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Abstract: A challenge in association rules’ mining is effectively reducing the time and space complex-
ity in association rules mining with predefined minimum support and confidence thresholds from
huge transaction databases. In this paper, we propose an efficient method based on the topology
space of the itemset for mining associate rules from transaction databases. To do so, we deduce a
binary relation on itemset, and construct a topology space of itemset based on the binary relation
and the quotient lattice of the topology according to transactions of itemsets. Furthermore, we prove
that all closed itemsets are included in the quotient lattice of the topology, and generators or minimal
generators of every closed itemset can be easily obtained from an element of the quotient lattice.
Formally, the topology on itemset represents more general associative relationship among items of
transaction databases, the quotient lattice of the topology displays the hierarchical structures on all
itemsets, and provide us a method to approximate any template of the itemset. Accordingly, we
provide efficient algorithms to generate Min-Max association rules or reduce generalized association
rules based on the lower approximation and the upper approximation of a template, respectively.
The experiment results demonstrate that the proposed method is an alternative and efficient method
to generate or reduce association rules from transaction databases.

Keywords: knowledge discovery in database (KDD); frequent itemsets; closed itemsets; association
rules; the topology for itemsets

MSC: 68W99

1. Introduction

In knowledge discovery in database (KDD), association rules mining (ARM) from
transaction databases proposed in [1,2] have received considerable attention and wide
applications, such as medical diagnosis [3,4], marketing planning [5,6], etc. ARM can
be formally explained as follows: Let A = (U, A) be a transaction database, where U a
non-empty finite set of transactions, A a non-empty finite set of items, each transaction
ui ∈ U decides a mapping ui : A −→ {0, 1}, i.e., for any item aj ∈ A, the transaction
ui has (or has not) the item aj ∈ A if ui(aj) = 1 (or ui(aj) = 0), each subset of A is
called as an itemset. An association rule describing the co-occurrence relation among
items is an implication in the form A1 → A2, where itemsets A1 and A2 of A such that
A1 ∩ A2 = ∅ are called as antecedent and consequent, respectively. Theoretically, ARM
from a transaction database is a NP-hard problem because itemsets A1 and A2 are selected
from 2|A| (powerset of A), in real world practices, the existed mining methods usually
extract a large number of association rules which are difficult to handle; many kinds of
association rules or mining methods have been proposed to generate association rules,
although these mining methods are different, their processing is nearly the same, i.e., how
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to evaluate usefulness of association rules and how to select the antecedent and consequent
of association rules.

Quality measures are used to evaluate the usefulness of association rules, and various
measures have been provided to discover significant and specific association rules. In
a transaction database A = (U, A), for any A′ ⊆ A, denote τ(A′) = {ui ∈ U|∀aj ∈
A′, ui(aj) = 1}, ¬A′ is the absence of A′, then the following quality measures can be defined

• Support [1,2]: suppA (A1 ∪ A2) =
|τ(A1∪A2)|
|U| ;

• Confidence [1,2]: con fA (A1 → A2) =
suppA (A1∪A2)

suppA (A1)
;

• Netconfidence [7]: netcA (A1 → A2) =
suppA (A1∪A2)−suppA (A1)suppA (A2)

suppA (A1)(1−suppA (A1))
;

• Conviction [8]: convA (A1 → A2) =
suppA (A1)suppA (¬A2)

suppA (A1∪¬A2)
;

• Added value [9]: addA (A1 → A2) = con fA (A1 → A2)− suppA (A2);
• Accuracy [9]: accA (A1 → A2) = con fA (A1 → A2) + con fA (¬A1 → ¬A2);
• Interestingness [10]: inteA (A1 → A2) =

suppA (A1∪A2)
suppA (A1)

× suppA (A1∪A2)
suppA (A2)

× (1− suppA (A1 ∪ A2));

• Comprehensibility [10]: compA (A1 → A2) =
log(1+|τ(A2)|)

log(1+|τ(A1∪A2)|) ;

• Lift [11]: li f tA (A1 → A2) =
suppA (A1∪A2)

suppA (A1)suppA (A2)
.

By combining with several quality measures to form fitness functions, ARM is trans-
formed into optimization problems, and various optimal algorithms can be used to extract
interesting or valid association rules from A = (U, A). In [12], schema constraints and
the opportunistic confidence constraint are enforced to mine generalized association rules
in the analyzed data. In [13], confidence, comprehensibility, and interestingness are con-
sidered as a multi-objective problem, and the particle swarm optimization algorithm is
proposed to extract the best rules. In [10], support, comprehensibility and interestingness
are considered as a multi-objective problem, and a Pareto-based genetic algorithm is used
to extract some useful and interesting rules from any market-basket type database. In [14],
Shafer’s theory of evidence is used as two information measures for the quality evaluation
of the set of frequent itemset (or frequent pattern). In [15], off-the-shelf constraint program-
ming techniques are employed for modeling and solving a wide variety of constraint-based
frequent itemsets. In [16], based on exclusive causal-leverage measure, a data mining
algorithm is developed to mine the causal relation between drugs and their associated
adverse drug reactions. In [17], the particle swarm optimization algorithm are provided to
improve computational efficiency as well as to automatically determine suitable support
and confidence threshold values of association rules. In [18], grammar-guided genetic
programming models are proposed to deal with the association rule mining problem under
a multi-objective perspective. In [19], a new multi-objective evolutionary model, which
maximizes the comprehensibility, interestingness and performance of the objectives, is
presented to mine a set of quantitative association rules with a good trade-off between
interpretability and accuracy. In [20], a principal components analysis is applied to a set of
measures that evaluate quantitative association rules’ quality; the QARGA algorithm is
provided to find out quantitative association rules from a wide variety of datasets. In [21], a
new confidence degree of association rules and a discrete bi-level parametric programming
are proposed to extract association rules from huge databases. In [22], redundancy analysis,
sampling and multivariate statistical analysis are provided to ascertain the discovered
rules and discard the non-significant rules. In [23], a systematic assessment of various nu-
merical association rule mining methods and a meta-study of thirty numerical association
rule mining algorithms are provided. The authors investigate how far the discretization
techniques have been used in the numerical association rule mining methods. In [24], a
multi-objective particle swarm optimization is proposed using an adaptive archive grid
based on the Pareto optimal strategy for numerical association rule mining. In [25–28],
these papers adopt the idea of parallelization and improves the Apriori algorithm based on
the MapReduce model.
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By analyzing associative relation among items, suitable itemsets can be selected to
generate association rules. The most widely used itemsets are frequent itemsets and closed
itemsets [15,29–32], an itemset is frequent if its support is not less than the minimum
support value, an itemset is closed if and only if no proper superset of the itemset has the
same support as the itemset. In [33], frequent itemsets are employed to construct taxonomy
over items, and a breadth-first search is adopted to enumerate all frequent itemsets. Closed
frequent itemsets can be used to uniquely determine the set of all frequent itemsets and
applied to generate a condensed set of association rules [34–36]. Formally, all closed itemsets
of A = (U, A) can be constructed as a closed itemset lattice, and CHARM-L algorithm is
proposed to explicitly generate the frequent closed itemset lattice [37]. In [38], the parent-
child relation of the closed itemset lattice has been exploited, and the cross-level closed
itemset lattice is constructed to mine the most relevant minimal cross-level association
rules. In [39], an efficient post-processing method is presented to prune redundant rules
by virtue of the property of Galois connection, which inherently constrains rules with
respect to objects. At present, itemsets have been widely investigated [40,41], and various
itemsets and their generating algorithms for specific association rules mining have been
proposed, such as expressive generalized itemsets [42], free itemsets [43], disjunction-free
itemsets [44,45], non-derivable itemsets [46,47], disjunctive closed itemsets [48], etc. In fact,
we notice that frequent itemsets or closed itemsets are rooted to the co-occurrence relation
among items; from the mathematical point of view, topology may be a more suitable tool
to express the relation among items, because a topology for the set is used to express
a relation among subsets, subsets of the set are granulated as members of the topology,
and the topology for the set is generated by its topology base; this means that the base
for the topology is the basic relation among elements of the set. Topology-based pattern
mining has been widely investigated in the rough set theory and knowledge model, such
as in [49]; a nested topology on a crisp set of reference is provided to interpret a fuzzy
subset; the approach provides us a unified framework for most of the fuzzy thresholding
algorithms. In [50], the lower and upper approximations of the rough set theory are shown
as pre-topological invariants and dual to each other, and the corresponding generalized
topological closure via the upper approximation is constructed. In [51], the knowledge
representation and reasoning method are proposed for identity-based spatial change; the
change process is presented by a multistage graph, the binary relation model BC for identity
change is defined, and qualitative reasoning for BC and combining BC with topological
relations are investigated.

In this paper, we analyze topology and the topology base for items, express more
general associative relations among items and extract useful association rules based on
the topology and the base; all of these are inspired by our previous works on the formal
concept analysis; in [52], we proposed a novel method based on the topology for attributes
of a formal context to generate all formal concepts, the topology for attributes has been used
to explain the associative relation among attributes of the formal context, and the formal
concept lattice can be constructed by the topology for attributes based on an equivalent
relation. In [53], we used the topology for attributes of multi-valued information systems
to generate Min-Max association rules. In this paper, we construct the topology for the set
of items of a transaction database, which can be used to explain more general associative
relation among items; moreover, we prove that frequent itemsets, closed itemsets and
closed frequent itemsets are included in the topology for the set of items, provide two kinds
of lattice on the topology to display the hierarchical structures on itemsets, and propose
efficient algorithms based on the base for the topology to generate or reduce many kinds of
association rules.

The organization of this paper is as follows: In Section 2, we briefly review some basic
notions used in association rules mining. In Section 3, we present the topology for the
set of items and lattices on itemsets of a transactional database, in which some important
properties of the topology, the quotient lattice and minimal generators of closed frequent
itemsets, are provided. In Section 4, we propose several algorithms to generate or reduce
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association rules, and analyze confidences of generalized association rules. In Section 5,
we choose zoo, mushroom, connect-4 and chess as transactional databases to show the
proposed method in generating association rules. We conclude the paper in Section 6.

