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Abstract: The present article mainly focuses on the transient thermal dispersal within a moving plate
using the non-Fourier heat flux model. Furthermore, the innovative, sophisticated artificial neural
network strategy with the Levenberg-Marquardt backpropagated scheme (ANNS-LMBS) is proposed
for determining the transient temperature in the convective-radiative plate. Using dimensionless
terms, the energy model for transient heat exchange is simplified into a non-dimensional form. The
arising partial differential equation (PDE) is then numerically tackled using the finite difference
method (FDM). A data set for the various scenarios of the thermal parameters influencing the
thermal variation through the plate has been generated using the FDM. In addition, the effect of the
dimensionless physical variables on the thermal profile of a moving plate has been examined and
discussed in detail. Increments in the convection-conduction and radiation-conduction parameters
are figured to yield a reduction in the transient thermal dispersion. An upsurge in the Peclet number
caused the improvement of thermal dispersal in the plate.

Keywords: non-Fourier heat transfer; thermal radiation; moving plate; artificial neural network
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1. Introduction

Heat transfer improvement is an approach for enhancing heat exchange systems’
thermal and hydrodynamic performance. It is also recognized as heat augmentation or
intensification, and this augmentation is essential in various applications such as automo-
tive cooling, refrigeration, heat exchangers, and chemical processes. Thus, investigators
are interested in studying innovative techniques that could enhance heat transfer rates.
Heat transmission could be passively boosted by modifying flow geometry, boundary
conditions, or increasing fluid thermal conductivity. A variety of methods have been
suggested to improve fluids’ ability to transfer heat. Suspending small solid particles,
such as metallic and non-metallic particles, in conventional fluids may be an impactful
method of strengthening heat transfer performance. Nanofluids are heat transfer fluids
that incorporate designed suspended nanomaterials that are distributed throughout the
base liquid. Water, organic fluids, motor oil, polymeric formulations, biofluids, and other
conventional fluids are generally utilized as the base fluids. The usage of nanofluids has
revealed a wide range of potential applications. Over the past several years, researchers and
investigators have operated on various aspects of nanoliquids [1–7]. The ever-increasing
problem of the extreme heat disposal requirements from advanced electronic apparatus
prompted extensive research into improving the effectiveness of thermal management.
The addition of the extended surface to the heat-transferring object is considered one of
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the most viable solutions to this issue because of its greater heat-transfer performance.
Extended surfaces/fins are used when the available surface area is inadequate to transport
the required heat energy with the available temperature difference. Fins are widely used
in various industrial applications, including electrical chips and machinery for chemical
processing. Because of this, numerous researchers have conducted comprehensive analyses
on heat transfer through fins [8–12].

Fourier’s and Fick’s laws explain and interpret many heat conduction and mass diffu-
sion issues. These classical diffusion theories are well recognized to fail when handling
unsteady problems in an exceptionally short period, with remarkably increased flux, or
at very relatively low temperatures. Following that, a modified flux model with a wave
possessing finite speed is proposed for the energy transfer. A relaxation process is incorpo-
rated into the Cattaneo model-based hyperbolic heat conduction equation to modify an
alteration in the temperature gradient steadily. This model delivers the hyperbolic diffu-
sion formula within the continuum presumption and is a productive continuation of the
classical diffusion concept. In several application fields, including solidifying mechanisms,
surface thermal processing with lasers, monitoring the temperature of superconductors,
laser surgery, and freezing, non-Fourier heat conduction takes a significant position. Thus,
numerous investigators working on the heat transmission have emphasized the potentially
practicable attributes of non-Fourier heat conduction. The non-Fourier heat conduction
problem (NFHCP) was studied by Das et al. [13], who also discussed the impact of the
corresponding physical parameter by deriving the numerical solution for the considered
NFHCP. Kundu and Lee [14] explained the aspects of temperature and heat transmission
in the fin by modeling the NFHCP. The unsteady nature of functionally graded convective
extended surfaces was examined by Zhang and Li [15] with the aid of non-Fourier law
(NFL). Kumar et al. [16] debriefed the variation of temperature in the semi-circular wetted
extended surface with the consideration of the NFL. Ghasemi et al. [17] delineated the
time-variant thermal variation in the functionally graded cylinder by modeling the NFHCP.
The heat transmission in the semi-spherical fin was discussed by Jagadeesha et al. [18],
and the corresponding balanced equation was presented with the help of the NFL. The
notion of radiation is deduced from waves propagating in all directions. When energy
moves from one place to another, it appears as a waveform, and this movement is known
as radiation. Due to its numerous technological and industrial characteristics, such as its
use in geothermal energy systems, nuclear safety, and thermal storage, thermal radiation
significantly necessitates further investigations. It was explored that various physiological
mechanisms, technological systems, and scientific field facilities are significantly impacted
by energy transfer and thermal radiation at high temperatures. Sowmya et al. [19] consid-
ered the thermal radiation impact to discuss the heat transference in a moving rectangular
rod and provided the analytical expression for the governing equation. The dissipative
flow of a nanoliquid past a stretchy sheet was examined by Kausar et al. [20] with the effect
of thermal radiation. Biswas et al. [21] scrutinized the radiative magnetic stream of the
nanoliquid over a stretchable surface with a chemical reaction impact. By considering the
thermal radiative effect, Mansoor et al. [22] probed the chemically reactive flow nature of
a non-Newtonian liquid over an exponentially stretchable surface. The radiative impact
was considered by Correa et al. [23] to examine the heat transmission in a permeable
fin. The numerical solution for the heat transfer equation of the fin was procured by
Sowmya et al. [24] using the collocation method, and the thermal radiative impact on heat
transfer was also studied.

