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Abstract: In the field of many-objective evolutionary optimization algorithms (MaOEAs), how to
maintain the balance between convergence and diversity has been a significant research problem. With
the increase of the number of objectives, the number of mutually nondominated solutions increases
rapidly, and multi-objective evolutionary optimization algorithms, based on Pareto-dominated
relations, become invalid because of the loss of selection pressure in environmental selection. In order
to solve this problem, indicator-based many-objective evolutionary algorithms have been proposed;
however, they are not good enough at maintaining diversity. Decomposition-based methods have
achieved promising performance in keeping diversity. In this paper, we propose a MaOEA based on
indicator and decomposition (IDEA) to keep the convergence and diversity simultaneously. Moreover,
decomposition-based algorithms do not work well on irregular PFs. To tackle this problem, this paper
develops a reference-points adjustment method based on the learning population. Experimental
studies of several well-known benchmark problems show that IDEA is very effective compared to
ten state-of-the-art many-objective algorithms.

Keywords: evolutionary algorithm; many-objective optimization; reference point adjustment; learn-
ing population

MSC: 68W50

1. Introduction

Mathematically, we define multiobjective optimization problems (MOPs) as [1]:{
min F(X) = ( f1(X), f2(X), . . . , fm(X)),
subject to X ∈ Ω.

(1)

where X = (x1, x2, . . . , xn) is an n-dimensional decision variable vector in the decision
space Ω; F(X) is an objective function vector that is composed of m conflicting objective
functions.

For multi-objective optimization, it is expected to find a set of trade-off solutions for
MOPs, called Pareto optimal solutions. Let X1, X2 ∈ Ω; X1 is said to dominate X2, denoted
by X1 ≺ X2, if and only if fi(X1) ≤ fi(X2) for each i ∈ {1, . . . , m} and f j(X1) < f j(X2)
for at least one index j ∈ {1, . . . , m}; if none of X in Ω can dominate X1, we call X1 a
nondominated or Pareto optimal solution. We call the set of all Pareto optimal solution
points a Pareto set (PS), and call the set of all the Pareto optimal objective vector a Pareto
optimal front (PF).

In recent years, with the development of multi-objective evolutionary optimization
algorithms, a large number of algorithms have been proposed and made progress [2–4]. The
MOPs with more than three objectives (i.e., m > 3) are called many-objective optimization
problems (MaOPs) [5–7]. However, in MaOPs, with the increase of the number of objectives,
most of the evolving individuals become mutually nondominated, so that the algorithms
lose selection pressure [8]. To address this problem, researchers have proposed improved
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methods. The existing MaOEAs fall roughly into three categories: modified dominance-
based, indicator-based and decomposition-based methods [6].

The first category is the modified dominance-based algorithms. These revise the
dominance relationship to distinguish and select elite individuals. There are many tech-
niques for developing new dominance relations, such as expanding the dominance area,
gridding the objective space, and adopting fuzzy logic. ε-dominance [9], by introducing the
parameter ε that extends the individual’s Pareto-dominated region, makes non-dominant
individuals distinguishable. The Grid-dominance [10] distinguishes individuals by dividing
the objective space into multiple grids. In order to further improve the search ability of
the algorithm, a series of work has been proposed, such as Rotated-grid [11], RP-dominance
[12], θ-dominance [13], fuzzy-based Pareto dominance [14] and rank-dominance [15]. They have
been proved to be more effective than the traditional Pareto-dominance-based algorithms
in terms of convergence.

The second category is indicator-based algorithms that use the indicator value of each
individual as the selection criterion in environment selection. Many MaOEA performance
indicators have been developed by researchers over the past few years, such as the hyper-
volume HV [16], inverted GD (IGD) [17] and Ir

∞ [18]. Although, as the number of objectives
m increases, the computation time of the HV-based methods increases dramatically [19], but
due to their good theoretical and Pareto compatible properties, they are very effective for
solving MaOPs. The representative methods include HyPE [20] and MO-CMA-ES [21]. The
IGD-like indicators such as GD, IGD and IGD+ estimate the distance between a population
and the true PF. Specifically, Tian et al. [22] propose an adaptive reference-set method, Iε+

indicator measures how far the PF is from the solution population, the IBEA [23] provides
a general framework for indicator-based approaches and Yuan et al. propose a ratio-based
indicator. These algorithms are challenging to evaluate the individual quality by building
a subset of the true PF [19]. Although they perform well in convergence, the population
diversity tends to be poor.

The third category is based on decomposition, which achieves the final effect by
decomposing the MaOP into multiple single-objective subproblems and optimizing the
subproblems simultaneously. MOEA/D [24] is a typical algorithm that decomposes a
many-objective optimization problem into a set of sub-problems, and then optimizes the
whole problem through the cooperation of neighbor sub-problems. There are many classic
algorithms with similar ideal, such as NSGA-III [25], MOEA/DD [26], RVEA [27], and so
on [28–31]. They have achieved promising performance on MaOPs with regular PFs, but
some of them are not work well on irregular PFs [32,33]. To tackle this issue, reference-point-
adjustment methods have been proposed, for instance, MOEA/D-AWA [34], NSGA-III [35],
RVEA* [27], BCE [33], and so on [36–39]. In addition, there are algorithms [40,41] that
are designed for specific problems and have excellent performance on specific problems.
However, decomposition-only methods do not work well for problems with regular PFs.

The Pareto dominance sometimes fails due to over-reliance on maintaining diver-
sity. Indicator-based methods can distinguish individuals in MaOPs, but they are poor
in maintaining diversity [19]. In this paper, indicator-based and decomposition-based
mechanisms are integrated into an algorithm, and IDEA is proposed. We use the Ir

∞ [18]
indicator to achieve population convergence and distinguish individuals, and employ the
decomposition-based method to ensure population diversity. The contributions of this
paper are summarized as follows:

1. We use the Ir
∞ indicator to achieve population convergence in the early stage so that

the population can obtain the approximate PF. The maintenance of diversity is made
for the obtained population through uniformly generated reference points, which
make the final population possess good diversity.

2. We propose an adaptive reference-point adjustment strategy based on the learning
population for irregular PFs. A new reference-point set is generated through learning
the population selected by the environment, and then the newly generated reference
point set is used to select individuals for the next evolution.



Mathematics 2023, 11, 413 3 of 27

3. In order to maintain the diversity of the final solutions, we introduce a diversity-
maintenance mechanism based on the vertical distance to the normal vector. Com-
pared with other methods, this method is good at sharp tail PF shapes. Simulation
experiments are carried out to verify the effectiveness of the proposed algorithm.

The rest of this article is organized as follows. Section 2 provides the background to
this work. Section 3 covers the details of IDEA. Section 4 presents and analyzes a series of
experiments. Finally, Section 5 summarizes this paper.

2. Preliminaries

In this section, the PREA algorithm is briefly introduced firstly, and then the penalty
boundary intersection (PBI) [24] method is presented. Finally, the motivation of this paper
is discussed.

2.1. Ir
∞ Indicator

Let x, y ∈ Rm
+, the ratio-based-indicator value is defined as follows:

Ir
∞(x|y) =

{
‖R(x, y)‖p, i f ∃xi > yi;
−‖R(x, y)‖p, otherwise.

(2)

where R(x, y) = (max(0, yi
xi
− 1), . . ., max(0, ym

xm
− 1)) and ‖ ∗ ‖p stands for `p-norm. Ir

∞(x|y)>
Ir
∞(y|x) means x is better than y under this indicator. In PREA [18], the author proves that

Ir
∞ is a good form for eliminating outliers and protecting the PFs boundary points, and show

that if this indicator value of an individual is greater than or equal to 0, the individual is a
sufficient and necessary condition for the nondominated solution of the current population.
The larger the indicator value is, the more important xi is in the current population.

2.2. Penalty Boundary Intersection (PBI) Method

In our work, the penalty boundary intersection (PBI) [24] method is used as the
individuals selection method. The optimization problem of the PBI approach is defined as:{

min gpbi(x|w, z∗) = d1 + θd2,
subject to x ∈ Ω.

(3)

where

d1 =
‖ (F(x)− z∗)Tw‖

‖w‖ (4)

d2 =

∥∥∥∥F(x)− (z∗ + d1
w
‖ w‖ )

∥∥∥∥ (5)

z∗ = (z∗1 , . . . , z∗m)T is the ideal point of objective space. Normally, we define θ ≥ 0 as the
penalty parameter. Figure 1 gives a simple schematic illustrating d1 and d2 of a solution
x with respect to the weight vector w. In the PBI approach, d1 is used to evaluate the
convergence from x to EF, and d2 to evaluate the population diversity. By adding the
value of d2 multiplied by θ to d1, gpbi(x|w, z∗) plays as a composite measure of x for both
convergence and diversity.
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Figure 1. Illustration of PBI method.

2.3. Motivation

In the research field of many-objective evolutionary optimization algorithm, as sum-
marized above, they can basically be classified into the above three types. The three types of
algorithms have their advantages, but they basically have no intersection. Indicator-based
algorithms have good convergence, but they can only rely on other ways to maintain
diversity. For example, in PREA, the parallel distance is adopted to improve the population
diversity, which makes PREA excellent in solving the problem of irregular PFs. However,
because the parallel distance has been used to screen the population throughout the evolu-
tionary process, the final solution may not necessarily be the solution that makes the entire
population have the best diversity. This also makes the diversity performance of PREA not
as good as that of decomposition-based algorithms when facing regular PFs. Therefore,
this paper proposes IDEA to merge indicator-based and decomposition-based algorithms.

As the performance of decomposition-based algorithms sharply drops when solving
problems with irregular PFs, an effective reference point adjustment mechanism is needed
to ensure the population diversity. The representative method is to adjust the reference
point according to the distribution of candidate solutions in each generation of the current
population, such as A-NSGA-III and RVEA* [27]. The two groups of reference vectors of
RVEA* are adjusted to maintain uniform distribution and to adapt themselves. Reference-
vector adaptation involves two operations: (1) deleting each reference vector in the specified
empty subspace, and (2) randomly adding new reference vectors to the hyperbox specified
by the lowest and ideal point of the current population. Figure 2a presents an example to
illustrate this mechanism. The random reference points generated by this method have
great randomness and cannot keep uniform distribution on the PFs of MaOPs. This paper
improves this method by making the individuals with good distribution become new
reference points, which are called anchor points, and its schematic diagram is shown in
Figure 2b. The details are introduced in Section 3.

In general, the reference point is also called a reference vector or weight vector in some
decomposition-based MOEAs, and in this article, we only use the term reference points.
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Figure 2. Illustration of reference point adaptive adjustment. (a) RVEA*. (b) IDEA.
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3. Proposed Algorithm
3.1. Framework

The framework of the IDEA is shown in Algorithm 1. IDEA starts by generating a set
of uniformly distributed reference points (To promote diversity in the obtained solutions,
Das and Dennis’s systematic approach [42] is adopted to generate structured reference
points.); in the meantime, an initial population P0 with size N from the uniform distribution
is randomly generated in the objective space. Then, calculate Ir

∞(px|py) between any two
solutions in Pt by using Equation (2) and save the result in matrix IM; Simultaneously,
the individual closest to x is also determined by the indicator Ir

∞. The simulated binary
crossover and the polynomial mutation are employed on adjacent neighbor solutions to
generate an offspring set Qt. After merging Pt and Qt, the environmental selection is
implemented. Only when the algorithm determines that the problem is irregular will the
reference point adjust by learning population, and the details will be described in the latter.

Algorithm 1 The framework of IDEA.

Input: Population size N, objectives M, the termination criterion;
Output: Final population;
1: Generate uniformly distributed reference points RP and an initial population P0;
2: while the termination criterion is not satisfied do
3: Calculate Ir

∞(px|py) between any two solutions by Equation(2) and save the result to
matrix IM;

4: Find neighbor solutions into Sn by using IM;
5: Crossover and mutation to generate offspring Qt by using Sn;
6: P(t+1)=EnvironmentalSelection(Pt

⋃
Qt,IM,RP);

7: if the problem is irregular then
8: RP=LearningPopulation(P(t+1),N);
9: end if

10: t=t+1;
11: end while
12: Return Pt;

3.2. Learning Population

After the population has evolved to a certain extent, the individuals obtained through
environmental selection have good convergence and distribution. Still, after crossover and
mutation, these individuals may be eliminated and selected by the next generation. This
problem is even more severe when dealing with irregular PFs. However, we can make
the next population better by letting the reference points learn from these individuals.
Therefore, we propose a reference point adaptive adjustment method based on the learning
population.