2. Preliminaries

In the section, we briefly review some basic concepts used in frequent itemsets, closed
itemsets or association rules mining; several concepts are also widely used in rough sets
and formal concept analysis. For a uniform expression, we adopt the following set-to-set
mapping in a transaction database A = (U, A), denote P(U) and P(A) as power sets of U
and A, respectively, then we have

τ : P(A) −→ P(U), τ(A1) = {ui ∈ U|∀aj ∈ A1 ⊂ A, ui(aj) = 1},
γ : P(U) −→ P(A), γ(O) = {aj ∈ A|∀ui ∈ O ⊂ U, ui(aj) = 1}.

Based on τ and γ, we can rewrite the support of an itemset A1 and the confidence of
an association rule A1 → A2, as follows:

supp(A1) = |τ(A1)|(or
|τ(A1)|
|U| ),

con f (A1 → A2) =
|τ(A1 ∪ A2)|
|τ(A1)|

.

τ and γ also make us define closed itemsets and their generator concisely, i.e., A1 ⊂ A is a
closed itemset if and only if γτ(A1) = A1, an itemset A2 is a generator of the closed itemset
A1 if and only if A2 ⊂ A1 and γτ(A2) = A1, furthermore, A2 is a minimal generator of A1
if and only if @A3 ⊂ A2 such that γτ(A3) = A1. Formally, τ and γ are also analyzed in
rough sets and formal concept analysis [50,54–57], and the following properties of τ and γ
are obviously, for any A1, A2, A3 ⊂ A and O1, O2 ⊂ U, (1) If A1 ⊆ A2, then τ(A1) ⊇ τ(A2);
(2) If O1 ⊆ O2, then γ(O1) ⊇ γ(O2); (3) τ(A1 ∪ A2) = τ(A1) ∩ τ(A2), γ(O1 ∪ O2) =
γ(O1) ∩ γ(O2); (4) τ(γτ(A1)) = τ(A1), γ(τγ(O1)) = γ(O2). In [52], we use τ and γ to
induce a reflexive and transitive relation on the set of attributes from a formal context,
the topology for attributes are constructed by using the relation, then the formal concepts
are analyzed in the the topology for attributes. Here, we provide the same results in a
transaction database.

Definition 1. For any transactional database A = (U, A), τ and γ decide a point-to-set mapping
from A to P(A), i.e., for any ai ∈ A, C : A −→ P(A) is

C(ai) = {aj ∈ A|aj ∈ γτ({ai})}.

Intuitively, the point-to-set mapping C represents a co-occurrence relation among
items, i.e., the following binary relation on A can be decided by the mapping, C. For any
ai, aj ∈ A,

RA(ai, aj) =

{
1, if aj ∈ C(ai),
0, if aj /∈ C(ai).

(1)

In [52], we have proved that the binary relation RA on A is reflexive and transi-
tive, and (A, RA) is an approximation space. For any subset A1 of A, denote RA(A1) =

{ai ∈ A|∀aj, (RA(ai, aj) = 1) → (aj ∈ A1)} and RA(A1) = {ai ∈ A|∃aj ∈ A1 ∧
RA(ai, aj) = 1}, then RA(A1) and RA(A1) are generalized upper approximation and lower
approximation of A1, especially if RA is an equivalent relation; RA(A1) and RA(A1) are
Pawlak’s upper approximation and lower approximation [55]. More important, we have the
following theorem.
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Theorem 1 ([52]). For any transactional database A = (U, A).

1. T(RA) = {RA(A1)| A1 ⊆ A} is a topology for A;
2. For any ai ∈ A, RA(C(ai)) = C(ai);
3. BA = {C(ai)|ai ∈ A} is a base for the topology T(RA).

The theorem means that the topology for A has a simple expression, i.e., T(RA) =
{⋃C(ai)∈B′A C(ai)|∀B′A ⊆ BA}, we use the following example to explain the above men-
tioned concepts and results; the example was initially used to analyze the concept “to-be-a-
fruit” [58].

Example 1. Let a fruit data be A = (U, A), where U = {a chestnut (u1), an olive (u2), a pepper
(u3), a strawberry (u4), an orange (u5), a tomato (u6)} and A = {to-grow-on-trees (a1), to-be-sweet
(a2), to-be-raw-edible (a3), to-yield-juice (a4), to-have-a-skin (a5)} be used to understand the concept
“to-be-a-fruit” (shown in Table 1). According to Definition 1, we have C(a1) = {a1}, C(a2) =
{a2, a3}, C(a3) = {a3}, C(a4) = {a3, a4, a5} and C(a5) = {a5}, e.g., for C(a2) = {a2, a3},
it means that a2 and a3 are co-occurrence in Table 1, i.e., a fruit is “to-be-sweet”, it must be

“to-be-raw-edible”. The binary relation RA on A = {a1, a2, a3, a4, a5} is shown in Table 2.

Table 1. A transactional database A = (U, A).

U\A a1 a2 a3 a4 a5

u1 1 0 0 0 1
u2 1 0 1 0 0
u3 0 0 1 0 1
u4 0 1 1 0 0
u5 1 1 1 1 1
u6 0 0 1 1 1

Table 2. The binary relation RA on A.

RA a1 a2 a3 a4 a5

a1 1 0 0 0 0
a2 0 1 1 0 0
a3 0 0 1 0 0
a4 0 0 1 1 1
a5 0 0 0 0 1

Based on Theorem 1 and the mapping C, we have T(RA) = {∅, {a1}, {a3}, {a5}, {a1, a3},
{a1, a5}, {a2, a3}, {a3, a5}, {a1, a2, a3}, {a1, a3, a5}, {a2, a3, a5}, {a3, a4, a5}, {a1, a3, a4, a5},
{a1, a2, a3, a5}, {a2, a3, a4, a5}, {a1, a2, a3, a4, a5}}, e.g., the member {a2, a3, a5} is obtained by

{a2, a3, a5} = C(a2) ∪ C(a5).

According to Table 2, we can find that RA on A is not symmetric generally, e.g., RA(a2, a3) =
1 but RA(a3, a2) = 0, hence, members of the topology T(RA) for the set of items are not Pawlak’s
lower approximation in practice. According to Table 1, we can obtain the support of each member
in the topology for A, e.g., for {a2, a3}, we have supp({a2, a3}) = |τ(T)| = |{u4, u5}| = 2 or
supp({a2, a3}) = |{u4,u5}|

|U| = 1
3 . If we fix minimum support 1

3 , then members such as {a2, a3} and
{a1, a3} are frequent itemsets, which can be used to generate association rules, e.g., we can generate
association rules “a1 → a3” and “a3 → a1”; confidences of them are

con f (a1 → a3) =
|τ({a1, a3})|
|τ(a1)|

=
|{u2, u5}|
|{u1, u2, u5}|

=
2
3

,

con f (a3 → a1) =
|τ({a1, a3})|
|τ(a3)|

=
|{u2, u5}|

|{u2, u3, u4, u5, u6}|
= 0.4.
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In A of the fruit data A = (U, A), “a1 → a3” is “to-grow-on-trees implies to-be-raw-edible”,
“a3 → a1” is “to-be-raw-edible implies to-grow-on-trees”, by considering their confidences, “a1 → a3”
is more confident than “a3 → a1” due to 2

3 > 0.4.

From Example 1, we notice that members of the topology T(RA) for the set of items
are itemsets, which is generated by the co-occurrence relation among items. In existed ARM
methods, frequent itemsets or closed itemsets are always used to mine association rules,
one problem is “can we use members of the topology T(RA) for the set of items to mine all
useful and needful association rules”. The problem will be solved in the next section.

3. Lattice Structures on the Topology for the Set of Items

In this section, we use set inclusion to construct lattice structures on the topology
T(RA) for the set of items, one is constructed on the topology T(RA) itself, another is
constructed on quotient set of the topology T(RA), then we analyze minimal elements and
minimal generators of closed itemsets in the lattice structures, which are useful information
in ARM.

3.1. The Lattice on the Topology

Formally, the topology for the set of items is a proper subset of the power set of
A—theoretically, the power set of A naturally forms a power set lattice; however, its proper
subset may be not a lattice. Here, we use the set inclusion to construct lattice on the
topology for the set of items and analyze hierarchical structure of members of the topology.

It is obvious that T(RA) is an poset by set inclusion, i.e., for any T1, T2 ∈ T(RA),

T1 ≤ T2 if and only if T1 ⊆ T2.

On the poset (T(RA),≤), we define

T1 ∧ T2 = (
C(ai)⊆T1⋃

ai∈A
C(ai)) ∩ (

C(aj)⊆T2⋃
aj∈A

C(aj)),

T1 ∨ T2 = (
C(ai)⊆T1⋃

ai∈A
C(ai)) ∪ (

C(aj)⊆T2⋃
aj∈A

C(aj)).

For any ak ∈ T1 ∧ T2, we have ak ∈
⋃C(ai)⊆T1

ai∈A C(ai) and ak ∈
⋃C(aj)⊆T2

aj∈A C(aj); hence,

there exists C(ai) ⊆ T1 and C(aj) ⊆ T2 such that ak ∈ C(ai) and ak ∈ C(aj), according to
Theorem 1, C(ak) ⊆ C(ai) and C(ak) ⊆ C(aj), we have

C(ak) ⊆ (
C(ai)⊆T1⋃

ai∈A
C(ai)) ∩ (

C(aj)⊆T2⋃
aj∈A

C(aj))

=
C(ai)⊆T1⋃

ai∈A

C(aj)⊆T2⋃
aj∈A

(C(ai) ∩ C(aj)) = T1 ∧ T2,

this means that we rewrite T1 ∧ T2 =
⋃

ak∈T1∩T2
C(ak) ∈ T(RA). Similarly, we rewrite

T1 ∨ T2 =
⋃

ak∈T1∪T2
C(ak) ∈ T(RA) ∈ T(RA), this means that (T(RA),∧,∨) is a lattice.
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Furthermore, for any subset T ⊆ T(RA), we denote

∧T =
∧

Ti∈T
Ti =

⋂
Ti∈T

(
C(ai)⊆Ti⋃

ai∈A
C(ai)),

∨T =
∨

Ti∈T
Ti =

⋃
Ti∈T

(
C(ai)⊆Ti⋃

ai∈A
C(ai)),

then, one can easily prove that ∧T =
⋃

ak∈
⋂

Ti∈T Ti
C(ak) ∈ T(RA) and ∨T =

⋃
ak∈

⋃
Ti∈T Ti

C(ak) ∈ T(RA), and (T(RA),∧,∨) is also a complete lattice, e.g., in Example 1, we have
{a1} ∧ {a3} = ∅, {a1, a2, a3} ∧ {a1, a3, a5} = C(a1) ∪ C(a3) = {a1, a3} due to {a1, a2, a3} ∩
{a1, a3, a5} = {a1, a3}, and {a2, a3, a5} ∨ {a3, a4, a5} = C(a2) ∪ C(a3) ∪ C(a4) ∪ C(a5) =
{a2, a3, a4, a5} due to {a2, a3, a5} ∪ {a3, a4, a5} = {a2, a3, a4, a5}. The complete lattice
(T(RA),∧,∨) of Example 1 is shown in Figure 1.

