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Abstract: Recently, the split inverse problem has received great research attention due to its several
applications in diverse fields. In this paper, we study a new class of split inverse problems called the
split variational inequality problem with multiple output sets. We propose a new Tseng extragradient
method, which uses self-adaptive step sizes for approximating the solution to the problem when
the cost operators are pseudomonotone and non-Lipschitz in the framework of Hilbert spaces. We
point out that while the cost operators are non-Lipschitz, our proposed method does not involve
any linesearch procedure for its implementation. Instead, we employ a more efficient self-adaptive
step size technique with known parameters. In addition, we employ the relaxation method and the
inertial technique to improve the convergence properties of the algorithm. Moreover, under some
mild conditions on the control parameters and without the knowledge of the operators’ norm, we
prove that the sequence generated by our proposed method converges strongly to a minimum-norm
solution to the problem. Finally, we apply our result to study certain classes of optimization problems,
and we present several numerical experiments to demonstrate the applicability of our proposed
method. Several of the existing results in the literature in this direction could be viewed as special
cases of our results in this study.

Keywords: split inverse problems; non-Lipschitz operators; pseudomonotone operators; Tseng’s
extragradient method; relaxation and inertial techniques
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1. Introduction

Let H be a real Hilbert space endowed with inner product 〈·, ·〉 and induced norm
|| · ||. Let C be a nonempty, closed and convex subset of H, and let A : H → H be an
operator. Recall that the variational inequality problem (VIP) is formulated as finding an
element p ∈ C such that

〈x− p, Ap〉 ≥ 0, ∀ x ∈ C. (1)

The solution set of the VIP (1) is denoted by VI(C, A). Fichera [1] and Stampacchia [2]
were the first to introduce and initiate a study independently on variational inequality the-
ory. The variational inequality model is known to provide a general and useful framework
for solving several problems in engineering, optimal control, data sciences, mathemati-
cal programming, economics, etc. (see [3–8] and the references therein). In recent times,
the VIP has received great research attention owing to its several applications in diverse
fields, such as economics, operations research, optimization theory, structural analysis,
sciences and engineering (see [9–14] and the references therein). Several methods have
been proposed and analyzed by authors for solving the VIP (see [15–19] and references
therein).

One of the well-known and highly efficient methods is the Tseng extragradient
method [20] (which is also known as the forward–backward–forward algorithm). The
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method is a two-step projection iterative method, which only requires single computation
of the projection onto the feasible set per iteration. Several authors have modified and
improved on the Tseng extragradient method to approximate the solution of the VIP (1)
(for instance, see [19,21–23] and the references therein).

Another active area of research interest in recent years is the split inverse problem
(SIP). The SIP finds applications in various fields, such as in medical image reconstruction,
intensity-modulated radiation therapy, signal processing, phase retrieval, data compression,
etc. (for instance, see [24–27]). The SIP model is presented as follows:

Find x̂ ∈ H1 that solves IP1 (2)

such that
ŷ := Tx̂ ∈ H2 solves IP2, (3)

where H1 and H2 are real Hilbert spaces, IP1 denotes an inverse problem formulated in
H1, and IP2 denotes an inverse problem formulated in H2, and T : H1 → H2 is a bounded
linear operator.

The first instance of the SIP, called the split feasibility problem (SFP), was introduced in
1994 by Censor and Elfving [26] for modeling inverse problems that arise from medical
image reconstruction. The SFP has numerous areas of applications, for instance, in signal
processing, biomedical engineering, control theory, approximation theory, geophysics,
communications, etc. [25,27,28]. The SFP is formulated as follows:

Find x̂ ∈ C such that ŷ = Tx̂ ∈ Q, (4)

where C and Q are nonempty, closed and convex subsets of Hilbert spaces H1 and H2,
respectively, and T : H1 → H2 is a bounded linear operator.

A well-known method for solving the SFP is the CQ method proposed by Byrne [29].
The CQ method has been improved and extended by several researchers. Moreover, many
authors have proposed and analyzed several other iterative methods for approximating
the solution of SFP (4) both in the framework of Hilbert and Banach spaces (for instance,
see [25,27,28,30,31]).