The whole process of reference point learning population is given by Algorithm 2.
First, the objective values of the selected individuals in the population are taken as a part
of the new reference-point set; these are called anchor points. If the number of anchor
points multiplied by two is not larger than N, neighbor points are found, and include
the generated midpoints into the anchor points. When the condition is not satisfied, the
interference reference point is generated. The difference between the maximum value and
the minimum value in each dimension is set as the interference factor ~δ, and then a random
number in [0, δi] is generated. Then, a point is randomly selected in the anchor set, and
the two are added to create an interference-reference point. The interference factor ~δ is
determined by the following formula:

~δ = (( f max
1 − f min

1 ), . . . , ( f max
m − f min

m )). (6)

When the number of anchor points is greater than N, the Minkowski distance between
anchor points is calculated. In order to keep the boundary points better, the Minkowski
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parameter p is 1
m , where the m is objectives. The closest points are deleted in sequence until

the number of anchor points reaches N.

Algorithm 2 Learning Population.

Input: Population Pt, population size N, objectives M;
Output: The new reference points RP;
1: The objective value of individual in Pt is taken as anchor points AP;
2: if the size of AP is smaller than N then
3: while the size of AP multiplied by 2 is smaller than N do
4: Calculate the Euclidean distance between APi and APj;
5: Find the closest points and calculate their midpoint Mp;
6: AP = AP

⋃
Mp;

7: end while
8: if the size of AP is smaller than N then
9: Calculate the interference factor ~δ ∈ RM;

10: Randomly generate the interference reference point ~R ∈ [0, δ]M;
11: Randomly select a reference point Ps ∈ AP;
12: Pir = Ps + ~R;
13: AP = AP

⋃
Pir;

14: end if
15: else
16: Delete the nearest point by calculating their Minkowski distance until the number of

AP is N;
17: end if
18: Return AP

Figure 3 shows a simple example of this procedure. Assuming that the reference points
are N = 6, the black reference points are valid reference points, the gray reference points
are invalid reference points, and the red points are individuals bound to the valid reference
points, as shown in Figure 3a. First, the objective values of individuals, i.e., red points, are
taken as anchor points. Then, the neighbor point is found for every point in anchors, and
the midpoints are generated, as shown by the green dots in Figure 3b.

a b c

effective reference point

ineffective reference point

individual

new reference point

randomly reference point

Figure 3. An Example of reference points learning population. (a) Start state. (b) Intermediate state.
(c) End statu.

In this case, there are five anchors. Then, the interference-reference points are gen-
erated to fill the anchor points. As shown in Figure 3c, the blue point is the interference-
reference point.

3.3. Environmental Selection

To maintain population convergence, many decomposition-based algorithms use
the traditional Pareto-dominance relationship to exert selection pressure. However, with
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an increase of objectives, the Pareto-dominance relationship gradually loses selection
pressure. This paper uses the Ir

∞ indicator introduced above to put selection pressure on
the population. When the number of individuals is not larger than N, the population
can reproduce through neighbor mating. When the number of individuals exceeds N,
environmental selection based on reference points begins.

Algorithm 3 introduces the environmental selection process used in this paper. First,
Ir
∞ indicator value of individuals is calculated, and individuals whose indicator value is

greater than 0 are selected as the nondominant level. If the number of individuals selected
in the nondominant level is smaller than N, the population will continue to evolve based
on this indicator values. When the number of individuals in the first level is greater than
N, the individuals with poor Ir

∞ indicator values are deleted, and then bound with the
reference points by using the cosine distance. For each effectively bound reference point,
the PBI method mentioned above is used to select the individuals with the minimum PBI
value of each reference point. It is worth noting that the value of θ is generally 5, but this
paper adopts the following formula to assign value to θ:

θ = k× dM× te (7)

where t is the ratio of the current generation to the maximum generation; M represents the
objectives; k is a coefficient and in order to maintain better performance in low-dimensional
space, the value of k is 5.

If the proportion of effective reference points is less than 0.8, the problem is considered
to be an irregular problem, and a solution to the irregular problems will be implemented.
The detail of this part will be introduced in the latter. If the number of selected individuals
is greater than N, the operation of deleting individuals introduced in Algorithm 2 is
performed until the number of individuals is N.

Algorithm 3 Environmental selection.

Input: Population Pt, reference points RP, current generation ratio t;
Output: The next population Pt+1;
1: Calculate the matrix of Ir

∞(px|py) where px and py belong to Pt, save the result in IM;
2: Find the individuals in the first level by using IM, and save them to Pt+1;
3: if the size of Pt+1 is larger than N then
4: Eliminate the worst individuals by using IM and create the promising region;
5: Associate individuals of Pt+1 with the reference points RP by cosine distance;
6: for each effective RPi of RP do
7: Select individuals into Pt+1 by PBI method and ignore other individuals associated

with the same reference point;
8: end for
9: if the proportion of effective reference points is smaller than 0.8 then

10: Implement the procedure of irregular problems and select individuals which aren’t
in Pt+1 into Pt+1;

11: end if
12: if the size of Pt+1 is larger than N then
13: Truncate the individuals in Pt+1 until the number of Pt+1 is N;
14: end if
15: end if
16: Return Pt+1;

3.4. Handling Irregular Problem

The populations are bound to the reference point by Minkowski distance (This distance
has the advantage of keeping the boundary solution of the population, which has been
proved in [19]). For each effective binding reference point, the extension distance of the
individuals bound on this point is calculated. The individual with the smallest extension
distance is taken as the candidate solution. The nearest neighbor of this candidate solution is
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compared with itself by the Ir
∞ indicator, and the individual with a smaller value is selected

for the next evolution. The extension distance is determined by the following formula:

De =
d2

d~n
(8)

where d2 is the vertical distance of the individual to the vector of the binding reference
point; ~n is the normal vector of the hyperplane specified by ∑m

i=1 fi = 1, and dn is the
vertical distance of the individual to~n.

Figure 4 is an illustration of the extension distance. The red points represent individu-
als, and the black point is the reference point. The d2 and dn distance of individual 3 are
shown in Figure 4 above. The experiment shows that the population can expand the search
boundary on the sharp-tail PFs through the selection of the extended distance.

d2

individuals

reference point

1

2
3

𝑛  = (1,1) 𝑑𝑛   

Figure 4. Illustration of the extension distance when m = 2.

3.5. Computational Complexity of One Generation of IDEA

The computational complexity of the proposed IDEA approach is mainly contained
in lines 3, 6, and 8 of Algorithm 1. Specifically, consider an MaOP with m objectives.
Let N be the population size. The computational complexity of constructing the matrix
IM is obviously O(mN2) in line 3 of Algorithm 1. The strategy of LearningPopulation
mainly consists of calculating the midpoint, generating the interference reference point
and deleting the nearest point. Calculating the midpoint in line 8 of Algorithm 2 requires
O(mN) computations, the computational complexity of generating the interference is
O(MN), and then Line 16 in the worst case requires O(N2). In environmental selection, the
operation of associating a maximum of 2N population members to H = |RP| reference
points would require O(mNH) computations in line 5 of Algorithm 3. Assuming that L
represents the number of individuals associated with a reference point, there are H reference
points in the worst cases, thereby requiring larger of O(LH) computations. Then, the
procedure of handling irregular PFs in line 10 of Algorithm 4 mainly consists of operations
of associating individuals to reference points and select individuals from promising region.
The computational complexity of associating individuals to reference points is O(mNH),
the worst case requires O(LH) computations in selecting individuals from promising region
formed by H reference points. In practice, the L is far less than M*N, so the computational
complexity of environmental selection is O(mNH). Taking into account all the above
considerations and calculations, the overall worst-case computational complexity of a
generation IDEA is limited by O(mN2).
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Algorithm 4 The procedure of handling irregular PFs.

Input: Population Pt, reference points RP, objectives M, current generation ratio t;
Output: The chosen population Pc;
1: Associate individuals of Pt with the reference points RP by Minkowski distance;
2: for each effective RPi of RP do
3: Select individuals into Pc by the extension distance and ignore other individuals

associated with the same reference point;
4: end for
5: Return Pc;

4. Experimental Design and Analysis

To study the performance of the proposed IDEA approach, we carried out a series of
simulation experiments and compared it with seven EMO algorithms: GrEA, MOEA/DD,
MOMBI-II, NSGA-III, RVEA, onebyoneEA [43], VaEA [44], PICEAg [45], KnEA [46] and
ENSMOEAD [47]. Among the algorithms compared, MOEA/DD, NSGA-III, RVEA and
ENSMOEAD are popular decomposition-based MOEAs, which all showed competitive
performance on MOPs and MaOPs with regular PFs; onebyoneEA uses a one-by-one
selection strategy that uses three archives to temporarily store individuals. MOMBI-II is an
indicator-based MOEA, in which a uniformly distributed set of reference points are used to
calculate the R2 indicator.

4.1. Experimental Settings

In the experiments, we selected 17 test problems, namely DTLZ1–DTLZ4 [48], IDTLZ1,
IDTLZ2 [35], MaF6, MaF7 [49] and WFG1–WFG9 [50] problems, where the specific settings
are shown in Table 1. DTLZ1–DTLZ4 and WFG1– WFG9 are used to test the performance of
MOEAs on MOPs and MaOPs since their objective number is flexible. IDTLZ1 and IDTLZ2
represent the problems of inverted DTLZ1 and DTLZ2, respectively, where the regular PFs
of DTLZ1 and DTLZ2 are inverted and therefore become irregular [32]. Table 1 indicates the
maximum number of generations used for each test problem, and the number of function
evaluations for each test problem is population sizes N multiplied by maximum number of
generations. As a conclusion, the test problems with irregular PFs include IDTLZ1, IDTLZ2,
MaF6, MaF7 and WFG1–WFG3, and the others are with regular PFs.

Table 1. Settings of the number of objectives, variables and maximum generation for each test problems.

Problem Number of
Objectives (M)

Number of Variables
(D)

Number of Generations
(Gmax) Pareto Front

Regular Pareto front

DTLZ1 5,8,10,15 M-1 + 5 500 Linear
DTLZ2,3,4 5,8,10,15 M-1 + 10 500 Concave

WFG4-9 5,8,10,15 M-1 + 10 1000 Concave

Irregular Pareto front

IDTLZ1 5,8,10,15 M-1 + 5 500 Inverted, Linear
IDTLZ2 5,8,10,15 M-1 + 10 500 Inverted, Concave

MaF6 5,8,10,15 M-1 + 10 500 Degenerate
MaF7 5,8,10,15 M-1 + 20 500 Disconnected
WFG1 5,8,10,15 M-1 + 10 1000 Sharp tails
WFG2 5,8,10,15 M-1 + 10 1000 Disconnected, Sharp tails
WFG3 5,8,10,15 M-1 + 10 1000 Mostly degenerate

The Pareto fronts of WFG3 is also not completely degenerate.
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(1) Reference Points: All algorithms employ the same uniformly distributed reference
points with two layers generated by Das and Dennis methods. The Table 2 lists the number
of reference points for each objectives number, where p1 and p2 represent the numbers
of divisions on each objective in the boundary layer and the inner layer, respectively,
and the population size of the MOEA for each comparison is the same as the number of
reference points.

(2) Parameters in the Compared MOEAs: For MOEA/DD, the size of the neighbor-
hood T is set to 0.1× N where N is the population size, and the neighborhood selection
probability δ was set to 0.9. For RVEA and RVEA*, the penalty parameter α was set to 2, and
the reference point adaptive frequency fr was set to 0.1. For MOMBI-II, the recorded sizes
of the variance threshold α, tolerance threshold, and nadir vectors were set to 0.5, 0.001,
and 5, respectively. However, no additional parameters need to be specified NSGA-III,
A-NSGA-III, GrEA, onebyoneEA, and IDEA.

Table 2. The settings of each objective number and relative reference points number, where p1 and p2

denote the number of divisions on each objective in the boundary layer and inner layer.

Number of Objectives (M) Parameter (p1,p2) Number of Reference Points

5 5,0 126
8 3,2 156
10 2,2 110
15 2,1 135

(3) Genetic Operators: The simulated binary crossover (SBX) [51] and polynomial
mutation [52] are applied to all MOEAs. The crossover and mutation probabilities were 1.0
and 1/D where D is the number of decision variables, and the distribution indexes of both
SBX and polynomial mutation were 20.

