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Abstract: An improved hybrid firefly algorithm with probability attraction model (IHFAPA) is
proposed to solve the problems of low computational efficiency and low computational accuracy
in solving complex optimization problems. First, the method of square-root sequence was used to
generate the initial population, so that the initial population had better population diversity. Second,
an adaptive probabilistic attraction model is proposed to attract fireflies according to the brightness
level of fireflies, which can minimize the brightness comparison times of the algorithm and moderate
the attraction times of the algorithm. Thirdly, a new location update method is proposed, which
not only overcomes the deficiency in that the relative attraction of two fireflies is close to 0 when
the distance is long but also overcomes the deficiency that the relative attraction of two fireflies
is close to infinity when the distance is small. In addition, a combinatorial variational operator
based on selection probability is proposed to improve the exploration and exploitation ability of the
firefly algorithm (FA). Later, a similarity removal operation is added to maintain the diversity of
the population. Finally, experiments using CEC 2017 constrained optimization problems and four
practical problems in engineering show that IHFAPA can effectively improve the quality of solutions.

Keywords: improved hybrid firefly algorithm; probability attraction model; constrained optimization
problem; remove similarity operation; combined mutation

MSC: 6804

1. Introduction

Optimization problems widely exist in various fields of life. Traditional solving
methods, such as the Newton method, conjugate gradient method and simplex method,
need to traverse the entire search space, resulting in a combination explosion of search, that
is, the search cannot be completed in polynomial time. In view of the complexity, constraint,
nonlinearity and modelling difficulties in practical engineering problems, the research
on meta-heuristic algorithms is particularly important. A meta-heuristic algorithm has
the following advantages in solving complex engineering problems: (1) simple principle,
fewer parameters to be adjusted and easy to implement; (2) do not need the derivative
information of objective function; (3) differentiability and convexity are not required;
(4) widely used to solve problems difficult to define with mathematical models or complex
optimization problems; (5) strong, robust, versatile and suitable for parallel processing.
Compared with traditional optimization methods, the probability of successfully escaping
from the local optimal region is higher when solving complex problems, such as multi-
extremum optimization. Therefore, meta-heuristic algorithms have great advantages in
solving complex optimization problems and have been widely used in many fields.

Meta-heuristic algorithm includes the evolutionary algorithm as a key component.
Evolutionary algorithms are primarily used to identify the best answer to optimization
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problems through the use of selection, crossover, mutation and other processes. The most
well-known evolutionary algorithms are the genetic algorithm (GA) [1] and the differential
evolution algorithm (DE) [2]. Population intelligence algorithms, as another important part
of metaheuristic algorithms, update the position of individuals by simulating the behavior
of animals, such as foraging, hunting and finding mates, to find the optimal solution of the
optimization problem. In the past few decades, people have proposed many intelligence
optimization algorithms, such as particle swarm optimization (PSO) [3], firefly algorithm
(FA) [4], artificial bee colony algorithm (ABC) [5] and other swarm intelligence optimization
algorithms. In 2008, Yang et al. [6] were inspired by fireflies’ luminous characteristics
to attract mates and avoid natural enemies at night and proposed an FA. FA has the
advantages of simple principles, few parameters, easy implementation, high precision and
fast convergence. Therefore, the firefly algorithm is implemented to solve various problems
in different domains, such as neural networks [7–9], scheduling problems [10–12], image
processing [9,13], wireless parameter optimization of sensor networks [14–16] and big data
processing [17,18].

Numerous academics have worked tirelessly over the past ten years to boost the FA’s
effectiveness, with some promising study findings. In the FA, the attraction model greatly
impacts the computational TC, convergence speed and solution quality in the algorithm.
The more times of attraction in the attraction model, the faster the convergence speed of the
algorithm and the worse the diversity of the population. The higher the TC, the easier it is
to fall into a local optimum. In addition, the comparison times of fitness are different for
different attraction models. The more fitness comparisons, the higher the time complexity
(TC) in the algorithm. The attraction model used by the standard firefly algorithm (SFA) [6]
is a complete attraction model (CAM). SFA can have an excess of attraction because each
firefly can be attracted to another, with brighter fireflies in the population. Too much
attraction can lead to oscillations or fluctuations in the algorithm search process, resulting
in a poor quality algorithm solution. In 2016, Wang et al. proposed a firefly algorithm
with random attraction (RaFA) [19]. RaFA uses a random attraction model (RAM) in which
each firefly in the population is compared with another firefly chosen at random. If the
brightness of the randomly selected firefly is higher than that of the current firefly, the
current firefly is attracted by the randomly selected firefly; otherwise, the current firefly
is not attracted. The RAM reduces the TC of the algorithm due to its smaller number of
attractions, but also slows down the algorithm’s convergence due to the smaller number
of attractions. In 2017, Wang et al. proposed a neighborhood attraction firefly algorithm
(NaFA) [4], which uses a neighborhood attraction model (NAM), where brighter fireflies in
the k-neighborhood are attracted to the current firefly. Although the NAM has a relatively
moderate number of attractions, which has a greater possibility of reducing the premature
convergence phenomenon, too many comparisons of too much brightness will lead to too
much TC in the algorithm. In 2021, Cheng et al. proposed the hybrid firefly algorithm for
group attraction (GAHFA) [20], which uses the grouping attraction model (GAM). GAHFA
population size was even n, and all fireflies in the population were sorted and grouped
according to the OFV, consisting of n/2 groups. Fireflies with high brightness in each
group attract fireflies with low brightness, and fireflies with the highest brightness in the
population attract fireflies with high brightness in each group. Although GAHFA has
moderate attraction times and low TC in the algorithm, the attraction relationship between
fireflies in the GAM is fixed, and it is easy to become stuck in a local optimum. To solve
this problem, a new firefly attraction model, probabilistic attraction model, is proposed.

Use the example of an optimization problem where the goal function is the minimum
value to demonstrate the issue. First, all fireflies are sorted according to fitness value from
small to large. After sorting, the first firefly is the brightest firefly and the best firefly. Second,
the first firefly in the population moves randomly. Third, starting from the second firefly,
calculate the selection probability of each firefly. According to the selection probability of
fireflies, select a brighter firefly from the fireflies in front of the current firefly. Fireflies are
attracted to the brighter fireflies selected and so on. The probability attraction model can
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decrease the quantity of attraction times and brightness comparisons while preventing a
situation in which there are insufficient numbers of both. In addition, the fireflies selected
by the probability attraction model are random, which will reduce the possibility of the
algorithm being trapped in local optimum. At the same time, the brightness of the firefly
chosen by the probability attraction model is higher, which overcomes the drawback that
the firefly chosen by the RAM cannot attract the present firefly.

The position-updating formula of the FA in the existing literature may have a phe-
nomenon that the relative attractiveness tends to zero at the beginning of the iteration. The
method conducts a random search because the relative attractiveness is 0, which causes a
slow convergence of the algorithm and poor solution quality. In response to this problem, a
formula for updating the position of the firefly with adaptive changes in relative attractive-
ness is presented. The relative attractiveness of adaptive changes will not approach zero
in the iterative process. In addition, the location update formula not only considers the
influence of high-brightness fireflies on the location-update fireflies but also considers the
guiding effect of the best firefly in the population on the position-update fireflies.

In the later iteration of the algorithm, fireflies will gradually gather near the best
fireflies, so the fitness difference among fireflies will be very small. In light of this circum-
stance, a formula is suggested to calculate the degree of similarity S among population
members. The higher the similarity, the worse the diversity in the population and the lower
the exploration ability of the algorithm; there is a high probability of getting trapped by a
local optimum. The updating strategy of some individuals in the population is proposed to
eliminate the similarity between individuals in the population. The update strategy is that,
when S is less than the threshold, update some individuals in the population.

A combined mutation based on selection probability is proposed to dynamically select
a single mutation operator with strong exploration and exploitation ability. This will further
improve the solution quality and convergence speed of the algorithm and better balance the
FA’s exploration and exploitation ability. In the early stages of the algorithm’s iteration, the
combined mutation operator based on selection probability has a large chance of selecting
a single mutation operator with strong global ability; in the later phases of the iteration,
the probability of selecting a single mutation operator with strong local ability is high.
First, according to the exploration and exploitation ability of each single mutation operator,
multiple mutation operators are divided into two categories. The single mutation operator
in the first category has a strong exploration ability, and the single mutation operator in the
second category has a strong exploitation ability. Second, a formula is designed to calculate
the selection probabilities of the two types of mutation operators based on improvements
in the solutions to the optimization problems of the two types of mutation operators. A
type of mutation operator has a bigger selection probability if it can enhance the quality of
the problem’s solution, whereas if it cannot, it has a reduced selection probability. Each
mutation operator within each category is chosen at random.

The major contributions of this paper are:

1. According to the uniformity and diversity of the initial population generated by dif-
ferent initialization methods, the best method of population uniformity and diversity
is selected as the population initialization method.

2. A probabilistic attraction model is proposed for the problems of various
attraction models.

3. A firefly position update formula with an adaptive change in relative attraction is
proposed to improve the convergence speed and solution quality of FA.

4. A combined mutation operator based on selection probability is proposed, which
can adaptively select a single mutation operator with strong exploration ability and
exploitation ability.

5. A remove similarity operation is added to the algorithm to enhance the exploration
ability of the algorithm and maintain the diversity of the population.
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6. The proposed IHFAPA is compared with other improved algorithms in the literature
in parameter optimization, such as reducer and cantilever beam. IHFAPA is superior
to them in solution quality.

The organization of the rest of this paper is: Section 2 reviews the existing firefly algo-
rithms; in Section 3, an IHFAPA is proposed; in Section 4, the proposed IHFAPA algorithm
is experimentally analyzed using the CEC 2017 test function set and the performance is
compared with other algorithms; Section 5 utilizes the IHFAPA algorithm to solve four
classical engineering optimization problems, which is then compared with other algorithms;
Section 6 is the Conclusion.

2. Related Works
2.1. Firefly Algorithm

In 2008, Yang proposed an FA based on the luminous characteristics of fireflies and
the principle of mutual attraction between individual fireflies [6]. In order to construct the
FA, some characteristics of the firefly flash need to be idealized. The specific idealization
criteria are as follows:

(1) Fireflies are male and female, that is, fireflies are attracted to each other.
(2) Attraction is proportional to the brightness of fireflies. For any two fireflies, the

high-brightness fireflies attract the low-brightness fireflies and move toward them, and the
brightest fireflies move randomly.

(3) The brightness of fireflies is determined by the OFV of the problem to be optimized.
Let n be the population size, the i-th firefly in the population is Xi = (xi1, xi2, . . . , xiD)T

(i = 1, 2, . . . , n) and D is the dimension of the variable. The distance rij between any two
fireflies i and firefly j in the population is:

rij = ||Xi − Xj|| =

√√√√ D

∑
k=1

(xik − xjk)
2 (1)

where Xi and Xj are the i-th fireflies and j-th fireflies in the population, xik is the k component
of the firefly i in the population and xjk is the k component in the j-th firefly in the population.

The attraction of firefly i to firefly j βij(rij) is:

βij(rij) = β0e−γr2
ij (2)

where β0 is the maximum attraction, that is, when the attraction rij = 0, usually β0 = 1.
If the brightness of firefly j is higher than that of firefly i, firefly i is attracted by firefly j

and moves toward firefly j. The location-update formula of firefly i is:

xik(t + 1) = xik(t) + βij

(
xjk(t)− xik(t)

)
+ step ∗ (r− 0.5) (3)

where t is the number of iterations; step is the step factor step ∈ [0,1]; r is a random number
between [0,1].

The pseudo code of the standard firefly algorithm is shown in Algorithm 1.

2.2. Brief Review of FA

FA has received wide attention from many scholars because of its simple concept,
fewer parameter settings and easy implementation. In the past decade, the research results
on FA improvement have mainly focused on the adaptive adjustment of parameters, the
improvement in position update formula, the improvement in attraction model and the
hybrid firefly algorithm.
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Algorithm 1: Pseudo code of FA

Input: The population size of the population is n, and the dimension of the variable is D, T is
maximum number of iterations;
Output: The final population;
Randomly generate n initial fireflies;
Calculate the fitness value of all initial fireflies;
Parameter initialization, population size, maximum attraction and light attraction coefficient; let
t = 0;

While t ≤ T do
t←t + 1;

for i = 1 to n do
for j = 1 to n do

If firefly j is brighter than firefly i then
Generate a new firefly according to Equation (3);
Evaluate the new solution;

End if
End for

End for
Rank the fireflies and find the current best;

End While
End

2.2.1. Adaptive Adjustment of Parameters

The performance of the FA is significantly influenced by the parameters in the position-
update formula, and the adaptive adjustment parameters can significantly enhance the
algorithm’s performance. As a result, numerous researchers have examined parameter
adaptive adjustments in the algorithm and proposed numerous adjustment methods. In
2012, Leandro et al. [21] proposed the light-absorption factor γ and step factor α adaptive
adjustment firefly algorithm (CFA). CFA introduces Tinkerbell map in the light-absorption
factor γ, which reduces the probability of the FA falling into a local optimum. The step
size factor α in the CFA algorithm decreases linearly with the number of iterations, which
better balances the exploration and exploitation ability of the algorithm. In 2013, Rizk-
Allah et al. [22] proposed a method of non-linearly adjusting the step-size factor. The step-
size factor decreases non-linearly with the increase in the number of iterations, which avoids
disturbances in the optimal position of the firefly by the random term. Liang et al. [23]
proposed an enhanced FA, which achieves a balance between exploration and exploitation
ability by dynamically adjusting the step factor α. In the initial stage of the iteration,
the value of α is large and the algorithm’s exploration ability is strong; in the later stage
of the iteration, the value of α is small and the algorithm’s exploitation ability is strong.
In 2017, Wang et al. [4] proved that when the number of iterations approached infinity
and the limit of the step factor α was equal to 0, the algorithm converged, and they
proposed a new method for dynamically adjusting the step factor α. The step factor α in
this method decreases rapidly with the increase in iteration times and finally approaches
zero, thus, ensuring the convergence of FA. In 2018, Banerjee et al. [24] proposed a firefly
algorithm (PropFA) based on a new parameter-adjustment mechanism. In this mechanism,
all parameters in the FA are dynamically adjusted according to the value of the objective
function, striking a balance between exploration and exploitation. Experiments show that
Prop FA performs better than other comparison algorithms. In 2019, Zhang et al. [25]
proposed a dynamic adjustment in step-size factor α to improve the firefly algorithm.
The results show that this method has better performance than other algorithms. In 2020,
Amit et al. [26] proposed an improved firefly algorithm that considers the initial brightness
β0 of environmental factors. The initial brightness of the algorithm changes dynamically,
thereby achieving a better balance between exploration and exploitation. However, the
algorithm does not consider the situation where the attractiveness value β is 0 when the two
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fireflies attracting each other in the population are far apart, which affects the performance
of the algorithm.

2.2.2. Improved Location-Update Method

Location update is a crucial component in the FA and has a significant impact on
how well the algorithm can optimize. The convergence speed and solution accuracy of
the algorithm can be increased by optimizing the FA’s location-updating procedure. In
2016, Wang [19] and others proposed an improved firefly algorithm that replaces full
attraction with random attraction, which greatly reduces the number of attractions and
reduces the TC in the algorithm. However, the RAM may cause slow convergence of the
algorithm and poor solution quality due to too few attraction times. In 2018, Zhan et al. [27]
proposed an improved firefly algorithm, which introduced accelerated attractiveness and
evading strategies into the location-update formula of the firefly algorithm. Accelerated
attractiveness makes the current firefly converge in the vicinity of the optimal firefly faster,
and the evading strategy keeps the current firefly away from the low-brightness firefly.
The two operations can improve the convergence speed of the algorithm and reduce the
probability of the algorithm falling into local optimum. In 2019, Wang et al. [28] proposed a
firefly algorithm based on gender differences and designed two position-update formulas
for fireflies of different genders. Male fireflies are attracted to two randomly selected females
for global search; the female fireflies move to the vicinity of the best male fireflies for local
search, which better balances the exploration and exploitation ability of the algorithm. The
problem with the gravity calculation formula of this algorithm is that when the two fireflies
are far apart, the value of relative attraction approaches 0, which causes the algorithm’s
update formula to not work. In 2020, Wu et al. [29] proposed an adaptive logarithmic
spiral-Levy FA (ADIFA). ADIFA designed two position-update formulas: the first position
update formula Introduced Levy flight, which improves the exploration ability of the
algorithm; the second position-update formula introduces the logarithmic spiral path,
which improves the exploitation capabilities of the algorithm. In addition, an adaptive
switch is also designed to realize the algorithm’s adaptive switching between exploration
and exploitation modes. Experimental results show that the ADIFA algorithm is much
better than the other three firefly algorithms.

2.2.3. Improvement in Attraction Model

The attraction model is an important part of the FA, which has a great impact on its
performance. In 2008, the standard FA proposed by Yang et al. [4] used the CAM, in which
each iteration can attract any brighter firefly in the population. In 2016, Wang et al. [19]
proposed a random-attracting firefly algorithm to solve the problem that the algorithm too
easily falls into local optimum due to too many times of attraction in the CAM. In each
iteration of the random-attraction firefly algorithm, the i-th firefly in the population (i = 1, 2,
. . . , n, n is the population size) matches the randomly selected j-th (j = 1, 2, . . . , n, i 6= j) and
compares the brightness of only fireflies. If the brightness of the j randomly selected firefly
is higher than that of firefly i, firefly i will be attracted by firefly j. Otherwise, the i-th firefly
will not be attracted by the j-th firefly. Compared with the CAM, the attraction times of the
RAM are greatly reduced. Too few attraction times will cause the algorithm to converge
slowly. In 2017, Wang et al. [30] proposed a firefly algorithm with neighborhood attraction.
Each firefly in the population can be attracted by a brighter firefly in its k-neighborhood.
The number of attractions in the NAM is relatively moderate, which can improve the
convergence speed of the algorithm. Too much brightness comparison leads to high TC in
the algorithm. In 2021, Cheng et al. [20] proposed a GAM. The GAM sorted the fireflies in
the population according to the fitness value from small to large, and then the fireflies in the
population are divided into n/2 groups. The fireflies with high brightness in each group
attract the fireflies with low brightness. In addition, the best fireflies in the population
also attracted bright fireflies in each group. Although the number of attraction times and
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the number of brightness comparisons are moderate in the GAM, since each firefly in the
population is attracted by a fixed firefly, the algorithm easily falls into a local optimum.

2.2.4. Hybrid Firefly Algorithm

A single intelligence optimization method is constrained by the program’s structure
or conditions that are associated with it and it easily falls into local optimum, producing
subpar solutions. In order to fully exploit various intelligence optimization algorithms, the
hybrid optimization algorithm combines two or more intelligence optimization algorithms
or optimization ideas. Furthermore, the advantages of optimization ideas can improve the
algorithm’s performance. In 2013, Huang et al. [31] proposed a hybrid firefly algorithm
combining local random search methods, which effectively improved the local search
ability of the algorithm (HFA). In addition, HFA is applied to reduce the jacket loss of
downhole transmission and good results are achieved. In 2016, Verma et al. [32] proposed a
hybrid firefly algorithm based on reverse learning (ODFA). ODFA uses reverse learning to
optimize the position of the initial solution and improve the quality of the initial population.
In 2017, Dash et al. [33] proposed a hybrid meta-heuristic algorithm that mixes the firefly
algorithm and the differential evolution algorithm. The algorithm takes full advantage
of the strengths of the firefly algorithm and the differential evolution algorithm and is
well balanced, with improved algorithm exploration and exploitation ability. In 2018,
Aydilek et al. [34] proposed a hybrid algorithm combining the firefly algorithm and particle
swarm algorithm (HFPSO). The algorithm makes use of the fast convergence of PSO for
global search and the fine tuning of FA for the local search, to balance the relationship
between algorithm exploration and exploitation. The experimental results of the two test
function sets, CEC 2015 and CEC 2017, show that HFPSO is significantly better than other
algorithms. In 2019, Li et al. [35] proposed a hybrid firefly algorithm that embeds the
cross-entropy method into the firefly algorithm. The method uses adaptive smoothing and
co-evolution to fully absorb the robustness, ergodicity and adaptability of the cross-entropy
method. This hybrid algorithm enhances the global search ability of the algorithm, stops
the algorithm from falling into local optimization and improves the convergence speed of
the algorithm. In 2020, Wang et al. [36] proposed a hybrid firefly algorithm that introduces
a learning strategy containing Cauchy mutation into the firefly algorithm. In each iteration,
the best firefly must implement L learning strategies to better balance the relationship
between exploration and exploitation. However, the value of L is too large, which greatly
increases the TC in the algorithm and will cause the algorithm to fall into a local optimum.

3. Proposed Methods
3.1. Population Initialization
3.1.1. Initial Population Generation Method Based on Square-Root Sequence Method

The good point set theory was first proposed by Hua Luogeng and Wang Yuan in the
book “The Application of Number Theory in Approximate Analysis” [37]. The point set
generated based on this theory is evenly distributed in the unit space. Therefore, using the
good point set theory can produce a uniformly distributed initial population in the search
space, which can ensure the diversity of the initial population and reduce the possibility
of the algorithm falling into local optimum. The specific steps of the initial population
generation method based on the square-root sequence method are as follows:

Step 1: use the square-root sequence method to generate the first good point in the
unit cube, that is, r1 = (r1

1, r2
1, . . . , rD

1 ), where, rj
1 = {√pj}, j = 1, 2, . . . , D. p1, p2, . . . , pD is D

prime numbers from small to large; {•} represents the decimal part.
Step 2: based on r1, generate a good point set containing n good points according to

Equation (4) Pn = (r1,r2, . . . , rn).

rj
i =

{√
pj × i

}
, i = 1, 2, · · · , n; j = 1, 2, · · · , D (4)



Mathematics 2023, 11, 389 8 of 59

where n is the population size and pj is the j-th prime among D prime numbers that are not
equal from small to large. D is the dimension of the problem and {•} is the decimal part.

Step 3: map the good point set generated by the square-root sequence method to the
search space to obtain the initial population X of the population. The method of mapping
the good point set to the search space is:

Xi = Lb + (Ub− Lb)⊗ ri (5)

where Xi is the i-th individual in the population, Ub and Lb are the upper and lower bounds
of the search space, ri is the i-th good point in the good point set Pn and ⊗ is the product of
the corresponding elements of the two vectors.

The method of initial population generation is shown in Algorithm 2.

Algorithm 2: Initial population generated based on the square-root sequence good point
set method

Input: The population size of the population is n, and the dimension of the variable is D;
Output: The initial population of the population;

Produce the first good point r1:
Generate a good point set according to Equation (4) Pn

for I = 1 to n do
The individual generating the initial population according to Equation (5) Xi:

end for

3.1.2. Compare Different Population Initialization Methods

The commonly used population initialization methods include random initialization
method, population initialization method based on chaotic mapping, population initial-
ization method based on reverse learning and population initialization method based on
good point set theory. The random initialization method is simple in principle and easy to
implement. Many references [19,38] use this method to generate the initial population and
achieve good results. Chaotic mapping has the characteristics of randomness, ergodicity
and regularity. Many scholars often use chaotic mapping to generate an initial population.
In 2005, Yu et al. [39] took the lead in using chaotic mapping to generate an initialization
population in GA, which effectively improved the optimization accuracy of the algorithm.
Since then, many scholars have used chaotic mapping to generate initialization popula-
tions [40–42]. There are more than ten kinds of chaotic mappings. The chaotic mappings
commonly used to generate the initial population are logistic mapping and tent mapping.
The initial population generated by logistic mapping is mainly distributed at both ends
of the search space, and the middle region less so. If the optimal solution is in the middle
region of the search space, the convergence speed of the algorithm will be reduced. Tent
mapping has better ergodicity and uniformity than logistic mapping, so tent mapping is
often used to generate the initial population. In 2005, Tizzoosh et al. [41] proved that both
the current solution and the elite individual have a 50% probability that they are far from
the optimal solution compared to the reverse solution. In 2008, Rahnamayan et al. [40] used
the population initialization method based on reverse learning to generate the initial popu-
lation and achieved good results. Good point set theory is a point set generation method
proposed by Professor Luogeng Hua [37]. It is mathematically proved that the point sets
generated by good point set theory are evenly distributed in unit space. There are three
major ways to generate point sets in the unit cube: exponential sequence method, circular
domain method and square-root sequence method. Because the number of digits after the
decimal point that can be displayed by the computer is limited, when the dimension is
greater than 35, the decimal part of the number generated by the exponential sequence ek is
0, and the exponential sequence method is invalid. Therefore, the initial population can be
generated using the split-circle domain method or the square-root sequence method.