Censor et al. [32] introduced an important generalization of the SFP called the split
variational inequality problem (SVIP). The SVIP is defined as follows:

Find x̂ ∈ C that solves 〈A1 x̂, x− x̂〉 ≥ 0, ∀x ∈ C (5)

such that
ŷ = Tx̂ ∈ H2 solves 〈A2ŷ, y− ŷ〉 ≥ 0, ∀y ∈ Q, (6)

where A1 : H1 → H1, A2 : H2 → H2 are single-valued operators. Many authors have
proposed and analyzed several iterative techniques for solving the SVIP (e.g., see [33–36]).

Very recently, Reich and Tuyen [37] introduced and studied a new split inverse problem
called the split feasibility problem with multiple output sets (SFPMOS) in the framework of
Hilbert spaces. Let C and Qi be nonempty, closed and convex subsets of Hilbert spaces
H and Hi, i = 1, 2, . . . , N, respectively. Let Ti : H → Hi, i = 1, 2, . . . , N be bounded linear
operators. The SFPMOS is formulated as follows: find an element u† ∈ H such that

u† ∈ Γ := C ∩ (∩N
i=1T−1

i (Qi)) 6= ∅. (7)

Reich and Tuyen [38] proposed and analyzed two iterative methods for solving the
SFPMOS (7) in the framework of Hilbert spaces. The proposed algorithms are presented
as follows:

xn+1 = PC

[
xn − γn

N

∑
i=1

T∗i (I − PQi )Tixn

]
, (8)
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and

xn+1 = αn f (xn) + (1− αn)PC

[
xn − γn

N

∑
i=1

T∗i (I − PQi )Tixn)
]
, (9)

where f : C → C is a strict contraction, {γn} ⊂ (0,+∞) and {αn} ⊂ (0, 1). The au-
thors obtained weak and strong convergence results for Algorithm (8) and Algorithm (9),
respectively.

Motivated by the importance and several applications of the split inverse problems,
in this paper, we examine a new class of split inverse problems called the split variational
inequality problem with multiple output sets. Let H, Hi, i = 1, 2, . . . , N, be real Hilbert
spaces and let C, Ci be nonempty, closed and convex subsets of real Hilbert spaces H
and Hi, i = 1, 2, . . . , N, respectively. Let Ti : H → Hi, i = 1, 2, . . . , N, be bounded linear
operators and let A : H → H, Ai : Hi → Hi, i = 1, 2, . . . , N, be mappings. The split
variational inequality problem with multiple output sets (SVIPMOS) is formulated as finding a
point x∗ ∈ C such that

x∗ ∈ Ω := VI(C, A) ∩ (∩N
i=1T−1

i VI(Ci, Ai)) 6= ∅. (10)

Observe that the SVIPMOS (10) is a more general problem than the SFPMOS (7).
In recent times, developing algorithms with high rates of convergence for solving

optimization problems has become of great interest to researchers. There are two important
techniques that are generally employed by researchers to improve the rate of convergence
of iterative methods. These techniques include the inertial technique and the relaxation
technique. The inertial technique first introduced by Polyak [39] originates from an implicit
time discretization method (the heavy ball method) of second-order dynamical systems.
The main feature of the inertial-algorithm is that the method uses the previous two iterates
to generate the next iterate. We note that this small change can significantly improve the
speed of convergence of an iterative method (for instance, see [21,23,40–45]). The relaxation
method is another well-known technique employed by authors to improve the rate of
convergence of iterative methods (see, e.g., [46–48]). The influence of these two techniques
on the convergence properties of iterative methods was investigated in [46].

In this study, we introduce and analyze the convergence of a relaxed inertial Tseng
extragradient method for solving the SVIPMOS (10) in the framework of Hilbert spaces
when the cost operators are pseudomonotone and non-Lipschitz. Our proposed algorithm
has the following key features:

• The proposed method does not require the Lipschitz continuity condition often im-
posed by the cost operator in the literature when solving variational inequality prob-
lems. In addition, while the cost operators are non-Lipschitz, the design of our
algorithm does not involve any linesearch procedure, which could be time-consuming
and too expensive to implement.

• Our proposed method does not require knowledge of the operators’ norm for its
implementation. Rather, we employ a very efficient self-adaptive step size technique
with known parameters. Moreover, some of the control parameters are relaxed to
enlarge the range of values of the step sizes of the algorithm.