Investigators are aware of the importance of heat transport analysis past a continuously
moving sheet or plate because of its manufacturing and technological applications, such as
the cooling of stripes, drawing of rubber sheets, polymer extrusion process, continuous
casting, paper production, and marking of plastics. Ferdows et al. [25] investigated the
steady convective stream of a viscous nanoliquid past a moving plate with radiation and
dissipation impacts. The unsteady radiative heat transmission through a moveable plate
was scrutinized by Kumar et al. [26] with convective heat dissipation at the tip. With the
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thermophoresis consequence, Mabood et al. [27] probed the aspects of a chemically reactive
stream of a liquid over a moving plate. Arulmozhi et al. [28] considered the radiation and
magnetic impacts to investigate the flow of a nanoliquid past a vertically moving plate.
The application of soft computing is a potential approach that could be used to analyze
heat transfer characteristics. An artificial intelligence technique that mimics neuronal
information transmission is widely known as the artificial neural network (ANN), which
investigators have used to tackle complex problems in recent years. An ANN is parallel
computing with a non-linear structure composed of numerous basic neurons. Although
each neuron’s computational operation is very restricted, the network’s rich features and
fast response are due to the parallel tasks of a group of neurons. While the ANN model does
not require specific model variables, it manages complicated systems with non-linearities,
manages experimental data, and articulates variable efficiencies. Artificial intelligence
technologies are receiving greater recognition as sophisticated emerging technologies
that solve non-linear issues and, after being adequately trained, accurately predict and
generalize quickly [29–34]. Its benefits include fast computation, reliable performance
and error tolerance, strong self-learning, adaptive abilities, and the approximation of any
non-linear relationship. As a result, Ullah et al. [35] used the ANN technique to predict the
fluid flow velocity past a stretchy sheet with the consequence of magnetic strength. The
execution of the ANN algorithm was conducted by Raza et al. [36] to analyze the flow and
thermal variations of a dusty liquid past a permeable sheet. Alhadri et al. [37] estimated
the radiative flow and thermal behavior of a hybrid nanoliquid past a stretchable surface
using the ANN approach.

Several research works on problems of heat transfer in a moving plate or rod have
been addressed over the last few decades. Aziz and Lopez [38] discussed the steady-
state nature of the radiative-convective heat transmission in a moving rod with the aid of
Fourier law. In their study, the non-linear dimensionless equation, along with boundary
conditions, were numerically solved using the fourth-fifth order Runge-Kutta-Fehlberg
(RKF 45) strategy. By employing the numerical approximation technique, i.e., the spectral
collocation method (SCM), Sun et al. [39] explicated the heat dispersion in the moveable
plate with the combined radiative-conductive-convective impact, and the corresponding
mathematical model was developed using Fourier law. The impact of time on the radiative
unsteady heat transmission in a moving plate was studied by Ma et al. [40], and SCM was
implemented to achieve the numerical solution to the thermal problem. Although these
investigations on classical Fourier heat conduction problems are significant, examining
non-Fourier heat transport problems is prominent due to their applications in laser heating,
nuclear engineering, and other fields. Encouraged by this fact, the current work focuses on
the non-Fourier impact on the moving plate. Also, it is observed from the aforementioned
publications that the stochasticated artificial neural network strategy based on the appro-
priate optimization algorithm is still not utilized for the non-Fourier heat transfer problem
of the moving plate. Accordingly, in this investigation, non-Fourier unsteady thermal
dispersion in the moving plate was probed by implementing an artificial neural network
strategy with the Levenberg-Marquardt backpropagated scheme (ANNS-LMBS). The heat
transfer mechanism in the plate was noticed by taking the radiative phenomenon and the
internal heat generation into account. The thermal model for unsteady energy transfer
was simplified into a non-dimensional form using dimensionless terms, and the resulting
PDE was then numerically solved using FDM. A set of data for the diverse scenarios of
the thermal variables influencing the temperature difference in the plate was generated
through the use of the FDM. Using these datasets for specific scenarios, the training, val-
idation, and testing stages for the ANNS-LMBS were provided. Comparisons with the
numerical solutions were then performed to authenticate the applicability and robustness
of the proposed ANNS-LMBS.
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2. Mathematical Formulation

This investigation emphasizes the aspects of unsteady energy transfer through a
moveable plate. Figure 1 shows an illustration of a plate with the dimensions, thickness
δ∗, length L, and width W that radiates heat to the fluid around it through convection
and radiation. The plate is moving horizontally in the x direction at a constant speed U.
The plate is initially in thermal equilibrium with the ambient temperature Ta, and Tb is
the temperature at the left end of the plate. The other end is insulated or maintained at
adiabatic conditions. The internal heat produced per unit volume and heat lost from a
plate’s surface by radiation are considered temperature-dependent.