The advantages and disadvantages of the initial population generated by different
methods can be judged according to the uniformity of individual distribution in the search
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space and the polyphase of the population. In order to clearly describe the uniformity
of the initial population generated by different methods in the search space, taking a
population size of 100 and a variable dimension of 2 as examples, the initial population is
generated in the interval [0,1] by using the random initialization method, the population
initialization method based on tent mapping, the population initialization method based
on reverse learning and the population initialization method based on the square-root
sequence method. The initial population generated by different initialization methods is
shown in Figure 1.
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Figure 1. Schematic diagram of initial population generated by different methods. (a) Random
initialization method; (b) initialization method based on Tent mapping; (c) initialization method
based on reverse learning; (d) initialization method based on square-root sequence.

From Figure 1, the initial population generated by the random initialization method,
the population initialization method based on tent mapping and the population initial-
ization method based on reverse learning have the phenomenon of uneven distribution
and aggregation. If the optimal solution is far away from the aggregation region, the con-
vergence speed of the algorithm will be slow and it easily falls into a local optimum. The
initial population generated by the population initialization method based on square-root
sequence is dispersed in the whole search space and there is no aggregation phenomenon.
Therefore, the initial population is generated based on square-root sequence.

The variety in the population has a significant effect on how well the algorithm per-
forms. Good population variety makes it difficult for the algorithm to fall into premature
convergence. A population diversity computation method is provided in order to quan-
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titatively compare the diversity in the starting population created by various population
initiation methods. The calculation method of population diversity is:

Diversity =
2

n(n− 1)

n−1

∑
i=1

n

∑
j=i+1

d
(
Xi, Xj

)
(6)

where n is the population size, Xi is the i-th firefly, Xj is j-th firefly in the population and d
(Xi, Xj) represents the Euclidean distance between the i-th firefly and the j-th firefly. The
calculation formula of d (Xi, Xj) is as follows:

d
(
Xi, Xj

)
=

√√√√ D

∑
k=1

(
xik − xjk

)2
(7)

where D is the dimension of the variable, xik is the k-th component of the i-th firefly and xjk
is the k-th component of the j-th firefly.

In Equation (6), the value of Diversity is proportional to the distance between individual
fireflies in the population. The greater the distance between individual fireflies, the greater
the value of Diversity; the smaller the distance between individual fireflies, the smaller the
value of Diversity. The greater the value of Diversity, the more uniform the distribution
of individuals in the population, and the less likely it is the algorithm will fall into local
optimum; the smaller the value of Diversity, the more likely it is that there is individual
clustering in the population, and the easier it is for the algorithm to fall into local optimum.

According to Equation (4), the diversity in the initial population generated by the
above four methods is calculated, and the calculation results are given in Table 1.

Table 1. Population diversity.

Population Initialization Method Diversity

Random initialization method 0.48
Based on Tent chaotic mapping method 0.49

Reverse learning method 0.49
Good point set method based on square-root sequence 0.54

In Table 1, the population initialization method based on the square-root sequence
method produces the best initial population diversity, followed by the population initial-
ization method based on tent mapping and the population initialization method based
on reverse learning, then for the initial population generated by the random initialization
method, the population diversity in the population is the worst.

In conclusion, whether it is population diversity or population uniformity in the search
space, the initial population produced by the population initialization approach based on
the square-root sequence method is the best. Therefore, the square-root-sequence-based
population initialization approach is chosen as the population initialization method.

3.2. Probability Attraction Model
3.2.1. Common Attraction Model

In the existing literature, the commonly used attraction models are: complete attraction
model (CAM), random attraction model (RAM), neighborhood attraction model (NAM)
and grouping attraction model (GAM). In order to facilitate the statistics of the attraction
times and brightness comparison times of various attraction models, let the population size
of FA be n and the objective function is the minimum.

In the CAM, each firefly is attracted by other brighter fireflies in the population at each
iteration. The individuals in the population are sorted according to the OFV from small
to large. Since each firefly will only be attracted to other brighter fireflies, the first firefly
(the best firefly) is not attracted and the number of attractors is 0; the second firefly is only
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attracted by the first firefly, and the number of attractions is 1. By analogy, the last firefly
(the worst firefly) in the population will be attracted by all other fireflies, and the number
of attractions is n − 1. Therefore, the total attraction times T1 of the CAM are:

T1= 0 + 1 + 2+ · · ·+ n− 1 =
n(n− 1)

2
(8)

According to Equation (8), the total attraction times T1 of the CAM T1 = n (n − 1)/2,
then the average number of attractions t1 = T1/n = (n − 1)/2 for each firefly.

For the FA using the CAM, each firefly must judge whether it is attracted by other
fireflies. Therefore, the n fireflies in the population need brightness comparison. When
comparing brightness, each firefly needs to compare brightness with another n − 1 firefly,
then the total brightness comparison times of n fireflies are T2 = n (n − 1), and the average
brightness comparison times of each firefly are t2 = n − 1.

In the NAM [30], each firefly is attracted by a brighter firefly in the k-neighborhood
during iteration. The k-neighborhood of Xi consists of 2k + 1 fireflies {Xi-k, . . . , Xi, . . . ,
Xi+k}, where k is an integer and 1 ≤ k ≤ (n − 1)/2. k in reference [42] is much smaller than
(n − 1)/2. In order to analyze the times of attraction in each iteration, firstly, the fireflies are
sorted according to the OFV from small to large. After sorting, the first firefly is the firefly
with the highest brightness and the nth firefly is the firefly with the darkest brightness.
Secondly, all fireflies are linked to a ring topology according to the indicator order 1, 2, . . . ,
n. The total attraction times of all fireflies are T1 = 0 + 1 + . . . + k − 1 + k + k + 1 + k + 2 + . . .
+ 2k − 1 + 2k = kn, and the average attraction times of each firefly are t1 = T1/n = k. Each
firefly needs to compare its brightness with all other fireflies in its k-neighborhood. The
total brightness comparison times are T2 = 2kn, and the brightness comparison times of
each firefly are t2 = 2k.

In the RAM [19], each firefly compares its brightness with another randomly selected
firefly in each iteration. Only the fireflies move; otherwise, they do not move. Therefore, the
maximum number of attraction times for all fireflies is T1 = n, and the average number of
attraction times for each firefly is t1 = 1. Since each firefly has to be compared with another
randomly selected firefly, the number of times of brightness comparison for each firefly is 1.
For the RAM with a population size of n, the total number of comparisons of the brightness
of all fireflies is n, and the number of comparisons of the average brightness of each firefly
is t2 = 1.

In the GAM [20], there are two fireflies in each group. In each iteration, the fireflies
with low brightness in each group are attracted by the fireflies with high brightness, and
the fireflies with high brightness in each group are also attracted by the fireflies with the
highest brightness in the population. Therefore, the total attraction times of all fireflies
are T1 = n − 1, and the average attraction times of each firefly are t1 = T1/n = (n − 1)/n.
In the GAM, the brightness of two fireflies in each group should be compared. There are
n/2 groups, which need to be compared n/2 times; the firefly with high brightness in each
group needs to be compared with the highest firefly in the population for (n − 1)/2 times.
Therefore, the sorting of n fireflies requires n − 1 comparisons, and the average brightness
comparison times of each firefly t2 = (n − 1)/n.

The population variety is worse, the TC is higher and local optimization is simpler to
fall into as there are more times of attraction. Additionally, for different attraction models,
there are various brightness comparison times. The algorithm’s TC increases with the
number of fitness comparisons. For a good attraction model, the attraction times and
brightness comparison times should be moderate, and the selection of fireflies with high
brightness should be adaptive or have a better guiding effect on the attracted fireflies. A
new attraction model known as the probability attraction model is developed in order to
make the attraction times and brightness comparison times of the attraction model modest
and to make the attraction model adaptive while choosing fireflies with high brightness.
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3.2.2. Probability Attraction Model

To facilitate the description of the probability attraction model, suppose the population
size is n and the objective function of the optimization problem is to find the minimum. If
the objective function is to seek the maximum value, the objective function can be changed
to seek the minimum value according to max P(X,M) = −min[−P(X,M)]. In addition, in
order to make the probability attraction model adaptive in choosing to attract fireflies, and
to make the attracted fireflies have a better guiding effect on the attracted fireflies, all the
fireflies in the population are sorted according to their OFV and the selection probability
of each firefly is calculated. When selecting to attract fireflies, the fireflies with a high
probability of selection have a high probability of being selected as attracting fireflies. In
the GAM, a firefly is used to attract fireflies, and a firefly in the probability attraction model
is selected, as attracting fireflies is determined by its selection probability. The firefly with
high probability of selection has a greater probability of being selected as an attractive
firefly. Therefore, the probability attraction model is adaptive in choosing to attract fireflies.
At the same time, the selected attracting fireflies have a better guiding effect on the attracted
fireflies. The specific steps in the probability attraction model are as follows:

(1) Order fireflies according to the OFV from small to large.
(2) Calculate the selection probability of each firefly after sorting. The calculation

formula for selection probability is:

Pk =
f it(k)

i−1
∑

j=1
f it(j)

(i = 2, 3, . . . , n; k = 1, 2, . . . , i− 1) (9)

f it(k) = λ× (1− λ)k−1(k = 1, 2, . . . , n− 1) (10)

where Pk is the selection probability of the k-th individual in the population, λ is a constant
between 0.01 and 0.3, and λ = 0.15, fit(k) is the fitness value of the k-th firefly.

(3) According to the selection probability Pk (k = 1,2, . . . , n− 1) of each firefly, calculate
the cumulative probability PPk (k = 1,2, . . . , n − 1) of each firefly. PPk is calculated
as follows:

PPk =
k

∑
j=1

Pj(k = 1, 2, . . . , n− 1) (11)

(4) Choose to attract fireflies for the n-th firefly in the population. The selection method
is to generate a random number rr evenly distributed in the interval [0,1]. If rr satisfies
PPk − 1 ≤ rr ≤ PPk (k = 2, 3, . . . , n − 1), the k-th firefly is selected as the attracting firefly.
Selecting and attracting fireflies for the n − 1 firefly also requires generating a random
number rr, and if rr satisfies PPk – 1 ≤ rr ≤ PPk (k = 2, 3, . . . , n − 1), select the k-th firefly
as the attracting firefly. By analogy, the n − 3, n − 4, . . . , 2th fireflies are selected to
attract fireflies, and the first firefly is the best. It is not attracted by any fireflies and only
moves randomly.

In summary, when the population size is n, the total number of attraction times is
T1 = n − 1 and the average number of attraction times for each firefly is t1 = (n − 1)/n. The
total number of brightness comparisons T2 = n(n − 1)/2, the average number of brightness
comparisons of each firefly t2 = (n − 1)/2. The number of attraction times and the number
of brightness comparisons of the five attraction models are shown in Table 2.

In Table 2, the total attraction times of the probability attraction model are less than the
CAM and the NAM, which are equal to the GAM. For the RAM, if the randomly selected
n fireflies have high brightness, the total attraction times of the probability attraction
model are less than that of the RAM; otherwise, the total attraction times of the probability
attraction model are greater than or equal to the RAM. For the average attraction times,
the comparison result of the average attraction times of each firefly is the same as that of
the total attraction times. In addition, the brightness comparison times of the probability
attraction model are equal to the GAM, but less than the CAM, RAM and NAM.
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Table 2. The number of attractions and brightness comparison of the 5 attraction models.

Attraction Model T1 t1 T2 t2

CAM n(n − 1)/2 (n − 1)/2 n(n − 1) n − 1
RAM ≤n ≤1 n 1
NAM kn k 2kn 2k
GAM n − 1 (n − 1)/n n − 1 (n − 1)/n

Probability attraction Model n − 1 (n − 1)/n n − 1 (n − 1)/n

To sum up, for the five attraction models, the probability attraction model and GAM
have moderate attraction times and the least brightness comparison times. In the GAM,
the attraction relationship between fireflies is fixed, that is, the attraction of the next n/2
fireflies to the first n/2 fireflies is unchanged, and the attraction from the second to the n/2
fireflies to the first firefly is also unchanged. In the probability attraction model, whether
a firefly with low brightness is attracted by a firefly with high brightness is determined
by the selection probability of the firefly with high brightness. When selecting to attract
fireflies, it is adaptive and has a great probability to select the firefly with higher brightness,
which has a better guiding role for the attracted firefly.

Therefore, the probability attraction model can avoid premature convergence caused
by too many times of attraction and can also avoid too little attraction and reduce the
convergence speed of the algorithm. When choosing to attract fireflies, according to the
selection probability of fireflies, the selection strategy is adaptive and has a better guiding
role for attracted fireflies. In addition, because the brightness comparison times of the
probability attraction model are less, the TC in the algorithm can be reduced.

3.3. Improved Location-Update Method

In the firefly algorithm in the existing literature [6,43,44], the position-update formula
and the calculation formula of relative attraction are:

xj(t + 1) = xj(t) + βij
(
γij
)(

xi(t)− xj(t)
)
+ αε j (12)

βij(rij) = β0e−γr2
ij (13)

where the brightness of xi is higher than that of xj, βij is the relative attraction between
firefly i and firefly j, β0 is the maximum attraction, γ is the light-absorption coefficient,
rij is the distance between firefly i and firefly j, α is a constant and εj is a random number
obtained from Gaussian distribution. For most problems, it can take β0 = 1, γ ∈ [0.01,100],
α ∈ [0,1].

When γ = 1, the curve of relative attractiveness βij as the number of iterations increases
is shown in Figure 2.
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In Figure 2, the relatively attractive force βij decreases with the distance rij between
firefly i and firefly j increases. When the distance between firefly i and firefly j is rij ≥ 3, the
value of relative attraction βij(rij) approaches 0. At this point, the value of the attractive term
βij in the position-update formula approaches 0, the βij has no effect, the position-update
formula has no guiding effect and the algorithm degenerates into a random search with
a slow convergence speed. At the same time, because of the relatively small value of the
perturbation term αεj, the global search ability of the algorithm is weak, and it is easy
to fall into local optimization. In addition, for a given problem to be optimized, if the
value range of variables is large (for example, −100 ≤ xik ≤ 100, I = 1, 2, . . . , n, k = 1, 2,
. . . , D), the distance between fireflies in the population after initialization is relatively far,
and the value of relative attraction βij(rij) may approach 0, so the attraction term does not
work. As the number of iterations increases, the distance between fireflies in the population
decreases gradually and the value of relative attraction βij(rij) increases gradually. When
rij < 3, the attraction term works, and with the increase in attraction βij(rij), the attraction
term gradually increases, so the guiding effect of the firefly with high brightness in the
position-update formula gradually increases and the convergence speed of the algorithm
will be gradually improved. To solve the above problems, a new position-update formula
is proposed. The new location-update formula is:

(1) Sort the fireflies according to their OFV from small to large.
(2) The fireflies in the population update their positions as follows.

Xi(t + 1) = Xi(t) + βR(Xk(t)− Xi(t)) + (1− R)rand(1, D)⊕ (Xbest(t)− Xi(t)) + α(ε− 0.5)

Xbest(t + 1) = N
(

Xbest,
|Xbest−X|2

36

)
(14)

X =
X1 + X2 + · · ·+ Xn

n
(15)

where t is the number of iterations, Xi(t) is the position of the i-th firefly of generation t,
Xi(t + 1) is the position of the i-th firefly in generation t + 1, Xbest(t) is the position of the
best firefly in generation t, rand(1,D) is a random vector uniformly distributed between
[0,1], Xk(t) is the position of the firefly selected by probability attraction in generation t, β
is the position of the firefly i and the attraction between fireflies Xk, R is the adjustment
coefficient, α is the dynamic step and ε is a uniformly distributed D-dimensional random
vector between [0,1], ⊕ indicating that the elements of two vectors at the same position
are multiplied.

βR(Xk(t) − Xi(t)) in Equation (14) is called the attraction term, (1 − R) rand (1, D) ⊕
(Xbest(t) − Xi(t)) is called the bootstrap term and α(ε − 1/2) is called the stochastic term. β
and R are calculated as follows:

β = βmin + (βmax − βmin)e
−γr2

ij (16)

R = 1− runtime(t)
Maxtime

(17)

where βmax is the maximum attraction, βmin is the minimum attraction (both are constants),
γ is the light-absorption coefficient, usually taken as 1, runtime is the time of the current
iteration and Maxtime is the maximum time for the algorithm to run.

From Equations (14) and (16), it can be seen that Equation (16) can avoid the attraction
β being 0 at the beginning of the iteration, which leads to the phenomenon that the attraction
term does not work. In addition, from Equation (16), at the beginning of the iteration, the
fireflies are far away from each other, so the value of β is small, and with an increase in
the number of iterations, the distance of fireflies gradually decreases, and the value of β
gradually becomes larger; when the distance of fireflies is 0, the value of β reaches the
maximum, at which time β = βmax. As the number of iterations increases, β becomes larger
and R becomes smaller, so the trend of βR cannot be determined. To judge the changing
trend of βR with the increase in the number of iterations, the C01 function in the CEC 2017
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function set was chosen as the test function, and the βR values of the 2nd firefly and the
15th firefly at each iteration were kept, and a change curve of βR with an increase in the
number of iterations was drawn, as shown in Figure 3.
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Figure 3 illustrates that the value of βR decreases with an increase in the number of
iterations. At the beginning of the iteration, the value of βR is larger, the distance between
fireflies in the population is relatively far, the value of Xk(t) − Xi(t) is larger and the value
of βR(Xk(t) − Xi(t)) is larger. In addition, it can be seen from Equation (17) that at the be-
ginning of the iteration, the value of R is larger, the value of 1 − R is smaller, the value
of rand(1, D)(1 − R) is even smaller and the value of rand(1,D)(1 − R)( Xbest(t) − Xi(t))
is also smaller. At the beginning of the iteration, the term βR(Xk(t) − Xi(t)) plays a ma-
jor role, then the algorithm’s global search ability is strong; at the later part of the itera-
tion, the distance between fireflies becomes smaller compared with the beginning of the
iteration and the value of Xk(t) Xi(t) is also decreasing compared with the beginning of
the iteration. In addition, in the later stage of the iteration, the value of βR gradually de-
creases. Hence, in the later stage of the iteration, the value of βR(Xk(t) − Xi(t)) gradually
decreases compared with the initial stage of the iteration, and the βR(Xk(t) − Xi(t)) term has
a weaker influence on the change in firefly position. As the value of R gradually becomes
smaller in the later iterations, the value of 1 − R gradually becomes larger and the value of
rand(1,D)(1 − R)(Xbest(t) − Xi(t)) gradually changes in a large manner. Therefore, at the later
stage of the iteration, the local search capability of the algorithm is enhanced. The position-
update formula of the population can better consider the global search ability and local search
ability of the algorithm.

The main content of the firefly population position update is given in Algorithm 3.
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Algorithm 3: Improved position update based on probability attraction model

Input: individual fireflies of the population;
Output: the updated firefly population;

Calculation of the OFV for fireflies in the current population;
The fireflies in the population are sorted according to their OFV from small to large;
Recording the best firefly Xbest and its OFV fbest;
for i = 2 to n do

Update Xi(t) and Xbest according to Equation (14);
End for

3.4. Combined Mutation Operator Based on Selection Probability

FA’s exploration and exploitation abilities are determined by the firefly’s location-
update formula. The firefly location-update formulation given in the existing literature has
a strong exploration capability in the early iteration and a strong exploitation capability
in the late iteration, which can balance the exploration and exploitation ability of the
algorithm to some extent. For a multiple-optimization problem, even if the iteration
termination condition is the maximum number of iterations or the maximum running time,
it is impossible to judge when it is the early stage of the iteration and when it is the late stage
of the iteration. Therefore, estimating the early and late iterations based on the quantity of
iterations or running duration is incorrect. According to the maximum number of iterations
and the maximum running duration, there are two issues with determining the issues in
the early and late iterations: First, the algorithm performs local search when local search is
required and global search when local search is required. In addition, the algorithm does
not need global search in each iteration in the early stages of iteration, and sometimes it
may need local search; in the late stage of iteration, local search is not required for each
iteration. If it falls into local optimum, global search is required. The combination mutation
operator in the literature [20] selects a single mutation operator according to the same
probability. It is possible that when a mutation operator with strong exploration ability
is needed, a mutation operator with strong exploitation ability is selected. A combined
mutation operator based on selection probability is proposed to solve the above problem.

For the convenience of description, suppose the i-th firefly participating in the mutation
operation is Xi(t) (i = 1, 2, . . . , n) and the firefly obtained after the mutation is Xi(t + 1)
(i = 1, 2, . . . , n), b1, b2, b3, b4, b5 ∈ {1, 2, . . . , n}, and b1 6= b2 6=b3 6= b4 6= b5 6= i, Xbest(t)
is the best firefly in the t-th generation population. The four single variance operators
selected are:

Xi(t + 1) = Xb1(t) + F(Xb2(t)− Xb3(t)) (18)

Xi(t + 1) = Xb1(t) + F(Xb2(t)− Xb3(t)) + F(Xb4(t)− Xb5(t)) (19)

Xi(t + 1) = Xbest(t) + F(Xb1(t)− Xb2(t)) (20)

Xi(t + 1) = Xbest(t) + F(Xb1(t)− Xb2(t)) + F(Xb3(t)− Xb4(t)) (21)

where F is the step size and the calculation formula of F is:

F = 0.4 + 0.6× r (22)

where r is a random number between [0,1].
The single mutation operators in Equation (18) to Equation (21) are divided into

two categories: the first is the single mutation operator with strong exploration ability,
including Equations (18) and (19); the second type is a single mutation operator with
strong exploitation ability, including Equations (20) and (21). The calculation formula of
the selection probability of the two types of mutation operators is:

P1 =

S1
F1

S1
F1

+ S2
F2

=
1

1 + S2F1
S1F2

(23)
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P2 = 1− P1 (24)

where P1 is the selection probability of the first type of mutation operator, S1 is the number
of candidate solutions generated by the first type of mutation operator retained for the next
generation, F1 is the number of candidate solutions generated by the first type of mutation
operator that is not kept for the next generation, and S2 is the number of candidate solutions
generated by the second type of mutation operator that is retained for the next generation
and F2 is the number of candidate solutions generated by the second type of mutation
operator that cannot be retained to the next generation. Generally, the initial values of S1,
F1, S2 and F2 are taken as 1.

First, judge whether to choose the first type of mutation operator or the second
type of mutation operator. The judgment method is randomly generating a random
number µ between [0,1]. If µ < P1, select the first type of mutation operator; if µ ≥ P1,
select the second type of mutation operator. Secondly, judge whether to choose the first
mutation operator or the second mutation operator in a certain class. The method of
judgment is: randomly generate a random number λ between [0,1]; if λ < 0.5, select the
first mutation operator in a certain type of mutation operator; otherwise, select the second
mutation operator.

Algorithm 4 describes the main steps of combining mutation operators based on
selection probability.

Algorithm 4: Combined mutation operation based on selection probability

Input: Firefly individuals in the population;
Output: Firefly individuals in the population after combined mutation operation;

Calculate the value of scaling factor f according to Equation (22);
for i = 1 to n
if rand < P1
if rand ≤ 0.5
Generate a new solution Xi(t + 1) according to Equation (18);

else
Generate a new solution Xi(t + 1) according to Equation (19);

else
Else rand ≤ 0.5

Generate a new solution Xi(t + 1) according to Equation (20);
else

Generate a new solution Xi(t + 1) according to Equation (21);
End if
End if
End for

Equations (23) and (24) report that, if a global search is required for the t-th iteration,
if the second type of mutation operator is selected, the value of S2 is less than that of F2.
Since the values of S1 and F1 remain unchanged, the value of (S2F1)/(S1F2) decreases and
the value of P1 increases. The first type of mutation operator will probably be selected
in the t + 1 iteration. If a global search is required for the t-th iteration, if the first type
of mutation operator is selected, the value of S1 is greater than the value of F1. Since the
values of S2 and F2 remain unchanged, the value of (S2F1)/(S1F2) decreases and the value
of P1 increases. The first type of mutation operator will be selected with a high probability
in the t + 1 iteration, and vice versa.