(4) Performance Metrics: To compare the performance of the algorithms, we considered
two widely used quality indicators, such as the inverted generational distance (IGD) [33]
and the Hypervolume (HV) [16]. They can evaluate the combined performance of population
convergence and diversification. IGD measures the average Euclidean distance from a
point evenly distributed along the entire Pareto front to its closet, and smaller values are
preferred. The HV is used as an evaluation method to compare the quality of different
algorithms. The HV can provide information about both the convergence and distribution
of an algorithm, and has been used as a common measure of algorithm performance. It
can be expressed as Equation (9), where S(Xi) is the hypercube qualified by the solution Xi
and the reference point r in PF provided by the algorithm. The higher the HV value, the
better the result.

HV = ∪Xi∈PF∗S(Xi). (9)

Before HV calculation, all target values are normalized by the ideal point and the low-
est point of the Pareto optimal frontier, and then the reference point r (1.25, 1.25, . . . , 1.25)
calculates the normalized HV value of the solution set. All the tests were run 20 times
independently, and the mean and standard deviation of the IGD and HV metric values
were recorded, respectively. The best performing algorithm is highlighted in dark color.
The results of the experiment were statistically analyzed using Friedman’s test [53], where
the symbols “+”, “−” and ”=” indicate that the results produced by another MOEA are
significantly better, significantly worse, or statistically similar to those produced by IDEA.
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4.2. Comparisons between IDEA and Existing MOEAs

The statistical results of the IGD and HV values obtained by the ten algorithms over
20 independent runs on regular Pareto front problems are summarized in Tables 3 and 4,
where the best results are highlighted. As shown in tables with results of IGD and HV,
when solving test problems with regular PFs, IDEA achieved the competitive performance
on most test problems. Compared with traditional decomposition-based algorithm, such
as NSGA-III, RVEA, MOEA/DD and ENSMOEAD, IDEA shows the best performance on
the 10-objective DTLZ2 instance and WFG4 to WFG9 instances in term of the different
number of objectives, and it also can be seen that RVEA and MOEA/DD are encouraging,
especially on DTLZ instances with regular PFs. For modified dominance-based algorithms,
such as GrEA and KnEA, from the result data shown in Tables 3 and 4, IDEA has a better
performance, which is most likely because these algorithms all pay more attentions on the
modified Pareto-domination relationship to provide selection pressure, but less considera-
tion of diversity. Additionally, when GrEA solves problems of different dimensions, it gives
different numbers of grid divisions. Under these specific grid parameters, the performance
of GrEA is greatly improved, and the advantage of IDEA is that there is no need to set
specific parameters. For onebyoneEA, it is shown that the algorithm is highly competitive
on relatively simple DTLZ test problems, but it can be seen that it is not as good as IDEA
when solving the WFG instance with regular PFs, mainly because IDEA has a selection part
based on decomposition to expand the diversity of the algorithm when dealing with more
complicated problems. Compared with the indicator-based algorithm, such as MOMBI-II,
it can be seen that IDEA is more competitive. This is mainly because IDEA introduces
reference points to guide the diversity of individuals in the population. AS shown in
Table 4, the overall performance is generally good. Specifically, the proposed IDEA is better
than all compared algorithms on the DTLZ2 with 5-objective and 10-objective. Specially,
as can be observed in Table 4, IDEA shows the competitive performance on the WFG5 to
WFG9 with different difficulties in the decision space. By contrast, KnEA shows promising
performance on some 10-objective instances. RVEA and MOEA/DD also show generally
competitive performance on DTLZ1 to DTLZ4.

The statistical IGD and HV results obtained by the eleven compared algorithms on
irregular Pareto front problems are summarized in Tables 5 and 6, respectively. It can be
observed that IDEA has shown its superiority over almost compared algorithms on all
the test problems with irregular Pareto front. When dealing with the sharp-tailed PFs,
such as WFG1 and WFG2, IDEA is better than RVEA and MOEA/DD; this is mainly
because the extended distance made the population perform better when searching for
these sharp-shaped PFs. For degeneration problems, PICEAg performs better than the
comparison algorithms on the WFG3 problem and onebyoneEA is most competitive on
the MaF6 problem as shown in Tables 5 and 6. It is worth noting that when the number of
objective increases, the WFG3 problem is no longer a degeneration problem. This is also the
reason why the 8 and 10 dimensions of IDEA on WFG3 in the table is suddenly dropped.
When the number of objective reaches 15, all of the compared algorithms fail to find the
valid PFs except the ENSMOEAD, according to HV values shown in Table 6 are equal to
0. Facing the problem with the characteristic of inverted PFs, the performance of IDEA
is not as good as other algorithms. Especially when solving the problem of the inverted
linear PFs, it is not as good as VaEA, which proposes the vector angle selection operator to
increase large selection pressure. Dealing with inverted concave PFs, because onebyoneEA
uses a one-to-one selection strategy, which uses three archive sets to store individuals
temporarily, onebyoneEA performs best. When tackling the problems with disconnected
PFs, the performance of IDEA is not ideal. It is worth noting that no one algorithm can solve
all problems. Each algorithm has its own problems that it is good at solving and problems
that it is not good at handling. In addition, compared with the decomposition algorithm
based on the traditional Pareto-dominance relationship with adaptive adjustment strategy,
such as NSGA-III and RVEA, the IDEA is still competitive. Compared with MOEA/DD,
IDEA was also better. As for VaEA, in addition to the inverted linear PFs not being as good
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as VaEA, IDEA was still powerful for other types of irregular PF problems. Compared with
the other three algorithms, GrEA, onebyoneEA, and MOMBI-II, experimental results have
demonstrated the competitive performance of IDEA in dealing with MaOPs with irregular
PFs.

The result of the parallel coordinates system [54] of each algorithm on the 10-dimensional
DTLZ1 problems are shown in Figure 5. The VaEA, GrEA and onebyoneEA do not perform
well because they are not convergent. For MOMBI-II, the diversity is not as great as other
algorithms. The final results of NSGA-III, RVEA, MOEA/DD, and IDEA are similar. In
Figure 6, we present the distribution of the final population of all the algorithms tested
on the WFG1 problem with three objectives. From the display of the true PFs of WFG1 in
Figure 6l, we can find that WFG1 is a test problem with a sharp-tail shape, and it is difficult
to search on the f3 axis. As can be seen from Figure 6, most algorithms can only search
around 4 on the f3 axis. Although the GrEA has explored around 5, its grid division makes
the diversity of its population seriously insufficient. However, the IDEA proposed in this
paper not only searches around 5 on the f3 axis, but also maintains the diversity of the
whole population well.
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Table 3. The statistics of IGD results (mean and standard deviation) on regular Pareto front problems.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 6.3579e-2
(3.85e-4) =

6.3294e-2
(1.15e-4) =

6.3401e-2
(8.52e-5) =

1.6229e-1
(9.18e-2) -

1.2004e-1
(3.17e-2) -

6.8153e-2
(1.64e-3) -

6.3953e-2
(6.33e-4) =

1.2236e-1
(1.59e-2) -

1.7083e-1
(6.03e-2) -

3.1108e-1
(1.90e-1) -

6.3303e-2
(5.15e-4)

8 1.2970e-1
(3.44e-2) =

9.7347e-2
(1.06e-3) =

9.5979e-2
(4.47e-4) =

3.3146e-1
(7.39e-2) -

2.7398e-1
(1.60e-1) -

1.1343e-1
(1.35e-3) =

2.1015e-1
(5.20e-2) -

2.3577e-1
(2.64e-2) -

1.3277e+0
(1.39e+0) -

1.7338e-1
(7.83e-2) =

1.0871e-1
(1.21e-2)

10 2.3492e-1
(1.64e-1) =

1.2014e-1
(1.47e-2) =

1.1358e-1
(7.29e-4) =

1.2515e+0
(3.79e+0) -

4.1036e-1
(1.95e-1) -

1.2826e-1
(1.45e-3) =

2.7082e-1
(1.55e-2) =

3.1488e-1
(1.99e-2) -

8.2622e+0
(5.80e+0) -

3.0006e-1
(3.21e-1) =

1.4973e-1
(2.56e-2)

DTLZ1

15 2.3085e-1
(8.85e-2) =

1.5755e-1
(7.94e-3) +

1.4322e-1
(6.16e-3) =

8.6720e+0
(1.35e+1) -

3.7561e-1
(1.46e-1) -

1.4197e-1
(9.94e-4) =

2.9004e-1
(4.07e-2) =

3.4474e-1
(2.27e-2) -

1.1018e+1
(1.18e+1) -

3.4853e-1
(2.17e-1) -

1.6428e-1
(2.86e-2)

5 1.9490e-1
(1.90e-5) =

1.9489e-1
(1.30e-5) =

1.9489e-1
(4.15e-6) =

1.9783e-1
(1.14e-3) -

1.9372e-1
(1.21e-3) =

1.9012e-1
(1.66e-3) =

1.9612e-1
(7.66e-4) -

1.9555e-1
(1.28e-3) =

2.1219e-1
(4.55e-3) -

3.2430e-1
(1.63e-3) -

1.9488e-1
(9.50e-6)

8 3.1627e-1
(7.14e-4) =

3.1545e-1
(1.06e-4) =

3.1507e-1
(4.20e-5) =

3.5079e-1
(1.19e-3) =

3.6360e-1
(2.22e-3) -

3.5058e-1
(2.68e-3) =

3.3129e-1
(1.65e-2) =

3.6333e-1
(1.81e-2) -

3.8349e-1
(6.64e-3) -

5.8962e-1
(1.01e-2) -

3.1652e-1
(3.99e-4)

10 4.8207e-1
(5.61e-2) -

4.3697e-1
(3.08e-4) =

4.4032e-1
(1.85e-3) =

5.0437e-1
(4.30e-2) -

4.8172e-1
(2.29e-3) -

4.5902e-1
(2.55e-3) -

6.8130e-1
(1.29e-1) -

6.0955e-1
(7.07e-2) -

5.1013e-1
(1.11e-2) -

7.0965e-1
(3.70e-2) -

4.3528e-1
(1.12e-3)

DTLZ2

15 6.4932e-1
(1.56e-2) =

6.2480e-1
(1.76e-3) =

6.2372e-1
(1.36e-3) =

5.9445e-1
(3.01e-2) =

6.0788e-1
(1.43e-2) =

5.5700e-1
(2.97e-3) +

8.5524e-1
(7.99e-2) -

8.3260e-1
(6.06e-2) =

6.1970e-1
(2.23e-2) =

8.8875e-1
(5.53e-2) -

6.2637e-1
(2.11e-3)

5 1.9490e-1
(1.90e-5) =

1.9489e-1
(1.30e-5) =

1.9489e-1
(4.15e-6) =

1.9783e-1
(1.14e-3) -

1.9372e-1
(1.21e-3) =

1.9012e-1
(1.66e-3) =

1.9612e-1
(7.66e-4) -

1.9555e-1
(1.28e-3) =

2.1219e-1
(4.55e-3) -

3.2430e-1
(1.63e-3) -

1.9488e-1
(9.50e-6)

8 1.9608e+0
(1.94e+0) =

3.3151e-1
(1.10e-2) +

3.2659e-1
(1.99e-2) +

4.0806e+0
(2.26e+0) =

8.6398e+0
(4.63e+0) =

3.5423e-1
(3.45e-3) +

4.2977e-1
(1.19e-1) +

8.1213e-1
(4.77e-2) =

9.3434e+1
(2.44e+1) -

2.2638e+0
(3.15e+0) =

2.8971e+0
(2.57e+0)

10 4.6146e+0
(3.53e+0) =

6.8382e-1
(4.15e-1) +

5.6509e-1
(2.48e-1) +

9.2386e+0
(7.11e+0) =

1.8796e+1
(1.39e+1) =

4.6564e-1
(5.15e-3) +

9.9538e-1
(3.58e-2) +

1.0152e+0
(6.17e-2) =

3.3320e+2
(6.58e+1) =

8.1495e+0
(2.37e+1) =

5.8166e+0
(3.01e+0)

DTLZ3

15 6.0731e+0
(3.14e+0) =

8.4420e-1
(3.28e-1) +

6.9215e-1
(2.23e-1) +

1.6914e+2
(6.44e+1) =

1.8080e+1
(7.81e+0) =

5.6388e-1
(5.63e-3) +

1.1035e+0
(9.91e-3) =

1.1634e+0
(3.86e-2) =

5.6540e+2
(1.47e+2) -

1.2181e+1
(3.32e+1) =

7.6826e+0
(1.25e+1)

5 2.5650e-1
(1.10e-1) =

2.0620e-1
(5.05e-2) +

1.9490e-1
(1.56e-5) +

2.2107e-1
(6.74e-2) =

1.9648e-1
(1.24e-3) =

2.2626e-1
(7.90e-2) +

2.0972e-1
(5.00e-2) =

2.9342e-1
(1.48e-1) =

2.0989e-1
(4.41e-3) +

3.8789e-1
(2.73e-2) =

4.6090e-1
(2.24e-1)

