alternatively, the evolution of the system dynamics can be visualized using heat maps.
Figure 3 shows the process of pattern formation as in Figure 2. Here, the spatial variable
x varies along the vertical axis, the temporal variable changes along the horizontal axis,
and the color represents the value of u(t, x) at the point of the spatial domain at a certain
time t.
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Figure 3. Heat map visualization of the pattern formation in Systems (1), (2) from the random initial
state. Here, a = d = e = 0.5, b = c = 1, Du = 5× 10−4, Dv = 0.02, and ε = 0.

A Turing pattern resembles a wave-like structure with a specific spatial frequency
(number of wavelengths within a domain). Note that due to the boundary conditions,
the number of wavelengths can be either an integer or a half-integer. The tendency on the
left edge of the interval can be ascending (↑) or descending (↓). Based on these properties,
a pattern can be assigned a symbol, for example, the generated pattern in Figures 2 and 3
would be called the 1.5 ↑ pattern.

3. Multistability and Stochastic Transitions

In systems of this kind, several patterns may coexist for the same set of parameter
values. By altering the initial state of the system, different final states can be obtained.
Figure 4 shows two patterns that were obtained for different initial conditions and the
parameter values a = d = e = 0.5, b = c = 1, Du = 5× 10−4, and Dv = 0.02. These
structures are 1.5 ↑ and 2 ↑ patterns.

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

0.5

1

1.5

Figure 4. Multistability of Systems (1), (2) with a = d = e = 0.5, b = c = 1, Du = 5× 10−4, Dv = 0.02,
and ε = 0: 1.5 ↑ pattern (left) and 2 ↑ pattern (right).

Note that along with these 1.5 ↑ and 2 ↑ patterns, the system also exhibits 1.5 ↓ and
2 ↓ patterns.

The coexistence of several stable states in these systems plays an important role in
understanding stochastic behavior. It can often be seen that under the action of random
perturbations, multistable systems switch from one state to another. In the spatially ex-
tended case with diffusion, noise-induced transitions between coexisting patterns can be
observed. Figure 5 shows an example of when the initial deterministic 1.5 ↑ pattern (left)
transforms under the effect of noise into a state resembling the 2 ↑ pattern (right).
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Figure 5. Stochastic transition 1.5 ↑→ 2 ↑ in Systems (1), (2) with a = d = e = 0.5, b = c = 1,
Du = 5× 10−4, Dv = 0.02 for noise intensity ε = 0.1: initial state (left) and final state (right).

In order to visualize the temporal dynamics, two approaches are used. The first one
is the visualization of the temporal process by a heat map similar to Figure 3. However,
the transition process is often difficult to distinguish by simply observing these diagrams.
For more precise quantitative detection, each model state can be represented as the time
series of harmonic functions Ck(t):

Ck(t) =
∫ L

0
u(t, x) cos

(
2πxk

L

)
dx. (5)

Here, the index k is a positive integer or half-integer and the integration boundaries are
the edges of the spatial domain. In a manner similar to a Fourier transformation, the value
Ck shows the weight of the k-periodic wave in the current state. When a pattern with k
wavelengths is formed, the respective Ck will have the largest absolute value, and this Ck
is referred to as dominant. When the transition between patterns occurs, the dominant
harmonic function tends to zero and another Ck becomes dominant.

The diagrams in Figure 6 demonstrate the temporal dynamics of the transition process
from 1.5 ↑ to 2 ↑. Note that the absolute value of the dominant C1.5 decreases while the
absolute value of C2 increases. The function C2 becomes the most prominent near t = 400
and remains so until the end of the experiment. Additionally, this approach allows the
modeling software to automatically detect these transitions during numerical experiments.
This is crucial during the later stages of this study, which involves the analysis of the
statistically obtained data.

0 200 400 600 800

-0.2

-0.1

0

0.1

Figure 6. Noise-induced transition 1.5 ↑ → 2 ↑ in Systems (1), (2) with a = d = e = 0.5, b = c = 1,
Du = 5× 10−4, Dv = 0.02, ε = 0.1: temporal dynamics of u (left) and harmonic coefficients (right).