In conclusion, based on the historical contributions of the two types of mutation
operators, the combined mutation operator based on the selection probability can choose
which type of mutation operator is selected to perform the mutation operation in the
following iteration. As a result, regardless of whether the algorithm is in an early or late
iteration, the combined mutation operator based on the selection probability can flexibly
select a particular type of mutation operator with high exploration or exploitation ability.
In addition, due to the strong exploration ability of the first type of mutation operator, the
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contribution made at the beginning of the iteration is greater than that of the second type
of mutation operator, so the first type of mutation operator is more likely to be selected,
which improves the exploration of the algorithm ability. At the end of the iteration, the
historical contribution of the second type of mutation operator is greater than that of the
first type of mutation operator, so mutation operators of the second type are more likely to
be selected, which improves the exploitation ability of the algorithm.

3.5. Remove Similarity Operation

Similar individuals mean that the difference in fitness values between individuals is
less than a certain threshold ζ. There will be a large number of similar individuals in the
population as iteration times rise. The population’s members are generally gathered close
to the optimal firefly, especially later in the iteration. For the multi-extremum optimization
problem, if the best individual in the population is near a local extremum, the algorithm can
easily fall into a local optimum. Therefore, in the iterative process, similar individuals need
to be removed from the population to maintain diversity. In order to keep the population
size constant, similar individuals that were removed can be generated via the random
initialization method. The specific steps in similarity removal are:

(1) Order the fireflies according to the OFV from small to large;
(2) Evaluate the similarity of fireflies. The formula for calculating the similarity S

between fireflies in the population is:

S =
f (0.5n)− f (1) + eps

f (n)− f (1) + eps
(25)

where f (0.5n) is the OFV of the 0.5n firefly in the sorted population and f (1) is the OFV
of the first firefly in the sorted population, f (n) is the OFV of the last firefly in the sorted
population, eps is a small number, eps = 2.2204 × 10−16 and eps is used to avoid the
denominator being zero.

(3) If S ≥ ζ, the similarity between fireflies in the population is higher and the popula-
tion diversity is poor. In this case, the better q individuals in the population are retained,
and the remaining n-q individuals are generated by a random initialization method.

To visualize the similarity degree of the population, the population is processed in two
dimensions; let the population size be n = 40 and the number of dimensions of the variables
be D = 2. In the iterative process of the algorithm, Figure 4 shows the degree of similarity
in the population that does not use a remove-similarity operation, and Figure 5 illustrates
the degree of similarity in the population after using a remove-similarity operation.
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In Figure 4, the difference between the OFV of the first firefly and the last firefly is
larger in the early iteration, and the difference between the OFV of the 0.5n-th firefly and
the first firefly is also larger, so the S value is smaller. As the algorithm gradually iterates,
the individuals in the population will slowly gather near the optimal individual, and the
0.5n firefly and the last firefly in the population also focus on the optimal individual. The
difference between the OFV of f (0.5n) and f (n) gradually becomes smaller, and the value
of S gradually increases. Due to the introduction of a combinatorial mutation operator
in the algorithm, the S value is small occasionally, but it is not enough to jump out of
the local optimum, so the value of S increases rapidly. From Figure 5, after adding the
remove-similarity operation, the S value of the algorithm is small in most cases and large
in occasional cases. When S ≥ ζ, the S value decreases rapidly, and the diversity in the
population is better because of the increase in performing the remove-similarity operation
in the population. Therefore, the addition of the remove-similarity operation increases
the global search capability of the algorithm and reduces the probability of the algorithm
falling into a local optimum.

3.6. The Evolutionary Strategy of IHFAPA

The evolutionary strategy in the improved hybrid firefly algorithm with probability
attraction (IHFAPA) is presented in Algorithm 5. Figure 6 shows a flow chart of IHFA-PA,
which more clearly displays the specific steps in the algorithm. From Figure 6, we can
see that the performance of IHFAPA is related to the location-update method, probability
attraction model, combined mutation operator, remove-similarity operation and evolution
strategy of fireflies. IHFAPA uses a new location-update method. Under the attraction of the
high-brightness fireflies and the best fireflies, the low-brightness fireflies move to the high-
brightness fireflies, which better balances the exploration and exploitation ability of the
algorithm. Meanwhile, IHFAPA uses the combined mutation operator, which can be based
on the historical contributions of the two types of mutation operators, to select a suitable
single mutation operator to perform mutation operation adaptively according to needs.
Combined mutation operators include two different single mutation operators, and each
type of mutation operator has a different selection probability. If a certain type of operator
has a greater contribution in the previous iteration process, then this type of operator
has a greater probability of selection; on the contrary, this type of mutation operator has
a smaller selection probability. In the iterative process, the selection probabilities of the
two types of mutation operators are not static. As the historical contributions of the two
types of mutation operators change, the selection probability will also change. Therefore,
the combined mutation operator based on the selection probability can well balance the
exploration and exploitation ability of the algorithm. In addition, a remove-similarity
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operation is added to IHFAPA, so that the algorithm can better maintain the diversity
in the population in the iterative process and reduce the probability of the algorithm
falling into a local optimum. IHFAPA uses an evolutionary strategy of elite retention in
its iterative process. The position-update formula, combination mutation operator and
similarity-removal operation balance the exploration and exploitation ability of IHFAPA
and facilitate the maintenance of population diversity.
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Algorithm 5: IHFAPA

Input: population size n, initial values of S1, F1, S2 and F2, and step size α0, maximum attraction
βmax, minimum attraction βmin
Output: optimal solution x and optimal value f (x);

7. Start timing and make the initial time RunTime = 0;
8. Generate an initial population X = (X1, X2, . . . , Xn) of population size n using a population

initialization method based on a square-root sequence, and calculate the OFV of fireflies.
9. Sort the population of fireflies according to the OFV from small to large, find the best

firefly Xbest;
10. Let t = 0
11. While RunTime ≤Maxtime
12. t = t + 1;
13. The fireflies in the population update their positions according to Algorithm 3, then

calculate the OFV of the firefly after the location update, compare the OFV of fireflies before
and after update, keep better fireflies and their OFV;

14. The fireflies in the population are combined and mutated according to Algorithm 4, and the
OFV of the mutated fireflies are calculated and compared with the OFV before mutation to
retain the good fireflies and their OFV.

15. Perform remove-similarity operation, recalculate the OFV of the firefly, renew the best
fireflies Xbest in the population

16. Boundary processing of variables, variables that exceed the value range are randomly
generated within the value range;

17. Calculate the OFV of the fireflies in the population, update the best firefly Xbest in the
population;

18. Recording the runtime of the algorithm RunTime.
19. End While
20. Output the optimal solution and the optimal value.

4. Numerical Experiment and Result Analysis

To ensure the fairness of the experiment, all experiments were conducted on the same
computer. The computer’s operating system is Windows 10, the processor is AMD Ryzen 9
3900 12-Core, the main frequency is 3.09 GHz and the RAM is 32 GB. All algorithms are
developed in MATLAB R2019b programming language.

4.1. Selection of Test Function

The CEC2017 benchmark test function set, which is currently common internationally,
is selected to verify the performance of the IHFAPA. Table 3 provides some brief information
regarding the CEC 2017 test function set (see reference [41] for details). The 28 test functions
in CEC 2017 are constrained optimization problems, and the objective function is to find
the minimum value.

Table 3. The specifics of the 28 CEC 2017 optimization questions.

Function Search Range Type of Objective Number of Constraints
E I

C01 [−100,100] D Non-Separable 0 1
Separable

C02 [−100,100] D Non-Separable
Rotated 0

1
Non-Separable,

Rotated

C03 [−100,100] D Non-Separable 1
Separable

1
Separable

C04 [−10,10] D Separable 0 2
Separable
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Table 3. Cont.

Function Search Range Type of Objective Number of Constraints
E I

C05 [−10,10] D Non-Separable 0
2

Non-Separable,
Rotated

C06 [−20,20] D Separable 6 0
Separable

C07 [−20,20] D Separable 2
Separable 0

C08 [−100,100] D Separable 2
Non-Separable 0

C09 [−10,10] D Separable 2
Non-Separable 0

C10 [−100,100] D Separable 2
No Separable 0

C11 [−100,100] D Separable 1
Separable

1
Non Separable

C12 [−100,100] D Separable 0 2
Separable

C13 [−100,100] D Non-Separable 0 3
Separable

C14 [−100,100] D Non-Separable 1
Separable

1
Separable

C15 [−100,100] D Separable 1 1

C16 [−100,100] D Separable 1
Non-Separable

1
Separable

C17 [−100,100] D Non-Separable 1 1
Separable

C18 [−100,100] D Separable 0 2
Non-Separable

C19 [−50,50] D Separable 0 2
Non-Separable

C20 [−100,100] D Non-Separable 0 2

C21 [−100,100] D Rotated 0 2
Rotated

C22 [−100,100] D Rotated 1
Rotated

3
Rotated

C23 [−100,100] D Rotated 1
Rotated

1
Rotated

C24 [−100,100] D Rotated 1
Rotated

1
Rotated

C25 [−100,100] D Rotated 1
Rotated

1
Rotated

C26 [−100,100] D Rotated 1
Rotated

1
Rotated

C27 [−100,100] D Rotated 1
Rotated

2
Rotated

C28 [−50,50] D Rotated 0 2
Rotated

In Table 3, D is the number of decision variables, I is the number of inequality constraints and E is the number of
equality constraints.

4.2. Evaluation Method of Algorithm Performance
4.2.1. Algorithm Performance Evaluation Indicators

To compare the performance of IHFAPA and various comparison algorithms, the mean
value, standard deviation, w/t/l, Friedman rank ranking [45] and Holm’s procedure [46]
are selected as performance evaluation indicators.

• Mean value



Mathematics 2023, 11, 389 23 of 59

The mean value is the average value of the optimal value of the test function obtained
by the algorithm in R independent runs, noted as Mean. The calculation formula of Mean is:

Mean =
∑R

i=1 fi

R
(26)

where R is the total number of independent runs in the algorithm. fi is the optimal value of
the test function obtained by the algorithm in the i-th independent operation.

• Standard deviation

The standard deviation is the deviation between the mean value of the optimal value
obtained by the algorithm in R runs and the respective optimal value, noted as Std. The
calculation formula for standard deviation is:

Std =

√
∑R

i=1 ( fi −Mean)2

R
(27)

where R is the total number of algorithm runs and fi is the optimal value of the test function
obtained by the algorithm in the i-th independent operation. Mean is the average of R
optimal values.

• w/t/l indicators

To better measure the performance of IHFAPA and the various algorithms participating
in the comparison, compare the average value of the optimal value of the objective function
of IHFAPA with other comparison algorithms and the comparison result is recorded as
w/t/l. For a certain test function, if the performance of the IHFAPA is better than the other
algorithm (denoted as Alg), then the value of w is recorded as 1; if the performance of the
IHFAPA algorithm is the same as the performance of another algorithm taking part in
the comparison, the value of t is recorded as 1; if the performance of another algorithm
participating in the comparison is better than IHFAPA, then the value of l is recorded as 1.
For all test functions, add the value of w from the algorithm to obtain the value of w. In the
same way, the values of t and l can be calculated.

• Friedman rank ranking

Friedman rank ranking is a nonparametric statistical method, which can rank the
performance of participating comparison algorithms. Suppose there are m algorithms
involved in the comparison and k test functions are selected. Then, the specific steps in
Friedman rank sorting are (take the minimization problem as an example):

1. Each algorithm is run R times independently on each test function, and the optimal
value of each run is retained.

2. Record the optimal value obtained from R runs and calculate the average value of R
optimal values according to the following formula:

mean f j
i =

R
∑

l=1
f j
i (l)

R
(i = 1, 2, . . . , m; j = 1, 2, . . . , k) (28)

where m is the number of algorithms participating in the comparison, k is the number
of test functions and R is the number of independent runs. meanfij represents the
average value of the optimal value obtained by the i-th algorithm independently
running on the j-th test function for R times.

3. For each test function, all the algorithms participating in the comparison are sorted
in the order of meanfij from small to large and give the algorithm rank ranking ranki

j

(i = 1, 2, . . . , m; j = 1, 2, . . . , k). If the average value of the optimal value of the
comparison algorithm is the same, then take the average of the ranking position as the
rank ranking. To explain the calculation method of ranking and rank ranking, suppose
there are five algorithms involved in the comparison. For a certain test function, if
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the average value of the optimal value obtained by the algorithm participating in the
comparison is 1, 3, 3, 2 and 4, respectively, since the average of the optimal values
found by the second and third algorithms are the same, then the ranking of the two
algorithms are 3 and 4, respectively. Take the average of the ranking positions of these
two algorithms ((3 + 4) / 2 = 3.5) as the rank ranking of the algorithm. Therefore, the
rank rankings corresponding to the five algorithms are 1, 3.5, 3.5, 2 and 5. The results
of the rank ranking are shown in Table 4.

4. Calculate the average of the rank ranking of each algorithm Averanki.

Averanki =
1
m

k

∑
j=1

rankj
i(i = 1, 2, . . . , m) (29)

where m is the number of participating comparison algorithms and k is the number of
test functions.

5. Rank according to the average value Averanki of the rank ranking of each algo-
rithm from small to large, the result of the sorting is the final ranking Finalranki of
various algorithms.

Table 4. Results of rank ranking.

The j-th Test Function Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5

Average of optimal values 1 3 3 2 4
Ranking position 1 3 4 2 5

Ranking ranki
j 1 3.5 3.5 2 5

4.2.2. Algorithm Performance Difference Significance Test

The Friedman test was first proposed by Friedman in 1945. It is a nonparametric test
and is used to determine whether there are significant differences between the comparison
algorithms. Suppose there are m comparison algorithms, that is, there are m samples. Each
sample contains the average of the optimal value of the objective function obtained by k
corresponding algorithms. Then, the Friedman test steps are as follows:

1. The original hypothesis, opposite hypothesis and significance level of Friedman test
are given α.

H0: There is no significant difference in the performance of the m algorithms partici-
pating in the comparison;

H1: There are obvious differences in the performance of the m algorithms participating
in the comparison.

2. Calculate the rank of each algorithm corresponding to each test function rankj
i(1 ≤ I

≤ m, 1 ≤ j ≤ k).
3. Calculate the sum of rank ranking of each test function corresponding to each algo-

rithm sunranki; the sunranki calculation formula is sunranki:

sunranki =
k

∑
j=1

rankj
i (i = 1, 2, . . . , m) (30)

4. Calculate the Friedman test value χ2. The calculation formula of χ2 is:

χ2 =
12

km(m + 1)

m

∑
i=1

sunrank2
i − 3k(m + 1) (31)

5. According to the pre-determined significance level α and degrees of freedom (m − 1).
Critical values can be obtained from the table of critical values of the Chi-square test
χ2

α[m − 1], if
χ2 ≥ χ2

α(m−1) (32)
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Then, reject the original hypothesis H0. It shows that there are obvious differences in
the performance of the m algorithms participating in the comparison. Otherwise, accept
the null hypothesis H0. It shows that there is no significant difference in the performance
of the m algorithms involved in the comparison.

4.3. Obtain the Optimal Parameter Combination through Orthogonal Experiments

The best parameter combination can be found via orthogonal experiments because the
threshold size and population size of the similarity-removal operation have a significant
impact on algorithm performance. There are two factors in the orthogonal experiment, that
is, the threshold ζ for the degree of similarity between individuals in the population and
the population size n. Design three levels for each factor. The three levels of the threshold
ζ are 0.3, 0.4 and 0.5; the three levels of population size are 0.95, 0.97 and 0.98. Therefore,
the orthogonal experiment includes two factors and three levels. Tables 5 and 6 show the
orthogonal experimental design.

Table 5. Factors and level of orthogonal experiment.

Value Factor A(ζ) Factor B(n)

Level 1 0.3 0.95
Level 2 0.4 0.97
Level 3 0.5 0.98

Table 6. Orthogonal array L9 (32) for the orthogonal experiment.

Experiment Number Factors
A(ζ) B(n)

E1 Level 1 Level 1
E2 Level 1 Level 2
E3 Level 1 Level 3
E4 Level 2 Level 1
E5 Level 2 Level 2
E6 Level 2 Level 3
E7 Level 3 Level 1
E8 Level 3 Level 2
E9 Level 3 Level 3

To obtain the optimal combination of parameters, the 30-dimensional CEC 2017 test
function is selected. In addition, to ensure the fairness of the comparison results, suppose
the population size n = 40, the dimension of the variable D = 30, maximum running
time Maxtime = 20 s, the penalty factor M = 108, statistics times tjcs = 20. Tables 7 and 8
and Figure 7 report the results of orthogonal experiments. The test results obtained are
compared in Table 7. Table 8 exhibits the Friedman test results of the orthogonal experiment,
and Figure 7 shows Friedman mean rank and final rank ranking.

In Table 8, χ2 = 160.54, χ2 α[k − 1] = 15.51. Since χ2 ≥ χ2 α[k − 1], the original hypothesis
is rejected. It shows that there are significant differences between the comparative test
combinations. In addition, since E5 ranks first in all trial combinations (mean rank = 2.68), it
shows that E5 is significantly better than other test combinations. Therefore, the optimal
parameter combination is ζ = 0.4, P = 0.97.
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Table 7. The results of orthogonal experiment.

Function Evaluation Indicator E1 E2 E3 E4 E5 E6 E7 E8 E9

C01
Mean 7.05 × 10−13 1.50 × 10−15 5.22 × 1027 6.72 × 10−14 6.17 × 10−15 2.51 × 1027 3.30 × 10−13 4.04 × 10−13 1.24 × 1027

Std. 1.30 × 10−12 1.86 × 10−15 8.43 × 1027 1.01 × 10−13 8.21 × 10−15 2.88 × 1027 7.05 × 10−13 3.53 × 10−13 1.84 × 1027

C02
Mean 3.80 × 10−13 8.11 × 10−14 2.29 × 1027 4.18 × 10−13 2.52 × 10−14 3.76 × 1027 3.88 × 10−12 1.27 × 10−11 9.05 × 1026

Std. 5.10 × 10−13 2.12 × 10−13 2.59 × 1027 5.53 × 10−13 5.99 × 10−14 6.54 × 1027 6.59 × 10−12 2.48 × 10−11 1.31 × 1027

C03
Mean 6.93 × 109 9.14 × 109 4.43 × 1027 2.29 × 109 9.86 × 109 3.13 × 1027 8.24 × 1010 5.33 × 1010 2.25 × 1027

Std. 2.19 × 1010 3.67 × 1010 6.09 × 1027 7.23 × 109 2.60 × 1010 7.30 × 1027 2.17 × 1011 1.68 × 1011 2.87 × 1027

C04
Mean 4.11 × 102 4.09 × 102 1.89 × 1018 3.62 × 102 3.77 × 102 2.51 × 1020 4.42 × 102 4.10 × 102 1.14 × 1019

Std. 7.13 × 101 6.05 × 101 5.91 × 1018 4.03 × 101 6.23 × 101 6.87 × 1020 9.32 × 101 6.26 × 101 2.34 × 1019

C05
Mean 2.14 × 101 1.89 × 101 3.65 × 1023 2.60 × 101 1.88 × 101 2.96 × 1023 2.81 × 101 2.39 × 101 1.35 × 1023

Std. 5.65 × 101 5.44 × 101 4.85 × 1023 1.56 × 101 4.17 × 101 5.70 × 1023 1.95 × 101 5.46 × 101 2.02 × 1023

C06
Mean 4.11 × 1018 9.90 × 1012 8.61 × 1021 6.17 × 103 5.58 × 103 1.70 × 1022 5.27 × 103 4.44 × 103 7.76 × 1021

Std. 1.23 × 1019 4.43 × 1013 6.56 × 1021 1.55 × 103 1.03 × 103 1.23 × 1022 7.52 × 102 8.20 × 102 6.83 × 10 21

C07
Mean 3.69 × 1021 2.08 × 1021 1.71 × 1025 4.31 × 1021 −1.48 × 102 1.32 × 1025 1.27 × 1021 1.22 × 1021 1.15 × 1025

Std. 5.18 × 1021 4.23 × 1021 3.71 × 1024 1.03 × 1022 2.78 × 1021 5.07 × 1024 2.10 × 1021 1.92 × 1021 7.45 × 1024

C08
Mean 7.43 × 10−4 2.99 × 10−4 3.98 × 1030 4.15 × 10−4 4.49 × 10−4 4.53 × 1030 4.91 × 10−4 4.11 × 10−4 2.36 × 1030

Std. 3.68 × 10−4 1.77 × 10−4 6.99 × 1030 1.37 × 10−4 2.76 × 10−4 5.74 × 1030 2.23 × 10−4 2.45 × 10−4 1.86 × 1030

C09
Mean 5.65 × 101 4.38 × 101 1.23 × 1039 7.76 × 101 5.45 × 101 7.66 × 1038 8.71 × 101 7.24 × 101 3.00 × 1036

Std. 3.41 × 101 3.09 × 101 3.88 × 1039 2.58 × 101 3.34 × 101 2.42 × 1039 4.49 × 101 3.64 × 101 7.15 × 1036

C10
Mean 2.71 × 10−4 2.88 × 10−4 5.62 × 1031 2.55 × 10−4 2.22 × 10−4 1.13 × 1032 2.40 × 10−4 2.71 × 10−4 2.62 × 1031

Std. 9.89 × 10−5 1.09 × 10−4 6.58 × 1031 6.51 × 10−5 1.16 × 10−4 2.65 × 1032 6.58 × 10−5 8.95 × 10−5 2.35 × 1031

C11
Mean 1.58 × 1020 2.08 × 1020 1.43 × 10119 6.95 × 1019 8.64 × 1019 1.29 × 10124 6.65 × 1018 1.01 × 1020 1.40 × 10 126

Std. 2.03 × 1020 5.87 × 1020 4.51 × 10119 8.82 × 1019 1.92 × 1020 4.08 × 10124 1.34 × 1019 1.70 × 1020 4.41 × 10 126

C12
Mean 2.11 × 101 1.73 × 101 3.81 × 1028 2.50 × 101 4.00 × 10−1 3.78 × 1028 1.50 × 101 1.25 × 101 3.71 × 1028

Std. 1.32 × 101 1.02 × 101 1.50 × 1028 1.59 × 101 1.21 × 101 1.66 × 1028 9.72 × 101 4.47 × 101 1.34 × 1028

C13
Mean 6.51 × 1022 4.21 × 1022 2.99 × 1028 7.12 × 1022 4.64 × 1022 3.48 × 1028 6.64 × 1022 6.41 × 1022 3.43 × 1028

Std. 4.74 × 1022 4.26 × 1022 1.09 × 1028 6.24 × 1022 3.88 × 1022 1.56 × 1028 3.85 × 1022 3.48 × 1022 1.70 × 1028

C14
Mean 1.41 × 101 1.42 × 101 7.02 × 1028 1.41 × 101 1.41 × 101 8.18 × 1028 1.42 × 101 1.41 × 101 5.92 × 1028

Std. 2.24 × 10−13 3.18 × 10−2 2.69 × 1028 1.26 × 10−13 3.77 × 10−14 3.25 × 1028 2.75 × 10−2 9.62 × 10−13 1.87 × 1028

C15
Mean 2.03 × 101 2.06 × 101 3.27 × 1028 2.21 × 101 1.96 × 101 3.48 × 1028 2.25 × 101 2.12 × 101 3.28 × 1028

Std. 2.98 × 101 2.19 × 101 1.41 × 1028 3.33 × 101 3.75 × 101 1.09 × 1028 3.69 × 101 4.91 × 101 9.69 × 1028

C16
Mean 1.84 × 102 1.61 × 102 3.71 × 1028 1.82 × 102 1.65 × 102 3.25 × 1028 1.89 × 102 1.81 × 102 2.74 × 1028

Std. 1.62 × 101 2.11 × 101 1.57 × 1028 1.84 × 101 1.99 × 101 1.25 × 1028 1.00 × 101 1.86 × 101 1.00 × 1028

C17
Mean 9.61 × 1020 9.61 × 1020 3.99 × 1028 9.61 × 1020 9.61 × 1020 4.05 × 1028 9.61 × 1020 9.61 × 1020 3.09 × 1028

Std. 0 0 1.69 × 1028 0 0 1.31 × 1028 0 0 1.27 × 1028
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Table 7. Cont.