8 3.6745e-1
(9.41e-2) =

3.2211e-1
(2.49e-2) +

3.2752e-1
(3.64e-2) +

3.5110e-1
(1.30e-3) =

3.6562e-1
(4.41e-3) =

3.6388e-1
(3.11e-2) +

3.6858e-1
(4.53e-2) =

4.2356e-1
(6.31e-2) =

3.7331e-1
(3.71e-3) =

6.5963e-1
(3.73e-2) -

3.9988e-1
(1.11e-1)

10 4.9913e-1
(7.82e-2) =

4.5270e-1
(2.76e-2) +

4.4793e-1
(2.71e-2) +

4.8914e-1
(1.71e-2) =

4.8594e-1
(3.67e-3) =

4.9508e-1
(5.79e-2) =

5.6311e-1
(6.31e-2) =

6.0235e-1
(5.33e-2) =

5.0342e-1
(7.96e-3) =

8.3599e-1
(5.70e-2) -

5.1001e-1
(5.53e-2)

DTLZ4

15 6.4779e-1
(1.99e-2) =

6.3015e-1
(4.32e-3) =

6.4057e-1
(1.65e-2) =

5.8066e-1
(5.86e-3) +

6.0096e-1
(4.75e-3) +

5.8340e-1
(1.92e-2) +

6.5943e-1
(1.79e-2) =

6.9469e-1
(3.12e-2) =

6.1132e-1
(3.13e-3) =

9.5200e-1
(3.77e-2) -

6.3722e-1
(1.07e-2)
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Table 3. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 1.1776e+0
(7.09e-4) =

1.1783e+0
(7.23e-4) =

1.2413e+0
(4.71e-3) =

1.1219e+0
(8.71e-3) =

1.1078e+0
(8.19e-3) +

1.7681e+0
(1.45e-1) -

1.1891e+0
(2.24e-2) =

1.0771e+0
(8.48e-3) +

1.2237e+0
(1.69e-2) =

2.9708e+0
(2.80e-1) -

1.1797e+0
(9.17e-4)

8 2.9601e+0
(2.83e-3) +

2.9641e+0
(7.53e-3) +

4.1537e+0
(1.44e-1) =

2.8928e+0
(1.18e-2) +

3.0197e+0
(3.82e-2) =

4.3998e+0
(1.78e-1) =

3.3146e+0
(4.04e-1) =

3.4721e+0
(3.76e-1) =

3.3876e+0
(4.15e-2) =

4.6295e+0
(4.73e-1) =

3.6083e+0
(7.19e-2)

10 5.1162e+0
(5.68e-2) =

4.8764e+0
(3.79e-2) +

6.9056e+0
(2.30e-1) =

5.9090e+0
(3.34e-1) =

4.8985e+0
(3.79e-2) +

6.7965e+0
(2.32e-1) =

8.8996e+0
(1.17e+0) -

7.4339e+0
(5.58e-1) =

5.4820e+0
(5.95e-2) =

7.6371e+0
(5.04e-1) -

6.2367e+0
(2.62e-1)

WFG4

15 9.3505e+0
(6.06e-2) =

9.2657e+0
(9.13e-2) =

1.3658e+1
(2.95e-1) =

9.8444e+0
(4.03e-1) =

8.2096e+0
(1.07e-1) +

1.1598e+1
(3.42e-1) =

1.8664e+1
(1.44e+0) -

1.5959e+1
(1.15e+0) -

9.0052e+0
(1.50e-1) +

1.3051e+1
(9.38e-1) =

1.0986e+1
(6.17e-1)

5 1.1650e+0
(2.21e-4) =

1.1659e+0
(3.25e-4) =

1.2127e+0
(1.69e-3) =

1.1133e+0
(8.64e-3) =

1.1069e+0
(7.42e-3) =

1.6716e+0
(1.15e-1) -

1.2755e+0
(2.21e-2) -

1.0693e+0
(5.96e-3) +

1.2110e+0
(1.74e-2) =

2.9120e+0
(1.54e-1) -

1.1658e+0
(5.57e-4)

8 2.9413e+0
(1.83e-3) +

2.9496e+0
(7.27e-3) +

3.9169e+0
(7.34e-2) =

2.8884e+0
(2.00e-2) +

3.0307e+0
(3.74e-2) =

4.2639e+0
(1.90e-1) =

3.5204e+0
(7.06e-2) =

2.9082e+0
(1.73e-2) +

3.3420e+0
(2.50e-2) =

4.8479e+0
(1.27e-1) =

3.6124e+0
(7.47e-2)

10 5.0775e+0
(7.09e-3) +

4.8100e+0
(2.73e-2) +

6.0792e+0
(1.33e-1) =

6.0173e+0
(6.14e-1) =

4.9262e+0
(4.02e-2) +

6.7113e+0
(1.45e-1) =

1.0592e+1
(4.42e+0) =

6.2535e+0
(2.78e-1) =

5.4942e+0
(5.02e-2) =

7.3569e+0
(2.32e-1) =

6.3355e+0
(8.78e-2)

WFG5

15 9.2827e+0
(1.22e-2) =

9.1763e+0
(5.79e-2) +

1.2946e+1
(2.39e-1) =

1.0056e+1
(3.01e-1) =

8.0298e+0
(7.27e-2) +

1.1416e+1
(1.97e-1) =

2.4739e+1
(2.15e+0) -

1.3123e+1
(6.29e-1) =

8.9083e+0
(1.09e-1) +

1.3049e+1
(1.03e+0) =

1.2106e+1
(8.28e-1)

5 1.1626e+0
(1.22e-3) =

1.1648e+0
(2.73e-3) +

1.2146e+0
(6.05e-3) =

1.1259e+0
(7.55e-3) =

1.1241e+0
(7.24e-3) =

2.0860e+0
(1.15e-1) -

1.2307e+0
(1.04e-1) =

1.0853e+0
(6.18e-3) +

1.2409e+0
(3.27e-2) =

2.5458e+0
(4.10e-1) -

1.1651e+0
(3.03e-3)

8 2.9460e+0
(3.14e-3) +

2.9745e+0
(1.33e-2) =

4.0810e+0
(6.91e-2) =

2.9173e+0
(2.24e-2) +

3.1392e+0
(5.51e-2) =

4.9472e+0
(1.21e-1) =

3.0881e+0
(1.91e-1) =

2.9572e+0
(2.51e-2) +

3.4861e+0
(6.04e-2) =

5.5914e+0
(4.23e-1) -

3.4471e+0
(1.34e-1)

10 5.0931e+0
(8.70e-3) +

5.1861e+0
(1.96e-1) +

6.4001e+0
(3.37e-1) =

5.4470e+0
(3.92e-1) +

4.9780e+0
(5.20e-2) +

7.3785e+0
(1.33e-1) =

6.4436e+0
(1.25e+0) =

5.8329e+0
(3.57e-1) =

5.9158e+0
(3.07e-1) =

8.1136e+0
(4.51e-1) =

6.4897e+0
(2.79e-1)

WFG6

15 9.5190e+0
(6.29e-1) +

9.5031e+0
(3.10e-1) =

1.2851e+1
(3.43e-1) =

8.9668e+0
(2.97e-1) +

7.9192e+0
(6.76e-2) +

1.2162e+1
(2.58e-1) =

1.7353e+1
(1.61e+0) -

1.2942e+1
(1.01e+0) =

9.7071e+0
(6.34e-1) =

1.3978e+1
(5.99e-1) =

1.2311e+1
(4.41e-1)

5 1.1779e+0
(3.81e-4) =

1.1786e+0
(1.09e-3) =

1.2379e+0
(3.51e-3) =

1.1359e+0
(9.07e-3) =

1.1131e+0
(8.75e-3) +

2.2694e+0
(1.21e-1) -

1.2245e+0
(7.45e-2) =

1.0844e+0
(6.80e-3) +

1.2254e+0
(1.88e-2) =

2.5592e+0
(2.61e-1) -

1.1790e+0
(8.96e-4)

8 2.9852e+0
(9.46e-2) +

2.9885e+0
(1.73e-2) +

3.6798e+0
(1.36e-1) =

2.9043e+0
(1.41e-2) +

3.0784e+0
(6.18e-2) =

4.7805e+0
(1.97e-1) =

3.0601e+0
(9.20e-2) +

2.9893e+0
(1.36e-1) +

3.3033e+0
(3.71e-2) =

4.8939e+0
(2.67e-1) =

3.6564e+0
(1.02e-1)

10 5.2801e+0
(2.80e-1) =

4.9728e+0
(8.57e-2) +

6.1055e+0
(1.52e-1) =

5.3889e+0
(3.53e-1) =

4.8913e+0
(4.64e-2) +

7.0929e+0
(2.82e-1) =

7.0331e+0
(1.26e+0) =

5.8424e+0
(6.40e-1) =

5.3193e+0
(1.14e-1) =

7.8188e+0
(1.82e-1) -

6.1075e+0
(2.30e-1)

WFG7

15 9.2938e+0
(1.68e-1) =

9.3590e+0
(8.87e-2) =

1.3230e+1
(3.87e-1) =

9.2634e+0
(4.00e-1) =

8.0336e+0
(6.99e-2) +

1.1447e+1
(5.49e-1) =

1.6107e+1
(2.10e+0) -

1.2709e+1
(1.49e+0) =

8.6518e+0
(2.79e-1) +

1.4471e+1
(1.06e+0) -

1.0748e+1
(6.52e-1)
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Table 3. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 1.1472e+0
(1.02e-3) =

1.1661e+0
(1.10e-3) =

1.2162e+0
(5.84e-3) =

1.1400e+0
(1.09e-2) =

1.2054e+0
(1.74e-2) =

1.8335e+0
(8.53e-2) -

2.9663e+0
(2.33e-2) -

1.1592e+0
(9.69e-3) =

1.2972e+0
(1.82e-2) -

3.3784e+0
(1.37e-1) -

1.1650e+0
(7.49e-3)

8 3.3276e+0
(2.49e-1) =

3.0507e+0
(2.76e-2) =

3.7669e+0
(2.90e-1) -

3.0518e+0
(5.11e-2) =

3.2510e+0
(3.13e-2) =

4.5738e+0
(2.91e-1) -

3.9781e+0
(2.19e-1) -

3.6896e+0
(1.75e-1) -

3.5565e+0
(5.96e-2) =

5.5816e+0
(1.52e-1) -

3.1320e+0
(4.87e-2)

10 5.2787e+0
(2.05e-1) =

5.4241e+0
(1.50e-1) =

6.2102e+0
(3.92e-1) =

6.1006e+0
(5.27e-2) =

5.1295e+0
(3.59e-2) =

6.9828e+0
(3.19e-1) -

9.8525e+0
(8.61e-1) -

6.5333e+0
(3.65e-1) -

5.6690e+0
(3.30e-1) =

7.7547e+0
(3.17e-1) -

5.4545e+0
(1.98e-1)

WFG8

15 9.2269e+0
(3.50e-1) =

9.3722e+0
(4.12e-1) =

1.0130e+1
(1.41e+0) =

1.0471e+1
(9.74e-2) =

8.5626e+0
(1.43e-1) =

1.1563e+1
(6.16e-1) =

2.0496e+1
(1.31e+0) -

1.3563e+1
(7.97e-1) -

9.9974e+0
(6.57e-1) =

1.6032e+1
(1.23e+0) -

9.6539e+0
(4.88e-1)

5 1.1341e+0
(4.81e-3) =

1.1516e+0
(2.23e-3) =

1.2059e+0
(7.03e-3) =

1.0822e+0
(7.74e-3) +

1.0869e+0
(1.39e-2) =

1.6886e+0
(1.23e-1) =

2.3146e+0
(2.54e-1) -

1.0572e+0
(8.93e-3) +

1.1729e+0
(1.62e-2) =

2.9145e+0
(1.98e-1) -

1.1538e+0
(2.79e-3)

8 2.9247e+0
(7.03e-3) +

2.9414e+0
(1.35e-2) +

3.9840e+0
(1.80e-1) =

2.9086e+0
(1.09e-2) +

3.0113e+0
(3.37e-2) =

4.2097e+0
(1.56e-1) =

3.7008e+0
(2.65e-2) =

2.9851e+0
(1.68e-1) +

3.2511e+0
(1.97e-2) =

5.1840e+0
(3.02e-1) -

3.7019e+0
(1.40e-1)

10 5.0369e+0
(6.00e-2) +

4.8586e+0
(4.37e-2) +

5.8592e+0
(1.71e-1) =

5.8720e+0
(3.64e-1) =

4.8288e+0
(4.52e-2) +

6.2180e+0
(2.16e-1) =

9.4215e+0
(4.85e+0) -

6.0315e+0
(4.38e-1) =

5.2228e+0
(6.75e-2) +

7.3969e+0
(5.36e-1) -

6.1223e+0
(2.84e-1)

WFG9

15 8.8033e+0
(1.31e-1) +

9.1527e+0
(1.13e-1) =

1.1313e+1
(2.56e-1) =

9.4323e+0
(3.35e-1) =

7.7558e+0
(6.43e-2) +

1.0228e+1
(3.92e-1) =

2.5788e+1
(2.36e+0) -

1.3614e+1
(5.47e-1) =

8.2391e+0
(1.93e-1) +

1.3847e+1
(1.03e+0) =

1.1519e+1
(1.06e+0)

+/−/= 10/1/29 18/0/22 6/1/33 9/7/24 13/7/20 6/9/23 3/17/20 9/10/21 6/10/24 0/25/15
Values with a gray background and bold indicate the highest performing values.