∅

{a1} {a3} {a5}

{a1, a3} {a1, a5} {a2, a3} {a3, a5}

{a1, a2, a3} {a1, a3, a5} {a2, a3, a5} {a3, a4, a5}

{a1, a2, a3, a5} {a1, a3, a4, a5} {a2, a3, a4, a5}

A

1

Figure 1. The lattice of the topology T(RA) of Example 1.

From up to down, the complete lattice (T(RA),∧,∨) provides us hierarchical informa-
tion among members of the topology, intuitively, hierarchical information means that any
member of T(RA) is contained in its upper hierarchical members, and there are common
transactions in the member of T(RA) and its upper hierarchical members; such information
can be used to generate association rules, i.e., suppose that T2 is an upper hierarchical
member of T1, then, we have the following association rule

ψ = T1 → (T2 − T1),

in which, supp(ψ) = |τ(T2)| and con f (ψ) = |τ(T2)|
|τ(T1)| , e.g., in Figure 1, itemset {a3, a5} is

an up hierarchical member of itemset {a5}, according to Table 1, we have a5 → a3 with
supp(a5 → a3) = |τ({a3, a5})| = 3 and con f (a5 → a3) =

|τ({a3,a5})|
|τ({a5})| = 0.75. a1 ∧ a3 → a5

with supp(a1 ∧ a3 → a5) = |τ({a1, a3, a5})| = 1 and con f (a1 ∧ a3 → a5) =
|τ({a1,a3,a5})|
|τ({a1,a3})| =

0.5. In A of the fruit data A = (U, A), “a5 → a3” is “to-have-a-skin implies to-be-raw-
edible”, “a1 ∧ a3 → a5” is “to-grow-on-trees and to-be-raw-edible implies to-have-a-skin”;
obviously, “to-have-a-skin implies to-be-raw-edible” is more confident and useful than
“to-grow-on-trees and to-be-raw-edible implies to-have-a-skin” due to 0.75 > 0.5.

3.2. The Lattice on the Quotient Set of the Topology

To fast mine association rules with high support and confidence from the topology for
the set of items, we construct another lattice structure on the topology in the subsection;
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then, we analyze minimal elements and minimal generators of closed itemsets in the lattice,
which can help us to fast generate association rules with high support and confidence.

For any T1, T2 ∈ T(RA), we define a binary relation on the topology for the set of
items, as follows

T1 ∼τ T2 if and only if τ(T1) = τ(T2).

It is obvious that ∼τ is an equivalent relation on the topology T(RA), and an quotient
set of the topology T(RA) can be decided by the equivalent relation, i.e., T(RA)/ ∼τ=
{[T]|T ∈ T(RA)}; each equivalent class [T] in T(RA)/ ∼τ is consisted of members of T(RA)
with the same support τ(T). According to the property of the topology, we have T1 ∪ T2 is in
T(RA) if T1 and T2 are in T(RA). On the other hand, according to property of the set-to-set
mapping τ, for any [T] ∈ T(RA)/ ∼τ and T′, T′′ ∈ [T], τ(T′ ∪ T′′) = τ(T′)∩ τ(T′′) = τ(T),
we have T′ ∪ T′′ ∈ [T], i.e., each equivalent class [T] in T(RA)/ ∼τ is closed for the ∪
operation, hence, we have the following theorem.

Theorem 2. For each equivalent class [T] in T(RA)/ ∼τ , [T] is a union semi-lattice.

The maximum element of each equivalent class [T] in T(RA)/ ∼τ is important. For-
mally, we denote the maximum element of [T] as ∪[T], then we confirm that ∪[T] is a
closed itemset and each member T of [T] is a generator of ∪[T], in fact, suppose that T is a
generator of a closed itemset A′, according to the set-to-set mapping τ and Definition 1;
we have

τ(A′) =
⋂

ai∈A′
τ(ai) =

⋂
ai∈A′

τ(C(ai)) = τ(
⋃

ai∈A′
C(ai)) = τ(T),

this means that A′ is a member of the topology for the set of items and A′ ∈ [T], hence,
A′ = ∪[T].

Corollary 1. For any transactional database A = (U, A) and each equivalent class [T] in
T(RA)/ ∼τ , (1) all closed itemsets of A are in T(RA); (2) ∪[T] is a closed itemset; (3) ∀T′ ∈ [T]
and T′ 6= ∪[T], T′ is a generator of ∪[T].

Because T(RA) is a proper subset of powerset of A and the existed methods search
closed itemsets in powerset of A, the corollary means that we can reduce the searching
range of closed itemsets in the topology for the set of items. On the other hand, frequent
itemsets own the downward closed property, i.e., any subset of a frequent itemset is still
frequent; hence, we can use closed frequent itemsetsto obtain its all frequent itemsets, any
subset of a closed frequent itemset is a frequent itemset. The following corollaries help us
to obtain minimal generators of closed itemsets, which is useful information in ARM.

In each union semi-lattice [T], we denote minimal members of [T] as min[T] = {T′ ∈
[T]|@T′′ ∈ [T] ∧ T′′ ⊆ T′}.

Corollary 2. For any T′ ∈ min[T], if there exists no P ⊂ T′ such that τ(P) = τ(T′), then T′ is
a minimal generator of T′′ ∈ [T] such that T′′ /∈ min[T] and T′ ⊂ T′′.

In Example 1, we can easily check [{a1, a2, a3}] = {{a1, a2, a3}, {a1, a3, a5}, {a2, a3,
a5}, {a1, a3, a4, a5}, {a1, a2, a3, a5}, {a2, a3, a4, a5}, {a1, a2, a3, a4, a5}}, in which, min[{a1, a2,
a3}] = {{a1, a2, a3}, {a1, a3, a5}, {a2, a3, a5}}, due to for any P ⊂ {a1, a3, a5}, τ(P) 6=
τ({a1, a3, a5}) = {u5}, {a1, a3, a5} is a minimal generator of {a1, a3, a4, a5}, {a1, a2, a3, a5}
and {a1, a2, a3, a4, a5}.

For T′ ∈ min[T], if there exists P ⊂ T′ such that τ(P) = τ(T′), we denote Pτ(T′) =
{P ⊂ T′|T′ ∈ min[T], τ(P) = τ(T′)}, Pτ(T′) is an poset by set inclusion, i.e., ∀P1, P2 ∈
Pτ(T′), P1 ≤ P2 if and only if P1 ⊆ P2, minimal elements of Pτ(T′) is denoted by

minPτ(T′) = {P′ ∈ Pτ(T′)|@P′′ ∈ Pτ(T′) ∧ P′′ ⊆ P′}.
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Corollary 3. For P′ ∈ minPτ(T′), P′ is a minimal generator of T′′ ∈ [T], where T′ is a generator
of T′′.

In Example 1, {a1, a2, a3} ∈ min[{a1, a2, a3}], due to τ({a1, a2}) = τ({a1, a2, a3}) =
{u5}, {a1, a2} ∈ minPτ({a1, a2, a3}) and {a1, a2} is a minimal generator of {a1, a2, a3},
{a1, a2, a3, a5} and {a1, a2, a3, a4, a5}.

From the algebraic point of view, we can construct a lattice structure on the quotient
set of the topology T(RA), i.e., for any [T1], [T2] ∈ T(RA)/ ∼τ , we define [T1] ∨ [T2] =
[(∪[T1]) ∩ (∪[T2])] and [T1] ∧ [T2] = [T1 ∪ T2], one can easily check that operators ∨ and ∧
on T(RA)/ ∼τ are well defined, and we have the following theorem.

Theorem 3 ([52]). (T(RA)/ ∼τ ,∧,∨) is a complete lattice, in which the maximum and minimum
elements are [∅] and [A], respectively.

In Example 1, T(RA)/ ∼τ= {[∅], [{a1}], [{a3}], [{a5}], [{a1, a3}], [{a1, a5}], [{a2, a3}],
[{a3, a5}], [{a3, a4, a5}], [{a1, a2, a3}](= [A])}, the lattice (T(RA)/ ∼τ ,∧,∨) of Example 1 is
shown in Figure 2.

[A]

[{a3, a4, a5}]

[{a1, a3}] [{a1, a5}] [{a2, a3}] [{a3, a5}]

[{a1}] [{a3}] [{a5}]

[∅]

1

Figure 2. The complete lattice (T(RA)/ ∼τ ,∧,∨) of Example 1.

4. Association Rules Mining from the Quotient Set of the Topology

In summary, we can confirm the follows facts about itemsets of a transactional database
A = (U, A) based on the above mentioned results:

1. The topology T(RA) for the set of items is a complete lattice and displays a hierarchical
structure on some itemsets, it can be generated by the base BA = {C(ai)|ai ∈ A};
generally, each C(ai) is an itemset and can more fast generate closed itemsets than
single items in the existed methods;

2. All closed itemsets are included in the topology T(RA), moreover, a closed itemset is
the maximum element of an equivalent class [T] ∈ T(RA)/ ∼τ ;

3. Each itemsets in [T] has the same support; moreover, generators and minimal genera-
tors of a closed itemset can be obtained from [T];

4. The complete lattice (T(RA)/ ∼τ ,∧,∨) displays the hierarchical structures on closed
itemsets.

Inspired by rough set theory, each equivalent class in T(RA)/ ∼τ can be understood
as a granular knowledge on the set of itemsets of A = (U, A); on the one hand, each
granular knowledge can be used to mine association rules because it includes a closed
itemset. On the other hand, all granular knowledge can be also used to approximate any
itemset A1 = {ai1 , ai2 , · · · , aik} ⊆ A, i.e.,
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1. The lower approximation of A1:

L(A1) =
C(ai)⊆A1⋃

ai∈A
C(ai);

2. The upper approximation of A1:

G(A1) =
C(ai)∩A1 6=∅⋃

ai∈A
C(ai).