In most cases, Fourier behavior is implied when investigating heat transfer phenomena.
The classic theory of thermal conduction, known as Fourier law, predicts an instant change
to a temperature gradient and results in a parabolic differential equation for the progression
of temperature. The speed at which heat moves through a body is believed to be infinite
according to the classical Fourier law of heat conduction. In other words, any position of
the body would experience a modification in temperature at any spot concurrently. When
it comes to extremely instantaneous heat conduction over very quick time scales, the theory
is not valid. To address this issue, many researchers modified Fourier’s law. Cattaneo and
Vernotte proposed the following hyperbolic heat modeling approach for energy transfer
with a finite propagation speed:

q(x, τ) + τr
∂q(x, τ)

∂τ
= −k∗∇T(x, τ) (1)

Here, T is the temperature, τr is the relaxation time, k∗ is the thermal conductivity,
and q is the heat flux. With all these inferences stated above, the mathematical equation for
unsteady-state energy transfer through a moveable plate is provided by (Kumar et al. [26]
and Ma et al. [40]):

qx − qx+dx = h∗(T)P(T − Ta) + σ ε∗(T)P
(
T4 − T4

s
)
− ρcp Acr U ∂T

∂x
−Acrq∗(T) + ρcp Acr

∂T
∂τ

(2)

Equation (2) could also be written as

− ∂q
∂x = h∗(T)P(T − Ta) + σ ε∗(T)P

(
T4 − T4

s
)
− ρcp Acr U ∂T

∂x
−Acrq∗(T) + ρcp Acr

∂T
∂τ

(3)

where,
Acr = δ∗W and P = 2(δ∗ + W) ≈ 2W (4)

Eliminating q(x, τ) using Equations (1) and (3) yields:

ρcp

[
τr

∂2T
∂τ2 + ∂T

∂τ

]
= ∂

∂x

[
k∗(T) ∂T

∂x

]
− 2 h∗(T)

δ∗ (T − Ta)− 2 σ ε∗(T)
δ∗

(
T4 − T4

s
)
+

ρcp U ∂T
∂x + q∗(T)

(5)

The thermal conductivity present in Equation (5) is presumed as the linear function of
temperature, whereas the h∗(T) is presumed to be the power-law function of temperature
and is mathematically expressed as (Sowmya et al. [41]):

k∗(T) = ka[1 + κ(T − Ta)],

h∗(T) = hb

[
T−Ta
Tb−Ta

]n (6)

where ka denotes the thermal conductivity at ambient temperature Ta. n represents the
exponent constant of the heat transfer coefficient, which describes the mode of heat transfer.

q∗(T) and ε∗(T) present in Equation (5), which depend on temperature change are
symbolized as (Ma et al. [42]):
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q∗(T) = qa

[
1 + υ1

(
T−Ta
Tb−Ta

)
+ υ2

(
T−Ta
Tb−Ta

)2
+ υ3

(
T−Ta
Tb−Ta

)3
]

,

ε∗(T) = εs[1 + ν(T − Ts)]
(7)

By using Equations (6) and (7), Equation (5) would become:

ρcp

[
τr

∂2T
∂τ2 + ∂T

∂τ

]
= ∂

∂x

[
ka[1 + κ(T − Ta)]

∂T
∂x

]
− 2 hb

δ∗

[
T−Ta
Tb−Ta

]n
(T − Ta)

−2 σ εs
δ∗ [1 + ν(T − Ts)]

(
T4 − T4

s
)
+ ρcp U ∂T

∂x

+qa

[
1 + υ1

(
T−Ta
Tb−Ta

)
+ υ2

(
T−Ta
Tb−Ta

)2
+ υ3

(
T−Ta
Tb−Ta

)3
] (8)

where ν signifies the measure of surface emissivity difference with temperature.
The appropriate conditions used at the ends of the plate are:

T(0, x) = 0,
∂T
∂τ τ=0 = 0,

T(τ, L) = Tb,
∂T
∂x x=0 = 0

(9)

The following non-dimensional variables are employed to simplify Equation (8)

Θ = T
Tb

, Θa =
Ta
Tb

, Θs =
Ts
Tb

, Nc = 2hb L2

δ∗ka
, X = x

L , Nr = 2 σ εsT3
b L2

kaδ∗ , Pe = ρcpUL
ka

,

Ve =
√

kaτr
ρcp L2 , τ∗ = kaτ

ρcp L2 , QIG = qa L2

kaTb
, B = νTb, β = κTb.