The possibility of transitions is related to the effect of random noise and the stochastic
sensitivity of patterns. A sensitive pattern is likely to dissipate, whereas the resistant
patterns remain relatively unchanged.

4. Stochastic Sensitivity Technique

Under the effect of random noise, the system leaves the stable pattern–attractor of
the deterministic model and generates a random state. The solutions form a probabilistic
distribution around the initial deterministic pattern, as visualized in Figure 7 (left). The solid
blue curve is the u-component of the deterministic 1.5 ↑ pattern. The thin gray curves show
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the u-components of the generated states around the deterministic pattern considered the
initial state in stochastic modeling. Figure 7 (right) shows the mean-square deviation of the
random states from the initial pattern for each x within the spatial domain.
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Figure 7. Probabilistic distribution (left) and mean-square deviation (right) of random states around
the stable 1.5 ↑ pattern in Systems (1), (2) with a = d = e = 0.5, b = c = 1, Du = 5× 10−4, Dv = 0.02,
ε = 0.1.

The estimation of the random state distribution is the key interest of stochastic sensi-
tivity analysis. Let ū(x), v̄(x) describe a non-perturbed deterministic pattern of Systems
(1), (2) and uε(t, x), vε(t, x) be the solutions generated by stochastic modeling with noise
intensity ε. As a measure of the dispersion of the random states uε(t, x), vε(t, x) around
ū(x), v̄(x), the mean-square deviations (6) are used:

Su(x, ε) = E(uε(t, x)− ū(x))2, Sv(x, ε) = E(vε(t, x)− v̄(x))2. (6)

Figure 8 demonstrates the results of the statistics obtained from the numerical sim-
ulations for patterns 1.5 ↑ (left) and 2 ↑ (right), shown by blue curves. Note that Su(x, ε)
(red curve) is a non-homogeneous function: the dispersion varies along the pattern. This
implies that not only do different patterns show different sensitivities but also the sensi-
tivities vary from one part of the pattern to another. In these experiments, the intensity of
the random perturbations was considerably decreased in order to exclude the transitions
between patterns.

0
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Figure 8. Mean-square deviation of random states around a 1.5 ↑ pattern (left) and 2 ↑ pattern (right)
for Systems (1), (2) with a = d = e = 0.5, b = c = 1, Du = 5× 10−4, Dv = 0.02, and ε = 10−5.

The mean–square deviation of the random states from the deterministic attractor can
be approximated using the stochastic sensitivity function (SSF) technique. This technique
is well developed for local systems (see [24] for mathematical foundations) and is actively
used to study various noise-induced phenomena [25,26].

In this technique applied to distributed systems [21], we use a discretization of the
partial differential equation (PDE) system by the system of ordinary differential equations
(ODE). For the corresponding ODE system, the stochastic sensitivity is defined by the
matrix W, which is a unique solution of the following equation:

FW + WF> + S = 0. (7)
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Let x0, x1, . . . , xn+1 be the discretization of the spatial domain [0, L], where xi = ih, h =
L/(n + 1). Denote ūi = ū(xi), v̄i = v̄(xi), where ū(x), v̄(x) are the coordinates of the
pattern–attractor of the deterministic system. For the stochastic systems (1), (2), S is an
identity 2n× 2n-matrix and the matrix F is defined as follows:

f = au + eu2 − buv, g = cuv− dv2,

ai =
∂ f
∂u (ūi, v̄i), α = Du

h2 , mi =
∂g
∂v (ūi, v̄i), β = Dv

h2 ,

B = diag[b1, ..., bn], bi =
∂ f
∂v (ūi, v̄i),

Q = diag[q1, ..., qn], qi =
∂g
∂v (ūi, v̄i),

F =

[
A B
Q M

]
,

(8)

A =



a1 − α1 α1 0 . . . 0 0 0
α2 a2 − 2α2 α2 . . . 0 0 0
0 α3 a3 − 2α3 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . αn−1 an−1 − 2αn−1 αn−1
0 0 0 . . . 0 αn an − αn

,

M =



m1 − β1 β1 0 . . . 0 0 0
β2 m2 − 2β2 β2 . . . 0 0 0
0 β3 m3 − 2β3 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . βn−1 mn−1 − 2βn−1 βn−1
0 0 0 . . . 0 βn mn − βn

.