It is obvious that for any itemset A1 ⊆ A, L(A1) and G(A1) are in the topology T(RA)
for the set of items, if L(A1) = G(A1), then the itemset A1 is in T(RA); furthermore,
supports of L(A1), A1 and G(A1) are such that

supp(L(A1)) ≥ supp(A1) ≥ supp(G(A1)),

such as in Example 1, for itemset {a1, a2, a5} ⊂ A, L({a1, a2, a5}) = {a1, a5}, G({a1, a2, a5}) =
{a1, a2, a3, a5}, and supp({a1, a5}) = |{u1, u5}| = 2 ≥ supp({ a1, a2, a5}) = |{u5}| = 1 ≥
supp({a1, a2, a3, a5}) = |{u5}| = 1. Formally, the lower approximation and the upper ap-
proximation of an itemset provide us an alternative method to mine generalized association
rules or reduce association rules. All of these will be discussed in the rest of the section.

4.1. Min-Max Association Rules Mining

In the subsection, we provide an useful method to mine Min-Max association rules
from closed frequent itemsets; here, an association rule is called as a Min-Max association
rule if and only if there does not exist an association rule with the same quality measures
as the association rule, but with a more specific antecedent part and a more general
consequent part. Because closed itemsets are in equivalent classes of T(RA)/ ∼τ , we
propose Algorithm 1 to generate all Min-Max association rules with confidence c = 1 from
equivalent classes of T(RA)/ ∼τ .

Algorithm 1 Min-Max association rules mining from closed itemsets

Input: A transactional database A = (U, A).
Output: Min-Max association rules with confidence c = 1.
while The stop condition is not satisfied do

(1) Generate BA = {C(ai)|ai ∈ A} according to C(ai) = {aj ∈ A|aj ∈ γτ({ai})}
(∀ai ∈ A).

(2) Generate the topology T(RA) = {
⋃

C(ai)∈B′A C(ai)|∀B′A ⊆ BA} according to BA.
(3) Generate T(RA)/ ∼τ= {[T]|T ∈ T(RA), ∀T1, T2 ∈ [T], τ(T1) = τ(T2)} according

to T(RA) and the mapping τ.
(4) Generate min[T] = {T′ ∈ [T]|@T′′ ∈ [T] ∧ T′′ ⊆ T′} according to set inclusion for

any [T] ∈ T(RA)/ ∼τ .
(5) Generate P ∈ minPτ(T′) according to set inclusion for any T′ ∈ min[T].
(6) Select P ∈ minPτ(T′) (T′ ∈ min[T]), generate Min-Max association rule

φ ≡ P −→ Q,

, in which P ∈ minPτ(T′), T′ ∈ min[T], Q = ∪[T]− P and con f (φ) = 1.
(7) Return to (6).

end while
Output All φ ≡ P −→ Q with con f (φ) = 1.
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The pseudocode provided in Algorithm 1, is responsible for mining Min-Max asso-
ciation rules from closed itemsets. Step (1) generates the base B, step (2) generates the
topology T(RA), step (3) generates the equivalent class T(RA)/ ∼τ , step (4) generates the
minimum of [T].

Example 2. A transactional database is shown in Table 3. According to Definition 1, we obtain
C(a1) = {a1, a5}, C(a2) = {a2, a5}, C(a3) = {a3}, C(a4) = {a3, a4} and C(a5) = {a5}, i.e.,
the base for the topology for the set of items is BA = {{a1, a5}, {a2, a5}, {a3}, {a3, a4}, {a5}}, the
co-occurrence relation RA among items decided by Equation (1) is shown in Table 4. The topology
T(RA) for the set of items generated by BA and the quotient set T(RA)/ ∼τ of the topology are

T(RA) = {∅, {a1, a5}, {a2, a5}, {a3}, {a3, a4}, {a5}, {a3, a5}, {a1, a2, a5},
{a1, a3, a5}, {a2, a3, a5}, {a3, a4, a5}, {a1, a2, a3, a5}, {a1, a3, a4,

a5}, {a2, a3, a4, a5}, A(= {a1, a2, a3, a4, a5})},
T(RA)/ ∼τ = {[∅], [{a1, a5}], [{a2, a5}], [{a3}], [{a3, a4}], [{a5}], [{a3, a5}],

[{a1, a2, a5}], [{a2, a3, a5}], [{a3, a4, a5}], [A]}.

The complete lattice (T(RA)/ ∼τ ,∧,∨) is shown in Figure 3, in which, each equivalent
class is with its support, e.g., ([{a5}], 7) means supp({a5}) = 7. Closed itemset and minimal
generators of each equivalent class are shown in Table 5; accordingly, Min-Max association rules
with confidence c = 1 generated from each equivalent class are shown in Table 6.

Table 3. A transactional database A = (U, A).

U\A a1 a2 a3 a4 a5

u1 1 0 1 0 1
u2 0 0 1 1 0
u3 0 1 0 0 1
u4 1 0 1 0 1
u5 0 0 1 1 0
u6 1 1 1 0 1
u7 1 0 1 1 1
u8 1 1 0 0 1
u9 1 0 0 0 1
u10 0 0 1 1 0

Table 4. A binary relation on A.

RA a1 a2 a3 a4 a5

a1 1 0 0 0 1
a2 0 1 0 0 1
a3 0 0 1 0 0
a4 0 0 1 1 0
a5 0 0 0 0 1

Table 5. Closed itemset and minimal generators of each equivalent class.

Equivalent Class ∪[T] min[T] minPτ(T ′)

[{a1, a5}] {a1, a5} {a1, a5} {a1}
[{a2, a5}] {a2, a5} {a2, a5} {a2}
[{a3, a4}] {a3, a4} {a3, a4} {a4}

[{a1, a2, a5}] {a1, a2, a5} {a1, a2, a5} {a1, a2}
[{a3, a5}] {a1, a3, a5} {a3, a5} {a3, a5}

[{a2, a3, a5}] {a1, a2, a3, a5} {a2, a3, a5} {a2, a3}
[{a3, a4, a5}] {a1, a3, a4, a5} {a3, a4, a5} {a4, a5}
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([A] , 0)

([{a1, a2, a5}] , 2) ([{a2, a3, a5}] , 1) ([{a3, a4, a5}] , 1)

([{a1, a5}] , 6) ([{a2, a5}] , 3) ([{a3, a5}] , 4) ([{a3, a4}] , 4)

([{a5}] , 7) ([{a3}] , 7)

([∅] , 10)

1

Figure 3. The complete lattice (T(RA)/ ∼τ ,∧,∨) of Example 2.

Table 6. Min-Max association rules with support s and confidence c = 1.

Min-Max Association Rule (Support, Confidence)

a1 −→ a5 (6, 1)
a2 −→ a5 (3, 1)
a4 −→ a3 (4, 1)

a1 ∧ a2 −→ a5 (2, 1)
a3 ∧ a5 −→ a1 (4, 1)
a2 ∧ a3 −→ a5 (1, 1)

a2 ∧ a3 ∧ a5 −→ a1 (1, 1)
a2 ∧ a3 −→ a1 ∧ a5 (1, 1)

a4 ∧ a5 −→ a3 (1, 1)
a3 ∧ a4 ∧ a5 −→ a1 (1, 1)
a4 ∧ a5 −→ a1 ∧ a3 (1, 1)

In Table 6, a2 ∧ a3 −→ a5 is generated by a minimal generator {a2, a3} of {a2, a3, a5},
a2 ∧ a3 ∧ a5 −→ a1 is generated by generator {a2, a3, a5} of {a1, a2, a3, a5}, which are associ-
ation rules with confidence c = 1; however, they are not Min-Max association rules with
confidence c = 1, only a2 ∧ a3 −→ a1 ∧ a5 is Min-Max association rules with confidence
c = 1. Generally, there are many association rules with confidence c = 1 generated from
each equivalent class; however, Min-Max association rules P −→ Q with confidence c = 1
must be generated by P ∈ minPτ(T′), T′ ∈ min[T] and Q = ∪[T]− P, i.e., the advantage
of our method is that searching minimal generator is limited in T′ ∈ min[T] but not in all
subsets of ∪[T].

According to the hierarchical structures on closed itemsets displayed in the complete
lattice (T(RA)/ ∼τ ,∧,∨), we provide Algorithm 2 to generate Min-Max association rules
with high support and confidence from a fixed itemset.

The pseudocode provided in Algorithm 2 is responsible for mining Min-Max asso-
ciation rules from a fixed itemsets. Step (1) generates L(A1), step (2) generates the set of
equivalent classes, and step (4) generates the Min-Max association rules.

In Example 2, several fixed itemsets and their lower approximations are shown in
Table 7, the corresponding Min-Max association rules generated by the itemsets are shown
in Table 8.
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Algorithm 2 Min-Max association rules mining from a fixed itemset

Input: An itemset A1 = {ai1 , ai2 , · · · , aik} ⊆ A with supp(A1) ≥ s.
Output: Min-Max association rules with confidence c ∈ (0, 1).
while The stop condition is not satisfied do

(1) Generate L(A1) in T(RA).
(2) Generate the set of equivalent classes such that A∼τ

1 = {[Ti]|[Ti] ≥∼τ [L(A1)]}.
(3) Select [Ti] from A∼τ

1 such that ∪[Ti] ⊆ A1,
(4) Generate association rule

φ ≡ P −→ Q,

where, P ∈ minPτ(T′), T′ ∈ min[Ti], Q = A1 − P and con f (φ) = supp(A1)
supp(Ti)

.
(5) Return to (3).

end while
Output All φ ≡ P −→ Q with supp(A1) ≥ s and con f (φ) = supp(A1)

supp(P) .

Table 7. Itemsets and their lower approximations of Example 2.