• Our algorithm combines the relaxation method and the inertial techniques to improve
its convergence properties.

• The sequence generated by our proposed method converges strongly to a minimum-
norm solution to the SVIPMOS (10). Finding the minimum-norm solution to a problem
is very important and useful in several practical problems.

Finally, we apply our result to study certain classes of optimization problems, and
we carry out several numerical experiments to illustrate the applicability of our pro-
posed method.

This paper is organized as follows: In Section 2, we present some definitions and
lemmas needed to analyze the convergence of the proposed algorithm, while in Section 3,
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we present the proposed method. In Section 4, we discuss the convergence of the proposed
method, and in Section 5, we apply our result to study certain classes of optimization prob-
lems. In Section 6, we present several numerical experiments with graphical illustrations.
Finally, in Section 7, we give a concluding remark.

2. Preliminaries

Definition 1 ([21,22]). An operator A : H → H is said to be

(i) α-strongly monotone, if there exists α > 0 such that

〈x− y, Ax− Ay〉 ≥ α‖x− y‖2, ∀ x, y ∈ H;

(ii) monotone, if
〈x− y, Ax− Ay〉 ≥ 0, ∀ x, y ∈ H;

(iii) pseudomonotone, if

〈Ay, x− y〉 ≥ 0 =⇒ 〈Ax, x− y〉 ≥ 0, ∀x, y ∈ H,

(iv) L-Lipschitz continuous, if there exists a constant L > 0 such that

||Ax− Ay|| ≤ L||x− y||, ∀ x, y ∈ H;

(v) uniformly continuous, if for every ε > 0, there exists δ = δ(ε) > 0, such that

‖Ax− Ay‖ < ε whenever ‖x− y‖ < δ, ∀x, y ∈ H;

(vi) sequentially weakly continuous, if for each sequence {xn}, we have xn ⇀ x ∈ H implies that
Axn ⇀ Ax ∈ H.

Remark 1. It is known that the following implications hold: (i) =⇒ (ii) =⇒ (iii) but the
converses are not generally true. We also note that uniform continuity is a weaker notion than
Lipschitz continuity.

It is well-known that if D is a convex subset of H, then A : D → H is uniformly
continuous if and only if, for every ε > 0, there exists a constant K < +∞ such that

‖Ax− Ay‖ ≤ K‖x− y‖+ ε ∀x, y ∈ D. (11)

Lemma 1 ([49]). Suppose {an} is a sequence of nonnegative real numbers, {αn} is a sequence in
(0, 1) with ∑∞

n=1 αn = +∞ and {bn} is a sequence of real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn for all n ≥ 1.

If lim sup
k→∞

bnk ≤ 0 for every subsequence {ank} of {an} satisfying lim inf
k→∞

(ank+1 − ank ) ≥ 0, then

lim
n→∞

an = 0.

Lemma 2 ([50]). Suppose {λn} and {θn} are two nonnegative real sequences such that

λn+1 ≤ λn + φn, ∀n ≥ 1.

If ∑∞
n=1 φn < +∞, then lim

n→∞
λn exists.

Lemma 3 ([51]). Let H be a real Hilbert space. Then, the following results hold for all x, y ∈ H
and δ ∈ (0, 1) :

(i) ||x + y||2 ≤ ||x||2 + 2〈y, x + y〉;
(ii) ||x + y||2 = ||x||2 + 2〈x, y〉+ ||y||2;



Mathematics 2023, 11, 386 5 of 26

(iii) ||δx + (1− δ)y||2 = δ||x||2 + (1− δ)||y||2 − δ(1− δ)||x− y||2.