Function Evaluation Indicator E1 E2 E3 E4 E5 E6 E7 E8 E9

C18
Mean 4.91 × 1022 5.92 × 1022 9.95 × 1040 4.86 × 1022 3.65 × 101 6.05 × 1040 8.93 × 1022 5.57 × 1022 6.46 × 1040

Std. 1.21 × 1023 1.24 × 1023 4.81 × 1040 1.33 × 1023 1.24 × 1023 4.54 × 1040 1.69 × 1023 1.32 × 1023 5.26 × 1040

C19
Mean 1.84 × 1027 1.84 × 1027 1.85 × 1027 1.84 × 1027 1.84 × 1027 1.85 × 1027 1.84 × 1027 1.84 × 1027 1.85 × 1027

Std. 1.67 × 1024 1.96 × 1024 1.47 × 1023 1.77 × 1024 1.72 × 1024 5.70 × 1023 1.29 × 1024 8.66 × 1023 3.52 × 10 23

C20
Mean 2.98 × 101 2.51 × 101 3.19 × 1017 2.64 × 101 2.48 × 101 1.80 × 1017 2.70 × 101 2.77 × 101 1.20 × 101

Std. 5.29 × 101 3.78 × 10−1 6.85 × 1017 3.78 × 10−1 2.76 × 10−1 5.69 × 1017 3.73 × 10−1 5.49 × 10−1 1.72 × 101

C21
Mean 1.71 × 101 2.16 × 101 2.29 × 1028 2.46 × 101 1.45 × 101 3.00 × 1028 1.86 × 101 2.11 × 101 2.41 × 1028

Std. 7.92 × 101 1.24 × 101 6.66 × 1027 1.29 × 101 9.78 × 101 1.25 × 1028 1.16 × 101 1.32 × 101 1.17 × 1028

C22
Mean 4.67 × 1020 4.88 × 1020 2.60 × 1028 5.54 × 1020 7.41 × 1020 3.96 × 1028 4.55 × 1020 4.29 × 1020 2.02 × 1028

Std. 3.00 × 1020 4.12 × 1020 1.71 × 1028 6.33 × 1020 5.04 × 1020 1.13 × 1028 3.76 × 1020 2.70 × 1020 7.96 × 1027

C23
Mean 1.41 × 101 1.41 × 101 4.62 × 1028 1.41 × 101 1.41 × 101 5.08 × 1028 1.41 × 101 1.42 × 101 5.59 × 1028

Std. 7.60 × 10−13 1.94 × 10−2 1.38 × 1028 9.67 × 10−13 1.94 × 10−2 2.344 × 1028 1.21 × 10−11 2.75 × 10−2 1.54 × 1028

C24
Mean 2.06 × 101 2.01 × 101 2.374 × 1028 2.18 × 101 1.95 × 101 2.564 × 1028 2.12 × 101 2.06 × 101 2.104 × 1028

Std. 1.99 × 101 2.55 × 101 1.05 × 1028 2.89 × 101 2.38 × 101 1.01 × 1028 2.57 × 101 1.99 × 101 1.01 × 1028

C25
Mean 1.82 × 102 1.77 × 102 2.65 × 1028 1.91 × 102 1.66 × 102 2.07 × 1028 1.92 × 102 1.83 × 102 2.27 × 1028

Std. 2.45 × 101 1.34 × 101 1.26 × 1028 2.24 × 101 1.49 × 101 8.76 × 1027 1.67 × 101 1.26 × 101 8.05 × 1027

C26
Mean 9.61 × 1020 9.61 × 1020 2.60 × 1028 9.61 × 1022 9.61 × 1020 2.24 × 1028 9.61 × 1020 9.61 × 1020 2.49 × 1028

Std. 0 0 1.29 × 1028 0 0 3.77 × 1027 0 0 1.04 × 1028

C27
Mean 6.55 × 1023 5.70 × 1022 5.51 × 1040 9.31 × 1022 3.65 × 101 6.38 × 1040 7.71 × 1022 1.15 × 1023 6.07 × 1040

Std. 1.08 × 1023 1.19 × 1023 3.45 × 1040 1.77 × 1023 1.60 × 1023 4.76 × 1040 1.18 × 1023 1.70 × 1023 3.61 × 1040

C28
Mean 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027

Std. 1.49 × 1024 1.70 × 1023 4.75 × 1023 6.63 × 1023 1.63 × 1024 3.01 × 1023 1.14 × 1024 1.19 × 1024 5.28 × 1023



Mathematics 2023, 11, 389 28 of 59

Table 8. Friedman test results of orthogonal experiment.

Dimension Significant Level k χ2 χ2
α[k−1] p-Value Null Hypothesis Alternative Hypothesis

D = 30 A = 0.05 9 160.54 15.51 1.23487 × 10−30 Reject Accept
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Figure 7. Results of the Friedman mean ranking test of various experiment number. (a) Mean rank
ranking; (b) final rank ranking.

4.4. Termination Condition of Algorithm Iteration

There are two commonly used iteration termination conditions at present. One is
taking the maximum number of iterations as the termination condition and the other
is taking the maximum evaluation times as the termination condition. However, the
two iteration termination conditions are not fair to other algorithms participating in the
comparison. The specific reasons are as follows:

1. Taking the maximum number of iterations as the iteration termination condition, it is
unfair to the algorithms that participate in the comparison. Let the time required for
an iteration of algorithm A be t1, the time required for one iteration of algorithm B is
t2, and t1 > t2. Let t1 = 1.2t2, t2 = 0.005 s, the maximum number of iterations is 1000.
When both algorithm A and algorithm B reach the maximum number of iterations,
algorithm A needs 6 s and algorithm B needs 5 s. The running time of A is 1 s longer
than the running time of B. If the solution quality of A is better than that of B, it cannot
be said that the performance of algorithm A is better than that of algorithm B. Because
the running time of A is long, if algorithm B runs for another 1 s, the quality of the
solution from algorithm B is not necessarily worse than that of algorithm A.

2. Taking the maximum evaluation times of the objective function as the termination
condition of the algorithm iteration, it is also unfair to the algorithms involved in
the comparison. The main reasons are: some algorithms in an iteration process,
although the evaluation times of the objective function are few, the running time of the
program is very long; some algorithms in an iteration process, although there are many
evaluation times of the objective function, but the running time of the program is very
short. Therefore, taking the maximum evaluation times of the objective function as
the iteration termination condition is unfair to some algorithms.

In summary, to fairly compare various algorithms, the maximum running time Max-
time can be used as the iteration termination condition of the algorithm. Therefore, Maxtime
is taken as the termination condition of algorithm iteration in this paper. When the pro-
gram’s running time reaches Maxtime, the algorithm stops iterating and outputs the optimal
solution and value. The advantages of taking the maximum running time Maxtime as the
termination condition of algorithm iteration are: regardless of whether the time and space
complexity of different algorithms are the same, it is fair to the algorithms participating in
the comparison.
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4.5. Performance Comparison of Different Attraction Models

To verify that the performance of the probability attraction model is better than
other attraction models, the CAM, RAM, NAM and GAM were selected to compare their
performance with the probability attraction model. In addition, to ensure the fairness of the
comparison, IHFAPA uses a different model of attraction and the rest is the same. Suppose
population size n = 40, dimension of variable D = 30, maximum running time Maxtime = 20 s,
maximum attraction βmax = 1, minimum attraction βmin = 0.5, light-absorption coefficient
γ = 1, penalty factors corresponding to equality constraints and inequality constraints
M1 = M2 = 108. The test function is CEC 2017; IHFAPA with different attractors was
independently run 20 times. Run 20 times independently to obtain the mean value of
the optimal value of the test function and the standard deviation of the optimal value, as
shown in Table 9. The results of Friedman’s mean rank and final rank ordering for different
attraction models are given in Figure 8. The Friedman test results of different attraction
models are shown in Table 10.

Table 9. Statistical results of IHFAPA with different attraction models.

Test Functions Performance
Indicators

Complete
Attraction

Model

Random
Attraction

Model

Neighborhood
Attraction

Model

Grouping
Attraction

Model

Probability
Attraction

Model

C01
Mean 7.10 × 101 9.49 × 103 1.98 × 10−2 1.08 × 101 6.17 × 10−15

Std 5.79 × 103 4.47 × 104 5.63 × 10−2 2.06 × 102 8.21 × 10−15

C02
Mean 2.36 × 101 9.52 × 103 2.58 × 10−2 3.29 × 101 2.52 × 10−14

Std 3.03 × 103 2.58 × 104 1.07 × 10−1 8.15 × 101 5.99 × 10−14

C03
Mean 9.34 × 104 2.67 × 106 3.38 × 105 9.99 × 105 9.86 × 109

Std 3.41 × 106 5.89 × 106 1.90 × 1010 4.80 × 106 2.60 × 1010

C04
Mean 2.34 × 102 4.07 × 102 1.21 × 102 5.33 × 102 3.77 × 102

Std 5.88 × 102 6.63 × 102 2.22 × 102 6.62 × 102 6.23 × 101

C05
Mean 1.85 × 101 2.54 × 102 2.18 × 101 1.55 × 101 1.88 × 101

Std 7.52 × 101 5.40 × 103 1.01 × 102 2.30 × 101 1.17 × 101

C06
Mean 2.42 × 1012 3.44 × 103 4.36 × 1013 3.91 × 103 5.58 × 103

Std 9.93 × 1012 3.20 × 1011 1.56 × 1018 2.26 × 1020 1.03 × 103

C07
Mean 6.17 × 1021 1.20 × 1021 −1.43 × 102 −1.93 × 102 −1.48 × 102

Std 7.58 × 1020 1.01 × 1024 9.70 × 1022 9.17 × 1023 2.78 × 1021

C08
MEan 7.02 × 10−4 1.87 × 1025 2.58 × 1013 5.22 × 1016 4.49 × 10−4

Std 4.80 × 1020 3.27 × 1026 3.63 × 1014 3.65 × 1018 2.76 × 10−4

C09
Mean 2.28 × 101 3.79 × 101 6.65 × 101 −2.65 × 10−3 5.45 × 101

Std 1.50 × 101 1.99 × 1018 1.91 × 101 1.40 × 101 1.34 × 101

C10
Mean 3.50 × 10−4 2.73 × 1026 4.64 × 1012 2.61 × 10−4 2.22 × 10−4

Std 6.75 × 10−4 4.06 × 1027 3.60 × 1013 8.60 × 10−4 1.16 × 10−4

C11
Mean 6.74 × 1015 1.01 × 1026 1.04 × 1016 5.62 × 1019 8.64 × 1019

Std 1.26 × 1025 3.51 × 1027 8.81 × 1020 7.25 × 1022 1.92 × 1020

C12
Mean 4.00 × 101 2.73 × 1023 1.69 × 102 4.00 × 101 4.00 × 101

Std 3.97 × 101 2.65 × 1025 2.50 × 102 3.97 × 101 1.21 × 101

C13
Mean 2.71 × 1023 4.27 × 1025 4.85 × 102 8.35 × 1022 4.64 × 1022

Std 2.37 × 1024 2.73 × 1026 7.45 × 1021 1.59 × 1024 3.88 × 1022

C14
Mean 1.41 × 101 1.69 × 1024 1.90 × 101 1.41 × 101 1.41 × 101

Std 1.50 × 101 7.77 × 1025 2.32 × 101 1.50 × 101 3.77 × 10−4

C15
Mean 1.81 × 101 1.81 × 101 1.49 × 101 1.81 × 101 1.96 × 101

Std 3.06 × 101 6.63 × 1024 1.81 × 101 3.06 × 101 1.75 × 101

C16
Mean 1.76 × 102 2.20 × 102 6.91 × 101 2.07 × 102 1.65 × 102

Std 2.40 × 102 1.63 × 1025 1.19 × 102 2.47 × 102 1.99 × 101

C17
Mean 9.61 × 1020 2.76 × 1024 9.61 × 1020 9.61 × 1020 9.61 × 1020

Std 9.61 × 1020 4.46 × 1026 9.61 × 1020 9.61 × 1020 0

C18
Mean 3.65 × 101 1.01 × 1027 5.59 × 1014 3.65 × 101 3.65 × 101

Std 2.75 × 1025 6.34 × 1035 2.57 × 1025 2.39 × 1026 1.24 × 1027
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Table 9. Cont.

Test Functions Performance
Indicators

Complete
Attraction

Model

Random
Attraction

Model

Neighborhood
Attraction

Model

Grouping
Attraction

Model

Probability
Attraction

Model

C19
Mean 1.84 × 1027 1.85 × 1027 1.84 × 1027 1.85 × 1027 1.84 × 1027

Std 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.72 × 1024

C20
Mean 2.05 × 101 2.59 × 101 2.48 × 101 2.07 × 101 2.01 × 101

Std 3.97 × 101 5.18 × 101 4.97 × 101 3.40 × 101 2.76 × 10−1

C21
Mean 4.00 × 101 1.69 × 1024 1.81 × 102 4.00 × 101 1.45 × 101

Std 3.97 × 101 6.98 × 1025 3.00 × 102 3.97 × 102 9.78 × 101

C22
Mean 3.56 × 1023 5.42 × 1025 2.91 × 104 5.63 × 1022 7.41 × 1020

Std 3.02 × 1024 3.17 × 1026 5.11 × 1021 1.33 × 1024 5.04 × 1022

C23
Mean 1.41 × 101 4.65 × 1024 1.95 × 101 1.41 × 101 1.41 × 101

Std 1.50 × 101 1.22 × 1026 2.33 × 101 1.41 × 101 1.94 × 10−2

C24
Mean 1.81 × 101 2.12 × 101 1.18 × 101 1.81 × 101 1.95 × 101

Std 2.75 × 101 3.95 × 1025 1.81 × 101 3.06 × 101 2.38 × 101

C25
Mean 1.88 × 102 2.26 × 102 7.54 × 101 1.95 × 102 1.66 × 102

Std 2.45 × 102 1.40 × 1025 1.45 × 102 2.51 × 102 1.49 × 101

C26
Mean 9.61 × 1020 5.52 × 1027 9.61 × 1020 9.61 × 1020 9.61 × 1020

Std 9.61 × 1020 2.71 × 1026 9.61 × 1020 9.61 × 1020 0

C27
Mean 3.66 × 101 1.20 × 1033 3.83 × 1015 3.65 × 101 3.65 × 101

Std 3.35 × 1026 5.39 × 1035 3.08 × 1025 3.09 × 1026 1.60 × 1023

C28
Mean 1.84 × 1027 1.85 × 1027 1.84 × 1027 1.85 × 1027 1.85 × 1027

Std 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.63 × 1025

w/t/l 25/0/3 23/0/5 26/0/2 25/0/3 -
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Mean 3.65 × 101 1.01 × 1027 5.59 × 1014 3.65 × 101 3.65 × 101 

Std 2.75 × 1025 6.34 × 1035 2.57 × 1025 2.39 × 1026 1.24 × 1027 

C19 
Mean 1.84 × 1027 1.85 × 1027 1.84 × 1027 1.85 × 1027 1.84 × 1027 

Std 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.72 × 1024 

C20 
Mean 2.05 × 101 2.59 × 101 2.48 × 101 2.07 × 101 2.01 × 101 

Std 3.97 × 101 5.18 × 101 4.97 × 101 3.40 × 101 2.76 × 10−1 

C21 
Mean 4.00 × 101 1.69 × 1024 1.81 × 102 4.00 × 101 1.45 × 101 

Std 3.97 × 101 6.98 × 1025 3.00 × 102 3.97 × 102 9.78 × 101 

C22 
Mean 3.56 × 1023 5.42 × 1025 2.91 × 104 5.63 × 1022 7.41 × 1020 

Std 3.02 × 1024 3.17 × 1026 5.11 × 1021 1.33 × 1024 5.04 × 1022 

C23 
Mean 1.41 × 101 4.65 × 1024 1.95 × 101 1.41 × 101 1.41 × 101 

Std 1.50 × 101 1.22 × 1026 2.33 × 101 1.41 × 101 1.94 × 10−2 

C24 
Mean 1.81 × 101 2.12 × 101 1.18 × 101 1.81 × 101 1.95 × 101 

Std 2.75 × 101 3.95 × 1025 1.81 × 101 3.06 × 101 2.38 × 101 

C25 
Mean 1.88 × 102 2.26 × 102 7.54 × 101 1.95 × 102 1.66 × 102 

Std 2.45 × 102 1.40 × 1025 1.45 × 102 2.51 × 102 1.49 × 101 

C26 
Mean 9.61 × 1020 5.52 × 1027 9.61 × 1020 9.61 × 1020 9.61 × 1020 

Std 9.61 × 1020 2.71 × 1026 9.61 × 1020 9.61 × 1020 0 

C27 
Mean 3.66 × 101 1.20 × 1033 3.83 × 1015 3.65 × 101 3.65 × 101 

Std 3.35 × 1026 5.39 × 1035 3.08 × 1025 3.09 × 1026 1.60 × 1023 

C28 
Mean 1.84 × 1027 1.85 × 1027 1.84 × 1027 1.85 × 1027 1.85 × 1027 

Std 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.85 × 1027 1.63 × 1025 
w/t/l 25/0/3 23/0/5 26/0/2 25/0/3 - 
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Figure 8. Friedman rank ranking results of various attraction models (D = 30). (a) Mean rank
ranking; (b) final rank ranking. A1 = Complete attraction model; A2 = Random attraction model;
A3 = Neighborhood attraction model; A4 = Grouping attraction model; A5 = Probability based
attraction model.

Table 10. Friedman test results of various attraction models.

Dimension Significance Level k χ2 χ2
α[k − 1] p-Value Null Hypothesis Alternative Hypothesis

D = 30 α = 0.05 5 26.07 9.49 3.05747 × 10−5 Reject Accept

In Table 9, Mean is the average value of the optimal value of the test function obtained
when each test function runs 20 times and Std is the standard deviation for the optimal
value obtained. Table 9 indicates that the probability attraction model performs better than
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the other attraction models in regard to winning frequency. As a result, the probability
attraction model performs significantly better than other attraction models. Figure 8
demonstrates that the probability attraction model performs better than the other attraction
models that were tested by placing first in both the mean rank and final rank among
all the attraction models that were compared. In addition, Friedman test was selected
to verify whether there were noticeable differences in the performance of the various
attraction models involved in the comparison. According to Table 10, when k = 5, α = 0.05,
χ2

α[4] the degree of freedom k − 1 = 4 corresponds toχ2
α[4] = 9.49, χ2 = 26.07, χ2 > χ2

α[4].
Therefore, rejecting the original hypothesis shows that there are obvious differences in the
performance of various attraction models involved in the comparison.

In conclusion, for the 28 30-D test functions in CEC 2017, the performance of the
probabilistic attraction model is better than the other four models, which verifies the
validity of the probabilistic attraction model.

4.6. Performance Comparison between IHFAPA and Other FAs

To verify the superiority of the IHFAPA algorithm, five different FA algorithms were
selected for comparison. The selected algorithm is:

1. Standard firefly algorithm (SFA) [6];
2. Random-attracting firefly algorithm (RaFA) [19];
3. Neighborhood-attracting firefly algorithm (NaFA) [42];
4. Gender-difference firefly algorithm (GDFA) [47];
5. An adaptive Log Spiral levy firefly algorithm (ADIFA) [29];
6. Cauchy mutation of the Yin and Yang firefly algorithm (YYFA) [36];
7. Group-attraction hybrid firefly algorithm (GAHFA) [20].

4.6.1. Parameter Settings

To compare the performance of various algorithms fairly, suppose the population size
of all algorithms is n = 40, maximum running time Maxtime = 20 s, penalty factor M = 108,
the allowable error value of the equality constraint for constrained optimization problem
θ = 10−4 and number of statistics tjcs = 20. The other parameters in the comparison
algorithm adopt the values in the original literature, and the specific parameter values are
shown in Table 11.

Table 11. Parameter settings of various FAs participating in the comparison.

Algorithm Reference Years Parameters

SFA [6] 2008 α = 0.2, β0 = 1, γ = 1.0
RaFA [19] 2016 α ∈ [0,1], β0 = 1, γ = 1
NaFA [42] 2017 α = 0.5, γ = 1, βmin = 0.2, β0 = 1.0, k = 3
GDFA [47] 2019 β0 = 1, γ = 1
ADIFA [29] 2020 a (0) = 0.2, β0 = 1, γ = 1
YYFA [36] 2020 a (0) = 0.2, βmin = 0.2, β0 = 1, γ = 1, L = 800

GAHFA [20] 2021 α0 = 0.3, ϕ0 = 0.9, pm = 0.7, Fmax = 0.9, Fmin = 0.1

IHFAPA - - N = 40, α0 = 0.1, φ0 = 0.9, βmax = 1, βmin = 0.5,
γ = 1, Pm = 1

4.6.2. Statistical Results and Analysis

1. Statistical results

Calculation results of 28 benchmark functions in CEC 2017 of various firefly algorithms
D = 30 and D = 50 are given in Tables 12 and 13, and the Friedman test results are shown in
Tables 14 and 15. Holm’s procedure was used to further verify the algorithm performance.
The results of all pairwise comparisons are summarized in Tables 16 and 17. When D = 30
and D = 50, the ranking results of the Friedman average rank and final rank of various FA
algorithms are shown in Figure 9.
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Table 12. Statistical results of various FAs (D = 30).