(10)

The dimensionless form of governing Equation (8) is:

Ve2 ∂2Θ
∂τ∗2 +

∂Θ
∂τ∗ =

∂
∂X

[
(1 + β(Θ−Θa))

∂Θ
∂X

]
− Nc (Θ−Θa)

n+1

(1−Θa)
n

−Nr[1 + B(Θ−Θs)]
(

Θ4 −Θ4
s

)
+ Pe ∂Θ

∂X

+QIG

[
1 + υ1

(
Θ−Θa
1−Θa

)
+ υ2

(
Θ−Θa
1−Θa

)2
+ υ3

(
Θ−Θa
1−Θa

)3
] (11)

Equation (9) is reduced as:
Θ(0, X) = 0,
∂Θ
∂τ∗

∣∣∣
τ∗=0

= 0

Θ(τ∗, 1) = 1,
∂Θ
∂X

∣∣∣
X=0

= 0

(12)
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c pr cr

Tq q h T P T T T P T T c A U
x

A q T TAcρ
τ

σ ε ρ+
∂− = − + − −

+ ∂
∂

∂
−

 (2)
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a s p cr

cr crp
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T
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τ

σ ε ρ∂ ∂− = − + − −
∂ ∂

− ∂
∂

+
 (3)

where, 

*
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Figure 1. Physical configuration of a moving plate.

3. Finite Difference Scheme

For tackling the equation of the moving plate, the implicit Crank-Nicolson finite differ-
ence method is employed in the spatial and temporal domains [0, X] and [0, τ∗], respectively.
These domains are indicated by a finite number of mesh points, i.e.,
0 = X0 < X1 < X2 < . . . < XAN−1 < XAN = X and 0 = τ∗0 < τ∗1 < τ∗2 < . . . <
τ∗AN−1 < τ∗AN = τ∗.
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Equation (11) is discretized using the Crank-Nicolson approach to yield the finite
difference expression that pertains to the internal nodes l = 1, 2 . . . A− 1 with time and
space steps ∆τ∗ and ∆X, respectively.

Ve2
(

Θm+1
l−1 −2Θm+1

l +Θm+1
l+1

2(∆τ∗)2 +
Θm

l−1−2Θm
l +Θm

l+1

2(∆τ∗)2

)
+

Θm+1
l −Θm

l
∆τ∗ = β

2

(
Θm

l+1−Θm
l−1

∆X

)2
+

(1+β(Θm
l −Θa))
2

[
Θm+1

l−1 −2Θm+1
l +Θm+1

l+1

(∆X)2 +
Θm

l−1−2Θm
l +Θm

l+1

(∆X)2

]
−Nc (Θm

l −Θa)
n+1

(1−Θa)
n − Nr[1 + B(Θm

l −Θs)]
(
(Θm

l )
4 −Θ4

s

)
+ Pe

2

(
Θm

l+1−Θm
l−1

∆X

)
+QIG

[
1 + υ1

(
Θm

l −Θa
1−Θa

)
+ υ2

(
Θm

l −Θa
1−Θa

)2
+ υ3

(
Θm

l −Θa
1−Θa

)3
]

(13)

The method employed is accurate in both the time and space domains 0
[
(∆τ∗)2, (∆X)2

]
with the following discretized BC,

Θ0
l = 0, for all l,

Θ1
l −Θ0

l
∆τ∗ = 0⇒ Θ1

l = Θ0
l , for all l,

Θm
E = 1, for all m,

Θm
1 −Θm

0
∆X = 0⇒ Θm

1 = Θm
0

(14)

The Crank-Nicolson scheme is an accurate second-order strategy in 0
[
(∆τ∗)2, (∆X)2

]
.

After solving Equation (13) with Equation (14) using FDM, the numerical results are
subjected to ANN training in the form of datasets. Figure 2 depicts the overall procedure
involved in examining the thermal distribution within the plate.
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4. Artificial Neural Network (ANN)

The most basic ANN, the backpropagation neural network, is a multilayer feedforward
neural network. Error backpropagation and forward signal transmission are this network’s
two key features. The forward transfer involves processing the input transmission layer by
layer, starting at the input layer and moving through the hidden units to the output units.
Only the subsequent layer’s neurons are impacted by the condition of those in the layer
below. When an output unit is unable to produce the desired result, it would switch to
backpropagation and would reconfigure the network weight and large value following the
prediction error, which would help the backpropagation neural network (BPNN) prediction
output consistently be closer to the desired result. The weights and biases are considered
learnable parameters from the perspective of a BPNN. An optimization algorithm must be
used to reduce the overall ANN error for the dataset. The stochastic Levenberg-Marquardt
algorithm (LMA) was implemented to train the artificial neural network. The Gauss-
Newton technique’s better convergence near the minima and the lowered error results
achieved from the gradient descent are combined in the LM algorithm, which is employed
for curve fitting. This process, which comprises the training, is anticipated to produce a
set of ideal parameters. Every tracking data is read in training, and an epoch is defined,
resulting in a change in the parameters. The entire dataset should be divided into three
subgroups: training, validation, and testing. The first enables training, while the third
evaluates the trained model’s generalization performance. The validation subset is not
utilized to update the parameters of the ANN during training; instead, it is used to evaluate
the selected accuracy metric. Its goal is to prevent overfitting, which occurs when the model
becomes too sophisticated in the training sample and cannot extract accurate responses for
situations outside it.