Lemma 4 ([52]). Consider the VIP (1) with C being a nonempty, closed, convex subset of a real
Hilbert space H and A : C → H being pseudomonotone and continuous. Then p is a solution of
VIP (1) if and only if

〈Ax, x− p〉 ≥ 0, ∀x ∈ C

3. Main Results

In this section, we present our proposed iterative method for solving the SVIPMOS (10).
We establish our convergence result for the proposed method under the following conditions:

Let C, Ci be nonempty, closed and convex subsets of real Hilbert spaces H, Hi, i =
1, 2, . . . , N, respectively, and let Ti : H → Hi, i = 1, 2, . . . , N be bounded linear operators
with adjoints T∗i . Let A : H → H, Ai : Hi → Hi, i = 1, 2, . . . , N, be uniformly continuous
pseudomonotone operators satisfying the following property:

whenever {Tixn} ⊂ Ci, Tixn ⇀ Tiz, then ‖AiTiz‖ ≤ lim inf
n→∞

‖AiTixn‖, i = 0, 1, 2 . . . , N, C0 = C, A0 = A, T0 = IH . (12)

Moreover, we assume that the solution set Ω 6= ∅ and the control parameters satisfy
the following conditions:

Assumption B:

(A1) {αn} ⊂ (0, 1), lim
n→∞

αn = 0, ∑∞
n=1 αn = +∞, lim

n→∞
εn
αn

= 0, {ξn} ⊂ [a, b] ⊂ (0, 1), θ > 0;

(A2) 0 < ci < c′i < 1, 0 < φi < φ′i < 1, lim
n→∞

cn,i = lim
n→∞

φn,i = 0, λ1,i > 0, ∀ i = 0, 1, 2, . . . , N;

(A3) {ρn,i} ⊂ R+, ∑∞
n=1 ρn,i < +∞, 0 < ai ≤ δn,i ≤ bi < 1, ∑N

i=0 δn,i = 1 for each n ≥ 1.

Now, the Algorithm 1 is presented as follows:

Algorithm 1. A Relaxed Inertial Tseng’s Extragradient Method for Solving SVIPMOS (10).

Step 0. Select initial points x0, x1 ∈ H. Let C0 = C, T0 = IH , A0 = A and set n = 1.
Step 1. Given the (n− 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

min
{

θ, εn
‖xn−xn−1‖

}
, if xn 6= xn−1,

θ, otherwise.
(13)

Step 2. Compute
wn = (1− αn)(xn + θn(xn − xn−1)).

Step 3. Compute
yn,i = PCi (Tiwn − λn,i AiTiwn).

Step 4. Compute
un,i = yn,i − λn,i(Aiyn,i − AiTiwn),

λn+1,i =

{
min{ (cn,i+ci)‖Tiwn−yn,i‖

‖Ai Tiwn−Aiyn,i‖ , λn,i + ρn,i}, if AiTiwn − Aiyn,i 6= 0,

λn,i + ρn,i, otherwise.

Step 5. Compute

vn =
N

∑
i=0

δn,i
(
wn + ηn,iT∗i (un,i − Tiwn)

)
,

where

ηn,i =

{
(φn,i+φi)‖Tiwn−un,i‖2

‖T∗i (Tiwn−un,i)‖2 , if ‖T∗i (Tiwn − un,i)‖ 6= 0,

0, otherwise.
(14)

Step 6. Compute
xn+1 = ξnwn + (1− ξn)vn.

Set n := n + 1 and return to Step 1.
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Remark 2. Observe that by conditions (C1) and (C2) together with (13), we have that

lim
n→∞

θn||xn − xn−1|| = 0 and lim
n→∞

θn

αn
||xn − xn−1|| = 0.

Remark 3. We also note that while the cost operators Ai, i = 0, 1, 2, . . . , N are non-Lipschitz,
our method does not require any linesearch procedure, which could be computationally very expen-
sive to implement. Rather, we employ self-adaptive step size techniques that only require simple
computations of known parameters per iteration. Moreover, some of the parameters are relaxed to
accommodate larger intervals for the step sizes.

Remark 4. We remark that condition (12) is a weaker assumption than the sequentially weakly con-
tinuity condition. We present the following example satisfying condition (12), which also illustrates
that the condition is a weaker assumption than the sequentially weakly continuity condition.

Let A : `2(R)→ `2(R) be an operator defined by

Ax = x‖x‖, ∀x ∈ `2(R).

Suppose {zn} ⊂ `2(R) such that zn ⇀ z. Then, by the weakly lower semi-continuity of the norm
we obtain

‖z‖ ≤ lim inf
n→+∞

‖zn‖.

Thus, we have

‖Az‖ = ‖z‖2 ≤ (lim inf
n→+∞

‖zn‖)2 ≤ lim inf
n→+∞

‖zn‖2 = lim inf
n→+∞

‖Azn‖.