Using the matrix W, one can obtain the stochastic sensitivity of the pattern–attractor
(ū(x), v̄(x)) at the points xi:

Wu(xi) = Wi,i i = 1, 2, . . . , n

Wv(xi) = Wi,i i = n + 1, n + 2, . . . , 2n.
(9)

These functions can then be used to approximate the mean-square deviation of the
random states around the attractor as follows:

Su(x, ε) ≈ S̄u(x, ε) = ε2Wu(x),

Sv(x, ε) ≈ S̄v(x, ε) = ε2Wv(x).
(10)

Figure 9 shows an example of the SSF Wu (left) for a 1.5 ↑ pattern and estimation
S̄u of the mean-square deviation Su (right) for the noise intensity ε = 10−5. Note that
the estimation S̄u found at the base of the SSF technique agrees well with the statistically
acquired data.
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Figure 9. Stochastic Systems (1), (2) with a = d = e = 0.5, b = c = 1, Du = 5× 10−4, Dv = 0.02,
ε = 10−5: stochastic sensitivity functionWu of the 1.5 ↑ pattern (left); estimation S̄u of the mean-
square deviation Su (right).

For visualization, comparison, and parametric analysis of the stochastic sensitivity, it
is often useful to have a numeric measure, for example, a C0-norm: ||Wu|| = max|Wu(xi)|.
Figure 10 shows how this metric changes under the variation of the parameter b for 1.5 ↑
and 2 ↑ patterns. Note that near b = 1.2, the stochastic sensitivity of the 2 ↑ pattern rapidly
grows, unlike the 1.5 ↑ pattern.

0.8 0.9 1 1.1 1.2
0

20

40

60

80

100

Figure 10. Stochastic sensitivity ||Wu|| of 1.5 ↑ and 2 ↑ patterns in Systems (1), (2) with
a = d = e = 0.5, c = 1, Du = 5× 10−4, Dv = 0.02.

When the difference in the stochastic sensitivity becomes significant, the more sensitive
pattern is more likely to break, whereas the less sensitive pattern remains stable. In this
case, a stochastic transition from one pattern to another is expected.

5. SSF Technique in the Analysis of Stochastic Transitions between Patterns

The main point of interest in this work is the application of the SSF to the analysis and
prediction of noise-induced transitions between patterns. In systems without diffusion,
the connection between the noise-induced transitions, stochastic sensitivity of attractors,
and configuration of their basins of attraction has long been studied. When there are
multiple attractors, the state of the system can stay within one basin of attraction or
leave it to end up in another basin of attraction. In this case, the SSF is used to build
confidence regions around attractors. Noise-induced transitions between attractors are
considered possible if the confidence region around one attractor intersects with the basins
of other attractors.

In order to apply the same idea to the analysis of noise-induced transitions in spatially
extended systems, additional information about the basins of attraction is required. These
basins are too complex to build and visualize, even if discretization of the continuous
system is used. However, they can still be roughly estimated and compared.

In the following example, the initial state for the numerical simulation is formed
as the point of the interval connecting two coexisting deterministic patterns 1.5 ↑ and
2 ↑. The 1.5 ↑ pattern is defined by the functions u1.5(x), v1.5(x), and the 2 ↑ pattern is
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defined by u2(x), v2(x). We consider the linear combinations (11) as the initial states for
the experiments, with the parameter k varying within [0, 1]:

u(0, x) = ku1.5(x) + (1− k)u2(x),

v(0, x) = kv1.5(x) + (1− k)v2(x).
(11)

Note that for k = 0, the initial state is exactly the 2 ↑ pattern, and for k = 1, it is
the 1.5 ↑ pattern. The parameter k is varied and for each experiment after the transient
process (t = 1000), the Euclidean distance between the solution of the deterministic system
and both patterns is measured. If the final state is closer to 2 ↑, then k is marked in blue,
and if it is near 1.5 ↑, then k is marked in red. The results of our numerical experiments are
presented in Figure 11 in the plane (k, b). This figure allows one to compare the basins of
the 1.5 ↑ (red) and 2 ↑ (blue) patterns in this multi-dimensional system.