In order to properly train ANN models, data optimization is vital. An insufficient
quantity of training data prevents the system model from learning the correlations between
the data adequately, while an abundance of it could result in issues such as over-fitting
the model and memorization. Thus, to train the network, a total of 100 data points was
taken. Three subgroups of the data were generated, with 70%, 15%, and 15% of the total
data points being used for training, validation, and testing, respectively. The activation
function performs as a mathematical gate between the current layered neuron’s input and
the output of the next layer. Following a comparison of the ANN’s model performance
levels, the activation function opted. The purlin(x) function is preferred in the output layer,
and the tansig(x) transfer function is used in the hidden layer, which is formulated as:

y = tansig(x) =
2

(1 + e−2x)
− 1 (15)

y = purlin(x) = x (16)

For each segment of data, the mean squared error (MSE) and coefficient of deter-
mination (R2) of the network are calculated to assess the strongest ANN architecture.
The performance metrics, such as the MSE (loss function) and R2 with error metrics, are
employed in the network and are denoted as:

MSE =
1
j

j

∑
i=1

(
ΘFDM(i) −ΘANN(i)

)2

(17)

R2 = 1−


j

∑
i=1

(
ΘFDM(i) −ΘANN(i)

)2

j
∑

i=1

(
ΘFDM(i)

)2

 (18)
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Error rate (%) =

[
ΘFDM(i) −ΘANN(i)

ΘFDM(i)

]
× 100 (19)

The working flow chart of the proposed ANNS-LMBS for performing the network
training is portrayed in Figure 3.
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5. Result and Discussion

In the present analysis, the non-linear governing energy Equation (11) along with
Equation (12) represents the non-dimensional hyperbolic heat conduction (HHC) thermal
equation of a moving plate, and this equation is tackled using the ANNS-LMBS. The
significance of non-dimensional thermo-physical properties, such as Nc, Nr, Pe, β and QIG
on the thermal field Θ(τ∗, X), is appraised in this section with the aid of the graphical
description. The NF effect in the transient thermal dispersal of a moving plate is inspected
by varying the dimensionless length of the plate X along the positive x-axis with the
enhancement in the magnitude of the aforementioned physical parameters. The set of
thermal profile values collected by solving Equation (11) along with Equation (12) using
FDM is subjected to the ANNS-LMBS training purposes. There are input, hidden, and
output layers in the ANN algorithm. FDM thermal data, by varying the parameters, were
adapted as the target vectors, and independent variable’s data were utilized as the input
vectors. Table 1 provides the details on the data utilized in the network training for various
scenarios and cases. Each scenario is developed by varying the corresponding values of
thermal parameters (Nc, Nr, Pe, β and QIG). In each case, 100 data points are utilized for
training the network. Finally, 70%, 15%, and 15% of the total number of data points were
divided into three subgroups, with the corresponding percentages being used for training,
validation, and testing.
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The numerical outcomes of Θ(τ∗, X) using the ANNS-LMBS are compared with the
outcome of FDM in Tables 2 and 3. The network is trained for the 100 data points of
Θ(τ∗, X), and the corresponding absolute error (AE) is also mentioned in this table.

Table 1. Parameter variations for the ANNS-LMBS.

Scenario Case
Parameters

Nc Nr Pe β QIG

1

1 1.0 1 0.5 0.4 0.6
2 1.5 1 0.5 0.4 0.6
3 2.0 1 0.5 0.4 0.6
4 2.5 1 0.5 0.4 0.6

2

1 2 2 0.5 0.5 0.8
2 2 4 0.5 0.5 0.8
3 2 6 0.5 0.5 0.8
4 2 8 0.5 0.5 0.8

3

1 1 1 0 0.5 0.8
2 1 1 0.5 0.5 0.8
3 1 1 1.0 0.5 0.8
4 1 1 2.0 0.5 0.8

4

1 1 1 0.6 −0.5 0.6
2 1 1 0.6 0 0.6
3 1 1 0.6 0.1 0.6
4 1 1 0.6 0.5 0.6

5

1 2 1 0.5 0.5 0.2
2 2 1 0.5 0.5 0.4
3 2 1 0.5 0.5 0.6
4 2 1 0.5 0.5 0.8

Table 2. Comparison of the ANNS-LMBS results with the FDM results by varying Nc.