Table 4. The statistics of HV results (mean and standard deviation) on regular Pareto front problems.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 9.7445e-1
(6.83e-4) =

9.7474e-1
(1.99e-4) =

9.7480e-1
(1.78e-4) =

7.2922e-1
(1.94e-1) -

8.7340e-1
(5.27e-2) -

9.1956e-1
(6.91e-3) -

9.7386e-1
(1.41e-3) =

9.2996e-1
(2.24e-2) -

6.8276e-1
(1.34e-1) -

4.4217e-1
(3.72e-1) -

9.7449e-1
(1.06e-3)

8 9.7859e-1
(3.44e-2) =

9.9749e-1
(1.30e-4) =

9.9723e-1
(1.64e-4) =

5.3977e-1
(2.04e-1) -

7.2531e-1
(3.36e-1) -

9.7544e-1
(4.21e-3) =

9.1470e-1
(6.96e-2) -

9.0165e-1
(4.62e-2) -

1.5301e-1
(3.15e-1) -

8.8629e-1
(2.08e-1) -

9.9651e-1
(1.42e-3)

10 7.9573e-1
(3.40e-1) =

9.9041e-1
(9.60e-3) -

9.5904e-1
(1.28e-2) =

3.6111e-1
(2.14e-1) -

4.5272e-1
(3.88e-1) -

9.7933e-1
(4.65e-3) =

8.1983e-1
(5.88e-2) -

7.7192e-1
(8.24e-2) -

0.0000e+0
(0.00e+0) -

7.2894e-1
(3.40e-1) -

9.9135e-1
(5.89e-3)

DTLZ1

15 8.9601e-1
(2.27e-1) =

9.9864e-1
(8.66e-4) =

9.8946e-1
(8.74e-3) =

1.9429e-1
(2.46e-1) -

5.1852e-1
(3.52e-1) -

9.8989e-1
(2.84e-3) =

7.8704e-1
(1.19e-1) -

7.4953e-1
(8.65e-2) -

0.0000e+0
(0.00e+0) -

5.4963e-1
(3.59e-1) -

9.7005e-1
(1.01e-1)
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Table 4. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 7.9452e-1
(4.77e-4) =

7.9475e-1
(4.11e-4) =

7.9477e-1
(4.59e-4) =

7.9196e-1
(1.10e-3) -

7.7502e-1
(2.98e-3) -

7.7772e-1
(4.05e-3) -

7.9364e-1
(4.30e-4) =

7.7787e-1
(2.61e-3) -

7.7067e-1
(5.90e-3) -

6.9113e-1
(8.31e-3) -

7.9494e-1
(4.32e-4)

8 9.2286e-1
(5.93e-4) =

9.2373e-1
(2.45e-4) =

9.2381e-1
(1.95e-4) =

9.0219e-1
(1.77e-3) -

9.0306e-1
(3.26e-3) -

9.0561e-1
(3.79e-3) -

9.2462e-1
(4.94e-3) =

9.0145e-1
(1.63e-2) -

8.8595e-1
(8.16e-3) -

5.4370e-1
(1.93e-2) -

9.2430e-1
(3.58e-4)

10 9.1759e-1
(3.01e-2) -

9.4299e-1
(5.86e-4) =

8.9676e-1
(3.32e-2) -

9.4257e-1
(1.92e-2) =

9.1212e-1
(4.04e-3) -

9.2510e-1
(3.60e-3) =

7.9448e-1
(9.91e-2) -

8.1240e-1
(5.25e-2) -

9.3591e-1
(1.38e-2) =

3.7185e-1
(2.28e-2) -

9.4411e-1
(2.74e-4)

DTLZ2

15 9.7239e-1
(1.07e-2) -

9.9001e-1
(1.66e-3) =

9.9036e-1
(1.01e-4) =

9.7722e-1
(9.02e-3) =

9.0601e-1
(3.17e-2) -

9.6215e-1
(2.51e-3) -

8.1797e-1
(9.12e-2) -

8.1531e-1
(6.11e-2) -

9.7122e-1
(2.44e-2) =

3.3299e-1
(2.04e-2) -

9.8909e-1
(3.21e-3)

5 6.7969e-1
(2.16e-1) =

6.9463e-1
(2.38e-1) =

7.7565e-1
(9.61e-3) =

2.5930e-1
(1.28e-1) -

4.0105e-1
(2.12e-1) -

7.3334e-1
(1.73e-1) =

7.7908e-1
(6.79e-3) =

5.6362e-1
(3.88e-2) =

5.8856e-1
(1.53e-1) =

8.1682e-2
(1.31e-1) -

7.2889e-1
(1.68e-1)

8 1.9320e-1
(3.21e-1) =

9.0302e-1
(1.62e-2) +

9.0340e-1
(2.66e-2) +

2.4037e-3
(1.07e-2) =

0.0000e+0
(0.00e+0) =

8.9914e-1
(3.49e-3) +

8.8245e-1
(6.73e-2) +

3.7344e-1
(5.45e-2) =

0.0000e+0
(0.00e+0) =

3.0866e-1
(2.38e-1) =

1.5318e-1
(2.86e-1)

10 6.1488e-2
(1.89e-1) =

6.6707e-1
(3.95e-1) +

5.9787e-1
(2.85e-1) +

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

9.0792e-1
(1.71e-2) +

4.0882e-1
(6.39e-2) +

2.4789e-1
(5.09e-2) +

0.0000e+0
(0.00e+0) =

1.6483e-1
(1.71e-1) =

8.3074e-3
(3.72e-2)

DTLZ3

15 2.6072e-2
(1.17e-1) -

7.1219e-1
(4.32e-1) +

8.8444e-1
(3.03e-1) +

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

9.5603e-1
(7.09e-3) +

4.1409e-1
(1.40e-2) +

2.0381e-1
(5.24e-2) +

0.0000e+0
(0.00e+0) =

1.6375e-1
(1.61e-1) =

3.3290e-2
(1.49e-1)

5 7.5819e-1
(6.72e-2) +

7.9009e-1
(2.05e-2) +

7.9489e-1
(3.71e-4) +

7.8263e-1
(2.93e-2) =

7.7286e-1
(2.72e-3) =

7.7485e-1
(3.20e-2) =

7.8840e-1
(1.99e-2) =

7.3467e-1
(7.13e-2) =

7.7713e-1
(4.36e-3) =

6.5731e-1
(2.34e-2) =

6.5151e-1
(1.40e-1)

8 9.0144e-1
(4.70e-2) =

9.2273e-1
(5.05e-3) =

9.2005e-1
(1.23e-2) =

9.0529e-1
(2.44e-3) =

8.9471e-1
(7.63e-3) -

9.1400e-1
(8.62e-3) =

9.2243e-1
(1.35e-2) =

8.8648e-1
(2.37e-2) =

9.0248e-1
(4.71e-3) =

6.2783e-1
(1.50e-2) -

8.9543e-1
(4.67e-2)

10 9.1619e-1
(3.44e-2) =

9.3739e-1
(1.04e-2) =

9.3990e-1
(8.71e-3) +

9.5028e-1
(6.66e-3) +

9.1340e-1
(5.26e-3) =

9.2854e-1
(2.45e-2) =

9.0488e-1
(4.29e-2) =

8.7536e-1
(2.80e-2) =

9.3980e-1
(7.57e-3) =

5.0318e-1
(1.71e-2) -

9.0367e-1
(3.34e-2)

DTLZ4

15 9.7878e-1
(1.38e-2) =

9.9006e-1
(1.58e-3) =

9.8737e-1
(5.21e-3) =

9.8316e-1
(1.53e-3) =

9.4736e-1
(6.36e-3) -

9.7632e-1
(3.98e-3) -

9.8177e-1
(6.27e-3) =

9.3833e-1
(1.61e-2) -

9.8405e-1
(1.37e-3) =

4.6594e-1
(2.54e-2) -

9.8540e-1
(6.36e-3)

5 7.9181e-1
(9.28e-4) =

7.9117e-1
(7.27e-4) =

7.5901e-1
(3.01e-3) -

7.7689e-1
(2.19e-3) -

7.5984e-1
(3.45e-3) -

6.4131e-1
(1.67e-2) -

7.9177e-1
(4.54e-3) =

7.6781e-1
(3.65e-3) -

7.7018e-1
(2.76e-3) -

5.1390e-1
(3.59e-2) -

7.9441e-1
(3.99e-4)

8 9.1731e-1
(1.18e-3) =

9.1490e-1
(1.57e-3) =

8.0047e-1
(1.82e-2) -

8.6480e-1
(3.28e-3) =

8.8394e-1
(6.74e-3) =

7.4214e-1
(1.48e-2) -

8.8688e-1
(5.35e-2) =

8.2498e-1
(4.13e-2) =

9.0910e-1
(2.06e-3) =

6.5714e-1
(4.93e-2) -

8.9440e-1
(4.02e-3)

10 9.2661e-1
(1.43e-2) +

9.2341e-1
(6.36e-3) =

7.8139e-1
(2.12e-2) =

8.5246e-1
(1.86e-2) =

8.9702e-1
(5.20e-3) =

7.5910e-1
(1.44e-2) =

6.1392e-1
(6.58e-2) -

7.1772e-1
(4.83e-2) =

9.4481e-1
(2.19e-3) +

5.0636e-1
(5.61e-2) -

8.2188e-1
(3.36e-2)

WFG4

15 9.8426e-1
(3.06e-3) +

9.8066e-1
(2.29e-3) =

6.3829e-1
(3.53e-2) -

9.2764e-1
(9.45e-3) =

9.2742e-1
(6.45e-3) =

8.3187e-1
(9.58e-3) =

5.7310e-1
(7.35e-2) -

7.1063e-1
(5.61e-2) =

9.8284e-1
(1.19e-3) +

5.8568e-1
(9.44e-2) -

8.8006e-1
(1.96e-2)
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Table 4. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 7.4401e-1
(2.81e-4) =

7.4369e-1
(4.97e-4) =

7.1779e-1
(9.38e-4) -

7.3684e-1
(2.15e-3) =

7.1999e-1
(3.92e-3) -

6.0838e-1
(1.53e-2) -

7.1703e-1
(7.74e-3) -

7.2217e-1
(2.24e-3) -

7.2455e-1
(4.38e-3) -

4.6665e-1
(3.40e-2) -

7.4382e-1
(4.31e-4)

8 8.6286e-1
(4.22e-4) +

8.6201e-1
(5.63e-4) =

7.7454e-1
(7.56e-3) =

8.2472e-1
(4.21e-3) =

8.3507e-1
(3.56e-3) =

7.0016e-1
(1.95e-2) -

7.7164e-1
(1.48e-2) =

8.3767e-1
(2.27e-3) =

8.4466e-1
(2.75e-3) =

5.8823e-1
(3.12e-2) -

8.3371e-1
(6.76e-3)

10 8.7483e-1
(1.11e-3) =

8.7858e-1
(7.04e-4) =

7.6553e-1
(1.54e-2) =

7.9456e-1
(5.63e-2) =

8.3937e-1
(3.76e-3) =

7.0823e-1
(1.10e-2) =

4.5913e-1
(2.33e-1) -

6.8096e-1
(1.96e-2) -

8.8309e-1
(1.84e-3) +

5.1575e-1
(3.29e-2) -

7.8965e-1
(4.23e-3)

WFG5

15 9.1576e-1
(2.29e-3) +

9.1693e-1
(1.97e-4) +

6.0793e-1
(1.82e-2) =

8.3840e-1
(7.57e-3) =

8.6302e-1
(3.57e-3) =

7.7648e-1
(8.71e-3) =

2.6015e-1
(8.40e-2) -

6.7442e-1
(3.35e-2) =

9.1170e-1
(9.17e-4) =

5.5500e-1
(2.57e-2) -

8.1591e-1
(1.44e-2)