Test Functions Performance
Indicators SFA RaFA NaFA GDFA ADIFA YYFA GAHFA IHFAPA

C01
Mean 6.48 × 105 9.23 × 102 5.12 × 105 2.90 × 104 5.12 × 102 2.59 × 103 3.00 × 10−5 6.17 × 10−15

Std 0 1.92 × 102 4.25 × 105 3.95 × 103 1.70 × 102 2.24 × 103 6.73 × 10−6 8.21 × 10−15

C02
Mean 3.18 × 105 1.06 × 103 9.08 × 104 2.61 × 104 3.58 × 102 2.44 × 103 3.01 × 10−5 2.52 × 10−14

Std 1.25 × 105 3.95 × 102 5.26 × 104 3.20 × 103 9.42 × 101 2.24 × 103 5.66 × 10−6 5.99 × 10−14

C03
Mean 1.08 × 1024 9.18 × 105 3.83 × 106 1.34 × 105 4.86 × 105 1.70 × 106 3.70 × 104 9.86 × 109

Std 2.77 × 1023 6.53 × 105 1.36 × 106 5.94 × 106 2.37 × 105 1.30 × 106 1.04 × 104 2.60 × 1010

C04
Mean 1.11 × 103 5.20 × 102 8.00 × 102 3.09 × 102 2.48 × 102 5.57 × 102 6.23 × 102 3.77 × 102

Std 8.90 × 101 8.15 × 101 8.61 × 101 2.90 × 101 1.89 × 101 8.22 × 101 6.63 × 101 6.23 × 101

C05
Mean 6.71 × 106 1.73 × 105 1.32 × 106 1.98 × 105 4.02 × 101 4.94 × 103 7.71 × 101 1.88 × 101

Std 1.13 × 106 1.02 × 105 3.01 × 105 6.21 × 104 1.45 × 101 7.65 × 103 4.83 × 101 4.17 × 101

C06
Mean 4.36 × 1024 9.76 × 109 6.85 × 1010 7.15 × 109 4.01 × 108 1.72 × 1010 5.42 × 103 5.58 × 103

Std 4.90 × 1023 1.84 × 109 5.01 × 1010 3.28 × 109 1.75 × 108 7.55 × 1010 1.35 × 103 1.03 × 103

C07
Mean 2.00 × 1024 6.66 × 1012 5.97 × 1014 9.80 × 1012 8.85 × 104 9.03 × 1012 1.85 × 1012 −1.48 × 102

Std 3.86 × 1018 6.73 × 1012 1.08 × 1014 1.84 × 1013 1.29 × 104 2.28 × 1012 4.73 × 1012 2.78 × 1021

C08
Mean 2.00 × 1024 3.30 × 1013 1.58 × 1018 2.10 × 1014 4.69 × 109 4.76 × 1014 1.16 × 103 4.49 × 10−4

Std 0 1.32 × 1013 1.99 × 1018 9.03 × 1013 7.47 × 108 7.02 × 1014 3.07 × 10−4 2.76 × 10−4

C09
Mean 1.00 × 1024 1.71 × 1012 3.00 × 1015 1.25 × 106 1.29 × 105 6.95 × 101 1.62 × 106 5.45 × 101

Std 1.02 × 1020 1.37 × 1012 1.89 × 1015 1.14 × 106 5.76 × 104 6.25 × 10−1 8.10 × 106 3.34 × 101

C10
Mean 2.02 × 1024 2.20 × 1013 1.32 × 1019 1.14 × 1015 2.08 × 106 3.22 × 1015 8.66 × 10−4 2.22 × 10−4

Std 5.20 × 1021 6.18 × 1012 1.95 × 1019 5.77 × 1014 4.96 × 106 9.17 × 1015 1.42 × 10−4 1.16 × 10−4

C11
Mean 1.00 × 1024 4.20 × 1013 9.66 × 1017 7.20 × 1014 1.70 × 1011 6.03 × 1014 1.32 × 106 8.64 × 1019

Std 5.74 × 1020 4.09 × 1013 2.92 × 1017 2.55 × 1014 7.07 × 1010 1.64 × 1015 6.24 × 106 1.92 × 1020

C12
Mean 1.00 × 1024 7.96 × 1011 3.26 × 1017 5.10 × 1013 2.05 × 102 5.23 × 1013 1.89 × 101 1.00 × 101

Std 2.26 × 1020 1.54 × 1011 8.73 × 1016 1.95 × 1013 9.29 × 10−1 2.45 × 1014 1.25 × 101 1.21 × 101

C13
Mean 1.32 × 1024 1.11 × 1013 3.67 × 1017 7.08 × 1015 1.08 × 1012 3.54 × 1011 3.10 × 1015 4.64 × 1022

Std 4.76 × 1023 4.05 × 1012 7.39 × 1016 1.87 × 1015 1.70 × 1011 5.19 × 1012 1.91 × 1015 3.88 × 1022

C14
Mean 2.00 × 1024 1.32 × 1012 6.63 × 1017 1.07 × 1014 2.12 × 101 4.52 × 1013 1.41 × 101 1.40 × 101

Std 6.45 × 1020 3.79 × 1011 1.67 × 1017 6.01 × 1013 5.04 × 10−1 1.72 × 1013 1.74 × 10−1 3.77 × 10−14

C15
Mean 1.00 × 1024 2.55 × 101 2.82 × 1017 1.93 × 101 2.39 × 101 3.13 × 101 2.47 × 101 1.96 × 101

Std 3.32 × 1020 3.77 × 101 6.66 × 1017 4.22 × 101 1.50 × 101 8.75 × 101 3.99 × 101 3.75 × 101

C16
Mean 1.00 × 1024 2.34 × 102 3.17 × 1017 1.70 × 102 1.56 × 102 3.16 × 1013 2.39 × 102 1.65 × 102

Std 1.84 × 1020 1.00 × 101 6.46 × 1016 2.34 × 101 1.86 × 101 1.58 × 1014 1.10 × 101 1.99 × 101

C17
Mean 2.00 × 1024 9.69 × 1010 3.53 × 1017 4.89 × 1015 9.61 × 1010 3.34 × 1012 9.61 × 1010 9.61 × 1020

Std 2.41 × 1020 1.28 × 109 9.45 × 1016 1.28 × 1015 3.58 × 10−2 1.52 × 1013 4.75 × 10−2 0
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Table 12. Cont.

Test Functions Performance
Indicators SFA RaFA NaFA GDFA ADIFA YYFA GAHFA IHFAPA

C18
Mean 1.14 × 1030 9.73 × 1019 5.06 × 1028 3.84 × 1024 6.95 × 1011 3.21 × 1017 2.55 × 1011 3.65 × 101

Std 4.99 × 1029 2.05 × 1020 1.92 × 1028 2.38 × 1024 9.18 × 1010 1.47 × 1018 1.00 × 1012 1.24 × 1024

C19
Mean 1.00 × 1024 1.84 × 1017 1.85 × 1017 1.85 × 1017 1.84 × 1017 1.84 × 1017 1.85 × 1017 1.84 × 1027

Std 6.60 × 1016 7.59 × 1013 3.76 × 1013 3.92 × 1013 4.58 × 1013 6.94 × 1013 1.06 × 1013 1.72 × 1024

C20
Mean 8.40 × 101 8.87 × 101 3.03 × 101 6.04 × 101 3.63 × 101 9.18 × 101 2.36 × 101 2.48 × 101

Std 4.67 × 10−1 2.44 × 10−1 5.45 × 10−1 1.09 × 101 1.27 × 10−1 4.96 × 10−1 3.41 × 10−1 2.76 × 10−1

C21
Mean 1.00 × 1024 6.03 × 1011 1.62 × 1017 3.82 × 1013 2.06 × 102 9.40 × 1013 1.61 × 101 1.45 × 101

Std 2.11 × 1020 1.97 × 1011 3.75 × 1016 2.03 × 1012 1.39 × 101 4.35 × 1013 1.14 × 101 9.78 × 101

C22 Mean 1.00 × 1024 1.06 × 1013 1.91 × 1017 8.16 × 1015 1.53 × 1013 5.92 × 1012 2.44 × 1015 7.41 × 1022

Std 2.92 × 1020 3.56 × 1013 5.36 × 1016 1.92 × 1013 3.34 × 1012 8.28 × 1012 8.79 × 1014 5.04 × 1022

C23 Mean 2.00 × 1024 1.39 × 1012 2.85 × 1017 6.03 × 1014 2.07 × 101 5.48 × 101 1.41 × 101 1.40 × 101

Std 6.22 × 1020 4.88 × 1011 7.02 × 1016 2.94 × 1014 5.75 × 10−2 1.31 × 1014 1.74 × 10−2 1.94 × 10−2

C24 Mean 1.00 × 1024 1.44 × 102 1.50 × 1017 2.08 × 101 1.78 × 101 2.02 × 101 2.32 × 101 1.95 × 101

Std 2.61 × 1020 9.23 × 101 3.83 × 1016 2.91 × 101 9.63 × 10−1 3.23 × 101 3.94 × 101 2.38 × 101

C25 Mean 1.00 × 1024 2.57 × 102 1.51 × 1017 1.91 × 102 2.11 × 102 1.33 × 102 2.40 × 102 1.66 × 102

Std 2.11 × 1020 4.09 × 101 3.32 × 1016 1.89 × 101 1.23 × 101 3.02 × 101 1.52 × 101 1.49 × 101

C26 Mean 2.00 × 1024 9.63 × 1010 1.58 × 1017 5.19 × 1014 9.61 × 1014 2.39 × 1012 9.61 × 1010 9.61 × 1020

Std 2.15 × 1020 2.60 × 108 4.21 × 1016 1.56 × 1014 3.05 × 10−1 1.14 × 1013 9.87 × 10−3 0
C27 Mean 5.19 × 1029 6.63 × 1019 1.75 × 1028 9.08 × 1024 9.06 × 1011 5.25 × 1019 7.26 × 1011 3.65 × 101

Std 2.22 × 1029 1.41 × 1020 9.03 × 1027 7.87 × 1024 1.31 × 1012 2.08 × 1020 1.61 × 1012 1.60 × 1024

C28 Mean 1.00 × 1024 1.85 × 1017 1.85 × 1017 1.85 × 1017 1.85 × 1017 1.85 × 1017 1.85 × 1017 1.85 × 1027

Std 6.50 × 1016 1.73 × 1014 6.35 × 1013 3.81 × 1013 5.57 × 1014 1.22 × 1014 1.61 × 1014 1.63 × 1024

w/t/l 28/0/0 28/0/0 28/0/0 27/0/1 16/0/12 25/0/3 20/0/10 -
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Table 13. Calculation results of various algorithms (D = 50).

Test Functions Performance
Indicators SFA RaFA NaFA GDFA ADIFA YYFA GAHFA IHFAPA

C01
Mean 1.52 × 106 1.69 × 104 1.02 × 106 1.07 × 105 1.77 × 104 9.27 × 103 3.68 × 10−4 1.21 × 10−5

Std 0 3.24 × 103 8.28 × 105 1.15 × 104 1.18 × 103 4.17 × 103 5.81E × 10−5 1.10 × 10−5

C02
Mean 1.18 × 106 1.66 × 104 4.65 × 105 1.09 × 105 1.67 × 104 7.38 × 103 4.31 × 10−4 6.35 × 10−5

Std 8.20 × 105 3.43 × 103 2.00 × 105 1.73 × 104 2.54 × 103 3.29 × 103 8.41 × 10−5 5.02 × 10−5

C03
Mean 1.16 × 1024 1.69 × 106 1.32 × 107 5.52 × 105 1.05 × 106 8.78 × 106 1.31 × 105 2.15 × 105

Std 3.74 × 1023 9.10 × 105 1.50 × 107 2.79 × 105 4.44 × 105 8.51 × 106 6.00 × 104 4.47 × 104

C04
Mean 2.13 × 103 9.81 × 102 1.33 × 103 8.34 × 102 5.69 × 102 1.31 × 103 1.07 × 103 8.71 × 102

Std 1.21 × 102 6.675 × 101 8.11 × 101 5.305 × 101 1.625 × 101 8.135 × 101 1.83 × 102 1.36 × 102

C05
Mean 1.76 × 107 4.26 × 103 3.37 × 106 1.66 × 106 3.40 × 105 4.38 × 104 4.22 × 101 5.345 × 101

Std 1.95 × 106 3.72 × 103 3.08 × 105 2.87 × 105 1.68 × 106 4.78 × 104 1.655 × 101 2.845 × 101

C06
Mean 4.52 × 1024 8.67 × 103 8.11 × 1010 1.30 × 1010 9.97 × 108 3.32 × 1010 9.12 × 103 7.85 × 106

Std 5.10 × 1023 1.96 × 103 4.19 × 1010 5.32 × 109 4.53 × 108 1.37 × 1010 2.29 × 103 3.92 × 107

C07
Mean 2.00 × 1024 3.05 × 1016 2.32 × 1015 1.36 × 1015 9.01 × 107 4.58 × 1013 2.54 × 1013 5.41 × 1011

Std 5.94 × 1018 7.59 × 1010 2.28 × 1014 1.94 × 1014 1.18 × 108 1.16 × 1013 4.33 × 1013 5.91 × 1011

C08
Mean 2.01 × 1024 4.96 × 1015 6.94 × 1018 1.56 × 1016 8.44 × 1013 4.33 × 1015 4.49 × 10−1 2.31 × 10−3

Std 4.72 × 1021 1.56 × 1015 4.88 × 1018 3.59 × 1015 1.12 × 1013 4.57 × 1015 8.67 × 10−1 3.72 × 10−4

C09
Mean 1.00 × 1024 4.77 × 101 1.90 × 1016 2.27 × 1010 8.42 × 106 1.47 × 107 3.03 × 101 2.32 × 101

Std 1.90 × 1020 1.77 × 101 1.06 × 1016 1.29 × 1010 2.16 × 106 2.20 × 107 1.40 × 101 8.08 × 101

C10
Mean 2.03 × 1024 1.91 × 1014 2.75 × 1019 7.96 × 1016 6.96 × 1010 1.88 × 1016 1.21 × 10−1 6.4 × 10−4

Std 6.03 × 1021 8.75 × 1013 1.38 × 1019 1.57 × 1016 1.05 × 1010 3.76 × 1016 4.27 × 10−1 1.29 × 10−4

C11
Mean 1.01 × 1024 3.64 × 1014 3.81 × 1018 1.22 × 1016 2.58 × 1012 3.53 × 1015 1.24 × 1010 2.33 × 1012

Std 1.01 × 1021 1.70 × 1014 7.93 × 1017 3.73 × 1015 5.14 × 1011 1.13 × 1016 2.36 × 1010 3.14 × 1012

C12
Mean 1.00 × 1024 1.47 × 102 1.09 × 1018 1.50 × 1015 3.36 × 102 3.90 × 1014 1.65 × 101 1.62 × 101

Std 3.64 × 1020 3.87 × 101 1.66 × 1017 4.34 × 1014 1.64 × 101 1.24 × 1015 1.11 × 101 1.14 × 101

C13
Mean 1.17 × 1024 9.25 × 1013 1.07 × 1018 1.46 × 1017 1.86 × 1013 2.34 × 1014 9.83 × 1015 8.65 × 1013

Std 3.74 × 1023 4.85 × 1013 2.13 × 1017 3.51 × 1016 1.44 × 1012 5.75 × 1014 4.23 × 1015 4.13 × 1013

C14
Mean 2.01 × 1024 1.17 × 101 2.16 × 1018 3.05 × 1015 2.21 × 105 8.66 × 1013 1.11 × 101 1.10 × 101

Std 8.08 × 1020 6.23 × 10−2 3.09 × 1017 1.14 × 1015 3.33 × 105 1.91 × 1014 7.98 × 10−6 8.51 × 10−9

C15
Mean 1.00 × 1024 2.46 × 101 9.37 × 1017 5.53 × 106 2.64 × 101 3.96 × 101 2.69 × 101 1.22 × 101

Std 4.52 × 1020 3.00 × 101 1.46 × 1017 2.76 × 107 1.71 × 101 9.58 × 101 4.71 × 101 1.68 × 101

C16
Mean 1.00 × 1024 3.94 × 102 9.97 × 1017 3.92 × 102 2.78 × 102 2.22 × 102 3.98 × 102 2.83 × 102

Std 3.16 × 1020 2.28 × 101 2.13 × 1017 4.82 × 101 1.38 × 101 3.78 × 101 1.66 × 101 2.62 × 101

C17
Mean 2.00 × 1024 2.64 × 1011 1.10 × 1018 2.23 × 1017 2.60 × 1011 3.49 × 1014 2.60 × 1011 2.60 × 1011

Std 2.91 × 1020 2.20 × 10−3 1.52 × 1017 3.43 × 1016 1.44 × 10−2 8.21 × 1014 4.73 × 10−3 1.11 × 10−2
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Table 13. Cont.

Test Functions Performance
Indicators SFA RaFA NaFA GDFA ADIFA YYFA GAHFA IHFAPA

C18
Mean 4.25 × 1030 5.38 × 1018 1.54 × 1029 2.53 × 1027 1.95 × 1013 3.49 × 1019 4.00 × 1012 5.43 × 101

Std 1.55 × 1030 1.81 × 1019 4.31 × 1028 9.33 × 1026 2.96 × 1012 1.16 × 1020 1.23 × 1013 5.36 × 101

C19
Mean 1.00 × 1024 5.27 × 1017 5.28 × 1017 5.28 × 1017 5.28 × 1017 5.28 × 1017 5.28 × 1017 5.27 × 1017

Std 6.48 × 1016 2.99 × 1014 1.10 × 1014 5.24 × 1013 9.26 × 1013 1.64 × 1015 3.06 × 1014 4.02 × 101

C20
Mean 1.65 × 101 3.84 × 101 1.89 × 101 1.63 × 101 7.73 × 101 7.75 × 101 1.19 × 101 5.34 × 101

Std 4.28 × 10−1 5.03 × 10−1 1.02 × 101 5.83 × 10−1 1.47 × 101 6.47 × 10−1 7.98 × 10−1 2.07 × 10−1

C21
Mean 1.00 × 1024 3.49 × 106 7.12 × 1017 3.49 × 1016 3.35 × 102 1.12 × 1014 1.98 × 101 1.61 × 101

Std 3.93 × 1020 1.74 × 107 1.20 × 1017 7.00 × 1015 1.21 × 101 3.95 × 1014 1.18 × 101 1.14 × 101

C22
Mean 1.00 × 1024 8.59 × 1013 7.49 × 1017 1.44 × 1017 1.01 × 1014 1.88 × 1014 8.99 × 1015 8.50 × 1013

Std 4.63 × 1020 1.85 × 1013 1.36 × 1017 2.44 × 1016 1.02 × 1013 4.51 × 1014 4.19 × 1015 4.86 × 1013

C23
Mean 2.01 × 1024 3.64 × 108 1.43 × 1017 7.53 × 1016 1.86 × 101 1.67 × 1014 1.10 × 101 1.10 × 101

Std 8.48 × 1020 1.05 × 109 2.46 × 1017 1.43 × 1016 7.82 × 10−1 3.57 × 1014 6.74 × 10−6 2.48 × 10−8

C24
Mean 1.00 × 1024 2.39 × 101 6.44 × 1017 2.01 × 102 1.96 × 101 2.33 × 101 2.52 × 101 2.30 × 101

Std 3.90 × 1020 2.54 × 101 1.44 × 1017 3.93 × 102 1.53 × 101 3.60 × 101 3.33 × 101 3.28 × 101

C25
Mean 1.00 × 1024 3.96 × 102 6.57 × 1017 1.19 × 103 3.64 × 102 3.09 × 102 3.99 × 102 2.94 × 102

Std 3.87 × 1020 1.62 × 101 1.28 × 1017 1.33 × 103 9.95 × 101 3.47 × 101 1.39 × 102 2.10 × 101

C26
Mean 2.00 × 1024 2.60 × 1011 7.07 × 1017 2.16 × 1017 2.61 × 1011 6.59 × 1013 2.616 × 1011 2.60 × 1011

Std 2.94 × 1020 1.73 × 10−3 1.33 × 1017 3.92 × 1016 9.79 × 10−1 1.86 × 1014 4.78 × 10−3 2.40 × 10−3

C27
Mean 2.47 × 1030 3.42 × 1020 1.05 × 1029 2.63 × 1027 2.69 × 1013 1.40 × 1022 4.83 × 1010 2.48 × 1012

Std 1.01 × 1030 6.20 × 1020 3.46 × 1028 8.19 × 1026 4.92 × 1012 5.71 × 1022 1.34 × 1011 1.23 × 1013

C28
Mean 1.00 × 1024 5.28 × 1017 5.28 × 1017 5.28 × 1017 5.28 × 1017 5.28 × 1017 5.28 × 1017 5.28 × 1017

Std 6.31 × 1016 2.56 × 1014 1.37 × 1014 7.90 × 1013 7.17 × 1013 2.19 × 1014 3.17 × 1014 2.90 × 1014

w/t/l 28/0/0 28/0/0 28/0/0 27/0/1 25/0/3 27/0/1 16/0/12 -
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Table 14. Friedman test results of various FAs (D = 30).

Dimension Significance Level k χ2 χ2
α[k − 1] p-Value Null Hypothesis Alternative Hypothesis

D = 30 α = 0.05 8 148.47 14.07 8.51889 × 10−29 Reject Accept

Table 15. Friedman test results of various FAs (D = 50).

Dimension Significance Level k χ2 χ2
α[k − 1] p-Value Null Hypothesis Alternative Hypothesis

D = 50 α = 0.05 8 151.31 14.07 2.15923 × 10−29 Reject Accept

Table 16. The unadjusted and adjusted p-values for IHFAPA and various FAs (D = 30).

Comparison Unadjusted
p-Value

Adjusted
p-Value

IHFAPA vs. SFA 3.28 × 10−7 4.69 × 10−8

IHFAPA vs. RaFA 1.92 × 10−2 9.60 × 10−3

IHFAPA vs. NaFA 1.00 × 10−3 2.00 × 10−4

IHFAPA vs. GDFA 8.00 × 10−3 2.67 × 10−3

IHFAPA vs. ADIFA 1.00 × 10−5 1.67 × 10−6

IHFAPA vs. YYFA 1.60 × 10−3 4.00 × 10−4

IHFAPA vs. GAHFA 8.43 × 10−2 8.43 × 10−2

Table 17. The unadjusted and adjusted p-values for IHFAPA and various FAs (D = 50).

Comparison Unadjusted
p-Value

Adjusted
p-Value

IHFAPA vs. SFA 4.06 × 10−14 5.80 × 10−15

IHFAPA vs. RaFA 3.02 × 10−3 7.55 × 10−4

IHFAPA vs. NaFA 8.38 × 10−13 1.40 × 10−13

IHFAPA vs. GDFA 6.01 × 10−9 1.20 × 10−9

IHFAPA vs. ADIFA 1.36 × 10−2 4.53 × 10−3

IHFAPA vs. YYFA 4.82 × 10−2 2.41 × 10−2

IHFAPA vs. GAHFA 9.34 × 10−2 9.34 × 10−2

2. Result analysis

(1) Analysis of the calculation results of the 30-D test function
Figure 9 reports that, when using the eight firefly algorithms to solve the C03 bench-

mark test function, GDFA produces the highest-quality solutions; similarly, YYFA produces
the highest-quality results when addressing the two C13 and C25 benchmark test functions.
The highest quality of the ADIFA solutions is achieved when solving the six test functions
C07, C15, C16, C17, C24 and C26; when solving the other 19 benchmark functions, IHFAPA
has the highest solution quality. According to the w/t/l values in Table 12, IHFAPA has
better performance than the seven other firefly algorithms. Specifically, IHFA-PA has 28 test
functions with a mean value better than SFA, 27 test functions with a mean value better
than RaFA, 28 test functions with a mean value better than NaFA, 28 test functions with a
mean value better than NDFA and for 27 test functions, the mean is better than GDFA, the
mean of 25 test functions is better than YYFA and the mean of 22 test functions is better than
AD-IFA. From the Friedman ranking results of various FAs with D = 30 in (a) and (b) of
Figure 9, IHFAPA ranks first among all the algorithms, indicating that IHFAPA’s perfor-
mance is superior to the comparison algorithm in this paper. In addition, the Friedman
test was used to verify whether there were obvious differences in the performance of the
various algorithms involved in the comparison. In Table 13, k = 8, α = 0.05, k – 1 = 7, the
critical value χ2

α[7] = 14.07, inspection value χ2 = 148.47 and the inspection value χ2 is
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greater than the critical value χ2
α[7], so the null hypothesis is rejected, indicating that there

are obvious differences in the performance of the eight algorithms. From Table 14, the
results obtained from Holm’s procedure show that the IHFAPA did not show a significant
difference from the GAHFA for the adjusted p-value and unadjusted p-value, but IHFAPA
is significantly due to GAHFA in other indicators. Compared to NaFA, RaFA, NDFA,
GDFA, AD-IFA and YYFA, IHFAPA verified the algorithm’s superior performance. The
statistical test shows that the IHFAPA was significantly different from the other comparison
algorithms, with all p-values less than 0.05 at a 95% confidence level. The analyses above
demonstrate the outstanding performance of the IHFAPA.
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Figure 9. Friedman rank ranking results of various FAs. (a) Mean rank ranking (D = 30); (b) final
rank ranking (D = 30); (c) mean rank ranking (D = 50); (d) final rank ranking (D = 50).

In summary, the experimental results of 28 30-D test functions in CEC 2017 show
that the outperformance of IHFAPA over the other seven FAs verifies the effectiveness
of IHFAPA.