0.0 0.2 0.4 0.6 0.8 1.0
k0.8

0.9

1.0

1.1

1.2
b

Figure 11. Basins of the 1.5 ↑ (red) and 2 ↑ (blue) patterns for Systems (1), (2) with a = d = e = 0.5,
c = 1, Du = 5× 10−4, and Dv = 0.02.

This deterministic analysis shows that the basin of attraction for the 1.5 ↑ pattern is
wider than that for the 2 ↑ pattern. This, in turn, implies that a randomly generated state is
likely to tend toward the 1.5 ↑ pattern. For greater values of parameter b, the basin of the
2 ↑ pattern shrinks. The critical k values form an approximate border between the basins of
the two patterns.

In the analysis of the noise-induced transitions between the patterns, one should take
into account a mutual arrangement of attraction basins and confidence domains. In the
stochastically forced system, the mean-square deviation D of a random state from the
deterministic pattern in the direction of the unit vector c can be estimated as

D = ε2c>Wc. (12)

Here, ε is the noise intensity and W is the stochastic sensitivity matrix of the pattern–
attractor.

By the 3σ rule, a random state will end up within the 3σ-interval in the direction of c
with a probability of 0.997 for σ =

√
D. Using this rule, one can estimate the critical value

εA corresponding to the onset of noise-induced transitions from the basin of attraction of
pattern A to the basin of attraction of another pattern, B. It is assumed that for this noise
magnitude εA, the confidence interval for pattern A touches the border between the basins
of attraction of coexisting patterns. Let r be the Euclidean distance between patterns A
and B and k∗ be the value of k that marks the separating point. The curve k∗(b) is seen in
Figure 11 as the border between the blue and red domains. This critical value εA can be
estimated as

εA =
rk∗

3
√

c>WAc
. (13)

Here, c is the unit vector collinear to the straight line connecting patterns A and B.
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A comparison of the critical noise intensities for patterns A = 1.5 ↑ and B = 2 ↑
under consideration is given in Table 1 for three values of b. To some extent, this correlates
with Figure 10, where the sensitivity values appear comparable for lower values of the
parameter b. For greater values of b, there is a significant difference in the stochastic
sensitivity. In Figure 11, a similar result is demonstrated: the sizes of the attraction basins
are similar for b = 0.8 (k∗ ≈ 0.49), and for b > 1.1, the boundary between the basins moves
toward the 2 ↑ pattern, making its attraction domain narrower.

Table 1. Critical noise intensity values for 1.5 ↑ pattern (ε1.5↑) and 2 ↑ pattern (ε2↑) in Systems (1), (2)
with a = d = e = 0.5, c = 1, Du = 5× 10−4, and Dv = 0.02.

b k∗ ε1.5↑ ε2↑

1.0 0.46 0.154 0.107
1.1 0.42 0.103 0.052
1.2 0.29 0.056 0.009

In general, this critical value decreases as the system parameters are moved toward
the Turing boundary, which should indeed affect pattern stability. Note that lower values
of the critical noise intensity imply that patterns are more easily broken. To verify this
technique, we performed a series of statistical experiments. For b = 1, b = 1.1, and b = 1.2,
each of the patterns 1.5 ↑ and 2 ↑ is taken as the initial state for the numerical simulations
with varying noise intensity. In each iteration using the harmonic coefficients (5), we
find the most dominant spatial periodicity. Initially, it corresponds to the initial pattern
as C1.5 or C2 will have the largest absolute value. If the coefficient Ck loses dominance,
the pattern is considered dissipated due to either a transition process or destruction by
noise of a large magnitude. If during the calculations there is no loss of dominance until
t = 1000, it is assumed that the pattern resisted the influence of the noise and the deviations
were insignificant.

Figure 12 shows the results of this experiment. Here, the probability of pattern
destruction is displayed for the aforementioned values of b versus the noise intensity ε.
This probability is shown in blue for the 1.5 ↑ pattern and red for the 2 ↑ pattern.