X

Θ(τ*, X)

Nc = 2 Nc = 4

FDM ANNS-LMBS AE FDM ANNS-LMBS AE

0 0.812250220 0.812221958 2.83 × 10−5 0.809322761 0.809281924 4.08 × 10−5

0.1 0.813692553 0.813705306 1.28 × 10−5 0.810623313 0.810632204 8.89 × 10−6

0.2 0.818006496 0.817984243 2.23 × 10−5 0.814534655 0.814516438 1.82 × 10−5

0.3 0.825283113 0.825274599 8.51 × 10−6 0.821203718 0.821198932 4.79 × 10−6

0.4 0.835759464 0.835756035 3.43 × 10−6 0.830956475 0.830948894 7.58 × 10−6

0.5 0.849827584 0.849812035 1.55 × 10−5 0.844315092 0.844312197 2.90 × 10−6

0.6 0.868065384 0.868057924 7.46 × 10−6 0.862040227 0.862010758 2.95 × 10−5

0.7 0.891297501 0.891316034 1.85 × 10−5 0.885207501 0.885198592 8.91 × 10−6

0.8 0.920692257 0.920685446 6.81 × 10−6 0.915326980 0.915346100 1.91 × 10−5

0.9 0.957904209 0.95792435 2.01 × 10−5 0.95451972 0.954524523 4.80 × 10−6

1 1 0.999839122 0.000160 1 0.999751562 0.000248
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Table 3. Comparison of the ANNS-LMBS results with the FDM results by varying Ve.

X

Θ(τ*, X)

Ve = 0.005 Ve = 5

FDM ANNS-LMBS AE FDM ANNS-LMBS AE

0 0.808620769 0.808589918 3.09 × 10−5 0.792008172 0.791987589 2.06 × 10−5

0.3 0.820460881 0.820431403 2.95 × 10−5 0.792205657 0.79220541 2.47 × 10−7

0.5 0.843617899 0.843611429 6.47 × 10−6 0.796021708 0.79601664 5.07 × 10−6

0.7 0.884744316 0.884736074 8.24 × 10−6 0.827135282 0.827125088 1.02 × 10−5

0.9 0.954441409 0.954451688 1.03 × 10−5 0.930445038 0.930455714 1.07 × 10−5

1 1 0.999526803 0.000473 1 0.999553738 0.000446

In particular, for the various cases of Nc(Nc = 2 and Nc = 4), the numerical results of
the ANNS-LMBS at specified values of X are tabulated in Table 2. The temperature profile
values of the plate exhibit a decreasing nature, indicating the temperature distribution from
the plate’s left end to its right side. In addition, the thermal profile shows a lower value
for improvement in Nc from two to four, implying heat transfer enhancement. In a similar
manner, Table 3 includes the outcomes of the ANNS-LMBS for Θ(τ∗, X) by varying the
Vernotte number Ve(Ve = 0.005 and Ve = 5). The non-dimensional coordinate X with a
value of 1 denotes the left edge of the plate. It is clear from the numerical data in Table 3
that for both the considered Vernotte numbers, the thermal profile has the highest values
at X = 1 and the distribution of temperature tends to decrease from the left to right end
of the plate. Moreover, as the Vernotte number increase, the thermal values decrease. It is
clear from both tables that the FDM and ANNS-LMBS results are in close agreement.

The performed ANNS-LMBS procedure has a relatively quick convergence speed and
a considerably large calculation accuracy. The trained network performance and parameter
results on the provided data set of all the scenarios and cases are summarized in Table 4 by
means of time, Mu, epoch, MSE processes, performance, and gradient.