(2) Analysis of calculation results of 50-D test function
Table 15 demonstrates that RaFA has the highest solution quality when eight firefly

algorithms are used to solve the C06 benchmark function, GDFA has the highest solution
quality when to solve the C03 and C25 benchmark functions, ADIFA has the highest solution
quality when five test functions—C13, C15, C16, C24 and C26—are solved and IHFAPA has
the highest solution quality when solving the remaining 20 benchmark functions. Figure 9’s
(c,d) results show that IHFAPA performs better than the other seven firefly algorithms.
Specifically, IHFA-PA has 28 test functions with a mean value better than SFA, 25 test
functions with a mean value better than RaFA, 28 test functions with a mean value better
than NaFA, 28 test functions with a mean value better than NDFA, 26 test functions with an
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average value better than GDFA, the average value of 28 test functions is better than YYFA
and the average value of 22 test functions is better than AD-IFA. It can be seen from Table 15
that IHFAPA ranks first among all algorithms, indicating that IHFAPA’s performance is
superior to other algorithms involved in the comparison. In addition, Friedman test is used
to verify whether there is a significant difference in the performance of the eight algorithms.
According to Table 16, inspection value χ2 = 151.31, when k = 8, α = 0.05, k − 1 = 7, the
critical value χ2

α[7] = 14.07. Because the inspection value χ2 is greater than the critical value
χ2

α[7], the original hypothesis is rejected, showing that there are significant differences in
the performance of the eight algorithms. From Table 17, the results obtained from Holm’s
procedure show that the IHFAPA did not show a significant difference from the GAHFA
for the adjusted p-value and unadjusted p-value, but IHFAPA is significantly superior to
GAHFA in other indicators. IHFAPA confirmed the algorithm’s superior performance
when measured against the other comparative algorithms. The statistical test demonstrates
that the IHFAPA differed from the other comparison algorithms in a significant way.

In summary, the experimental results of 28 50-D test functions in CEC 2017 show that
the performance of IHFAPA is better than the other seven firefly algorithms, thus, verifying
the effectiveness of IHFAPA.

4.6.3. Convergence Curve of Firefly Algorithm

To verify that IHFAPA’s performance is superior to other FAs, four 30-D and 50-D test
functions in CEC 2017 are selected and draw the convergence curves of eight FAs. The
convergence curve of FA for solving four 30-D test functions is shown in Figure 10, and the
convergence curve of FA for solving four 50-D test functions is shown in Figure 11.
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Figure 10. Convergence curves of FA for solving four 30-D test functions in CEC 2017.

According to Figure 10, for C01 and C02, IHFAPA converges to the global optimal
solution much more quickly than the other six algorithms, with the exception of GAHFA,
at the beginning of the iteration. At the end of the iteration, IHFAPA uses the combined
mutation operator and adds the de-similarity operation, giving it a strong exploration
ability. Therefore, IHFAPA has better solving quality than the other seven algorithms. For
C08 and C10, the convergence speed of IHFAPA and GAHFA is obviously better than the
other six algorithms. At the end of the iteration, IHFAPA and GAHFA rapidly converge to
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the global extreme point, while the other six algorithms fall into local optimum. In addition,
IHFAPA’s solution accuracy is superior to GAHFA due to its strong exploitation ability.
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Figure 11 illustrates, for C08 and C10, that IHFAPA and GAHFA converge faster
than the other six algorithms in the early iteration; in late iterations, IHFAPA uses a
combined mutation operator and adds the remove-similarity operation, so IHFAPA has
strong exploration ability and can quickly move closer to the global optimal advantage,
while the other seven algorithms have relatively weak exploration ability and quickly fall
into local optimum. Therefore, IHFAPA’s convergence speed and solving quality are better
than those of the other seven algorithms. For C21 and C23, the convergence speed of
IHFAPA and GAHFA is better than the other six algorithms in the early iteration stage;
at the end of the iteration, except IHFAPA and GAHFA, the other six algorithms quickly
fall into local optimum, while IHFAPA and GAHFA approached the global optimum
quickly. In summary, IHFAPA is superior to other algorithms in convergence speed and
solution quality.

4.7. Comparison of IHFAPA and Other Improved Algorithms

To further verify the performance of the IHFAPA, we selected six other improved
algorithms for comparison. The six other improved algorithms selected are as follows:

1. Adaptive differential evolution algorithm (HDE) [47];
2. Improved sine and cosine algorithm with crossover operator (ISCA) [48];
3. Hybrid chicken swarm algorithm based on differential mutation (DMCSO) [49];
4. Particle swarm optimization based on oppositional group decision learning (OBLP-

SOGD) [50];
5. Hybrid algorithm of improved bat algorithm and differential evolution algorithm

(MBADE) [51];
6. Firefly single-objective genetic optimization algorithm based on partition and unity

(MFAGA) [52];
7. Single-objective real-parameter optimization: Algorithm Jso (JSO) [53];

Select 28 test functions in CEC 2017 to compare the performance of IHFAPA, HDE,
ISCA, DMCSO, OBLPSOGD, MBADE, MFAGA and JSO.
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4.7.1. Parameter Setting

To compare the performance of various algorithms fairly, the population size of
all algorithms n = 40, the maximum running time Maxtime = 20 s, the penalty factor
M1 = M2 = 108, the allowable error of equality constraints in constraint optimization
problem θ = 10−4 and the statistical times tjcs = 20. The values in the original literature
were used for the other parameters of the comparison algorithm, and the specific parameter
values are shown in Table 18.

Table 18. Other parameter settings of various algorithms participating in the comparison.

Algorithm Reference Years Parameters

JSO [53] 2017 MF = 0.5, MCR = 0.8.
HDE [47] 2018 F = [0.7,1], CR = [0.4,1].
ISCA [48] 2019 CR = 0.3.

DMCSO [49] 2019 RN = 0.2n, HN = 0.6n, CN = 0.2n, MN = 0.1n, FL ∈
[0.4,1], G = 10.

OBLPSOGD [50] 2019 P0 = 0.3, α = 3.2, k = 15, σ = 0.3, wmin = 0.4, wmax = 0.9.
MBADE [51] 2020 A0 = 0.9, r0 = 0.5, fmax = 2, fmin = 0, α = γ = 0.9.
MFAGA [52] 2021 α = 4, β0 = 1, γ = 2, w = 0.7.

IHFAPA - - n = 40, α0 = 0.1, φ0 = 0.9, βmax = 1, βmin = 0.5, γ = 1,
Pm = 1.

4.7.2. Statistical Results and Analysis

1. Statistical results

When the variable dimension D = 30 and D = 50 of the 28 benchmark test functions
in CEC 2017, the statistical results of the seven meta-heuristic algorithms are reported in
Tables 19 and 20, the results of Friedman rank ranking are shown in (a) and (b) in Figure 12
and the results of Friedman test are shown in Tables 21 and 22. Holm’s post hoc pairwise
comparison results are in Tables 23 and 24.

2. Results analysis

(1) Analysis of the results of 30-D test functions
From Table 19, JSO obtains the optimal solution in the three test functions of C10,

C11 and C22. When solving the benchmark functions C03, C06 and C28, DMCSO has the
highest solution quality, whereas ISCA has the highest solution quality for C09 and C13.
With regard to the five benchmark functions C07, C15, C16, C24 and C25, OBLPSOGD
has the best solution quality. When solving the C19 benchmark function, MBADE has the
highest solution quality. The solution quality of IHFAPA is the highest when the fourteen
test functions C01, C02, C05, C08, C12, C14, C17, C18, C20, C21, C23, C26 and C27 are
solved. Figure 12a,b show that IHFAPA ranks first among the seven meta-heuristic algo-
rithms, indicating that IHFAPA’s performance is better than the other seven meta-heuristic
algorithms. In addition, Friedman test is used to verify whether there is a significant
difference in the performance of the seven algorithms. According to Table 20, k = 8, α = 0.05,
k − 1 = 7, critical value χ2

α[6] = 14.07 and inspection value χ2 = 118.68. Because the test
value is greater than the critical value, the null hypothesis is rejected, showing that there
are obvious differences in the performance of the seven algorithms. Table 21 reports that
Holm’s experimental results show that IHFAPA only shows no significant difference with
JSO in the adjusted p-value and the unadjusted p-value, but IHFAPA is significantly better
than JSO in other indicators. Statistical tests show that IHFAPA is significantly different
from other comparison algorithms.
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Table 19. Statistical results of various meta-heuristic algorithms (D = 30).

Test Functions Performance
Indicators JSO HDE ISCA DMCSO OBLPSOGD MBADE MFAGA IHFAPA

C01
Mean 3.77 × 101 4.41 × 103 5.97 × 103 5.49 × 103 1.51 × 102 3.05 × 103 7.94 × 101 6.17 × 10−15

Std 9.50 × 101 1.60 × 103 2.08 × 103 2.22 × 103 9.09 × 101 6.61 × 10−4 1.80 × 101 8.21 × 10−15

C02
Mean 2.01 × 101 3.67 × 103 4.86 × 103 3.81 × 103 3.30 × 102 2.03 × 103 8.06 × 101 2.52 × 10−14

Std 5.64 × 101 1.47 × 103 1.35 × 103 1.69 × 103 1.19 × 102 2.32 × 10−4 2.28 × 101 5.99 × 10−14

C03
Mean 5.39 × 105 3.22 × 105 8.41 × 104 5.00 × 104 6.92 × 104 9.86 × 104 8.33 × 107 1.56 × 105

Std 3.73 × 105 5.13 × 105 2.66 × 104 1.25 × 104 4.05 × 104 2.18 × 104 4.15 × 107 1.74 × 105

C04
Mean 1.46 × 102 7.04 × 101 6.04 × 101 3.97 × 102 5.45 × 102 5.37 × 101 3.66 × 102 4.84 × 102

Std 6.81 × 101 1.98 × 101 1.12 × 101 6.04 × 101 6.27 × 101 1.42 × 101 1.83 × 101 6.23 × 101

C05
Mean 1.18 × 101 3.09 × 104 2.04 × 102 3.82 × 104 3.49 × 102 5.89 × 102 7.23 × 103 7.64 × 101

Std 7.78 × 101 5.61 × 104 1.80 × 102 4.30 × 104 3.29 × 102 1.53 × 101 1.83 × 103 4.17 × 101

C06
Mean 1.81 × 1010 4.96 × 109 4.40 × 107 3.62 × 103 1.14 × 109 5.05 × 109 8.76 × 109 4.10 × 103

Std 7.48 × 109 2.28 × 109 4.93 × 107 9.95 × 102 2.55 × 109 1.04 × 103 7.01 × 109 1.03 × 103

C07
Mean 1.55 × 1012 8.79 × 109 4.48 × 102 2.18 × 109 −1.77 × 102 4.85 × 1011 7.51 × 1012 −1.48 × 102

Std 4.76 × 1011 1.46 × 1010 1.03 × 103 5.96 × 109 1.61 × 102 1.12 × 109 5.23 × 1012 2.78 × 1011

C08
Mean 1.98 × 101 7.44 × 1015 1.43 × 1015 1.75 × 1013 3.58 × 1011 1.88 × 1015 2.69 × 1011 3.15 × 10−3

Std 5.20 × 101 4.92 × 1015 1.20 × 1015 6.57 × 1012 3.47 × 1011 1.43 × 10−3 1.57 × 1011 2.76 × 10−4

C09
Mean 4.86 × 101 4.09 × 1011 1.23 × 101 1.04 × 1010 1.89 × 1011 6.10 × 101 6.37 × 109 9.16 × 101

Std 1.50 × 101 1.64 × 1012 1.56 × 101 2.68 × 1010 4.12 × 1011 2.61 × 101 6.40 × 109 3.34 × 101

C10
Mean 6.25 × 10−4 3.43 × 1016 3.28 × 1015 4.49 × 1014 2.88 × 1012 3.19 × 1015 1.05 × 1012 7.23 × 10−4

Std 4.33 × 10−4 5.05 × 1016 4.40 × 1015 1.40 × 1014 8.26 × 1012 4.51 × 10−4 2.81 × 1011 1.16 × 10−4

C11
Mean 2.49 × 1011 8.86 × 1014 2.78 × 1013 3.65 × 1013 2.94 × 1016 3.79 × 1014 2.05 × 1012 4.64 × 1011

Std 4.21 × 1011 1.39 × 1015 5.57 × 1013 3.77 × 1013 2.05 × 1016 6.97 × 1017 1.57 × 1012 1.92 × 1014

C12
Mean 2.15 × 102 1.69 × 1014 1.26 × 1012 2.61 × 1013 5.471010 2.37 × 102 2.77 × 1010 4.00 × 101

Std 1.95 × 101 1.58 × 1014 2.57 × 1012 1.81 × 1013 7.471010 1.58 × 101 9.19 × 109 1.21 × 101

C13
Mean 5.601010 3.71 × 1014 2.81 × 1012 2.28 × 1013 3.66 × 1012 1.86 × 1013 3.59 × 1012 5.06 × 1012

Std 1.04 × 1011 4.53 × 1014 6.41 × 1012 1.47 × 1013 3.39 × 1012 9.18 × 1013 9.56 × 1011 3.88 × 1012

C14
Mean 2.17 × 101 6.85 × 1014 3.64 × 1013 3.86 × 1013 8.041010 2.94 × 107 7.23 × 1010 1.41 × 101

Std 7.04 × 10−2 8.40 × 1014 1.09 × 1014 2.01 × 1013 1.09 × 1011 2.06 × 10−7 2.30 × 1010 3.77 × 10−4

C15
Mean 1.71 × 101 8.08 × 1013 2.40 × 101 1.54 × 1013 1.40 × 101 2.12 × 101 1.78 × 101 1.49 × 101

Std 2.59 × 101 3.20 × 1014 5.04 × 101 1.42 × 1013 1.65 × 101 5.10 × 101 1.93 × 101 3.75 × 101

C16
Mean 1.65 × 102 3.08 × 1012 1.74 × 102 2.15 × 1013 1.35 × 102 2.16 × 102 1.57 × 102 1.90 × 102

Std 1.38 × 101 1.00 × 1013 1.25 × 101 1.49 × 1013 9.81 × 101 1.74 × 101 2.06 × 101 1.99 × 101

C17
Mean 9.611010 4.12 × 1014 1.58 × 1014 2.42 × 1013 9.611010 9.61 × 1010 9.61 × 1010 9.611010

Std 3.53 × 101 6.49 × 1014 6.57 × 1014 1.56 × 1013 2.12 × 10−2 5.53 × 10−2 3.14 × 103 0
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Table 19. Cont.

Test Functions Performance
Indicators JSO HDE ISCA DMCSO OBLPSOGD MBADE MFAGA IHFAPA

C18
Mean 5.10 × 1010 4.07 × 1025 1.19 × 1020 1.84 × 1024 7.19 × 1017 8.77 × 1014 2.98 × 1016 3.65 × 101

Std 1.61 × 1011 1.05 × 1026 2.46 × 1020 1.77 × 1024 1.68 × 1018 1.24 × 1011 2.28 × 1016 1.24 × 1011

C19
Mean 1.83 × 1017 1.85 × 1017 1.83 × 1017 9.21 × 1013 1.84 × 1017 1.83 × 1017 1.85 × 1017 1.84 × 1017

Std 2.27 × 103 1.01 × 1014 1.59 × 1014 8.29 × 1010 1.98 × 1014 6.26 × 1013 1.67 × 1014 1.72 × 1014

C20
Mean 8.45 × 101 8.65 × 101 4.18 × 101 6.31 × 101 8.08 × 101 7.82 × 101 7.90 × 101 3.54 × 101

Std 7.25 × 10−1 5.34 × 10−1 2.77 × 10−1 7.15 × 10−1 4.30 × 10−1 1.35 × 101 6.00 × 10−1 2.76 × 10−1

C21
Mean 2.13 × 102 9.32 × 1013 1.00 × 1012 1.32 × 1013 1.16 × 1012 3.30 × 102 3.241010 1.46 × 101

Std 2.59 × 101 1.08 × 1014 1.88 × 1012 7.07 × 1012 2.72 × 1012 3.08 × 101 1.01010 9.78 × 101

C22
Mean 4.51 × 1011 3.43 × 1014 9.88 × 1012 9.44 × 1012 1.88 × 1013 1.45 × 1013 3.67 × 1012 1.25 × 1012

Std 2.01 × 1011 5.12 × 1014 9.30 × 1012 4.02 × 1012 1.34 × 1013 4.78 × 1013 1.32 × 1012 5.04 × 1012

C23
Mean 2.01 × 101 3.19 × 1014 2.73 × 1012 2.52 × 1013 3.47 × 1012 8.25 × 101 7.56 × 1012 1.41 × 101

Std 7.06 × 10−2 3.18 × 1014 5.63 × 1012 1.24 × 1013 6.38 × 1012 1.40 × 10−1 2.68 × 1012 1.94 × 10−2

C24
Mean 1.82 × 101 7.27 × 1012 1.71 × 101 1.03 × 1013 1.54 × 101 1.81 × 101 1.85 × 101 1.81 × 101

Std 1.54 × 101 3.21 × 1013 1.79 × 101 5.70 × 1012 1.91 × 101 2.67 × 101 1.64 × 101 2.38 × 101

C25
Mean 1.72 × 102 2.78 × 1013 1.95 × 102 9.87 × 1012 1.42 × 102 1.95 × 102 1.47 × 102 1.82 × 102

Std 1.50 × 101 9.57 × 1013 1.78 × 101 8.68 × 1012 1.25 × 101 2.21 × 101 1.78 × 101 1.49 × 101

C26
Mean 9.61 × 1010 1.52 × 1014 1.39 × 1012 1.30 × 1013 1.45 × 1011 9.61 × 1012 9.61 × 1012 9.61 × 1012

Std 2.76 × 101 2.54 × 1014 3.54 × 1012 6.46 × 1012 2.24 × 1011 4.06 × 10−3 1.43 × 103 0.00 × 101

C27
Mean 4.50 × 1013 3.57 × 1022 1.61 × 1018 2.22 × 1023 6.85 × 1017 1.66 × 1016 1.32 × 1016 3.65 × 101

Std 1.10 × 1014 8.85 × 1022 3.86 × 1018 3.66 × 1023 1.59 × 1018 2.06 × 1013 9.40 × 1015 1.60 × 1013

C28
Mean 1.84 × 1017 1.85 × 1017 1.84 × 1017 9.23 × 1013 1.84 × 1017 1.84 × 1017 1.85 × 1017 1.85 × 1017

Std 4.59 × 1014 6.40 × 1013 1.49 × 1014 4.69 × 1012 3.39 × 1014 1.88 × 1014 2.05 × 1014 1.63 × 1014

w/t/l 25/0/3 28/0/0 26/0/2 25/0/3 23/0/5 26/0/2 25/0/3 -
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Table 20. Calculation results of various meta-heuristic algorithms (D = 50).

Test Functions Performance
Indicators JSO HDE ISCA DMCSO OBLPSOGD MBADE MFAGA IHFAPA

C01
Mean 2.37 × 102 1.86 × 1016 1.61 × 1016 9.82 × 1013 7.46 × 1013 2.81 × 109 4.65 × 1012 1.21 × 10−5

Std 3.43 × 102 1.16 × 1013 7.94 × 107 1.91 × 1011 1.72 × 1012 9.51 × 101 2.91 × 1011 1.10 × 10−5

C02
Mean 1.62 × 103 3.51 × 1013 2.04 × 108 2.00 × 1011 2.90 × 1012 3.82 × 101 2.47 × 1011 6.35 × 10−5

Std 2.41 × 103 1.80 × 1017 4.40 × 1017 2.80 × 1015 1.08 × 1014 6.11 × 102 1.52 × 1013 5.02 × 10−5

C03
Mean 1.31×16 1.05 × 1017 1.83 × 1017 9.29 × 1014 1.83 × 1014 1.63 × 103 4.89 × 1012 1.15 × 103

Std 7.10 × 105 6.43 × 1015 1.89 × 1015 2.61 × 1014 1.91 × 1017 1.45 × 1010 2.50 × 1013 4.47 × 104

C04
Mean 3.20 × 102 7.11 × 1015 2.04 × 1015 1.70 × 1014 7.90 × 1016 1.55 × 1010 1.51 × 1013 8.71 × 102

Std 1.16 × 102 1.83 × 1015 1.15 × 1015 1.67 × 1014 1.24 × 1013 1.28 × 102 3.60 × 1011 1.36 × 102

C05
Mean 8.23 × 101 1.86 × 1015 1.35 × 1015 5.62 × 1013 1.38 × 1013 5.16 × 101 8.08 × 1010 5.34 × 101

Std 4.57 × 101 2.02 × 1015 3.48 × 1015 1.25 × 1014 1.78 × 1014 1.65 × 1015 2.70 × 1013 2.84 × 101

C06
Mean 4.69 × 101 1.96 × 1015 4.30 × 1015 5.42 × 1013 1.13 × 1014 1.30 × 1015 3.42 × 1012 7.85 × 106

Std 1.13 × 101 3.16 × 1015 2.45 × 1015 3.68 × 1014 2.05 × 1013 1.20 × 101 7.87 × 1011 3.92 × 107

C07
Mean 6.69 × 1012 2.29 × 1015 2.01 × 1015 9.99 × 1013 1.53 × 1013 8.69 × 10−2 1.22 × 1011 5.41 × 1011

Std 9.39 × 1011 4.60 × 1012 2.17 × 1013 1.37 × 1014 1.93 × 101 3.24 × 101 2.11 × 101 5.91 × 1011

C08
Mean 7.74 × 1014 1.35 × 1013 9.70 × 1013 5.41 × 1013 2.44 × 101 5.24 × 101 2.54 × 101 2.31 × 10−3

Std 1.50 × 1015 8.01 × 1013 4.33 × 1013 1.45 × 1014 2.78 × 102 3.44 × 102 2.82 × 102 3.72 × 10−4

C09
Mean 6.23 × 109 2.56 × 1014 1.90 × 1014 4.02 × 1013 1.37 × 101 2.16 × 101 2.81 × 101 1.32 × 101

Std 1.95 × 1010 2.48 × 1015 1.82 × 1015 1.98 × 1014 1.51 × 1013 2.60 × 1011 2.60 × 1011 8.08 × 101

C10
Mean 2.26 × 1010 2.56 × 1015 2.20 × 1015 5.12 × 1013 1.29 × 1013 4.54 × 10−2 1.04 × 104 6.47 × 10−4

Std 7.14 × 1010 3.24 × 1026 1.39 × 1025 1.64 × 1025 6.38 × 1020 1.60 × 1011 1.23 × 1018 1.29 × 10−4

C11
Mean 8.68 × 1012 5.47 × 1026 2.30 × 1025 7.03 × 1024 8.68 × 1020 2.01 × 1011 1.88 × 1018 2.33 × 1012

Std 1.63 × 1013 5.28 × 1017 5.25 × 1017 2.64 × 1014 5.26 × 1017 5.22 × 1017 5.27 × 1017 3.14 × 1012

C12
Mean 3.07 × 102 2.94 × 1014 2.95 × 1014 1.32 × 1011 2.78 × 1014 1.28 × 1014 3.18 × 1014 1.62 × 101

Std 3.70 × 101 1.75 × 101 1.03 × 101 1.41 × 101 1.59 × 101 1.29 × 101 1.59 × 101 1.14 × 101

C13
Mean 1.73 × 1012 5.59 × 10−1 6.98 × 10−1 1.19 × 101 5.07 × 10−1 3.00 × 101 6.79 × 10−1 8.65 × 1013

Std 9.82 × 1011 1.63 × 1015 9.51 × 1014 1.15 × 1014 2.39 × 1013 2.80 × 102 4.05 × 1011 4.13 × 1013

C14
Mean 6.40 × 104 1.56 × 1015 8.48 × 1014 3.03 × 1013 1.94 × 1013 4.08 × 101 1.13 × 1011 1.10 × 101

Std 1.46 × 105 2.07 × 1015 1.45 × 1015 1.18 × 1014 3.96 × 1014 3.91 × 1015 2.62 × 1013 8.51 × 10−9

C15
Mean 2.01 × 101 1.72 × 1015 9.71 × 1014 4.11 × 1013 1.88 × 1014 3.24 × 1015 6.20 × 1012 2.22 × 101

Std 1.31 × 101 3.07 × 1015 2.04 × 1015 2.49 × 1014 5.46 × 1013 1.54 × 101 7.97 × 1011 2.68 × 101

C16
Mean 3.22 × 102 2.78 × 1015 1.98 × 1015 6.78 × 1013 8.09 × 1013 6.49 × 10−2 1.75 × 1011 2.83 × 102

Std 1.51 × 101 1.55 × 1014 6.46 × 1011 9.51 × 1013 1.82 × 101 2.65 × 101 2.04 × 101 2.62 × 101

C17
Mean 2.60 × 1011 4.61 × 1014 2.89 × 1012 3.07 × 1013 1.43 × 101 4.34 × 101 1.68 × 101 2.60 × 1011

Std 4.11 × 101 2.70 × 1013 2.77 × 1012 9.08 × 1013 2.89 × 102 3.88 × 102 2.91 × 102 1.11 × 10−2
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Table 20. Cont.