5 7.2318e-1
(1.10e-2) =

7.2920e-1
(1.97e-2) =

6.8940e-1
(1.97e-2) -

7.2182e-1
(1.23e-2) =

7.0264e-1
(1.23e-2) -

5.3602e-1
(2.83e-2) -

7.2550e-1
(1.81e-2) =

7.0845e-1
(1.03e-2) =

7.0327e-1
(1.40e-2) -

4.6102e-1
(6.92e-2) -

7.3274e-1
(1.76e-2)

8 8.3760e-1
(1.30e-2) =

8.3307e-1
(1.55e-2) =

7.2865e-1
(2.67e-2) =

8.1120e-1
(1.75e-2) =

8.2292e-1
(1.23e-2) =

6.0933e-1
(2.77e-2) -

8.3858e-1
(2.35e-2) =

8.2080e-1
(1.38e-2) =

8.1567e-1
(2.53e-2) =

5.1901e-1
(8.42e-2) -

8.1384e-1
(2.19e-2)

10 8.4862e-1
(2.08e-2) +

7.1195e-1
(7.33e-2) =

6.8971e-1
(7.31e-2) =

8.1882e-1
(3.61e-2) =

8.3499e-1
(1.90e-2) +

6.0902e-1
(3.15e-2) =

6.6231e-1
(8.72e-2) =

7.1181e-1
(3.15e-2) =

8.5282e-1
(2.58e-2) +

3.7456e-1
(7.60e-2) -

7.2360e-1
(3.88e-2)

WFG6

15 8.7959e-1
(2.04e-2) +

7.6000e-1
(6.03e-2) =

5.8484e-1
(3.85e-2) =

8.5613e-1
(3.25e-2) +

8.7018e-1
(2.34e-2) +

6.8213e-1
(3.13e-2) =

4.8279e-1
(9.63e-2) -

7.0208e-1
(6.24e-2) =

8.7608e-1
(3.07e-2) +

3.8271e-1
(1.50e-1) -

7.1964e-1
(3.65e-2)

5 7.9232e-1
(5.58e-4) =

7.9020e-1
(5.84e-4) =

7.6258e-1
(3.26e-3) -

7.9198e-1
(1.23e-3) =

7.7048e-1
(3.26e-3) -

5.7933e-1
(1.57e-2) -

7.8755e-1
(1.14e-2) =

7.7235e-1
(2.39e-3) -

7.7682e-1
(3.92e-3) -

5.5536e-1
(5.85e-2) -

7.9267e-1
(7.07e-4)

8 9.1731e-1
(8.91e-3) +

9.0906e-1
(2.65e-3) +

8.5204e-1
(1.46e-2) =

8.8829e-1
(3.16e-3) =

9.0314e-1
(2.47e-3) =

6.9558e-1
(1.44e-2) -

9.1987e-1
(8.57e-3) +

8.8851e-1
(2.54e-2) =

8.9282e-1
(6.59e-3) =

6.5626e-1
(3.85e-2) -

8.8981e-1
(7.83e-3)

10 9.1643e-1
(2.66e-2) +

9.1581e-1
(1.48e-2) +

8.4180e-1
(1.91e-2) =

9.0144e-1
(3.72e-2) +

9.1959e-1
(2.29e-3) +

7.1700e-1
(1.20e-2) =

7.0793e-1
(9.88e-2) =

7.9733e-1
(5.99e-2) =

9.4092e-1
(6.13e-3) +

4.9267e-1
(4.28e-2) =

7.8561e-1
(5.93e-2)

WFG7

15 9.7867e-1
(8.20e-3) +

9.6776e-1
(1.64e-2) =

7.2921e-1
(2.71e-2) -

9.4505e-1
(1.02e-2) =

9.5253e-1
(3.55e-3) =

8.3546e-1
(1.05e-2) =

6.5207e-1
(1.37e-1) -

8.0399e-1
(7.26e-2) =

9.7224e-1
(2.25e-2) +

5.1957e-1
(4.19e-2) -

9.1922e-1
(2.21e-2)

5 6.8384e-1
(1.74e-3) =

6.7482e-1
(1.90e-3) =

6.6150e-1
(5.30e-3) =

6.7519e-1
(3.51e-3) =

6.3141e-1
(1.02e-2) -

4.9476e-1
(2.52e-2) -

3.1729e-1
(5.04e-3) -

6.3802e-1
(7.53e-3) -

6.4122e-1
(3.73e-3) -

2.5469e-1
(2.45e-2) -

6.8862e-1
(1.84e-2)

8 7.8235e-1
(1.58e-2) =

7.5333e-1
(5.05e-2) =

7.0989e-1
(5.57e-2) -

7.4690e-1
(2.93e-2) -

7.1925e-1
(1.32e-2) -

4.9836e-1
(4.64e-2) -

5.9695e-1
(1.62e-2) -

7.5766e-1
(5.69e-3) =

7.6525e-1
(2.14e-2) =

3.3579e-1
(3.54e-2) -

7.9681e-1
(1.82e-2)

10 7.7140e-1
(2.08e-2) -

6.7892e-1
(1.03e-1) =

5.4606e-1
(9.19e-2) -

8.3029e-1
(3.51e-3) =

7.6167e-1
(1.31e-2) =

4.4671e-1
(1.05e-1) -

5.0403e-1
(5.99e-2) -

7.4356e-1
(3.18e-2) =

8.3607e-1
(1.61e-2) =

3.3122e-1
(6.65e-2) -

7.8217e-1
(4.05e-2)

WFG8

15 8.9846e-1
(3.27e-2) =

6.2231e-1
(1.51e-1) =

7.8402e-1
(1.61e-1) =

8.9771e-1
(3.46e-3) =

8.3930e-1
(1.18e-2) =

4.9365e-1
(1.21e-1) =

3.5405e-1
(2.93e-2) -

7.5496e-1
(4.13e-2) =

9.0642e-1
(3.28e-2) =

3.5295e-1
(4.79e-2) -

7.7807e-1
(9.72e-2)
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Table 4. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 7.4945e-1
(3.96e-3) =

7.5331e-1
(2.64e-3) =

7.0773e-1
(1.05e-2) -

7.4748e-1
(4.00e-3) =

7.1279e-1
(3.10e-2) -

6.0632e-1
(2.27e-2) -

5.4358e-1
(6.03e-2) -

7.4085e-1
(1.04e-2) =

7.4861e-1
(4.56e-3) =

4.7813e-1
(7.60e-2) -

7.5359e-1
(6.59e-3)

8 8.5651e-1
(1.02e-2) =

8.4512e-1
(2.11e-2) =

7.3318e-1
(3.11e-2) -

8.1055e-1
(6.25e-3) =

8.0206e-1
(4.38e-2) =

6.9038e-1
(1.70e-2) -

7.3246e-1
(4.16e-2) =

8.3368e-1
(4.61e-2) =

8.6422e-1
(5.93e-3) +

5.0669e-1
(5.87e-2) -

8.2049e-1
(1.04e-2)

10 8.1980e-1
(4.00e-2) +

8.3437e-1
(4.86e-2) +

6.8055e-1
(4.60e-2) =

8.0898e-1
(2.22e-2) +

7.2545e-1
(7.49e-2) =

6.9802e-1
(3.01e-2) =

5.4897e-1
(2.51e-1) -

7.2526e-1
(3.28e-2) =

8.4307e-1
(7.94e-2) +

4.7902e-1
(7.68e-2) -

7.3618e-1
(4.35e-2)

WFG9

15 8.7522e-1
(6.70e-2) =

8.0448e-1
(8.41e-2) =

5.3211e-1
(6.45e-2) =

8.7297e-1
(7.29e-3) =

7.7153e-1
(7.07e-2) =

7.2418e-1
(3.96e-2) =

2.3669e-1
(8.53e-2) -

7.0360e-1
(2.14e-2) =

8.7984e-1
(6.84e-2) +

3.7213e-1
(5.37e-2) -

7.5320e-1
(6.12e-2)

+/−/= 11/4/25 8/1/31 5/12/23 4/9/27 3/18/19 3/18/19 4/19/17 2/14/24 10/11/19 0/35/5
Values with a gray background and bold indicate the highest performing values.

Table 5. The statistics of IGD results (mean and standard deviation ) on irregular Pareto front problems.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 4.3763e-1
(2.48e-3) =

4.2703e-1
(7.27e-3) =

5.7320e-1
(2.76e-2) -

5.2792e-1
(1.65e-2) -

4.3439e-1
(5.09e-3) =

7.7381e-1
(4.11e-2) -

4.8710e-1
(5.33e-2) =

6.3240e-1
(2.74e-1) -

4.7835e-1
(8.50e-3) =

1.3799e+0
(7.74e-2) -

4.3896e-1
(1.35e-2)

8 8.5684e-1
(1.70e-2) +

9.9409e-1
(2.61e-2) =

1.2687e+0
(3.09e-2) =

1.2958e+0
(1.05e-1) =

8.5863e-1
(1.80e-2) +

1.6551e+0
(5.31e-2) -

1.0137e+0
(4.70e-2) =

1.2428e+0
(1.67e-1) =

9.1226e-1
(2.05e-2) =

1.9021e+0
(9.12e-2) -

1.0714e+0
(6.72e-2)

10 1.1045e+0
(4.14e-2) +

1.1803e+0
(5.01e-2) =

1.3073e+0
(4.98e-2) =

1.2322e+0
(3.73e-2) =

1.1649e+0
(3.77e-2) =

1.8378e+0
(4.75e-2) -

1.6505e+0
(2.87e-1) =

1.7124e+0
(1.10e-1) =

1.2300e+0
(5.48e-2) =

2.2529e+0
(1.35e-1) -

1.2659e+0
(7.63e-2)

WFG1

15 1.7627e+0
(1.73e-1) =

1.7656e+0
(8.18e-2) =

2.0243e+0
(4.21e-2) -

2.1833e+0
(8.03e-2) =

1.6914e+0
(4.07e-2) +

2.4310e+0
(2.93e-2) -

2.3159e+0
(3.44e-1) =

2.3973e+0
(1.71e-1) -

1.7580e+0
(8.89e-2) =

2.4192e+0
(1.12e-1) -

2.0205e+0
(1.38e-1)

5 4.7258e-1
(1.61e-3) =

4.4635e-1
(7.97e-3) +

5.9445e-1
(1.75e-2) -

5.1884e-1
(1.93e-2) =

4.5852e-1
(1.06e-2) =

7.5509e-1
(6.80e-2) -

4.9571e-1
(5.82e-2) =

5.1193e-1
(1.41e-2) =

5.3244e-1
(2.11e-2) =

1.2339e+0
(1.61e-1) -

4.9566e-1
(1.20e-2)

8 1.0251e+0
(1.49e-1) +

9.8987e-1
(3.76e-2) +

1.3887e+0
(7.41e-3) =

9.9952e-1
(4.00e-2) +

9.3494e-1
(1.36e-2) +

1.7585e+0
(5.83e-2) =

1.1633e+0
(8.18e-2) =

1.1219e+0
(6.75e-2) =

1.0754e+0
(2.65e-2) =

1.6155e+0
(1.45e-1) =

1.2565e+0
(7.91e-2)

10 1.2731e+0
(1.10e-1) +

1.3391e+0
(5.43e-2) =

1.3921e+0
(2.79e-2) =

1.2425e+0
(3.07e-2) +

1.2704e+0
(2.75e-2) +

1.9548e+0
(3.12e-2) =

3.6023e+0
(1.31e+0) -

1.7745e+0
(1.24e-1) =

1.3538e+0
(5.68e-2) =

1.9002e+0
(1.18e-1) =

1.4900e+0
(7.45e-2)

WFG2

15 1.7568e+0
(7.68e-2) +

1.8593e+0
(7.82e-2) =

2.1867e+0
(1.28e-2) =

1.9310e+0
(7.96e-2) =

1.7408e+0
(4.06e-2) +

2.5204e+0
(3.41e-2) =

6.6940e+0
(2.93e+0) -

3.4687e+0
(8.07e-1) -

2.1834e+0
(6.70e-1) =

2.4038e+0
(1.86e-1) =

2.0867e+0
(6.94e-2)
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Table 5. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 5.7985e-1
(5.75e-2) =