The results show that with the increase in b, the minimal ε for which the patterns
begin to dissipate decreases. Additionally, the 2 ↑ pattern generally deteriorates more often
compared to 1.5 ↑. In the case of b = 1, for the noise magnitude ε ≈ 0.08, the harmonic
coefficient C2 loses dominance slightly earlier. For b = 1.1 and b = 1.2, this difference
in the destruction rates becomes more significant. Transitions from the 2 ↑ pattern to the
more stable 1.5 ↑ pattern are expected. The precision of the provided estimation method is
difficult to evaluate, however, it can still be applied to observe the general tendency and
give predictions.

For example, let b = 1 and ε = 0.1. According to Table 1, the destruction of the
2 ↑ pattern should be almost certain (ε ≈ ε2↑ = 0.107). As for the 1.5 ↑ pattern, the loss
of dominance is not certain but probable to occur because ε is comparable with ε1.5↑ ≈
0.15. The results of direct modeling in Figure 13 show that transitions may occur in both
directions: 2 ↑→ 1.5 ↑ and 1.5 ↑→ 2 ↑. This is also supported by the statistical data (see
Figure 12a): the probability of the destruction of the 2 ↑ pattern is close to one and the 1.5 ↑
pattern is destroyed in more than half of the numerical experiments.

Another example is shown in Figure 14 for b = 1.2, ε = 0.02. Note that for this b, the
critical values of the noise intensity are ε1.5↑ ≈ 0.009 and ε2↑ ≈ 0.056. This difference in
the critical values is essential so for ε = 0.02, the 2 ↑ pattern is expected to be destroyed,
whereas the 1.5 ↑ pattern is expected to remain relatively resistant. These scenarios of
noise-induced transitions predicted by the SSF technique and confidence domain method
are justified by the direct numerical simulation in Figure 14. Indeed, this noise causes
2 ↑→ 1.5 ↑ (left), whereas the 1.5 ↑ pattern is resistant to noise of this intensity. This can
be also seen in Figure 12c: the probability of the destruction of the 1.5 ↑ pattern is almost
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zero, whereas for the 2 ↑ pattern, this probability is approximately 0.6. Therefore, only
unidirectional transitions 2 ↑→ 1.5 ↑ are expected here.

(a) 0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6
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Figure 12. Probability of the pattern destruction in Systems (1), (2) with a = d = e = 0.5, c = 1,
Du = 5× 10−4, Dv = 0.02 versus the noise intensity ε for (a) b = 1, (b) b = 1.1, (c) b = 1.2.

Figure 13. Bidirectional noise-induced transitions: 1.5 ↑→ 2 ↑ (left) and 2 ↑→ 1.5 ↑ (right), in Systems
(1), (2) with a = d = e = 0.5, c = 1, Du = 5× 10−4, Dv = 0.02, b = 1, ε = 0.1.
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Figure 14. Unidirectional noise-induced transition 2 ↑→ 1.5 ↑ (left) and no transition from 1.5 ↑
(right) in Systems (1), (2) with a = d = e = 0.5, c = 1, Du = 5× 10−4, Dv = 0.02, b = 1.2, ε = 0.02.

6. Conclusions

In this paper, we considered the pattern formation mechanisms for a spatially extended
population dynamical model with diffusion and random perturbations. Under stochastic
forcing, a probabilistic distribution of the random states is generated surrounding the
deterministic pattern–attractors. The stochastic sensitivity function technique is applied to
study the deviation of the random states from the pattern. The efficiency of the method is
demonstrated by a comparison with the statistical data obtained from the direct numerical
simulation. It is shown that the initial deterministic diffusion model exhibits multistability,
with the coexistence of several pattern–attractors with different waveforms. In our study,
the main focus is on the phenomenon of noise-induced transitions between coexisting
patterns in this multistable system. For quantitative analysis of the stochastic transitions,
the harmonic coefficients are used. For the study of the noise-induced transitions between
attractors and their preferences, we propose an analytical technique, taking into account
the size of basins and stochastic sensitivity of coexisting pattern–attractors. Based on this
technique, one can evaluate the critical intensity of the noise at which a certain pattern
is likely to dissipate. If the critical value of the noise intensity is significantly higher for
one pattern than for another one, the unidirectional stochastic transitions are probable.
Note that the described method is useful in studies of stochastic transitions in other, more
general, multistable diffusion systems.
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