The variation in transient thermal distribution Θ(τ∗, X) with the influence of the
dimensionless convection–conduction parameter Nc is displayed in Figure 4a–g with the
implementation of the ANN. Also, Figure 5a–g portrays the impact of Nr on the thermal
distribution Θ(τ∗, X) along the length of the plate. The relation between the advective
heat transport rate and the diffuse heat transport rate is indicated by the Peclet number
Pe and the behavior of the transient thermal distribution Θ(τ∗, X), with the consequence
of Pe is presented in Figure 6a–g by training the network. The variation in Θ(τ∗, X) for a
higher magnitude of β is observed in Figure 7a–g using the results obtained by training the
thermal profile data. By training the neural network, the aspects of Θ(τ∗, X) with the effect
on the heat generation parameter QIG is explicated in Figure 8a–g. The training, validation,
and testing results in terms of the mean square error (MSE) for the variation in Nc, Nr, Pe, β,
and QIG are exposed in Figures 4a, 5a, 6a, 7a and 8a, respectively, as a model of how well the
network performed. In all these figures, the MSE diminishes with network training, and the
lowest error of 4.17 × 10−11, 5.93 × 10−11, 1.78 × 10−10, 2.56 × 10−11, and 7.14 × 10−11 is
reached at 64, 51, 56, 40, and 58 epoch for Nc, Nr, Pe, β, and QIG respectively. This implied
that the results of data training were comparable to the tolerance value, and the estimated
outcomes with the ANN were close to the FDM numerical data. The ANN training findings
in the form of the state transitions for the cases of Nc, Nr, Pe, β, and QIG is represented in
Figures 4b, 5b, 6b, 7b and 8b, respectively. For 64, 51, 56, 40, and 58 epoch, the Mu would
be 1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−11, and 1 × 10−10 with gradients of 9.55 × 10−8,
9.77 × 10−8, 8.77 × 10−8, 9.92 × 10−8, and 9.38 × 10−8, respectively. Furthermore, the
error histogram in Figures 4c, 5c, 6c, 7c and 8c determines the error features for the cases
of Nc, Nr, Pe, β, and QIG, respectively. The error size distribution for the training, test, and
validation data is provided here and the number of dataset values that fall into a certain
bin is represented by each bar in these plots. The network’s accuracy is evidenced by the
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determined error, which is usually close to zero and has a distribution that is not far from
zero. Figures 4d, 5d, 6d, 7d and 8d depict the regression curve of training, validation,
testing, and all values of an ANNS-LMBS-trained mechanism for the Nc, Nr, Pe, β, and
QIG cases. The group of sampled data demonstrates the size of the dataset used to train the
neural network. Additionally, each of the four subplots contains a fit line that indicates that
values nearer to that line would be superior and, as a result, the regression value obtained
would be much nearer to one. The value of regression in the training, validation phase, and
testing phase is one for the Nc, Nr, Pe, β, and QIG cases. Thus, a close correlation between
the estimated and desired values indicated by R = 1 could be seen in all these figures.
In Figures 4e, 5e, 6e, 7e and 8e, the function fitness curve of the neural trained network
is presented for the Nc, Nr, Pe, β, and QIG cases. The trained, validated, and tested
ANNS-LMBS outputs are compared against the desired target datasets in these figures
which exhibit a closer agreement. For the thermal parameters Nc, Nr, Pe, β, and QIG,
the thermal distribution nature is provided in Figures 4f, 5f, 6f, 7f and 8f and the absolute
error (AE) is provided in Figures 4g, 5g, 6g, 7g and 8g. In Figure 4f, the transient thermal
distribution Θ(τ∗, X) reduces gradually for an increasing magnitude of Nc(1, 1.5, 2, 2.5).
The non-dimensional variable Nc signifies the ratio of convection to conduction in terms of
how much heat is removed from the plate’s surface. The surface convection endorses the
heat dissipation from the plate, so increasing the magnitude of this variable encourages
the heat transfer rate by lowering the temperature profile. In this analysis, the temperature
variation through the plate is performed with the influence of thermal radiation, and the
dimensionless variables Nr and ε∗ represent the radiative phenomenon. Unlike conductive
and convective heat flux, which are more or less linearly dependent on temperature
fluctuations, radiant heat fluxes are generally proportional to the variations in the fourth
power of temperature. In addition, ε∗ is considered to be temperature dependent in this
scrutiny. An increase in the Nr(2, 4, 6, 8) values cause the decrease in Θ(τ∗, X), as shown
in Figure 5f. As radiation becomes sturdier, the plate provides heat to the surroundings
efficiently and thereby the temperature drops in the plate. From a physical point of view,
the transfer of thermal energy by radiation improves the heat transference rate from the
plate. It is perceived from Figure 6f that, an upgrade in the Pe(0, 0.5, 1, 2) provokes the
enhancement of the transient thermal distribution Θ(τ∗, X). At the specific initial time
τ∗, Θ(τ∗, X) enhances with the escalating magnitude of Pe near the hot boundary region.
Physically, as Pe upsurges the plate travels quicker and the exposure time to the ambient
fluid reduces, thus, Θ(τ∗, X) upsurges. The thermal profile Θ(τ∗, X) improves for the
diverse magnitude of β(−0.5, 0, 0.1, 0.5) along the plate length, as exhibited in Figure 7f. In
other words, as the value of β declines, so does the temperature in the plate, indicating
an elevated heat loss to the surrounding fluid. The temperature inside the moving plate
rises as a result of the improved heat conduction caused by an increase in the thermal
conductivity gradient. There are numerous instances where heat is internally produced in
a system. This may happen as a result of an electric current flow, such as in an electrical
filament, or as a result of an atomic or chemical reaction taking place inside a reactor. It
is important to investigate the effect of internal heat generation during the heat transfer
mechanism, and this process is indicated by the internal heat generation parameter, which
is usually taken as thermally dependent. With an increment in QIG(0.2, 0.4, 0.6, 0.8), the
thermal profile Θ(τ∗, X) enhances, as depicted in Figure 8f. The temperature gradient is
elevated to a greater value by enhancing the heat generation parameter. Thus, the increased
heat generation raises the temperature of the plate because the plate must diffuse more
heat into the environment.
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Table 4. ANNS-LMBS training results for the thermal problem of the moving plate.

Scenario Case Performance Mu Grad Time (s) Epochs
MSE

Training Validation Testing

1

1 4.05 × 10−10 1 × 10−9 2.93 × 10−8 <1 38 6.21 × 10−10 1.59 × 10−9 9.39 × 10−9

2 3.26 × 10−11 1 × 10−10 6.52 × 10−8 1 39 3.26 × 10−11 6.14 × 10−10 6.54 × 10−11

3 2.92 × 10−11 1 × 10−10 8.57 × 10−8 2 48 2.92 × 10−11 5.11 × 10−10 5.22 × 10−11

4 1.05 × 10−10 1 × 10−9 9.94 × 10−8 8 98 1.04 × 10−10 6.66 × 10−10 2.69 × 10−10

2

1 1.59 × 10−10 1 × 10−9 9.95 × 10−8 7 94 1.58 × 10−10 2.80 × 10−9 7.04 × 10−10

2 9.00 × 10−11 1 × 10−9 9.57 × 10−8 13 121 8.99 × 10−11 2.70 × 10−10 1.29 × 10−10