Itemsets Lower Approximations The Set of Equivalent Classes

{a1, a3} {a3} {[{a3}]}
{a3, a5} {a3, a5} {[{a3}], [{a5}]}
{a1, a3, a4} {a3, a4} {[{a3}], [{a3, a4}]}

Table 8. Min-Max association rules generated by the itemsets.

Itemsets Min-Max Association Rules (Support, Confidence)

{a1, a3} a3 −→ a1 (4, 4
7 )

{a3, a5} a3 −→ a5 (4, 4
7 )

{a3, a5} a5 −→ a3 (4, 4
7 )

{a1, a3, a4} a3 −→ a1 ∧ a4 (1, 1
7 )

{a1, a3, a4} a4 −→ a1 ∧ a3 (1, 1
4 )

Finally, advantages of Algorithms 1 and 2 can be summarized as follows:

1. Min-Max association rules are always mined from closed itemsets, in this paper, we
prove that closed itemsets are maximum elements of equivalent classes, i.e., equivalent
classes can be used to mine Min-Max association rules with confidence 1;

2. The shortest length antecedents of Min-Max association rules are searched from
minimal members of equivalent classes, i.e., P ∈ minPτ(T′) and T′ ∈ min[T]; in
this paper, searching minimal generators are in smaller scope than in all subsets of
closed itemsets;

3. Lower approximations and their minimal generators help us to fast mine Min-Max
association rules from a fixed itemset.

4.2. Generalized Association Rules Based on the Lower Approximation

Generalized association rules are important extension of association rules. By using
taxonomy over items of transactional databases, generalized items are aggregated according
to different granularity levels. In practice, generalized itemsets provide a high level view
of the patterns hidden in the analyzed data and a high level abstraction of the mined
knowledge in different application domains [12,30,59,60]. In this paper, each equivalent
class [T] in T(RA)/ ∼τ is understood as a granular knowledge on the set of itemsets; it can
also be considered as a kind of generalized itemsets. Accordingly, we provide an alternative
method to mine generalized association rules based on the lower approximation of any
itemset, and analyze the changing confidence of generalized association rules. Formally, for
any association rule ψ ≡ A1 −→ A2, we propose the following three kinds of generalized
association rules of ψ based on the lower approximation:
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1. Generalized antecedent association rule (GAR): ψGA ≡ L(A1) −→ A2;
2. Generalized conclusion association rule (GCR): ψGC ≡ A1 −→ L(A2);
3. Generalized antecedent and conclusion association rule (GACR): ψGAC ≡ L(A1) −→

L(A2).

It is obvious that if A1 ∈ T(RA), then L(A1) = A1 and ψ = ψGA; if A2 ∈ T(RA),
then L(A2) = A2 and ψ = ψGC; if A1, A2 ∈ T(RA), then L(A1) = A1, L(A2) = A2 and
ψ = ψGAC.

Corollary 4. For any association rule ψ ≡ A1 −→ A2, con fA (ψ) = c, l = |τ(L(A1))− τ(A1)|
and k = |(τ(L(A1))− τ(A1)) ∩ τ(A2)|.
1. con fA (ψ) ≤ con fA (ψGC);
2. con fA (ψGA) ≤ con fA (ψGAC);
3. If k ≥ cl, then con fA (ψ) ≤ con fA (ψGA);
4. If k < cl, then con fA (ψ) > con fA (ψGA).

Proof. Based on τ(A1) ⊆ τ(L(A1)) and τ(A2) ⊆ τ(L(A2)), (1) and (2) can be easily proved.
For (3) and (4), due to τ(L(A1)) = τ(A1) ∪ (τ(L(A1))− τ(A1)) and τ(A1) ∩ (τ(L(A1))−
τ(A1)) = ∅, we have con fA (ψGA) = |τ(L(A1))∩τ(A2)|

|τ(L(A1))| = |(τ(A1)∪(τ(L(A1))−τ(A1)))∩τ(A2)|
|τ(L(A1))| =

|(τ(A1)∩τ(A2))∪((τ(L(A1))−τ(A1))∩τ(A2))|
|τ(A1)∪(τ(L(A1))−τ(A1))| = k+|τ(A1)∩τ(A2)|

l+|τ(A1)| , by |τ(A1)∩τ(A2)|
|τ(A1)| = c, if k ≥ cl, then

k+|τ(A1)∩τ(A2)|
l+|τ(A1)| ≥ cl+c|τ(A1)|

l+|τ(A1)| = c. If k < cl, then k+|τ(A1)∩τ(A2)|
l+|τ(A1)| < cl+c|τ(A1)|

l+|τ(A1)| = c.

Corollary 5. Let con fA (ψGC) = c, l = |τ(L(A1))− τ(A1)| and k = |(τ(L(A1))− τ(A1)) ∩
τ(L(A2))|. 1) If k ≥ cl, then con fA (ψGC) ≤ con fA (ψGAC); 2) If k < cl, then con fA (ψGC) >
con fA (ψGAC).

Based on P ∈ minPτ(T′), T′ ∈ min[L(A1)] and ∪[L(A2)], ψGA, ψGC and ψGAC of asso-
ciation rule ψ ≡ A1 −→ A2 have the following redundant rules with the same confidence
and the same support:

1. Redundant association rule of GAR: ψGAN ≡ P −→ A2;
2. Redundant association rule of GCR: ψGCN ≡ A1 −→ ∪[L(A2)];
3. Redundant association rule of GACR: ψGACN ≡ P −→ ∪[L(A2)].

Accordingly, we provide Algorithm 3 to mine generalized association rules of any
association rule ψ and its corresponding redundant association rules.

Algorithm 3 Mining generalized association rules and redundant association rules based
on the lower approximation

Input: Association rule ψ ≡ A1 −→ A2.
Output: Generalized association rules of ψ and corresponding redundant association
rules.
while The stop condition is not satisfied do

(1) Generate L(A1) and L(A2) in T(RA).
(2) Generate ∪[L(A1)] and ∪[L(A2)] according to set inclusion of [L(A1)] and [L(A2)],

respectively.
(3) Generate T′ ∈ min[L(A1)] and P ∈ minPτ(T′) according to set inclusion of

[L(A1)] and the power set of T′, respectively.
(4) Obtain generalized association rules ψGA ≡ L(A1) −→ A2, ψGC ≡ A1 −→ L(A2)

and ψGAC ≡ L(A1) −→ L(A2), respectively.
(5) Generate redundant association rules ψGAN ≡ P −→ A2, ψGCN ≡ A1 −→

∪[L(A2)] and ψGACN ≡ P −→ ∪[L(A2)], respectively.
(6) Return to (5).

end while
Output Generalized association rules and corresponding redundant association rules
based on the lower approximation with (supp(ψ∗), con f (ψ∗)).
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The pseudocode provided in Algorithm 3 is responsible for mining generalized asso-
ciation rules and redundant association rules based on the lower approximation. Step (1)
generates L(A1) and L(A2), step (2) generates ∪[L(A1)] and ∪[L(A2)] , step (4) generates
association rules.

4.3. Generalized Association Rules Based on the Upper Approximation

Similarly, for any association rule ψ ≡ A1 −→ A2, we propose the following three
kinds of generalized association rules of ψ based on the upper approximation:

1. Generalized antecedent association rule (gar): ψga ≡ G(A1) −→ A2;
2. Generalized conclusion association rule (gcr): ψgc ≡ A1 −→ G(A2);
3. Generalized antecedent and conclusion association rule (gacr): ψgac ≡ G(A1) −→

G(A2).

It is obvious that if A1 ∈ T(RA), then ψ = ψga; if A2 ∈ T(RA), then ψ = ψgc; if
A1, A2 ∈ T(RA), and then ψ = ψgac.

Corollary 6. For ψ ≡ A1 −→ A2, con fA (ψ) = c, l = |τ(A1) − τ(G(A1))| and k =
|(τ(A1)− τ(G(A1))) ∩ τ(A2)|.
1. con fA (ψ) ≥ con fA (ψgc);
2. con fA (ψga) ≥ con fA (ψgac)
3. If k > cl, then con fA (ψ) > con fA (ψga);
4. If k ≤ cl, then con fA (ψ) ≤ con fA (ψga).

Proof. Based on τ(A1) ⊇ τ(G(A1)) and τ(A2) ⊇ τ(G(A2)), (1) and (2) can be easily
proved. For (3) and (4), due to τ(A1) = τ(G(A1)) ∪ (τ(A1)− τ(G(A1))) and τ(G(A1)) ∩
(τ(A1)− τ(G(A1))) = ∅, we have

con fA (ψ) =
|τ(A1) ∩ τ(A2)|
|τ(A1)|

=
|(τ(G(A1)) ∪ (τ(A1)− τ(G(A1)))) ∩ τ(A2)|

|τ(G(A1)) ∪ (τ(A1)− τ(G(A1)))|

=
|(τ(G(A1)) ∩ τ(A2)) ∪ ((τ(A1)− τ(G(A1))) ∩ τ(A2))|

|τ(G(A1)) ∪ (τ(A1)− τ(G(A1)))|

=
|τ(G(A1)) ∩ τ(A2)|+ k
|τ(G(A1))|+ l

= c,

i.e., |τ(G(A1)) ∩ τ(A2)| − c|τ(G(A1))| = cl − k. If k > cl, then |τ(G(A1)) ∩ τ(A2)| −
c|τ(G(A1))| < 0, i.e., con fA (ψga) = |τ(G(A1))∩τ(A2)|

|τ(G(A1))| < c. If k ≤ cl, then |τ(G(A1)) ∩
τ(A2)| − c|τ(G(A1))| ≥ 0, i.e., con fA (ψga) =

|τ(G(A1))∩τ(A2)|
|τ(G(A1))| ≥ c.

Corollary 7. Let con fA (ψgc) = c, l = |τ(A1)− τ(G(A1))| and k = |(τ(A1)− τ(G(A1))) ∩
τ(G(A2))|. (1) If k > cl, then con fA (ψgc) > con fA (ψgac); (2) If k ≤ cl, then con fA (ψgc) ≤
con fA (ψgac).