5.3607e-1
(2.44e-2) =

6.5151e-1
(1.60e-2) -

3.9129e-1
(5.46e-2) =

6.4405e-1
(5.43e-2) -

1.3522e+0
(1.38e-1) -

1.6372e+0
(1.05e-1) -

1.8622e-1
(1.89e-2) =

5.1336e-1
(1.12e-1) =

1.9841e+0
(1.67e-1) -

4.2348e-1
(4.38e-2)

8 1.8370e+0
(1.69e-1) =

2.1256e+0
(2.26e-1) -

1.9315e+0
(4.52e-2) =

8.7246e-1
(1.54e-1) =

1.4043e+0
(1.42e-1) =

3.5082e+0
(2.44e-1) -

8.1822e+0
(5.24e-1) -

4.2602e-1
(5.06e-2) =

1.0357e+0
(1.28e-1) =

2.5689e+0
(1.38e-1) -

1.2569e+0
(2.44e-1)

10 2.4770e+0
(6.82e-1) =

3.7778e+0
(8.33e-1) =

3.5789e+0
(8.03e-2) -

1.2130e+0
(3.20e-1) =

2.2790e+0
(1.41e-1) =

5.2499e+0
(3.85e-1) -

1.0781e+1
(1.63e-2) -

7.6424e-1
(6.15e-2) +

1.6473e+0
(4.32e-1) =

3.0888e+0
(2.33e-1) =

2.2771e+0
(2.47e-1)

WFG3

15 3.2573e+0
(1.56e+0) =

6.4004e+0
(6.13e-1) =

7.0248e+0
(7.97e-2) =

2.9457e+0
(4.56e-1) =

3.9182e+0
(2.58e-1) =

9.0113e+0
(6.27e-1) -

1.6367e+1
(1.22e-1) -

1.2029e+0
(1.30e-1) +

3.1922e+0
(1.13e+0) =

3.8134e+0
(3.61e-1) =

4.6338e+0
(1.83e+0)

5 1.3877e-1
(1.20e-2) =

1.6943e-1
(3.10e-2) =

1.4976e-1
(4.18e-2) =

9.2744e-2
(5.24e-2) +

7.5948e-2
(2.50e-2) +

6.3014e-2
(7.09e-3) +

1.1349e-1
(4.48e-4) =

1.0173e-1
(1.52e-2) =

6.9447e-2
(9.59e-3) +

9.3350e-2
(2.02e-3) +

1.2815e-1
(1.07e-2)

8 1.3904e-1
(2.55e-3) =

2.5503e-1
(2.12e-2) -

2.1694e-1
(1.26e-2) -

1.4064e-1
(5.80e-2) =

1.0844e-1
(9.80e-3) =

1.4418e-1
(2.55e-2) =

1.7282e-1
(6.49e-3) -

1.1508e-1
(4.10e-3) =

1.0695e-1
(8.29e-3) =

1.2410e-1
(2.63e-3) =

1.1773e-1
(8.75e-3)

10 1.5184e-1
(3.83e-3) =

3.3838e-1
(2.79e-1) -

2.3764e-1
(1.67e-2) -

1.4594e-1
(3.58e-3) =

1.2986e-1
(2.16e-3) =

2.1874e-1
(2.69e-2) -

1.9732e-1
(9.01e-3) -

1.4482e-1
(2.72e-3) =

1.6989e-1
(2.82e-2) =

1.9992e-1
(1.17e-2) -

1.5090e-1
(2.51e-2)

IDTLZ1

15 1.7344e-1
(5.50e-3) =

3.5878e-1
(3.79e-2) -

3.2455e-1
(2.24e-2) -

1.6182e-1
(4.32e-3) +

1.5011e-1
(2.07e-3) +

2.4553e-1
(1.52e-2) =

2.0895e-1
(1.05e-2) =

1.7398e-1
(4.15e-3) =

2.1355e-1
(1.87e-2) =

1.9532e-1
(1.11e-2) =

2.1245e-1
(3.56e-2)

5 2.4190e-1
(5.44e-3) -

2.9419e-1
(3.95e-3) -

2.8127e-1
(4.30e-3) -

2.1326e-1
(4.75e-3) =

2.0440e-1
(1.67e-3) =

2.5915e-1
(9.82e-3) -

3.1766e-1
(1.14e-3) -

2.0289e-1
(2.91e-3) =

2.1082e-1
(1.01e-2) =

2.1807e-1
(2.45e-3) -

2.0018e-1
(2.34e-3)

8 5.0621e-1
(1.72e-2) =

6.1261e-1
(9.08e-3) -

6.4034e-1
(1.50e-2) -

4.1458e-1
(8.78e-3) =

3.7173e-1
(2.22e-3) +

4.6632e-1
(8.31e-3) =

5.8693e-1
(4.95e-3) -

3.9305e-1
(3.81e-3) =

3.7462e-1
(9.16e-3) +

4.0326e-1
(5.43e-3) =

4.1513e-1
(6.97e-3)

10 6.6693e-1
(1.08e-2) -

7.4191e-1
(2.92e-2) -

7.4320e-1
(7.47e-3) -

7.1634e-1
(6.87e-3) -

4.8555e-1
(2.52e-3) =

5.4783e-1
(9.96e-3) =

7.3122e-1
(4.32e-3) -

4.9761e-1
(8.15e-3) =

5.0793e-1
(1.00e-2) =

6.7932e-1
(2.46e-2) -

5.0341e-1
(3.00e-2)

IDTLZ2

15 7.5765e-1
(1.05e-2) =

8.6127e-1
(1.61e-2) -

9.4808e-1
(2.24e-2) -

8.1442e-1
(2.82e-3) =

5.9595e-1
(2.91e-3) =

6.7362e-1
(1.05e-2) =

8.4968e-1
(5.02e-3) -

6.3880e-1
(6.51e-3) =

6.0566e-1
(7.51e-2) =

7.8799e-1
(3.68e-2) =

7.3338e-1
(2.61e-2)

5 4.9209e-2
(6.12e-3) -

1.4546e-1
(1.31e-1) -

7.2132e-2
(9.06e-3) -

3.5135e-2
(2.16e-3) =

4.2317e-3
(1.44e-4) =

3.5988e-3
(1.13e-4) =

1.8971e-1
(5.01e-3) -

8.1507e-3
(5.30e-3) =

7.8461e-3
(3.97e-3) =

3.8586e-2
(4.04e-5) -

6.1167e-3
(2.59e-3)

8 2.0372e-1
(3.12e-1) =

9.4023e-2
(2.31e-2) -

1.1045e-1
(8.81e-3) -

2.3535e-1
(1.59e-1) -

1.9749e-1
(3.36e-1) =

2.8668e-3
(4.66e-5) =

6.5428e-1
(1.14e-1) -

1.1790e-2
(1.12e-2) =

4.5226e-1
(5.92e-1) =

2.2094e-2
(6.17e-5) =

2.0848e-2
(6.50e-2)

10 4.5421e-1
(2.70e-1) =

4.7214e-1
(2.48e-1) =

1.1834e-1
(7.92e-3) +

3.7700e+0
(3.12e+0) -

4.2887e-1
(1.74e-1) =

4.0812e-3
(8.43e-5) +

7.2602e-1
(3.76e-2) -

1.3724e-1
(2.74e-1) =

6.6445e+0
(8.50e+0) -

2.2695e-2
(1.14e-4) =

2.3084e-1
(1.96e-1)

MaF6

15 7.7284e-1
(3.76e-1) =

2.1311e-1
(1.20e-1) =

1.4040e-1
(2.16e-2) =

7.9855e+0
(4.61e+0) -

5.5530e-1
(1.57e-1) =

3.3259e-3
(6.97e-5) +

6.6196e-1
(1.45e-1) =

8.8412e-1
(3.80e-1) =

3.8003e+1
(2.19e+1) -

2.7151e-2
(7.61e-4) =

3.2864e-1
(2.21e-1)
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Table 5. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 3.3473e-1
(1.97e-2) =

5.6398e-1
(1.21e-2) -

3.0005e+0
(1.21e-6) -

2.6696e-1
(9.27e-3) =

3.3410e-1
(7.69e-3) =

3.9662e-1
(3.01e-2) -

5.1937e-1
(1.30e-1) -

1.1444e+0
(4.81e-1) -

3.0591e-1
(9.36e-3) =

1.3205e+0
(3.57e-1) -

2.9835e-1
(6.16e-2)

8 7.9127e-1
(3.08e-2) =

1.5450e+0
(3.72e-1) =

1.7534e+0
(5.71e-1) -

8.0542e-1
(3.94e-2) =

7.1434e-1
(1.18e-2) =

1.1871e+0
(8.97e-2) =

3.2650e+0
(9.64e-1) -

4.0721e+0
(5.54e-2) -

6.5912e-1
(9.45e-2) +

1.3085e+0
(1.77e-1) =

9.5358e-1
(8.11e-2)

10 1.5092e+0
(3.79e-1) =

1.8784e+0
(3.89e-1) =

2.5362e+0
(2.28e-1) -

3.4870e+0
(7.43e-1) -

1.1072e+0
(1.73e-2) =

2.4877e+0
(3.53e-1) =

5.5595e+0
(7.33e-2) -

5.5731e+0
(9.47e-2) -

1.1574e+0
(3.98e-2) =

1.6219e+0
(1.44e-1) =

1.5823e+0
(5.09e-1)

MaF7

15 7.6141e+0
(1.11e+0) =

2.4102e+0
(1.46e-1) =

3.4812e+0
(9.98e-2) =

9.5308e+0
(1.15e+0) -

2.6545e+0
(1.68e-1) =

3.0238e+0
(2.36e-1) +

1.0955e+1
(1.27e-1) -

1.1075e+1
(1.46e-1) -

2.6701e+0
(3.78e-1) =

1.9906e+0
(4.25e-2) +

3.6462e+0
(1.58e+0)

+/−/= 5/3/20 2/11/15 1/17/10 4/7/17 8/1/19 4/12/12 0/19/9 2/7/19 3/2/23 2/12/14
Values with a gray background and bold indicate the highest performing values.

Table 6. The statistics of HV results (mean and standard deviation ) on irregular Pareto front problems.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 9.9818e-1
(8.37e-5) +

9.9726e-1
(2.92e-4) =

9.7249e-1
(1.08e-2) -

9.6878e-1
(6.47e-3) -

9.9653e-1
(5.19e-4) =

9.8482e-1
(3.68e-3) =

9.9517e-1
(3.20e-3) =

9.9686e-1
(8.52e-4) =

9.9015e-1
(1.62e-3) =

9.3906e-1
(1.77e-2) -

9.9589e-1
(1.35e-3)

8 9.9956e-1
(1.41e-4) =

9.9660e-1
(1.19e-3) =

9.8806e-1
(6.81e-3) -

9.8069e-1
(5.34e-3) -

9.9951e-1
(2.50e-4) =

9.9480e-1
(1.29e-3) =

9.9955e-1
(2.89e-4) =

9.9985e-1
(4.95e-5) +

9.9560e-1
(1.23e-3) =

9.8159e-1
(1.77e-2) -

9.9805e-1
(1.56e-3)

10 9.9946e-1
(1.92e-4) =

9.9290e-1
(1.87e-2) =

9.9056e-1
(1.54e-3) -

9.8273e-1
(4.86e-3) -

9.9839e-1
(5.22e-3) =

9.9493e-1
(2.95e-3) =

9.8018e-1
(2.85e-2) -

9.9900e-1
(2.78e-4) =

9.9321e-1
(2.84e-3) =

6.9429e-1
(1.02e-1) -

9.9794e-1
(1.90e-3)

WFG1

15 9.9987e-1
(8.13e-5) +

9.9781e-1
(5.67e-4) =

9.9471e-1
(1.23e-3) =

9.7960e-1
(7.87e-3) -

9.9980e-1
(1.81e-4) +

9.9837e-1
(7.03e-4) =

9.9197e-1
(2.90e-2) =

9.9926e-1
(3.00e-4) =

9.9487e-1
(2.50e-3) =

9.9907e-1
(8.82e-4) =

9.9823e-1
(6.81e-4)

5 9.9606e-1
(5.34e-4) +

9.9377e-1
(1.24e-3) +

9.7369e-1
(3.57e-3) =

9.6773e-1
(5.39e-3) =

9.8968e-1
(1.56e-3) =

9.7357e-1
(8.38e-3) =

9.9504e-1
(1.46e-3) +

9.9104e-1
(2.43e-3) +

9.9148e-1
(8.40e-4) +

9.4712e-1
(2.41e-2) =

9.7663e-1
(5.73e-3)