Test Functions Performance
Indicators JSO HDE ISCA DMCSO OBLPSOGD MBADE MFAGA IHFAPA

C18
Mean 3.05 × 1015 9.14 × 1013 8.70 × 1012 3.33 × 1013 1.36 × 101 2.42 × 101 2.66 × 101 5.43 × 101

Std 9.65 × 1015 1.07 × 1015 1.35 × 1015 1.24 × 1014 8.67 × 1014 2.60 × 1011 2.60 × 1011 5.36 × 101

C19
Mean 5.22 × 1017 7.57 × 1014 1.71 × 1015 3.88 × 1013 4.27 × 1014 2.40 × 10−3 1.19 × 104 5.27 × 1017

Std 1.44 × 1013 7.56 × 1023 6.36 × 1023 5.72 × 1024 2.50 × 1021 9.11 × 1010 5.27 × 1018 4.02 × 1014

C20
Mean 1.72 × 101 1.68 × 1024 1.08 × 1024 4.52 × 1024 2.94 × 1021 1.96 × 1011 4.46 × 1018 5.34 × 101

Std 6.51 × 10−1 5.28 × 1017 5.27 × 1017 2.64 × 1014 5.27 × 1017 5.26 × 1017 5.28 × 1017 2.07 × 101

C21
Mean 3.33 × 102 1.28 × 1014 4.47 × 1014 7.44 × 1010 2.05 × 1014 4.11 × 1014 3.46 × 1014 1.61 × 101

Std 2.66 × 101 1.86 × 1016 1.61 × 1016 9.82 × 1013 7.46 × 1013 2.81 × 109 4.65 × 1012 1.14 × 101

C22
Mean 8.80 × 1012 1.16 × 1013 7.94 × 107 1.91 × 1011 1.72 × 1012 9.51 × 101 2.91 × 1011 8.50 × 1013

Std 4.02 × 1012 3.51 × 1013 2.04 × 108 2.00 × 1011 2.90 × 1012 3.82 × 101 2.47 × 1011 4.86 × 1013

C23
Mean 1.63 × 101 1.80 × 1017 4.40 × 1017 2.80 × 1015 1.08 × 1014 6.11 × 102 1.52 × 1013 1.10 × 101

Std 6.93 × 10−2 1.05 × 1017 1.83 × 1017 9.29 × 1014 1.83 × 1014 1.63 × 103 4.89 × 1012 2.48 × 10−8

C24
Mean 2.23 × 101 6.43 × 1015 1.89 × 1015 2.61 × 1014 1.91 × 1017 1.45 × 1010 2.50 × 1013 2.30 × 101

Std 1.31 × 101 7.11 × 1015 2.04 × 1015 1.70 × 1014 7.90 × 1016 1.55 × 1010 1.51 × 1013 3.28 × 101

C25
Mean 3.15 × 102 1.83 × 1015 1.15 × 1015 1.67 × 1014 1.24 × 1013 1.28 × 102 3.60 × 1011 2.94 × 102

Std 6.68 × 101 1.86 × 1015 1.35 × 1015 5.62 × 1013 1.38 × 1013 5.16 × 101 8.08 × 1010 2.10 × 101

C26
Mean 2.60 × 1011 2.02 × 1015 3.48 × 1015 1.25 × 1014 1.78 × 1014 1.65 × 1015 2.70 × 1013 2.60 × 1011

Std 9.40 × 101 1.96 × 1015 4.30 × 1015 5.42 × 1013 1.13 × 1014 1.30 × 1015 3.42 × 1012 2.40 × 10−3

C27
Mean 6.21 × 1012 3.16 × 1015 2.45 × 1015 3.68 × 1014 2.05 × 1013 1.20 × 101 7.87 × 1011 2.48 × 1012

Std 1.37 × 1013 2.29 × 1015 2.01 × 1015 9.99 × 1013 1.53 × 1013 8.69 × 10−2 1.22 × 1011 1.23 × 1013

C28
Mean 5.25 × 1017 4.60 × 1012 2.17 × 1013 1.37 × 1014 1.93 × 101 3.24 × 101 2.11 × 101 5.28 × 1017

Std 1.38 × 1015 1.35 × 1013 9.70 × 1013 5.41 × 1013 2.44 × 101 5.24 × 101 2.54 × 101 2.90 × 1014

w/t/l 25/0/3 28/0/0 28/0/0 28/0/0 23/0/5 18/0/10 26/0/2 -
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Figure 12. Friedman rank ranking results of different meta-heuristic algorithms. (a) Mean rank
ranking (D = 30); (b) final rank ranking (D = 30); (c) mean rank ranking (D = 50); (d) final rank ranking
(D = 50).

Table 21. The results of Friedman test for various meta-heuristic algorithms (D = 30).

Dimension Significance Level k χ2 χ2
α[k − 1] p-Value Null Hypothesis Alternative Hypothesis

D = 30 α = 0.05 8 118.68 14.07 1.4438 × 10−22 Reject Accept

Table 22. The results of Friedman test for various meta-heuristic algorithms (D = 50).

Dimension Significance Level k χ2 χ2
α[k − 1] p-Value Null Hypothesis Alternative Hypothesis

D = 50 α = 0.05 8 173.61 14.07 4.3532 × 10−34 Reject Accept
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Table 23. The results of Friedman test for various meta-heuristic algorithms (D = 30).

Comparison Unadjusted
p-Value

Adjusted
p-Value

IHFAPA vs. JSO 3.56 × 10−1 3.56 × 10−1

IHFAPA vs. HDE 5.23 × 10−10 7.47 × 10−11

IHFAPA vs. ISCA 4.99 × 10−5 9.98 × 10−6

IHFAPA vs. DMCSO 7.45 × 10−8 1.24 × 10−8

IHFAPA vs. OBLPSOGD 9.39 × 10−4 3.13 × 10−4

IHFAPA vs. MBADE 3.67 × 10−2 1.84 × 10−2

IHFAPA vs. MFAGA 6.85 × 10−4 1.71 × 10−4

Table 24. The results of Friedman test for various meta-heuristic algorithms (D = 50).

Comparison Unadjusted
p-Value

Adjusted
p-Value

IHFAPA vs. JSO 3.70 × 10−3 7.47 × 10−11

IHFAPA vs. HDE 1.34 × 10−14 1.91 × 10−15

IHFAPA vs. ISCA 1.23 × 10−13 2.04 × 10−14

IHFAPA vs. DMCSO 4.45 × 10−12 8.89 × 10−13

IHFAPA vs. OBLPSOGD 6.23 × 10−8 1.56 × 10−8

IHFAPA vs. MBADE 1.49 × 10−1 1.49 × 10−1

IHFAPA vs. MFAGA 2.55 × 10−5 8.50 × 10−6

In conclusion, the experimental results of 28 30-D test functions in CEC 2017 show that
IHFAPA performs better than the other seven meta-heuristic algorithms, thus, verifying
the effectiveness of IHFAPA.

(2) Analysis of the results of 50-D test functions
Table 22 reports that JSO has the highest solution quality for C04, C15 and C18

benchmark functions; OBLPSOGD has the highest solution quality when solving C17 and
C18 benchmark functions with seven meta-heuristic algorithms; MBADE has the highest
solution quality when solving the eight benchmark functions C03, C05, C07, C16, C19, C22,
C25 and C27; when solving the C28 benchmark test function, MFAGA has the highest
solution quality; IHFAPA’s C01, C02, C04, C08, C09, C10, C12, C14, C20, C21, C23, C24
and C26 benchmark functions have the highest solving quality. According to the w/t/l
values in Table 22, IHFAPA’s performance is better than the other meta-heuristic algorithms.
Specifically, IHFA-PA has 25 test functions with a mean value better than JSO, 28 test
functions with a mean value better than HDE, 28 test functions with a mean value better
than ISCA, 28 test functions with a mean value better than DMCSO, 23 test functions with
a mean value better than OBLPSOGD and 18 test functions with a mean value better than
MBADE; the average of 26 test functions is better than MFAGA. In Figure 12, (c) and (d)
show that IHFAPA ranks first among the seven meta-heuristic algorithms, indicating that
IHFAPA’s performance is better than the other six meta-heuristic algorithms. In addition,
Friedman test is used to verify whether there is a significant difference in the performance
of the seven algorithms. According to Table 23, k = 7, α = 0.05, k − 1 = 6, critical value
χ2

α[6] = 12.59 and inspection value χ2 = 75.75. Since the test value is greater than the
critical value, the null hypothesis is rejected, showing that there are obvious differences
in the performance of the seven algorithms. From Table 24, Holm’s experimental results
show that IHFAPA only shows no significant difference with MBADE in the adjusted
p-value and the unadjusted p-value, but IHFAPA is significantly better than MBADE in
other indicators. Statistical tests show that IHFAPA is significantly different from other
comparison algorithms.

In conclusion, the experimental results of 28 50-D test functions in CEC 2017 show that
IHFAPA performs better than the other seven meta-heuristic algorithms, thus, verifying
the effectiveness of IHFAPA.
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4.7.3. Convergence Curve of the Proposed Algorithm

The results of IHFAPA’s better performance than the other six meta-heuristic algo-
rithms were visualized. Four 30-D and 50-D test functions of CEC 2017 are selected to
draw convergence curves of eight FAs. Convergence curves of FA solving four 30-D test
functions are shown in Figure 13, and convergence curves of FA solving four 50-D test
functions are shown in Figure 14.
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In Figure 13, for C06, the convergence speed of IHFAPA is like that of DMCSO, and
the solution accuracy of the two is better than other proposed comparison algorithms.
For C12 and C21, the convergence speed of IHFAPA and MBADE is faster than that of
other proposed algorithms in the early stage of iteration; however, due to the usage of a
combined mutation operator and the addition of a removing-similarity operation, IHFAPA
has great exploration ability in the late stage of iteration and can jump out of the local
optimal value and swiftly converge to the global optimal value. IHFAPA, therefore, handles
quality problems better than the other six algorithms. IHFAPA clearly outperforms other
algorithms in terms of solution quality for C20 and has a rapid convergence speed in the
initial iteration.

Figure 14 illustrates that when calculating the 50-D CEC2017 test function, C01 test
function converges to the optimal value of the solution faster than the other seven functions
in the early stage, showing that IHFAPA has strong global search ability. In the C12 test
function, IHFAPA has a fast convergence speed in the early stage of search, similar to
MBADE and ILTD-ABC, but the solution accuracy of IHFAPA is higher than that of the
other seven algorithms in the late stage of the search process. For C12 and C21 test functions,
IHFAPA’s convergence speed is relatively fast in the early stage of the search for the two
test functions, but for the C21 test function, IHFAPA’s solution accuracy is better in the later
stage of the search and other algorithms fall into local optimum, which shows that IHFAPA
has a strong ability to jump out of local optimum.
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5. Application to Engineering Problems

To further verify the effectiveness of IHFAPA, 14 intelligence optimization algorithms
in the literature were selected, namely, SFA [6], RaFA [19], NaFA [43], GDFA [49], AD-
IFA [29], YYFA [36], GAHFA [20], HDE [47], ISCA [48], DMCSO [49], OBLPSOGD [50],
MBADE [51], MFAGA [52] and JSO [53]. Then, 14 meta-heuristic algorithms in IHFAPA and
the literature were used to solve the optimization design problems for the cantilever beam,
welded beam, piston rod and three-bar truss, and the results of 14 intelligence optimization
algorithms were counted and compared.

Set the population size n = 40, the maximum running time Maxtime = 20 s, the penalty
factor M1 = M2 = 108 and the allowable error values for equality constraint in constrained
optimization problems θ = 10−4 in order to accurately compare the performance of various
algorithms. For each engineering optimization problem, each algorithm is run 20 times
independently, the results are solved statistically and the results are compared and analyzed
to verify the effectiveness and feasibility of IHFAPA in practice.

5.1. Optimization Design of Cantilever Beam [28]

The aim of the cantilever beam design is to minimize the weight of the cantilever
beam. Taking the optimization design of the cantilever beam given in the literature [28] as
an example, the cantilever beam structure is shown in Figure 15.

The mathematical model for the optimal design of the cantilever beam is as follows:

min f (X) = 0.6224(x1 + x2 + x3 + x4 + x5)

s.t.

{
g(X) = 61

x3
1
+ 27

x3
2
+ 19

x3
3
+ 7

x3
4
+ 1

x3
5
− 1 ≤ 0

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100
(33)

Table 25 shows that 14 intelligence optimization algorithms are used to solve Equation
(13) and the best result of various algorithms solving Problem 1. To better evaluate the
performance of the algorithm, the minimum optimal value (Best), maximum optimal
value (Worst), average optimal value (Mean) and standard deviation of optimal value
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(Std) are taken as statistical indicators. Table 26 gives the statistical indicator values of the
algorithms.
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Table 25 shows that 14 intelligence optimization algorithms are used to solve Equa-
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Algorithm x1 x2 x3 x4 x5 f(X) 
SFA 5.378221 5.196736 5.352442 33.838475 1.509515 31.913801 
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Table 25. The best result of various algorithms solving Problem 1.

Algorithm x1 x2 x3 x4 x5 f (X)

SFA 5.378221 5.196736 5.352442 33.838475 1.509515 31.913801
RaFA 27.867726 19.660745 11.522870 4.807659 8.096651 44.785197
NaFA 5.822165 4.833300 4.296618 3.704691 2.380659 13.093698
GDFA 5.995532 4.712419 4.524987 3.592656 2.135814 13.046380
ADIFA 5.812717 4.894457 4.637111 3.486921 2.130079 13.046305
YYFA 5.974240 4.872583 4.427257 3.513410 2.164964 13.040808

GAHFA 6.013024 4.733404 4.514108 3.525513 2.164763 13.039888
JSO 5.978223 4.876190 4.466096 3.479479 2.139142 13.032515

HDE 5.980548 4.884228 4.459534 3.482497 2.132448 13.032592
ISCA 5.980177 4.873386 4.469500 3.477099 2.138981 13.032522

DMCSO 5.976299 4.877723 4.466438 3.478975 2.139698 13.032516
MBADE 5.978223 4.876190 4.466096 3.479479 2.139142 13.032514
MFAGA 5.978223 4.876190 4.466096 3.479479 2.139142 13.032514
IHFAPA 5.978223 4.876190 4.466096 3.479479 2.139142 13.032514

Table 26. Statistical indicator values of 14 algorithms.

Algorithm Best Worst Mean Std

SFA 31.91380143 95.41133362 72.02906616 1.73 × 101

RaFA 44.78519656 98.22406344 78.05979901 1.30 × 101

NaFA 13.09369793 14.01238482 13.46412795 2.55 × 10−1

GDFA 13.04638006 13.137194 13.08140472 2.80 × 10−2

ADIFA 13.04630463 23.70457178 15.15767351 2.59
YYFA 13.04080799 13.20624313 13.11404444 3.81 × 10−2

GAHFA 13.03988751 14.23777192 13.53016911 4.17 × 10−1

JSO 13.03251551 13.03251551 13.03251551 2.19 × 10−15

HDE 13.03259225 13.03320678 13.0327743 1.77 × 10−4

ISCA 13.03252229 14.2417099 13.21728098 2.62 × 10−1

DMCSO 13.03251606 13.03256694 13.03253796 1.43 × 10−5

MBADE 13.03251427 13.03251427 13.03251427 5.88 × 10−15

MFAGA 13.03251422 13.03251422 13.03251422 1.82 × 10−15

IHFAPA 13.03251422 13.03251422 13.03251422 1.82 × 10−15

In Table 25, the optimal value obtained by MFAGA and IHFAPA is the smallest among
the 14 algorithms. Table 26 illustrates that the Best, Worst, Mean and Std of IHFAPA and
MFAGA are the same and better than the other 11 algorithms. Therefore, the quality of
IHFAPA is not inferior to the other algorithms in solving the cantilever optimization design
problem, which verifies the effectiveness of IHFAPA.
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5.2. Optimization Design of Welded Beam [54]

One well-known nonlinear optimization design problem in the realm of engineering
is the optimization of welded beams. The objective of this problem is to minimize the
manufacturing cost of welded beams under the constraints of shear stress (τ), beam end
deflection (δ), bar buckling load (Pc) and bending stress (σ). The design variable for the
optimization design of the welded beam is X = [x1,x2,x3,x4]. The structure of the welded
beam is shown in Figure 16.
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(41)
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Ex2
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x ) =
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(
1− x3

2L

√
E

4G

)
(43)

where P = 6000 lb, τmax = 13600 psi, δmax = 0.25 in, L = 14 in, E = 30× 106 psi, G = 12× 106 psi
and σmax = 30,000 psi.

The value range of design variables in the optimization design of welded beams is
0.1 ≤ xi(i = 1,4) ≤ 2, 0.1 ≤ xi (i = 2,3) ≤ 10. Table 27 reports intelligence optimization
algorithms are used to solve Equation (34) and the best result of various algorithms solving
Problem 2. To better evaluate the performance of the algorithm, the Best, Worst, Mean and
Std are taken as statistical indicators. The statistical indicator values of the 14 algorithms
are given in Table 28.

Table 27. The best result of various algorithms solving Problem 2.

Algorithm x1 x2 x3 x4 f (X)

SFA 0.205142 3.286062 9.040616 0.205725 1.699504
RaFA 0.152123 4.864129 9.337794 0.217702 1.969270
NaFA 0.343650 2.812506 7.196487 0.426302 2.848371
GDFA 0.203523 3.278857 9.114596 0.205344 1.705893
ADIFA 0.207075 3.229328 9.036616 0.205730 1.702817
YYFA 0.206911 3.232201 9.036624 0.205730 1.819633

GAHFA 0.252491 2.581204 9.036624 0.205730 1.695247
JSO 0.205730 3.253120 9.036624 0.205730 1.695247

HDE 0.327076 2.308069 7.180879 0.326335 2.111363
ISCA 0.205180 3.262910 9.036821 0.205736 1.695851

DMCSO 0.187914 4.153360 8.537442 0.230493 1.880627
MBADE 0.205730 3.253120 9.036624 0.205730 1.695247
MFAGA 0.127434 5.184727 9.958296 0.298460 1.820290
IHFAPA 0.205730 3.253109 9.036624 0.205730 1.695247

Table 28. Statistical indicator values of 14 algorithms.

Algorithm Best Worst Mean Std

SFA 1.699504131 1.703915182 1.701907472 1.76 × 10−3

RaFA 1.969269943 2.360207438 2.183403881 1.70 × 10−1

NaFA 2.848370826 6.543512806 4.44958705 1.04
GDFA 1.705892603 1.794671332 1.750032772 2.62 × 10−2

ADIFA 1.702817329 1.710019138 1.705453849 3.97 × 10−3

YYFA 1.819633196 2.040470288 1.917570624 1.13 × 10−1

GAHFA 1.695247121 1.695247121 1.695247121 2.22 × 10−16

JSO 1.695247547 1.695247547 1.695247547 1.00 × 10−11

HDE 2.111363368 3.326935976 2.647398239 4.80 × 10−1

ISCA 1.695850898 2.062965308 1.828526064 1.76 × 10−1

DMCSO 1.880626824 2.659265752 2.288024928 3.04 × 10−1

MBADE 1.695247165 1.695247165 1.695247165 2.72 × 10−16

MFAGA 1.820289796 2.261054896 2.008538645 1.08 × 10−1

IHFAPA 1.695246726 1.695246726 1.695246726 1.70 × 10−11

Table 27 reports that Best of IHFAPA is the smallest among the 14 algorithms. Table 28 reports IHFAPA’s Best,
Worst, Mean and Std are better than those of other algorithms. Therefore, IHFAPA is superior to the other
algorithms in solving the optimization design of welded beams, thus, verifying the effectiveness of IHFAPA.
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5.3. Optimization Design of Piston Rod [55]

The piston rod structure is also a common optimization structure in practical engineer-
ing, and its structure is shown in Figure 17.
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The primary objective of the piston rod optimization problem is to position piston
components H, B, D and X by minimizing the amount of oil when the piston rod moves
from 0 to 45◦.

The design variable of the piston rod optimization problem is X = [H, B, D, X] = [x1,
x2, x3, x4] and the mathematical model is:

min f (X) = 1
4 πx2

4(L2 − L1)

s.t.


g1(X) = QL cos θ − RF ≤ 0
g2(X) = Q(L− x4)−Mmax ≤ 0
g3(X) = 1.2(L2 − L1)− L1 ≤ 0
g4(X) = x3/2− x2

(44)

R =
|−x4(x4 sin θ+ x1) + x1(x2 − x4 cos θ)|√

(x4 − x2)
2 + x2

1

(45)

F =
πPx2

3
4

(46)

L2 =

√
(x4 sin θ+ x1)

2 + (x2 − x4 cos θ)2 (47)

L1 =
√
(x4 − x2)

2 + x2
1 (48)

where Q = 10,000 lbs, θ = 45◦, L = 240 in, oil pressure P take 1500 psi and maximum
allowable bending moment of lever Mmax = 1.8 × 106 lbs in.

The design variable of the piston lever optimization design problem ranges from 0.05
≤ xi(i = 1,2,3) ≤ 500 to 0.05 ≤ x4 ≤ 120. Thus, 13 intelligence optimization algorithms are
used to solve Equation (44) and the best result of various algorithms solving Problem 3 is
reported in Table 29. In order to better evaluate the performance of the algorithm, Best,
Worst, Mean and Std are taken as statistical indicators. The statistical indicator values of
the 13 algorithms are given in Table 30.
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Table 29. The best result of various algorithms solving Problem 3.

Algorithm x1 x2 x3 x4 f (X)

SFA 323.248363 445.241380 0.769432 100.504978 33.017971
RaFA 495.290074 499.715164 2.217472 60.012207 168.239426
NaFA 104.240204 86.759338 0.482788 61.045700 8.485409
GDFA 0.575958 4.047767 4.526363 98.406522 18.808499
ADIFA 472.995123 498.160365 2.257819 60.584553 174.903047
YYFA 0.050070 2.146217 4.091046 119.970691 8.862098

GAHFA 500.000000 500.000000 2.211110 60.000000 8.412698
JSO 5.834864 8.515579 5.181083 82.183156 122.517700

HDE 350.423154 499.875433 2.435342 60.161549 189.607904
ISCA 0.050000 2.041532 4.083032 120.000000 8.412792

DMCSO 0.088350 2.800421 5.317896 68.916930 20.295798
MBADE 255.964175 499.721801 2.719571 60.145636 8.412698
MFAGA 0.071040 2.571204 4.486615 98.392004 12.985521
IHFAPA 0.050000 2.041514 4.083027 120.000000 8.412698

Table 30. Statistical indicator values of 14 algorithms.

Algorithm Best Worst Mean Std

SFA 33.0179706 655683.391233 174576.900399 2.80 × 105

RaFA 168.2394257 171.464577 169.316744 1.46
NaFA 8.4854092 63459.882063 24002.590167 2.44 × 104

GDFA 18.8084987 203.436288 108.714651 1.01 × 102

ADIFA 174.9030473 237.515228 210.815755 2.39 × 101

YYFA 8.8620984 173.613805 63.925947 9.50 × 101

GAHFA 8.4126983 167.472730 135.660724 7.11 × 101

JSO 122.517700 167.472700 164.607900 1.02 × 101

HDE 189.6079044 22916.006641 3369.843019 7.93 × 103

ISCA 8.4127921 8.413036 8.412932 1.14 × 10−4

DMCSO 20.2957982 290.999882 176.624502 9.77 × 101

MBADE 8.4126981 167.472730 135.660724 7.11 × 101

MFAGA 12.9855210 543.823923 228.069099 1.54 × 102

IHFAPA 8.4126981 167.472730 91.123915 8.11 × 101

Table 29 shows that Best of IHFAPA is the smallest among the 14 algorithms. Table 30 reports that IHFAPA’s Best
is better than other 13 algorithms, and ISCA’s Worst, Mean and Std are better than other algorithms.