Based on P ∈ minPτ(T′), T′ ∈ min[G(A1)] and ∪[G(A2)], ψga, ψgc and ψgac of associ-
ation rule ψ ≡ A1 −→ A2 have the following redundant rules with the same confidence
and support:

1. Redundant association rule of gar: ψgan ≡ P −→ A2;
2. Redundant association rule of gcr: ψgcn ≡ A1 −→ ∪[G(A2)];
3. Redundant association rule of gacr: ψgacn ≡ P −→ ∪[G(A2)].

Accordingly, we provide Algorithm 4 to mine generalized association rules of ψ and
corresponding redundant association rules.

The pseudocode provided in Algorithm 4, is responsible for mining generalized
association rules and redundant association rules based on the upper approximation.
Step (1) generates G(A1) and G(A2) , step (2) generates ∪[G(A1)] and ∪[G(A2)], step (4)
generates association rules, and step (5) generates redundant association rules.
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Algorithm 4 Mining generalized association rules and redundant association rules based
on the upper approximation

Input: Association rule ψ ≡ A1 −→ A2.
Output: Generalized association rules of ψ and corresponding redundant association
rules.
while The stop condition is not satisfied do

(1) Generate G(A1) and G(A2) in T(RA).
(2) Generate ∪[G(A1)] and ∪[G(A2)] according to set inclusion of [G(A1)] and

[G(A2)], respectively.
(3) Generate T′ ∈ min[G(A1)] and P ∈ minPτ(T′) according to set inclusion of

[G(A1)] and the power set of T′, respectively.
(4) Obtain generalized association rules ψgar ≡ G(A1) −→ A2, ψgcr ≡ A1 −→ G(A2)

and ψgacr ≡ G(A1) −→ G(A2), respectively.
(5) Generate redundant association rules ψgan ≡ P −→ A2, ψgcn ≡ A1 −→ ∪[G(A2)]

and ψgacn ≡ P −→ ∪[G(A2)], respectively.
(6) Return to (5).

end while
Output Generalized association rules and corresponding redundant association rules
based on the upper approximation with (supp(ψ∗), con f (ψ∗)).

5. Example Analysis

Experiments were made to compare the execution time, memory usage and numbers of
association rules of the Apriori [1,61] algorithms and our method. They were implemented
on a Thinkpad X1 laptop with Intel i5 Core Duo (2 × 2.4 GHz), 4 GB of RAM and running
Windows 10. The algorithms were coded in Matlab 2015b. Four databases from the UCI
databases [62] were used for the experiments, of which the features are shown in Table 9.

5.1. The Execution Time

Experiments were made to compare the execution time of the algorithms Apriori and
ours.The minConf was set to 50%. The results of the four databases for various minSup
values are shown in Figures 4–7, which shows that the execution of our algorithm was
faster than Apriori in all cases. For example, given minSup = 75%, for the Chess database,
the mining time of Apriori and ours were 3035.53(s) and 507.33(s), respectively. The time
ratio is 507.33

3035.53 × 100% = 16.71%. Besides, as the minSup is decreased, the time ratio is
reduced also. For example, consider the Connect database with minSup set at 98%, 96%
and 94%, the speed up of the time ratio were 91.93%, 7.26% and 1.56%, respectively. The
results demonstrate that the execution time of mining rules from ours was more efficient
than Apriori.
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Figure 4. Execution time of the two algorithms in Chess dataset for various minSup values.
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Figure 5. Execution time of the two algorithms in Connect dataset for various minSup values.
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Figure 7. Execution time of the two algorithms in Zoon dataset for various minSup values.
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5.2. The Memory Usage

Experiments were made with the same databases and same parameters as the exe-
cution time experiments. The results show that the Apriori algorithm consumed more
memory than ours in almost all cases, which are shown if Figures 8–11. For example, given
minSup = 75%, for Chess database, the memory usage of Apriori and ours were 672 (Mb)
and 136.54 (Mb), respectively. The time ratio is 136.54

672 × 100% = 20.32%. Moreover, when
we decrease the minSup, the time ratio will reduce as well. For example, consider the
Connect database with minSup set at 98%, 96% and 94%, the speed up of the time ratio
were 87.55%, 75.84% and 9.18%, respectively.
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Figure 8. Memory usage of the two algorithms in Chess dataset for various minSup values.
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Figure 9. Memory usage of the two algorithms in Connect dataset for various minSup values.
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Figure 10. Memory usage of the two algorithms in Mushroom dataset for various minSup values.
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Figure 11. Memory usage of the two algorithms in Zoon dataset for various minSup values.

5.3. Numbers of Rules

We compare the numbers of association rules of Apriori with ours with the same
databases and same parameters as the execution time experiments in Table 10. The results
demonstrate that the numbers of ours is always smaller than those of Apriori. For example,
given minSup = 75%, for Chess database, the number of rules of Apriori and ours were
2,336,556 and 253,836, respectively. The time ratio is 253836

2336556 × 100% = 10.86%. For our
algorithm generating Min-Max association rules, the numbers of rules of ours is smaller
than Apriori.

Table 9. Dataset characteristics.

Dataset Transactions Original Attributes Attributes after Conversion

Zoo 101 17 15
Mushroom 8124 23 126
Connect-4 67,557 43 129

Chess 3196 36 108
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Table 10. Number of rules of Apriori and Ours.

Dataset minSup(%)
Number of Rules

Apriori Ours

Chess 95 472 700
90 10,742 9482
85 95,482 43,116
80 552,564 111,768
75 2,336,556 253,836

Mushroom 50 1146 172
45 2704 291
40 5006 483
35 14,107 903
30 45,145 903

Connect 98 1544 380
96 27,340 1480
94 201,928 3848

Zoon 4 29,288 8136
3 35,204 8826
2 48,578 5110
1 64,868 8174

In this section, some examples are provided to show our method in association rules
mining; transactional databases come from [62] and their characteristics are shown in
Table 9. The Zoo database is initially used for classification of animals; in this paper, asso-
ciation rules among attributes of animals are considered, in which Min-Max association
rules with confidence c = 1 and confidence c ∈ (0, 1) will be shown, respectively. For
mushroom database, connect-4 and chess, the topology, basis for the topology and equiva-
lent classes with thresholds of support are obtained, and Min-Max association rules and
generalized association rules are generated. Because the Reliable basis used to retrieve and
reduce association rules in [63] is similar to our method, our results are compared with the
method based on the Reliable basis limited in the number of Min-Max association rules
and redundant rules.

Example 3. In the Zoo database, there are 101 objects (animals) and 17 attributes (15 boolean,
2 numeric). Here, we discover association rules among 15 boolean attributes of animals, i.e., hair
(ha), feathers ( f e), eggs (eg), milk (mi), airborne (ai), aquatic (aq), predator (pr), toothed (to),
backbone (ba), breathes (br), venomous (ve), fins ( f i), tail (ta), domestic (do) and catsize (ca).

According to Definition 1, 15 bases are generated (shown in Table A1 of Appendix A). Members
of topology and equivalent classes with suppr(∗) are shown in Table A2 of Appendix A. Equivalent
classes used to generate association rules with confidence c = 1 are shown in Table A3 of Appendix A.
According to Table A3, 7 Min-Max association rules with suppr(∗) ≥ 0.4 and confidence c = 1
are generated (shown in Table A4 of Appendix A), in which mi −→ ba ∧ br (rule 4) is considered
redundant of mi ∧ ba −→ br (rule 5) and mi ∧ br −→ ba (rule 6) due to {mi} ⊂ {mi, ba},
{mi} ⊂ {mi, br}, {br} ⊂ {ba, br} and {ba} ⊂ {ba, br}; i.e., we use less conditions to achieve
more results by mi −→ ba ∧ br with the same support and confidence. Furthermore, some Min-
Max association rules generated in the quotient lattice of the topology with suppr(∗) ≥ 0.4 and
confidence c ∈ (0, 1) are shown in Table A5 of Appendix A, in which the Min-Max association rule
br −→ ba and ta −→ ba can be considered as a GAR of br ∧ ta −→ ba, respectively.

Example 4. The mushroom database consists of a database with 8124 objects (mushrooms) and
22 nominally valued attributes. Here, we convert 22 nominally valued attributes as 126 boolean
attributes and generate 111 bases. Change of bases with different suppr(∗) is shown in Figure A1
of Appendix A. Members of topology, equivalent classes and its generating time by using different
bases are shown in Figure A2 of Appendix A.
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Table A6 of Appendix A shows Min-Max association rules with suppr(∗) ≥ 0.8 and c = 1.
Compared with results in [63], rules 1–8 and 11 are same with [63], and rules 9, 10, 12 and 13 are
new rules, in which rule 8 can be considered as a redundant rule of rules 9 and 10, rule 11 being a
redundant rule of rules 12 and 13.

Table A7 of Appendix A show Min-Max association rules with suppr(∗) ≥ 0.8 and c ∈
[0.8, 1), in which rules 1–25 are also generated in [63]; rules 26-41 are new rules.

Table A8 of Appendix A shows comparative results, in which TRX means the number of all
approximate rules in [63], Min-Max (N, Rt) and Reliable (N, Rt) means number and reduction ratio
of Min-Max basis rules and reliable basis rules generated by Min-Max approximate basis, Min-Max
exact basis, reliable approximate basis and reliable exact basis in [63]. TR means the number of all
rules generated in the quotient lattice (T(RA)/ ∼τ ,∧,∨), N-Min-Max (N, Rt) means the number
and reduction ratio of Min-Max association rules generated in (T(RA)/ ∼τ ,∧,∨), the reduction
ratio is calculated as Rt = TRX−N

TRX or TR−N
TR . In Table A8, it can be noticed that the association rules

used to obtain a reduction in the quotient lattice (T(RA)/ ∼τ ,∧,∨) are less than in [63], such
as for suppr(∗) ≥ 0.4, 2528 association rules are used to obtain reduction. The lower suppr(∗)
and confidence c is corresponding to more generated association rules and higher reduction ratio
in the quotient lattice (T(RA)/ ∼τ ,∧,∨), such as for suppr(∗) ≥ 0.4 and confidence c ≥ 0.5,
1825 rules are generated and the reduction ratio is 0.77.