Therefore, A satisfies condition (12).
On the other hand, to establish that A is not sequentially weakly continuous, choose zn =

en + e1, where {en} is a standard basis of `2(R), that is, en = (0, 0, . . . , 1, . . .) with 1 at the
n-th position. It is clear that zn ⇀ e1 and Azn = A(en + e1) = (en + e1)‖en + e1‖ ⇀

√
2e1,

but Ae1 = e1‖e1‖ = e1. Consequently, A is not sequentially weakly continuous. Therefore,
condition (12) is strictly weaker than the sequentially weakly continuity condition.

4. Convergence Analysis

First, we prove some lemmas needed for our strong convergence theorem.

Lemma 5. Let {λn,i} be the sequence generated by Algorithm 1 such that Assumption B holds.
Then {λn,i} is well-defined for each i = 0, 1, 2, . . . , N and lim

n→∞
λn,i = λ1,i ∈ [min{ ci

Mi
, λ1,i}, λ1,i +

Φi], where Φi = ∑∞
n=1 ρn,i.

Proof. Observe that since Ai is uniformly continuous for each i = 0, 1, 2, . . . , N, it follows
from (11) that for any given εi > 0, there exists Ki < +∞ such that ‖AiTiwn − Aiyn,i‖ ≤
Ki‖Tiwn − yn,i‖+ εi. Thus, for the case AiTiwn − Aiyn,i 6= 0 for all n ≥ 1, we obtain

(cn,i + ci)‖Tiwn − yn,i‖
‖AiTiwn − Aiyn,i‖

≥ (cn,i + ci)‖Tiwn − yn,i‖
Ki‖Tiwn − yn,i‖+ εi

=
(cn,i + ci)‖Tiwn − yn,i‖
(Ki + ζi)‖Tiwn − yn,i‖

=
(cn,i + ci)

Mi
≥ ci

Mi
,

where εi = ζi‖Tiwn − yn,i‖ for some ζi ∈ (0, 1) and Mi = Ki + ζi. Therefore, by the
definition of λn+1,i, the sequence {λn,i} has lower bound min{ ci

Mi
, λ1,i} and has upper

bound λ1,i + Φi. By Lemma 2, the limit lim
n→∞

λn,i exists and is denoted by λi = lim
n→∞

λn,i.

Clearly, λi ∈
[

min{ ci
Mi

, λ1,i}, λ1,i + Φi
]

for each i = 0, 1, 2 . . . , N.

Lemma 6. If ‖T∗i (Tiwn− un,i)‖ 6= 0, then the sequence {ηn,i} defined by (14) has a positive lower
bounded for each i = 0, 1, 2, . . . , N.
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Proof. If ‖T∗i (Tiwn − un,i)‖ 6= 0, it follows that for each i = 0, 1, 2, . . . , N

ηn,i =
(φn,i + φi)‖Tiwn − un,i‖2

‖T∗i (Tiwn − un,i)‖2 .

Since Ti is a bounded linear operator and lim
n→∞

φn,i = 0 for each i = 0, 1, 2, . . . , N,

we have

(φn,i + φi)‖Tiwn − un,i‖2

‖T∗i (Tiwn − un,i)‖2 ≥ (φn,i + φi)‖Tiwn − un,i‖2

‖Ti‖2‖Tiwn − un,i‖‖2 ≥ φi
‖Ti‖2 ,

which implies that φi
‖Ti‖2 is a lower bound of {ηn,i} for each i = 0, 1, 2, . . . , N.

Lemma 7. Suppose Assumption B of Algorithm 1 holds. Then, there exists a positive integer N
such that

φi + φn,i ∈ (0, 1), and
λn,i(cn,i + ci)

λn+1,i
∈ (0, 1), ∀n ≥ N.

Proof. Since 0 < φi < φ′i < 1 and lim
n→∞

φn,i = 0 for each i = 0, 1, 2, . . . , N, there exists a

positive integer N1,i such that

0 < φi + φn,i ≤ φ′i < 1, ∀n ≥ N1,i.

Similarly, since 0 < ci < c′i < 1, lim
n→∞

cn,i = 0 and lim
n→∞

λn,i = λi for each i =

0, 1, 2, . . . , N, we have

lim
n→∞

(
1− λn,i(cn,i + ci)

λn+1,i

)
= 1− ci > 1− c′i > 0.