8 9.9670e-1
(2.02e-3) +

9.8631e-1
(3.95e-3) =

9.5920e-1
(6.10e-3) =

9.8288e-1
(3.00e-3) =

9.9448e-1
(1.42e-3) +

9.8936e-1
(3.67e-3) =

9.9021e-1
(8.43e-3) +

9.9782e-1
(6.66e-4) +

9.9484e-1
(1.00e-3) +

9.9286e-1
(4.22e-3) +

9.8073e-1
(9.26e-3)

10 9.9543e-1
(2.89e-3) +

9.5962e-1
(7.32e-3) =

9.5709e-1
(1.51e-2) =

9.7365e-1
(6.35e-3) =

9.9454e-1
(1.11e-3) +

9.9038e-1
(4.10e-3) =

9.3027e-1
(4.38e-2) =

9.9215e-1
(2.99e-3) =

9.9388e-1
(1.31e-3) +

9.8394e-1
(8.65e-3) =

9.7762e-1
(1.10e-2)

WFG2

15 9.9533e-1
(2.40e-3) +

9.7186e-1
(6.44e-3) =

9.4984e-1
(7.76e-3) -

9.7330e-1
(4.20e-3) =

9.9435e-1
(1.43e-3) =

9.9379e-1
(1.80e-3) =

9.1210e-1
(9.92e-2) =

9.9310e-1
(3.03e-3) =

9.8116e-1
(1.77e-2) =

9.9805e-1
(1.37e-3) +

9.8044e-1
(1.17e-2)



Mathematics 2023, 11, 413 21 of 27

Table 6. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 1.4415e-1
(1.21e-2) =

1.5086e-1
(2.42e-2) =

1.3853e-1
(1.04e-2) =

2.2197e-1
(6.94e-3) =

1.1825e-1
(1.42e-2) -

7.5251e-2
(9.70e-3) -

9.1522e-2
(1.28e-3) -

2.5815e-1
(3.53e-3) =

1.3382e-1
(3.35e-2) =

9.1321e-2
(1.78e-3) -

1.8951e-1
(1.89e-2)

8 3.0692e-2
(2.17e-2) =

0.0000e+0
(0.00e+0) -

1.2629e-2
(2.01e-2) =

6.1026e-2
(3.43e-2) =

7.4054e-2
(1.16e-2) =

1.8164e-3
(5.71e-3) -

1.0959e-1
(1.15e-2) +

1.7058e-1
(9.62e-3) +

1.4500e-2
(1.81e-2) =

8.8931e-2
(1.11e-3) =

4.9728e-2
(2.35e-2)

10 3.3450e-4
(1.50e-3) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

4.0702e-2
(1.34e-2) +

0.0000e+0
(0.00e+0) =

6.6617e-2
(1.20e-2) +

1.0830e-1
(2.57e-2) +

0.0000e+0
(0.00e+0) =

6.8982e-2
(1.21e-2) +

0.0000e+0
(0.00e+0)

WFG3

15 0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

8.0927e-2
(3.03e-2) +

0.0000e+0
(0.00e+0)

5 4.0580e-3
(4.82e-4) =

2.1929e-3
(8.90e-4) =

3.4664e-3
(1.52e-3) =

8.4108e-3
(2.72e-3) +

9.5217e-3
(2.24e-3) +

1.1215e-2
(6.20e-4) +

5.4766e-3
(1.64e-4) =

6.0996e-3
(1.10e-3) =

1.0326e-2
(6.70e-4) +

5.6683e-3
(4.84e-4) =

4.4935e-3
(5.78e-4)

8 2.8381e-5
(1.62e-6) =

1.6134e-6
(8.18e-7) -

4.6963e-6
(1.25e-6) -

1.7708e-5
(9.13e-6) =

2.5929e-5
(5.19e-6) =

2.1458e-5
(8.64e-6) =

1.2294e-5
(2.25e-6) -

1.5408e-5
(3.71e-6) =

2.7932e-5
(3.30e-6) =

6.2207e-6
(3.10e-6) -

2.5223e-5
(5.26e-6)

10 3.2493e-7
(6.00e-8) +

6.9530e-9
(3.94e-9) =

3.3081e-8
(1.04e-8) =

4.3696e-7
(3.63e-8) +

4.3673e-7
(6.15e-7) =

6.9543e-8
(4.76e-8) =

9.0415e-8
(1.72e-8) =

1.2929e-7
(3.65e-7) =

1.3217e-7
(9.40e-8) =

3.9739e-9
(1.26e-8) =

1.2519e-7
(1.61e-7)

IDTLZ1

15 2.7453e-12
(8.09e-13) +

2.8542e-14
(2.37e-14) =

3.9124e-14
(1.62e-14) +

7.7987e-12
(1.98e-12) +

0.0000e+0
(0.00e+0) =

5.0748e-13
(2.39e-13) +

1.0568e-12
(2.67e-13) +

0.0000e+0
(0.00e+0) =

7.1252e-13
(8.34e-13) +

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0)

5 6.9370e-2
(7.98e-3) =

6.1728e-2
(1.77e-3) -

7.6538e-2
(2.85e-3) =

1.1600e-1
(8.42e-4) +

1.0137e-1
(1.34e-3) =

1.2134e-1
(1.15e-3) +

4.7511e-2
(7.64e-4) -

1.1436e-1
(1.74e-3) =

1.0548e-1
(4.45e-3) =

6.8911e-2
(3.73e-3) =

8.4106e-2
(4.11e-3)

8 2.1018e-3
(3.07e-4) =

1.1730e-3
(2.14e-4) -

1.3470e-3
(1.67e-4) -

3.7350e-3
(1.96e-4) =

1.6345e-3
(5.82e-5) =

5.1117e-3
(1.41e-4) =

1.6626e-3
(2.01e-4) =

3.8368e-3
(1.98e-4) =

2.0429e-3
(3.24e-4) =

9.9444e-5
(3.36e-5) -

3.0682e-3
(1.80e-4)

10 1.7634e-4
(7.13e-6) =

9.9335e-5
(2.87e-5) =

7.4267e-5
(1.07e-5) -

2.8547e-4
(1.63e-5) =

1.0371e-4
(6.44e-6) =

3.3639e-4
(1.79e-5) +

1.1688e-4
(1.56e-5) =

2.0759e-4
(2.47e-5) =

5.3821e-5
(2.32e-5) -

1.4641e-7
(1.56e-7) -

1.7590e-4
(3.54e-5)

IDTLZ2

15 2.4123e-7
(1.66e-8) +

7.5540e-8
(3.00e-8) =

8.2080e-9
(5.67e-9) =

3.4590e-7
(1.21e-8) +

1.0588e-7
(9.61e-8) =

2.5855e-7
(3.20e-8) +

1.0340e-7
(1.47e-8) =

9.9552e-8
(1.92e-8) =

6.5181e-10
(2.91e-9) =

4.2998e-14
(1.87e-13) =

2.1697e-8
(1.27e-8)

5 1.2298e-1
(1.60e-3) =

1.1362e-1
(5.57e-3) -

1.1368e-1
(7.08e-4) -

1.1888e-1
(4.54e-4) -

1.2977e-1
(3.44e-4) =

1.2944e-1
(3.68e-4) =

9.7000e-2
(2.93e-3) -

1.2884e-1
(6.27e-4) =

1.2807e-1
(8.90e-4) =

1.1619e-1
(2.82e-4) -

1.2878e-1
(7.28e-4)

8 7.2254e-2
(4.85e-2) -

9.7184e-2
(1.84e-3) -

9.5904e-2
(1.03e-3) -

4.9611e-2
(4.19e-2) -

7.5733e-2
(4.82e-2) =

1.0607e-1
(3.12e-4) =

9.3289e-2
(3.11e-3) -

1.0606e-1
(2.62e-4) =

5.8245e-2
(5.41e-2) -

1.0258e-1
(2.29e-4) =

1.0536e-1
(2.87e-3)

10 2.2044e-2
(4.03e-2) =

9.2990e-2
(1.82e-3) =

9.4330e-2
(5.07e-4) =

0.0000e+0
(0.00e+0) -

1.0676e-2
(3.09e-2) =

1.0039e-1
(2.13e-4) +

9.1234e-2
(8.85e-4) =

9.2962e-2
(2.46e-2) =

1.0036e-2
(3.09e-2) -

9.8186e-2
(2.36e-4) =

8.8737e-2
(1.08e-2)

MaF6

15 0.0000e+0
(0.00e+0) =

9.1645e-2
(3.11e-4) =

9.2185e-2
(5.71e-4) =

0.0000e+0
(0.00e+0) =

0.0000e+0
(0.00e+0) =

9.5091e-2
(2.84e-4) +

9.1285e-2
(4.78e-4) =

2.2443e-2
(4.01e-2) =

0.0000e+0
(0.00e+0) =

9.3860e-2
(2.85e-4) +

6.3303e-2
(2.81e-2)
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Table 6. Cont.

Problem M NSGA-III RVEA MOEA/DD GrEA VaEA onebyoneEA MOMBI-II PICEAg KnEA ENSMOEAD IDEA

5 2.3889e-1
(5.83e-3) =

2.0312e-1
(2.80e-3) -

9.0909e-2
(5.92e-9) -

2.6012e-1
(2.15e-3) =

2.3473e-1
(3.36e-3) =

1.5331e-1
(2.32e-2) -

2.4252e-1
(7.43e-3) =

2.1650e-1
(2.01e-2) -

2.5189e-1
(5.18e-3) =

5.0859e-3
(7.33e-3) -

2.5179e-1
(3.41e-3)

8 1.9458e-1
(2.30e-3) =

1.4604e-1
(1.80e-2) -

1.7565e-2
(2.62e-2) -

2.1953e-1
(2.86e-3) =

1.6205e-1
(4.98e-3) =

7.8797e-2
(1.40e-2) -

1.7408e-1
(1.31e-2) =

1.5861e-1
(2.29e-3) -

1.3909e-1
(2.52e-2) -

4.4794e-4
(1.20e-3) -

1.9700e-1
(2.81e-3)

10 1.2892e-1
(3.39e-2) =

1.3759e-1
(2.34e-2) =

6.0881e-5
(1.38e-5) -

1.6623e-1
(1.57e-2) =

1.3421e-1
(6.77e-3) -

1.7277e-2
(9.01e-3) -

1.3304e-1
(1.92e-3) -

1.3264e-1
(2.98e-3) -

1.5896e-2
(2.70e-2) -

9.9228e-6
(2.90e-5) -

1.6693e-1
(7.84e-3)

MaF7

15 1.4224e-1
(1.36e-2) =

1.1502e-1
(1.02e-2) =

3.2214e-7
(1.88e-8) -

1.3670e-1
(1.12e-2) =

9.2981e-2
(4.40e-3) -

2.7661e-5
(3.76e-5) -

1.2198e-1
(2.16e-3) =

1.1877e-1
(2.47e-3) =

2.0586e-4
(6.28e-4) -

1.0347e-8
(4.19e-8) -

1.3472e-1
(4.32e-3)

+/−/= 9/1/18 1/8/19 1/13/14 5/7/16 5/3/20 7/6/15 5/7/16 5/3/20 5/6/17 5/12/11
Values with a gray background and bold indicate the highest performing values.
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Figure 5. DTLZ1 8-dimensional parallel coordinates system. (a) NSGA-III. (b) RVEA. (c) VaEA. (d)
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IDEA. (l) True PF.
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Figure 6. Distribution of the final population for all algorithms on WFG1 problem with 3-dimension.
(a) NSGA-III. (b) RVEA. (c) VaEA. (d) MOEA/DD. (e) GrEA. (f) onebyoneEA. (g) MOMBI-II. (h)
PICEAg. (i) KnEA. (j) ENSMOEAD. (k) IDEA. (l) True PF.

5. Conclusions

In this paper, we propose a competitive many-objective evolutionary optimization
algorithm combining indicator and decomposition, called IDEA. Firstly, the proposed
algorithm largely provides convergence pressure based on indicators, and then maintains
diversity based on reference points. This is a promising attempt to integrate the two types
of strategy for solving MaOPs, and has done an exploration work to break the barriers
between different algorithms. Through comparative experiments, it can be seen that this
idea is feasible in many-objective evolutionary optimization. Secondly, we propose an
adaptive reference point adjustment strategy based on the learning population and a
selection operator based on the extended distance. The innovations have also been proved
to be effective when dealing with irregular PFs problems, especially solving the irregular
PF problems with sharp tail shapes.

There are also deficiencies in this paper that need to be improved. The future work
can focus on the following aspects: (a) How to integrate the indicator and the reference
point more effectively, so the population has good convergence under the guidance of the
indicator, and at the same time, has better diversity under the simultaneous action of the
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decomposition-based reference point and indicator. (b) Develop a new mechanism for
identifying irregular PF problems to local features.
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