Example 5. In the connect-4 database, the number of reduction association rules with confidence
c ≥ 0.5 and compared with in [63] are shown in Table A9 of Appendix A. For template A =
{d5− b, d6− b, e5− b, f5− b, f6− b} and rule φ ≡ a6− b∧ e4− b∧ f5− b −→ e6− b∧ f6− b,

L({d5 − b, d6 − b, e5 − b, f5 − b, f6 − b}) = {d5 − b, d6 − b, f5 − b, f6 − b},
min[{d5 − b, d6 − b, f5 − b, f6 − b}] = {d5 − b, f5 − b},

L({a6 − b, e4 − b, f5 − b}) = {a6 − b},
G({a6 − b, e4 − b, f5 − b}) = {a6 − b, e4 − b, e5 − b, f5 − b},

L({e6 − b, f6 − b}) = {e6 − b, f6 − b},
G({e6 − b, f6 − b}) = {e6 − b, f6 − b}.

Accordingly, Table A10 shows the association rule of the template and generalized association
rules in the connect-4 database.

In the chess database, the number of reduction association rules with confidence c ≥ 0.5 and
compared with in [63] are shown in Table A11 of Appendix A. For template A = {mulch− f , skach− f ,
wkna8− f } and rule φ ≡ qxmsq− f ∧ spcop− f ∧ wkna8− f −→ bkon8− f ∧ hdchk− f ,

L({mulch− f , skach− f , wkna8− f }) = {mulch− f , skach− f },
min[{mulch− f , skach− f }] = {mulch− f , skach− f },

L({qxmsq− f , spcop− f , wkna8− f }) = {qxmsq− f , spcop− f },
G({qxmsq− f , spcop− f , wkna8− f }) = {qxmsq− f , spcop− f , wkna8− f , stlmt− f },

L({bkon8− f , hdchk− f }) = {bkon8− f , hdchk− f , reskd− f },
G({bkon8− f , hdchk− f }) = {bkon8− f , hdchk− f , reskd− f , thrsk− f , spcop− f }.

Accordingly, Table A12 shows the association rule of the template and generalized association
rules in the chess database.

6. Conclusions

Association rules are often generated by frequent itemsets or closed itemsets from trans-
actional databases. In order to obtain these itemsets, many methods have been proposed.
In this article, for representing more general associative relations, which are among the
items of transaction databases, the topology on itemset of a transactional database can been
constructed. The topology on itemset includes frequent itemsets and closed itemsets. The
topology on itemset includes frequent itemsets and closed itemsets, which has been proved.
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Most important of all, the basis of the topology can be used to generate the topology on the
itemset, which deduced from the transactional database. Using the basis of the topology
can efficiently avoid scanning databases many times in extracting association rules. The
quotient lattice of the topology displays the hierarchical structures on all itemsets, because
every closed itemset and its generators or minimal generators are limited in an element of
the quotient lattice, valid Min-Max association rules can be easily generated in the element.
Because the quotient lattice of the topology provides granular concepts to approximate any
template of itemset, reductant association rules can be easily generated by granular concepts.
The experiment demonstrates that association rules mining using topology for itemset is an
efficient method.

Author Contributions: Conceptualization, Z.P.; methodology, Z.P. and B.L.; validation, C.Z. and F.H.;
Writing—original draft, B.L.; Writing—review and editing, Z.P., formal analysis, Z.P. and B.L.; All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by Talent introduction project of Xihua University
(Z202104) and the Opening Project of Intelligent Policing Key Laboratory of Sichuan Province (Grant
no. ZNJW2022KFMS004, ZNJW2022KFQN002, ZNJW2023KFQN007).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Basis BA of Zoo database.

Attributes ha f e eg mi ai

Basis {ha, br} { f e, eg, ba, br, ta} {eg} {mi, ba, br} {ai, br}
Attributes aq pr to ba br

Basis {aq} {pr} {to, ba} {ba} {br}
Attributes ve f i ta do ca

Basis {ve} {aq, to, ba, f i} {ta} {do} {ca}

Table A2. Members of topology and equivalent classes with suppr(∗) ≥ c.

c 0 0.2 0.3 0.5

Members of topology 4159 98 54 11
Equivalent classes 237 75 44 11
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Table A3. Equivalent classes used to generate association rules with suppr(∗) ≥ 0.3 and confidence
c = 1.

Equivalent Classes |[∗]| min[∗] Pτ(T ′)

[{ba, br, ca}] 2 {{br, ca}} {{br, ca}}
[{ba, br, ta, ca}] 2 {{br, ta, ca}} {{br, ta, ca}}

[{ba, br, to}] 1 {{ba, br, to}} {{br, to}}
[{ha, br}] 1 {{ha, br}} {{ha}}

[{to, ba, br, ta}] 1 {{to, ba, br, ta}} {{br, to, ta}}
[{mi, to, ba, br}] 1 {{mi, to, ba, br}} {{mi, to}, {mi, to, ba},

{mi, to, br}}
[{ha, mi, ba, br}] 2 {{ha, ba, br}} {{ha, ba}, {ha, ba, br}}

[{mi, to, ba, br, ta}] 1 {{mi, to, ba, br, ta}} {{mi, to, ta}, {mi, to, ba, ta},
{mi, to, br, ta}}

[{eg, ba, ta}] 2 {{eg, ta}} {{eg, ta}}
[{ha, mi, ba, br, ta}] 3 {{ha, br, ta}} {{ha, ta}, {ha, br, ta}}

[{ha, mi, to, ba, br, ta}] 2 {{ha, to, ba, br, ta}} {{ha, to, ta}, {ha, to, ba, br, ta},
{ha, to, br, ta}, {ha, to, ba, ta}}

[{pr, to, ba, ta}] 1 {{pr, to, ba, ta}} {{pr, to, ta}}
[{to, ba}] 1 {{to, ba}} {{to}}

[{pr, to, ba}] 1 {{pr, to, ba}} {{pr, to}}
[{mi, ba, br}] 1 {{mi, ba, br}} {{mi}, {mi, ba}, {mi, br}}

[{mi, ba, br, ta}] 1 {{mi, ba, br, ta}} {{mi, ta}, {mi, ba, ta},
{mi, br, ta}}

[{to, ba, ca}] 1 {{to, ba, ca}} {{to, ca}}
[{mi, ba, br, ca}] 1 {{mi, ba, br, ca}} {{mi, ca}, {mi, ba, ca},

{mi, br, ca}}
[{mi, to, ba, br, ca}] 2 {{to, ba, br, ca}} {{to, ba, ca}, {to, ba, br, ca}}

[{to, ba, ta}] 1 {{to, ba, ta}} {{to, ta}}
[{ha, mi, to, ba, br}] 2 {{ha, to, ba, br}} {{ha, to}, {ha, to, ba},

{ha, to, br}, {ha, to, ba, br}}
[{ba, ta, ca}] 2 {{ta, ca}} {{ta, ca}}

Table A4. All Min-Max association rules with suppr(∗) ≥ 0.4 and c = 1.

Numbers Rule φ(suppr(φ), c)

1 br ∧ to −→ ba (0.4653, 1)
2 ha −→ br (0.4257, 1)
3 to −→ ba (0.604, 1)
4 mi −→ ba ∧ br (0.4059, 1)
5 mi ∧ ba −→ br (0.4059, 1)
6 mi ∧ br −→ ba (0.4059, 1)
7 to ∧ ta −→ ba (0.5149, 1)

Table A5. Some Min-Max association rules with suppr(∗) ≥ 0.4 and 0.8 ≤ c < 1.

Numbers Rule φ(suppr(φ), c)

1 pr ∧ ba −→ ta (0.4059, 0.8723)
2 pr ∧ ta −→ ba (0.4059, 0.9762)
3 ta −→ br (0.604, 0.8133)
4 pr −→ ba (0.4653, 0.8393)
5 ca −→ ba (0.4257, 0.9773)
6 to −→ ba ∧ ta (0.5149, 0.8525)
7 to ∧ ba −→ ta (0.5149, 0.8525)
8 ba −→ br (0.6832, 0.8313)
9 br −→ ba (0.6832, 0.8625)
10 ba −→ ta (0.7327, 0.8916)
11 ta −→ ba (0.7327, 0.9867)
12 ta −→ ba ∧ br (0.5941, 0.8)
13 ba ∧ br −→ ta (0.5941, 0.8696)
14 ba ∧ ta −→ br (0.5941, 0.8108)
15 br ∧ ta −→ ba (0.5941, 0.9836)
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Figure A1. Change of bases in the mushroom database corresponding to suppr(∗).
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Figure A2. Members of topology, equivalent classes and its generating time in the mushroom
database corresponding to bases.

Table A6. All Min-Max association rules in the mushroom database with suppr(∗) ≥ 0.8 and c = 1.

N Rule φ(suppr(φ), c)

1 gill−attachment− f −→ veil−type−p (0.9742, 1)
2 gill−spacing−c −→ veil−type−p (0.8385, 1)
3 veil−color−w −→ veil−type−p (0.9754, 1)
4 ring−number−o −→ veil−type−p (0.9217, 1)
5 gill−attachment− f ∧ veil−color−w −→ veil−type−p (0.9732, 1)
6 gill−attachment− f ∧ ring−number−o −→ veil−type−p (0.8981, 1)
7 gill−spacing−c ∧ veil−color−w −→ veil−type−p (0.8149, 1)
8 gill−attachment− f ∧ gill−spacing−c −→ veil−color−w ∧ veil−type−p (0.8127, 1)
9 gill−attachment− f ∧ gill−spacing−c ∧ veil−type−p −→ veil−color−w (0.8127, 1)

10 gill−attachment− f ∧ gill−spacing−c ∧ veil−color−w −→ veil−type−p (0.8127, 1)
11 veil−color−w ∧ ring−number−o −→ gill−attachment− f ∧ veil−type−p (0.8971, 1)
12 gill−attachment− f ∧ veil−color−w ∧ ring−number−o −→ veil−type−p (0.8971, 1)
13 veil−type−p ∧ veil−color−w ∧ ring−number−o −→ gill−attachment− f (0.8971, 1)
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Figure A2. Members of topology, equivalent classes and its generating time in the mushroom
database corresponding to bases.

Table A6. All Min-Max association rules in the mushroom database with suppr(∗) ≥ 0.8 and c = 1.