Thus, for each i = 0, 1, 2, . . . , N, there exists a positive integer N2,i such that

1− λn,i(cn,i + ci)

λn+1,i
> 0, ∀n ≥ N2,i.

Now, setting N = max{N1,i, N2,i : i = 0, 1, 2, . . . , N}, we have the required result.

Lemma 8. Let {xn} be a sequence generated by Algorithm 1 under Assumption B. Then the
following inequality holds for all p ∈ Ω :

‖un,i − Ti p‖2 ≤ ‖Tiwn − Ti p‖2 −
(

1−
λ2

n,i

λ2
n+1,i

(cn,i + ci)
2
)
‖Tiwn − yn,i‖2.

Proof. From the definition of λn+1,i, we have

‖AiTiwn − Aiyn,i‖ ≤
(cn,i + ci)

λn+1,i
‖Tiwn − yn,i‖, ∀n ∈ N, i = 0, 1, . . . , N. (15)

Observe that (15) holds both for AiTiwn − Aiyn,i = 0 and AiTiwn − Aiyn,i 6= 0. Let
p ∈ Ω. Then, it follows that Ti p ∈ VI(Ci, Ai), i = 0, 1, 2, . . . , N. Using the definition of un,i
and applying Lemma 3, we have
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‖un,i − Ti p‖2 = ‖yn,i − λn,i(Aiyn,i − AiTiwn)− Ti p‖2

= ‖yn,i − Ti p‖2 + λ2
n,i‖Aiyn,i − AiTiwn‖2 − 2λn,i〈yn,i − Ti p, Aiyn,i − AiTiwn〉

= ‖Tiwn − Ti p‖2 + ‖yn,i − Tiwn‖2 + 2〈yn,i − Tiwn, Tiwn − Ti p〉+ λ2
n,i‖Aiyn,i − AiTiwn‖2

− 2λn,i〈yn,i − Ti p, Aiyn,i − AiTiwn〉
= ‖Tiwn − Ti p‖2 + ‖yn,i − Tiwn‖2 − 2〈yn,i − Tiwn, yn,i − Tiwn〉+ 2〈yn,i − Tiwn, yn,i − Ti p〉
+ λ2

n,i‖Aiyn,i − AiTiwn‖2 − 2λn,i〈yn,i − Ti p, Aiyn,i − AiTiwn〉
= ‖Tiwn − Ti p‖2 − ‖yn,i − Tiwn‖2 + 2〈yn,i − Tiwn, yn,i − Ti p〉+ λ2

n,i‖Aiyn,i − AiTiwn‖2

− 2λn,i〈yn,i − Ti p, Aiyn,i − AiTiwn〉. (16)

Since yn,i = PCi (Tiwn − λn,i AiTiwn) and Ti p ∈ VI(Ci, Ai), i = 0, 1, 2, . . . , N, by the
property of the projection map we have

〈yn,i − Tiwn + λn,i AiTiwn, yn,i − Ti p〉 ≤ 0,

which is equivalent to

〈yn,i − Tiwn, yn,i − Ti p〉 ≤ −λn,i〈AiTiwn, yn,i − Ti p〉. (17)

Furthermore, since yn,i ∈ Ci, i = 0, 1, 2, . . . , N, we have

〈AiTi p, yn,i − Ti p〉 ≥ 0,

By the pseudomonotonicity of Ai, it follows that 〈Aiyn,i, yn,i − Ti p〉 ≥ 0. Since λn,i >
0, i = 0, 1, 2, . . . , N, we obtain

λn,i〈Aiyn,i, yn,i − Ti p〉 ≥ 0. (18)

Next, by applying (15), (17) and (18) in (16), we obtain

‖un,i − Ti p‖2 ≤ ‖Tiwn − Ti p‖2 − ‖yn,i − Tiwn‖2 − 2λn,i〈AiTiwn, yn,i − Ti p〉+ (cn,i + ci)
2 λ2

n,i

λ2
n+1,i
‖Tiwn − yn,i‖2

− 2λn,i〈yn,i − Ti p, Aiyn,i − AiTiwn〉

= ‖Tiwn − Ti p‖2 −
(

1−
λ2

n,i

λ2
n+1,i

(cn,i + ci)
2
)
‖Tiwn − yn,i‖2 − 2λn,i〈yn,i − Ti p, Aiyn,i〉

≤ ‖Tiwn − Ti p‖2 −
(

1−
λ2

n,i

λ2
n+1,i

(cn,i + ci)
2
)
‖Tiwn − yn,i‖2, (19)

which is the required inequality.