3 7.82 × 10−10 1 × 10−8 9.87 × 10−8 19 213 7.81 × 10−10 1.05 × 10−9 1.67 × 10−9

4 1.33 × 10−10 1 × 10−9 9.71 × 10−8 10 114 1.33 × 10−10 5.73 × 10−10 1.06 × 10−8

3

1 1.62 × 10−11 1 × 10−10 9.07 × 10−8 3 53 1.62 × 10−11 3.02 × 10−11 3.82 × 10−11

2 2.75 × 10−11 1 × 10−10 6.84 × 10−8 2 44 2.74 × 10−11 8.80 × 10−11 3.14 × 10−11

3 7.52 × 10−11 1 × 10−10 2.35 × 10−9 1 40 7.51 × 10−11 2.06 × 10−10 3.42 × 10−11

4 1.11 × 10−10 1 × 10−10 8.14 × 10−8 2 49 1.10 × 10−10 8.13 × 10−10 1.82 × 10−9

4

1 4.09 × 10−11 1 × 10−10 9.64 × 10−8 4 60 4.09 × 10−11 5.35 × 10−9 7.14 × 10−10

2 2.23 × 10−11 1 × 10−10 7.07 × 10−8 5 72 2.82 × 10−11 2.38 × 10−10 4.17 × 10−11

3 3.40 × 10−11 1 × 10−10 9.23 × 10−8 6 78 4.25 × 10−11 8.80 × 10−11 1.27 × 10−10

4 4.43 × 10−12 1 × 10−11 6.71 × 10−8 2 47 4.42 × 10−12 4.30 × 10−12 9.39 × 10−12

5

1 2.11 × 10−11 1 × 10−10 9.52 × 10−8 2 50 2.10 × 10−11 2.66 × 10−11 3.61 × 10−11

2 2.17 × 10−11 1 × 10−10 8.36 × 10−8 4 64 2.16 × 10−11 3.85 × 10−11 3.31 × 10−11

3 2.77 × 10−11 1 × 10−10 8.78 × 10−8 7 81 2.77 × 10−11 5.23 × 10−11 7.25 × 10−11

4 2.80 × 10−10 1 × 10−9 1.70 × 10−8 2 44 2.80 × 10−10 6.44 × 10−10 4.91 × 10−10
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6. Final Remarks

In the present investigation, the unsteady NF temperature dispersal within a moving
plate in the presence of radiation and convection phenomena with linear temperature-
dependent thermal conductivity and non-linear heat transfer coefficient is scrutinized using
ANNS-LMBS modeling. Additionally, various dimensionless thermo-physical parameters’
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impacts on non-dimensional temperature profiles are systematically inspected. The major
outcomes may be abridged as follows:

• The transient thermal dispersion diminishes with an upsurge in the convection-
conduction parameter’s magnitude. A hike in the scale of the radiation-conduction
variable encourages a decrement in the thermal distribution.

• As the Peclet number heightens, the thermal dispersal improves in the moving plate.
• As the heat generation variable scale upsurges, the moving plate’s thermal distribution

increases gradually.
• The transient temperature dispersion is improved when the thermal conductivity

parameter’s magnitude improves.
• The variance in the thermal response of the non-Fourier model is influenced by the

Vernotte number. A higher scale of this number indicates that the thermal wave is
nearer to the plate’s initial side.

• The main reason for using the ANNS-LMBS to solve the HHC equation is that it has
advantages such as continuous and differentiable approximate solutions, excellent
interpolation features, and less memory.

• The unsteady thermal profile values of the moving plate were predicted using the data
set using an artificial neural network model. The ANNS-LMBS model could accurately
predict thermal values according to the analysis of the obtained MSE, coefficient of
determination (R), and error rate values. The current interpretation revealed that the
ANNS-LMBS methodology is a precise, useful, and practical technique for simulating
the temperature distribution in the plate. The results indicated that the ANNS-LMBS
is the best tool for predicting temperature values.
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Nomenclature

L Length τ Time
Tb Base temperature x Coordinate in x-direction
ρ Density T Temperature
cp Specific heat capacity β Dimensionless thermal conductivity parameter
k∗(T) Thermal conductivity ε∗ Surface emissivity
h∗(T) Heat transfer coefficient Θs Dimensionless radiative sink parameter
δ∗ Thickness ka Thermal conductivity at ambient temperature
Nr Dimensionless radiation– τ∗ Dimensionless time

conduction parameter
U Speed of the plate Θa Dimensionless convective -sink temperature
Ta Ambient temperature W Width
q∗(T) Internal heat generation Θ Dimensionless temperature
hb Heat transfer coefficient Pe Peclet number
σ Stefan-Boltzmann constant n Exponent constant
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Nc Dimensionless convection– QIG Dimensionless heat
conduction parameter generation parameter

X Dimensionless axial coordinate
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