5.4. Optimization Design of Three-Bar Truss [55]

The three-bar truss structure is shown in Figure 18.
The objective of the optimization design of the three-bar truss is to minimize the

weight of the three-bar truss under the constraints of stress, deflection and buckling. The
design variable of the optimization design of the three-bar truss is [B1, B2] = [x1, x2]. The
mathematical model of the optimization problem is:

min f (X) = 100
(

2
√

2x1 + x2

)

s.t.


g1(x) = 2

(√
2x1 + x2

)
/
(√

2x2
1 + 2x1x2

)
− 2 ≤ 0

g2(x) = 2x2/
(√

2x2
1 + 2x1x2

)
− 2 ≤ 0

g3(x) = 2/
(√

2x2 + x1

)
− 2 ≤ 0

(49)

The value range of design variables for the optimization of the three-bar truss design
is as follows: 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. Table 31 reports that 14 intelligence optimization
algorithms are used to solve Equation (49) and the best result of various algorithms solving
Problem 4. To better evaluate the performance of the algorithm, Best, Worst, Mean and Std
are taken as statistical indicators. The statistical indicator values of the 14 algorithms are
given in Table 32.
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Table 31. The best result of various algorithms solving Problem 3.

Algorithm x1 x2 f (x)

SFA 0.787926 0.410374 263.896446
RaFA 0.785019 0.419141 263.950917
NaFA 0.786150 0.416532 264.010146
GDFA 0.788675 0.408248 263.895843
ADIFA 0.788664 0.408279 263.895844
YYFA 0.788660 0.408292 263.895844

GAHFA 0.788675 0.408248 263.895843
JSO 0.788675 0.408248 263.895843

HDE 0.783659 0.422625 263.914661
ISCA 0.788465 0.408844 263.895903

DMCSO 0.788675 0.408248 263.895843
MBADE 0.788675 0.408248 263.895843
MFAGA 0.787865 0.410557 263.897624
IHFAPA 0.788675 0.408248 263.895843

According to Table 31, the Best of IHFAPA is the smallest among 14 algorithms. From
Table 32, the Best, Worst, Mean and Std of IHFAPA are better than the other algorithms.
Therefore, IHFAPA is superior to the other algorithms in solving the optimization design
problem of the three-bar truss, thus, verifying the effectiveness of IHFAPA.

In summary, the optimization results of the four engineering optimization problems
show that the minimum optimal value obtained by IHFAPA is better than other algorithms
when solving piston rod optimization design problems, and the standard deviation of
maximum optimal value, average optimal value and optimal value obtained by IHFAPA is
not worse than that of the other algorithms. When the 14 algorithms solve the cantilever
beam optimization design problem, the welded beam optimization design problem and
the three-bar truss optimization design problem, all the statistical indicator values are not
inferior to the other algorithms. Therefore, the performance of IHFAPA is significantly
better than other algorithms.
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Table 32. Statistical indicator values of 14 algorithms.

Algorithm Best Worst Mean Std

SFA 263.8964457 263.8999999 263.8979033 9.28 × 10−4

RaFA 263.9509171 265.2151988 264.3419885 3.17 × 10−1

NaFA 264.0101463 269.4611471 265.7919397 1.55
GDFA 263.8958434 263.896638 263.8958931 1.76 × 10−4

ADIFA 263.8958435 263.895876 263.8958504 7.81 × 10−6

YYFA 263.8958436 267.4844861 264.4581455 9.68 × 10−1

GAHFA 263.8958434 263.8958434 263.8958434 4.02 × 10−14

JSO 263.8958534 263.8958434 263.8958544 7.20 × 10−410

HDE 263.9146614 265.2142127 264.251843 4.03 × 10−1

ISCA 263.8959028 263.9135898 263.8975107 3.85 × 10−3

DMCSO 263.8958434 264.2691155 263.9251508 8.45 × 10−2

MBADE 263.8958434 263.8958434 263.8958434 4.02 × 10−14

MFAGA 263.8976237 263.9835232 263.9164881 2.33 × 10−2

IHFAPA 263.8958434 263.8958434 263.8958434 4.02 × 10−14

5.5. Discussion

The diversity in the population has a great impact on the exploration and exploitation
ability of the algorithm. With an increase in the number of iterations, the fireflies in the
population will focus on the fireflies near the local extreme value or the global extreme
value point, and the similarity degree S between individuals in the population increases.
When the similarity between individuals in the population exceeds the threshold value ζ, it
is considered that the individuals in the species are so similar that some individuals in the
population need to be re-initialized. Let the ratio of the number of re-initialized individuals
to the population size be P; the size of P has an impact on the performance of FA and the
diversity in the population. To give an optimal combination of threshold values ζ and P, a
two-factor and three-level orthogonal experiment was designed. Orthogonal experiment
results show that FA has the best performance when ζ = 0.4 and P = 0.97. In addition, the
orthogonal experiment results also verify that similarity removal has a great influence on
the performance of FA.

CEC 2017 is selected to verify the superiority of the probabilistic attracting model.
CAM, RAM, NAM and GAM are selected to design an experiment to verify the effect
of different attraction models on algorithm performance. In the experiment, IHFAPA
was the same except for the different attraction model. Experimental results show that
IHFAPA using the probability attraction model has better performance than IHFA using
other attraction models. In addition, the experimental results verify that the attraction
model has a significant influence on the performance of the algorithm and the superiority
of the probability attraction model.

To verify that the performance of the IHFAPA algorithm is better than other FAs
and other intelligence optimization algorithms, 28 30-D and 50-D test functions in CEC
2017 are selected and four practical engineering optimization problems are selected. Two
groups of experiments were designed to verify the superiority of the IHFAPA algorithm
performance. The experiment that uses 28 30-D and 50-D test functions in CEC 2017 to
verify the superiority of IHFAPA performance is called the first combination experiment.
The experiments to verify the performance advantage of the algorithm using four practical
optimization problems commonly used in engineering are called the second set of experi-
ments. The results of the first combination experiment show that the solution quality of
IHFAPA is significantly better than seven other improved FAs and seven other intelligence
optimization algorithms, which verifies the effectiveness and superiority of IHFAPA. The
second set of experimental results show that the solution quality of IHFAPA is better than
the other 14 comparison algorithms, and the effectiveness and performance advantages of
the algorithm in practical problems are verified.
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6. Conclusions

FA features some deficiencies, such as premature convergence and poor solution
quality, when solving high-dimensional and multi-extremum constrained optimization
problems. To solve these problems, an IHFAPA is proposed. IHFAPA was improved in
four aspects: probability attraction model, position updating formula, combined mutation
operator based on selection probability and similarity-removal operation.

The optimal point set method based on square-root sequence is selected to generate
the initial population to make the initial population evenly distributed in the whole search
space and have good population diversity. An adaptive probability attraction model based
on firefly brightness level is proposed to minimize the number of brightness comparisons
and make the number of attractions moderate. The probability attraction model can not
only avoid the oscillation or fluctuation phenomenon in the search process caused by too
many times of attraction but can also avoid the problem of slow convergence speed and
poor solution quality caused by too few times of attraction. In addition, the probability
attraction model can effectively reduce the TC in the algorithm.

For the firefly location-update formula in literature [6], when the distance between
two fireflies is large, the relative attraction may approach 0. At this time, the algorithm is
equivalent to random search, resulting in slow convergence speed and poor solution quality.
For the firefly position-update formula in the literature [20], when the distance between two
fireflies is large, although the problem of relative attraction approaching 0 is avoided, the
value of relative attraction is small and the attraction term plays a minimal role. In addition,
a new position-update formula is proposed to solve the problem that the value of the guide
factor decreases, and the role of the guide term gradually decreases with an increase in
the number of iterations. The situation where the relative suction force tends to zero at
the start of the iteration is not shown by the new position-update formula. The enhanced
position-updating formula takes into account both the guiding influence of optimal fireflies
in the population on fireflies undergoing position updating as well as the influence of
high-brightness fireflies on fireflies undergoing position updating. On this foundation, a
dynamic and adaptive method to change the parameters in the position-update formula is
proposed, making the position-update method have strong global search ability at the start
of iteration and strong local search ability at the end, so that both the global and local search
ability of the algorithm are taken into better account. In addition, in the initial iteration
of the new position-update formula, the attraction term plays a larger role than the guide
term and the algorithm has strong exploration ability. After iteration, the attraction term
plays a smaller role, while the guide term plays a larger role, and the algorithm has strong
exploitation ability.

FA’s exploration and exploitation ability is determined by firefly’s position-update
formula, but the position-update formula proposed in the existing literature needs to judge
when it is the early iteration and the late iteration; however, sometimes the judgment is not
accurate. Therefore, the algorithm may perform local search when global search is needed.
When local search is needed, the algorithm performs global search. A combined mutation
operator based on selection probability is added to the revised FA to address this flaw. The
combined mutation operator based on selection probability that can adaptively select a
certain kind of mutation operator with strong exploration ability or exploitation ability
does not need to judge whether the algorithm is in the early iteration or the late iteration,
so as to better balance the exploration and exploitation ability of the algorithm.

There will be a large number of similar individuals in the population as iteration
times rise. For the multi-extremum optimization problem, most of the individuals in the
population will focus near the local extremum point in the late iteration, and the diversity in
the population is poor, which leads to the algorithm easily falling into a local optimum. In
order to solve this issue, a similarity-removal operation is added to the FA. This effectively
lowers the population’s number of similar individuals, aids in maintaining the population’s
diversity, lowers the likelihood that the algorithm will reach a local optimum and improves
the algorithm’s solution quality.
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Finally, to verify the superiority of IHFAPA performance, the CEC 2017 constraint
optimization problem and four practical engineering optimization problems are used to
conduct experiments. The experimental results show that IHFAPA can effectively improve
the solution quality, thus, verifying the effectiveness of IHFAPA.

In the future, there are still many fields worth our research and exploration. In
addition to the position-update formula, we can also explore the combination of FA and
other optimization algorithms to give full play to the advantages of different algorithms.
We can also investigate the use of FA in the identification of rice pests and other fields, as
well as the use of FA to address mixed-integer and pure-integer programming issues.

Author Contributions: Conceptualization, J.-L.B.; M.-X.Z. and J.-Q.W.; methodology, J.-L.B. and
M.-X.Z.; software, J.-L.B. and M.-X.Z.; validation, J.-L.B. and M.-X.Z. and J.-Q.W.; formal anal-
ysis, H.-H.S. and H.-Y.Z.; investigation, J.-L.B. and M.-X.Z.; resources, J.-L.B. and M.-X.Z., and
J.-Q.W.; data curation, H.-H.S. and H.-Y.Z.; writing—original draft preparation, J.-L.B. and M.-X.Z.;
writing—review and editing, J.-L.B., M.-X.Z. and J.-Q.W.; visualization, J.-L.B.,M.-X.Z. and J.-Q.W.;
supervision, J.-Q.W.; project administration, J.-L.B. and M.-X.Z.; funding acquisition, J.-Q.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Social Science Fund of China, grant
number 21BGL174.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the anonymous reviewers for their valuable and constructive
comments that greatly helped improve the quality and completeness of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhanu, B.; Lee, S.; Ming, J. Adaptive image segmentation using a genetic algorithm. IEEE Trans. Syst. Man Cybern. 1995, 25,

1543–1567. [CrossRef]
2. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.

Glob. Optim. 1997, 11, 341–359. [CrossRef]
3. Gao, W.F.; Liu, S.Y.; Huang, L.L. Particle swarm optimization with chaotic opposition-based population initialization and

stochastic search technique. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4316–4327. [CrossRef]
4. Wang, H.; Zhou, X.Y.; Sun, H.; Yu, X.; Zhao, J.; Zhang, H.; Cui, L.Z. Firefly algorithm with adaptive control parameters. Soft

Comput. 2017, 21, 5091–5102. [CrossRef]
5. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
6. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2008.
7. Mishra, S.P.; Dash, P.K. Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and

adaptive firefly algorithm. Neural Comput. Appl. 2019, 31, 2243–2268. [CrossRef]
8. Huang, H.C.; Lin, S.K. A Hybrid Metaheuristic Embedded System for Intelligent Vehicles Using Hypermutated Firefly Algorithm

Optimized Radial Basis Function Neural Network. IEEE Trans. Ind. Inform. 2019, 15, 1062–1069. [CrossRef]
9. Dhal, K.G.; Das, A.; Ray, S.; Galvez, J. Randomly Attracted Rough Firefly Algorithm for histogram based fuzzy image clustering.

Knowl. Based Syst. 2021, 216, 106814. [CrossRef]
10. Agarwal, V.; Bhanot, S. Radial basis function neural network-based face recognition using firefly algorithm. Neural Comput. Appl.

2018, 30, 2643–2660. [CrossRef]
11. Kaya, S.; Gumuscu, A.; Aydilek, I.B.; Karacizmeli, I.H.; Tenekeci, M.E. Solution for flow shop scheduling problems using chaotic

hybrid firefly and particle swarm optimization algorithm with improved local search. Soft Comput. 2021, 25, 7143–7154. [CrossRef]
12. Ewees, A.A.; Al-qaness, M.A.A.; Abd Elaziz, M. Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel

machine scheduling with setup times. Appl. Math. Model. 2021, 94, 285–305. [CrossRef]
13. Zhang, Y.; Zhou, J.; Sun, L.; Mao, J.; Sun, J. A Novel Firefly Algorithm for Scheduling Bag-of-Tasks Applications Under Budget

Constraints on Hybrid Clouds. IEEE Access 2019, 7, 151888–151901. [CrossRef]
14. He, L.F.; Huang, S.W. Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing

2017, 240, 152–174. [CrossRef]

http://doi.org/10.1109/21.478444
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1016/j.cnsns.2012.03.015
http://doi.org/10.1007/s00500-016-2104-3
http://doi.org/10.1007/s10898-007-9149-x
http://doi.org/10.1007/s00521-017-3185-3
http://doi.org/10.1109/TII.2018.2796556
http://doi.org/10.1016/j.knosys.2021.106814
http://doi.org/10.1007/s00521-017-2874-2
http://doi.org/10.1007/s00500-021-05673-w
http://doi.org/10.1016/j.apm.2021.01.017
http://doi.org/10.1109/ACCESS.2019.2948468
http://doi.org/10.1016/j.neucom.2017.02.040


Mathematics 2023, 11, 389 58 of 59

15. Pitchaimanickam, B.; Murugaboopathi, G. A hybrid firefly algorithm with particle swarm optimization for energy efficient
optimal cluster head selection in wireless sensor networks. Neural Comput. Appl. 2020, 32, 7709–7723. [CrossRef]

16. Yogarajan, G.; Revathi, T. Nature inspired discrete firefly algorithm for optimal mobile data gathering in wireless sensor networks.
Wirel. Netw. 2018, 24, 2993–3007. [CrossRef]

17. Pakdel, H.; Fotohi, R. A firefly algorithm for power management in wireless sensor networks (WSNs). J. Supercomput. 2021, 77,
9411–9432. [CrossRef]

18. Wang, H.; Wang, W.J.; Cui, L.Z.; Sun, H.; Zhao, J.; Wang, Y.; Xue, Y. A hybrid multi-objective firefly algorithm for big data
optimization. Appl. Soft Comput. 2018, 69, 806–815. [CrossRef]

19. Wang, H.; Wang, W.J.; Sun, H.; Rahnamayan, S. Firefly algorithm with random attraction. Int. J. Bio-Inspired Comput. 2016, 8,
33–41. [CrossRef]

20. Cheng, Z.W.; Song, H.H.; Wang, J.Q.; Zhang, H.Y.; Chang, T.Z.; Zhang, M.X. Hybrid firefly algorithm with grouping attraction for
constrained optimization problem. Knowl.-Based Syst. 2021, 220, 30. [CrossRef]

21. Coelho, L.D.; Mariani, V.C. Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller
tuning. Comput. Math. Appl. 2012, 64, 2371–2382. [CrossRef]

22. Rizk-Allah, R.M.; Zaki, E.M.; El-Sawy, A.A. Hybridizing ant colony optimization with firefly algorithm for unconstrained
optimization problems. Appl. Math. Comput. 2013, 224, 473–483. [CrossRef]

23. Liang, R.H.; Wang, J.C.; Chen, Y.T.; Tseng, W.T. An enhanced firefly algorithm to multi-objective optimal active/reactive power
dispatch with uncertainties consideration. Int. J. Electr. Power Energy Syst. 2015, 64, 1088–1097. [CrossRef]

24. Banerjee, A.; Ghosh, D.; Das, S. Modified firefly algorithm for area estimation and tracking of fast expanding oil spills. Appl. Soft
Comput. 2018, 73, 829–847. [CrossRef]

25. Zhang, J.; Teng, Y.F.; Chen, W. Support vector regression with modified firefly algorithm for stock price forecasting. Appl. Intell.
2019, 49, 1658–1674. [CrossRef]

26. Ball, A.K.; Roy, S.S.; Kisku, D.R.; Murmu, N.C.; Coelho, L.d.S. Optimization of drop ejection frequency in EHD inkjet printing
system using an improved Firefly Algorithm. Appl. Soft Comput. 2020, 94, 106438. [CrossRef]

27. Zhang, L.; Srisukkham, W.; Neoh, S.C.; Lim, C.P.; Pandit, D. Classifier ensemble reduction using a modified firefly algorithm: An
empirical evaluation. Expert Syst. Appl. 2018, 93, 395–422. [CrossRef]

28. Wang, C.F.; Song, W.X. A novel firefly algorithm based on gender difference and its convergence. Appl. Soft Comput. 2019, 80,
107–124. [CrossRef]

29. Wu, J.R.; Wang, Y.G.; Burrage, K.; Tian, Y.C.; Lawson, B.; Ding, Z. An improved firefly algorithm for global continuous
optimization problems. Expert Syst. Appl. 2020, 149, 113340. [CrossRef]

30. Chen, K.; Zhou, Y.; Zhang, Z.; Dai, M.; Chao, Y.; Shi, J. Multilevel Image Segmentation Based on an Improved Firefly Algorithm.
Math. Probl. Eng. 2016, 2016, 1–12. [CrossRef]

31. Huang, S.J.; Liu, X.Z.; Su, W.F.; Yang, S.H. Application of Hybrid Firefly Algorithm for Sheath Loss Reduction of Underground
Transmission Systems. IEEE Trans. Power Deliv. 2013, 28, 2085–2092. [CrossRef]

32. Verma, O.P.; Aggarwal, D.; Patodi, T. Opposition and dimensional based modified firefly algorithm. Expert Syst. Appl. 2016, 44,
168–176. [CrossRef]

33. Dash, J.; Dam, B.; Swain, R. Design of multipurpose digital FIR double-band filter using hybrid firefly differential evolution
algorithm. Appl. Soft Comput. 2017, 59, 529–545. [CrossRef]

34. Aydilek, I.B. A Hybrid Firefly and Particle Swarm Optimization Algorithm for Computationally Expensive Numerical Problems.
Appl. Soft Comput. 2018, 66, 232–249. [CrossRef]

35. Li, G.C.; Liu, P.; Le, C.Y.; Zhou, B.D. A Novel Hybrid Meta-Heuristic Algorithm Based on the Cross-Entropy Method and Firefly
Algorithm for Global Optimization. Entropy 2019, 21, 494. [CrossRef]

36. Wang, W.C.; Xu, L.; Chau, K.W.; Xu, D.M. Yin-Yang firefly algorithm based on dimensionally Cauchy mutation. Expert Syst. Appl.
2020, 150, 18. [CrossRef]

37. Hua, L.K.; Wang, Y.J.S.B.H. Applications of Number Theory to Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1972.
38. Sayadi, M.K.; Hafezalkotob, A.; Naini, S.G.J. Firefly-inspired algorithm for discrete optimization problems: An application to

manufacturing cell formation. J. Manuf. Syst. 2013, 32, 78–84. [CrossRef]
39. Yu, Y.; Liu, Y.; Liu, K.; Chen, Y. Chaos Pseudo Parallel Genetic Algorithm and Its Application on Fire Distribution Optimization. J.

Beijing Inst. Technol. 2005, 25, 1047–1051.
40. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition versus randomness in soft computing techniques. Appl. Soft Comput.

2008, 8, 906–918. [CrossRef]
41. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International

Conference on International Conference on Computational Intelligence for Modelling, Control & Automation, Vienna, Austria,
28–30 November 2005; pp. 695–701.

42. Wang, H.; Wang, W.; Zhou, X.; Sun, H.; Zhao, J.; Yu, X.; Cui, Z. Firefly algorithm with neighborhood attraction. Inf. Sci. 2016,
382–383, 374–387. [CrossRef]

43. Mishra, A.; Agarwal, C.; Sharma, A.; Bedi, P. Optimized gray-scale image watermarking using DWT–SVD and Firefly Algorithm.
Expert Syst. Appl. 2014, 41, 7858–7867. [CrossRef]

http://doi.org/10.1007/s00521-019-04441-0
http://doi.org/10.1007/s11276-017-1517-y
http://doi.org/10.1007/s11227-021-03639-1
http://doi.org/10.1016/j.asoc.2017.06.029
http://doi.org/10.1504/IJBIC.2016.074630
http://doi.org/10.1016/j.knosys.2021.106937
http://doi.org/10.1016/j.camwa.2012.05.007
http://doi.org/10.1016/j.amc.2013.07.092
http://doi.org/10.1016/j.ijepes.2014.09.008
http://doi.org/10.1016/j.asoc.2018.09.024
http://doi.org/10.1007/s10489-018-1351-7
http://doi.org/10.1016/j.asoc.2020.106438
http://doi.org/10.1016/j.eswa.2017.10.001
http://doi.org/10.1016/j.asoc.2019.03.010
http://doi.org/10.1016/j.eswa.2020.113340
http://doi.org/10.1155/2016/1578056
http://doi.org/10.1109/TPWRD.2013.2265913
http://doi.org/10.1016/j.eswa.2015.08.054
http://doi.org/10.1016/j.asoc.2017.06.025
http://doi.org/10.1016/j.asoc.2018.02.025
http://doi.org/10.3390/e21050494
http://doi.org/10.1016/j.eswa.2020.113216
http://doi.org/10.1016/j.jmsy.2012.06.004
http://doi.org/10.1016/j.asoc.2007.07.010
http://doi.org/10.1016/j.ins.2016.12.024
http://doi.org/10.1016/j.eswa.2014.06.011


Mathematics 2023, 11, 389 59 of 59

44. Zhu, L.; Zhang, Z.; Wang, Y. A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard
evaluation. Int. J. Prod. Res. 2018, 56, 7354–7374. [CrossRef]

45. Wang, J.; Zhang, M.; Song, H.; Cheng, Z.; Chang, T.; Bi, Y.; Sun, K. Improvement and Application of Hybrid Firefly Algorithm.
IEEE Access 2019, 7, 165458–165477. [CrossRef]

46. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70.
47. Anh, H.P.H.; Son, N.N.; Van Kien, C.; Ho-Huu, V. Parameter identification using adaptive differential evolution algorithm applied

to robust control of uncertain nonlinear systems. Appl. Soft Comput. 2018, 71, 672–684. [CrossRef]
48. Gupta, S.; Deep, K. Improved sine cosine algorithm with crossover scheme for global optimization. Knowl.-Based Syst. 2019, 165,

374–406. [CrossRef]
49. Han, M. Hybrid chicken swarm algorithm with dissipative structure and differential mutation. J. ZheJiang Univ. (Sci. Ed.) 2018,

45, 272–283. [CrossRef]
50. Wang, S.J.; Gao, X.Z. A survey of research on firefly algorithm. Microcomput. Its Appl. 2015, 34, 8–11.
51. Ylidizdan, G.; Baykan, O.K. A novel modified bat algorithm hybridizing by differential evolution algorithm. Expert Syst. Appl.

2020, 141, 19. [CrossRef]
52. Gupta, D.; Dhar, A.R.; Roy, S.S. A partition cum unification based genetic- firefly algorithm for single objective optimization.
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