N Rule φ(suppr(φ), c)

1 gill−attachment− f −→ veil−type−p (0.9742, 1)
2 gill−spacing−c −→ veil−type−p (0.8385, 1)
3 veil−color−w −→ veil−type−p (0.9754, 1)
4 ring−number−o −→ veil−type−p (0.9217, 1)
5 gill−attachment− f ∧ veil−color−w −→ veil−type−p (0.9732, 1)
6 gill−attachment− f ∧ ring−number−o −→ veil−type−p (0.8981, 1)
7 gill−spacing−c ∧ veil−color−w −→ veil−type−p (0.8149, 1)
8 gill−attachment− f ∧ gill−spacing−c −→ veil−color−w ∧ veil−type−p (0.8127, 1)
9 gill−attachment− f ∧ gill−spacing−c ∧ veil−type−p −→ veil−color−w (0.8127, 1)

10 gill−attachment− f ∧ gill−spacing−c ∧ veil−color−w −→ veil−type−p (0.8127, 1)
11 veil−color−w ∧ ring−number−o −→ gill−attachment− f ∧ veil−type−p (0.8971, 1)
12 gill−attachment− f ∧ veil−color−w ∧ ring−number−o −→ veil−type−p (0.8971, 1)
13 veil−type−p ∧ veil−color−w ∧ ring−number−o −→ gill−attachment− f (0.8971, 1)
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Table A7. Min-Max association rules with suppr(∗) ≥ 0.8 and 0.8 ≤ c < 1.

Numbers Rule φ(suppr(φ), c)

1 veil−type−p −→ gill−attachment− f (0.9742, 0.9742)
2 veil−type−p −→ gill−spacing−c (0.8385, 0.8385)
3 veil−type−p −→ veil−color−w (0.9754, 0.9754)
4 veil−type−p −→ ring−number−o (0.9217, 0.9217)
5 veil−type−p −→ gill−attachment− f ∧ veil−color−w (0.9732, 0.9732)
6 veil−type−p −→ gill−attachment− f ∧ ring−number−o (0.8981, 0.8981)
7 veil−type−p −→ gill−spacing−c ∧ veil−color−w (0.8149, 0.8149)
8 veil−type−p −→ gill−attachment− f ∧ gill−spacing−c ∧ veil−color−w (0.8127, 0.8127)
9 veil−type−p −→ gill−attachment− f ∧ veil−color−w ∧ ring−number−o (0.8971, 0.8971)
10 gill−attachment− f −→ veil−type−p ∧ veil−color−w (0.9732, 0.999)
11 gill−attachment− f −→ veil−type−p ∧ ring−number−o (0.8981, 0.9219)
12 gill−attachment− f −→ gill−spacing−c ∧ veil−color−w ∧ veil−type−p (0.8127, 0.8342)
13 gill−attachment− f −→ veil−color−w ∧ ring−number−o ∧ veil−type−p (0.8971, 0.9209)
14 gill−spacing−c −→ gill−attachment− f ∧ veil−color−w ∧ veil−type−p (0.8127, 0.9692)
15 gill−spacing−c −→ veil−color−w ∧ veil−type−p (0.8149, 0.9718)
16 veil−color−w −→ gill−spacing−c ∧ veil−type−p (0.8149, 0.8354)
17 veil−color−w −→ gill−attachment− f ∧ gill−spacing−c ∧ veil−type−p (0.8127, 0.8332)
18 veil−color−w −→ gill−attachment− f ∧ veil−type−p (0.9732, 0.9977)
19 veil−color−w −→ gill−attachment− f ∧ ring−number−o ∧ veil−type−p (0.8971, 0.9197)
20 ring−number−o −→ gill−attachment− f ∧ veil−type−p (0.8981, 0.9744)
21 ring−number−o −→ gill−attachment− f ∧ veil−color−w ∧ veil−type−p (0.8971, 0.9733)
22 gill−attachment− f ∧ veil−color−w −→ ring−number−o ∧ veil−type−p (0.8971, 0.9218)
23 gill−attachment− f ∧ veil−color−w −→ gill−spacing−c ∧ veil−type−p (0.8127, 0.8351)
24 gill−attachment− f ∧ ring−number−o −→ veil−color−w ∧ veil−type−p (0.8971, 0.9989)
25 gill−spacing−c ∧ veil−color−w −→ gill−attachment− f ∧ veil−type−p (0.8127, 0.9973)
26 gill−attachment− f ∧ veil−type−p −→ veil−color−w ∧ ring−number−o (0.8971, 0.9209)
27 gill−attachment− f ∧ veil−type−p −→ ring−number−o (0.8981, 0.9219)
28 veil−type−p ∧ veil−color−w −→ gill−attachment− f ∧ ring−number−o (0.8971, 0.9197)
29 veil−type−p ∧ ring−number−o −→ gill−attachment− f ∧ veil−color−w (0.8971, 0.9733)
30 veil−type−p ∧ ring−number−o −→ gill−attachment− f (0.8981, 0.9744)
31 gill−attachment− f ∧ veil−type−p ∧ veil−color−w −→ ring−number−o (0.8971, 0.9218)
32 gill−attachment− f ∧ veil−type−p ∧ ring−number−o −→ veil−color−w (0.8971, 0.9989)
33 gill−attachment− f ∧ veil−type−p −→ gill−spacing−c ∧ veil−color−w (0.8127, 0.8342)
34 gill−spacing−c ∧ veil−type−p −→ gill−attachment− f ∧ veil−color−w (0.8127, 0.9692)
35 veil−type−p ∧ veil−color−w −→ gill−attachment− f ∧ gill−spacing−c (0.8127, 0.8332)
36 gill−attachment− f ∧ veil−type−p ∧ veil−color−w −→ gill−spacing−c (0.8127, 0.8351)
37 gill−spacing−c ∧ veil−type−p ∧ veil−color−w −→ gill−attachment− f (0.8127, 0.9973)
38 gill−attachment− f ∧ veil−type−p −→ veil−color−w (0.9732, 0.999)
39 veil−type−p ∧ veil−color−w −→ gill−attachment− f (0.9732, 0.9977)
40 gill−spacing−c ∧ veil−type−p −→ veil−color−w (0.8149, 0.9718)
41 veil−type−p ∧ veil−color−w −→ gill−spacing−c (0.8149, 0.8354)

Table A8. The number of approximate rules and reduction in the mushroom database with confidence
c ≥ 0.5.

suppr(∗) TRX Min-Max
(N, Rt)

Reliable
(N, Rt) TR N-Min-Max

(N, Rt)

0.4 2528 (465, 0.82) (361, 0.86) 1825 (420, 0.77)
0.5 835 (175, 0.79) (135, 0.84) 514 (190, 0.63)
0.6 228 (59, 0.74) (52, 0.77) 136 (65, 0.52)
0.7 161 (39, 0.74) (34, 0.79) 90 (41, 0.54)

Average 0.77 0.82 0.62

Table A9. Number of approximate rules and reduction in the connect-4 database with confidence
c ≥ 0.5.

suppr(∗) TRX Min-Max
(N, Rt)

Reliable
(N, Rt) TR N-Min-Max

(N, Rt)

0.94 199,560 (49,407, 0.75) (10,220, 0.95) 88,116 (7914, 0.91)
0.95 77,206 (24,794, 0.68) (5245, 0.93) 39,768 (4731, 0.88)
0.96 26,856 (11,452, 0.57) (2538, 0.91) 16,356 (2535, 0.85)
0.97 7895 (4439, 0.44) (1214, 0.85) 5690 (1294, 0.77)

Average 0.61 0.91 0.85
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Table A10. Templates, association rules and generalized association rules in the connect-4 database.

Template 1 A = {d5− b, d6− b, e5− b, f5− b, f6− b} (suppr(A) = 0.9573)

ψ1 d5 − b ∧ d6 − b ∧ f5 − b ∧ f6 − b −→ e5 − b (0.9573, 0.99)
Reduction of ψ1 d5 − b ∧ f5 − b −→ e5 − b (0.9573, 0.99)

Rule 1 φ ≡ a6 − b ∧ e4 − b ∧ f5 − b −→ e6 − b ∧ f6 − b (0.9502, 0.9694)
φGA ≡ a6 − b −→ e6 − b ∧ f6 − b (0.9502, 0.9576)
φga ≡ a6 − b ∧ e4 − b ∧ e5 − b ∧ f5 − b −→ e6 − b ∧ f6 − b (0.9502, 1)

Table A11. The number of approximate rules and reduction in the chess database with confidence
c ≥ 0.5.

suppr(∗) TRX Min-Max
(N, Rt)

Reliable
(N, Rt) TR N-Min-Max

(N, Rt)

0.90 10,614 (8371, 0.21) (2483, 0.77) 9230 (2034, 0.78)
0.91 5785 (5050, 0.13) (1571, 0.73) 5354 (1357, 0.75)
0.93 2338 (1948, 0.17) (688, 0.71) 2110 (648, 0.69)
0.95 468 (459, 0.02) (196, 0.58) 466 (195, 0.58)

Average 0.13 0.70 0.70

Table A12. Templates, association rules and generalized association rules in the chess database.

Template 1 A = {mulch− f , skach− f , wkna8− f} (suppr(A) = 0.9002)

ψ1 mulch− f ∧ skach− f −→ wkna8− f (0.9002, 0.9492)
Rule 1 φ ≡ qxmsq− f ∧ spcop− f ∧ wkna8− f −→ bkon8− f ∧ hdchk− f∧ reskd− f ∧ thrsk− f (0.8326, 0.9103)

φGA ≡ qxmsq− f ∧ spcop− f −→ bkon8− f ∧ hdchk− f∧ reskd− f ∧ thrsk− f (0.8827, 0.9107)
φGC ≡ qxmsq− f ∧ spcop− f ∧ wkna8− f −→ bkon8− f ∧ hdchk− f∧ reskd− f (0.8698, 0.9136)
φGAC ≡ qxmsq− f ∧ spcop− f −→ bkon8− f ∧ hdchk− f∧ reskd− f (0.9215, 0.9507)
φga ≡ qxmsq− f ∧ spcop− f ∧ wkna8− f ∧ stlmt− f −→ bkon8− f∧ hdchk− f ∧ reskd− f ∧ thrsk− f (0.8326, 0.9103)
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