Lemma 9. Suppose {xn} is a sequence generated by Algorithm 1 such that Assumption B holds.
Then {xn} is bounded.

Proof. Let p ∈ Ω. By the definition of wn and applying the triangular inequality, we have

‖wn − p‖ = ‖(1− αn)(xn + θn(xn − xn−1))− p‖
= ‖(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)− αn p‖
≤ (1− αn)‖xn − p‖+ (1− αn)θn‖xn − xn−1‖+ αn‖p‖

= (1− αn)‖xn − p‖+ αn

[
(1− αn)

θn

αn
‖xn − xn−1‖+ ‖p‖

]
.
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By Remark (2), we obtain

lim
n→∞

[
(1− αn)

θn

αn
‖xn − xn−1‖+ ‖p‖

]
= ‖p‖.

Thus, there exists M1 > 0 such that (1− αn)
θn
αn
‖xn − xn−1‖+ ‖p‖ ≤ M1 for all n ∈ N.

It follows that

‖wn − p‖ ≤ (1− αn)‖xn − p‖+ αn M1. (20)

By Lemma 7, there exists a positive integer N such that 1 − λnk ,i
λnk+1,i

(cnk ,i + ci) >

0, ∀n ≥ N, i = 0, 1, 2, . . . , N. Consequently, it follows from (19) that for all n ≥ N
and i = 0, 1, 2, . . . , N

≤ ‖un,i − Ti p‖2 ≤ ‖Tiwn − Ti p‖2. (21)

Next, since the function ‖ · ‖2 is convex, we have

‖vn − p‖2 = ‖
N

∑
i=0

δn,i
(
wn + ηn,iT∗i (un,i − Tiwn)

)
− p‖2

≤
N

∑
i=0

δn,i‖wn + ηn,iT∗i (un,i − Tiwn)− p‖2. (22)

By Lemma 7, there exists a positive integer N such that 0 < φn,i + φi < 1, i =
0, 1, 2, . . . , N for all n ≥ N. From (22) and by applying Lemma 3 and (21), we obtain

‖wn + ηn,iT∗i (un,i − Tiwn)− p‖2 = ‖wn − p‖2 + η2
n,i‖T∗i (un,i − Tiwn)‖2 + 2ηn,i〈wn − p, T∗i (un,i − Tiwn)〉

= ‖wn − p‖2 + η2
n,i‖T∗i (un,i − Tiwn)‖2 + 2ηn,i〈Tiwn − Ti p, un,i − Tiwn〉

= ‖wn − p‖2 + η2
n,i‖T∗i (un,i − Tiwn)‖2 + ηn,i[‖un,i − Ti p‖2 − ‖Tiwn − Ti p‖2

− ‖un,i − Tiwn‖2]

≤ ‖wn − p‖2 + η2
n,i‖T∗i (un,i − Tiwn)‖2 − ηn,i‖un,i − Tiwn‖2

= ‖wn − p‖2 − ηn,i[‖un,i − Tiwn‖2 − ηn,i‖T∗i (un,i − Tiwn)‖2]. (23)

If ‖T∗i (un,i − Tiwn)‖ 6= 0, then by the definition of ηn,i, we have

‖un,i − Tiwn‖2 − ηn,i‖T∗i (un,i − Tiwn)‖2 = [1− (φn,i + φi)]‖Tiwn − un,i‖2 ≥ 0. (24)

Now, applying (24) in (23) and substituting in (22), we have

‖vn − p‖2 ≤ ‖wn − p‖2 −
N

∑
i=0

δn,iηn,i[1− (φn,i + φi)]‖Tiwn − un,i‖2

≤ ‖wn − p‖2. (25)

Observe that if ‖T∗i (un,i − Tiwn)‖ = 0, (25) still holds from (23).
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Next, using the definition of xn+1, and applying (20) and (25), we have

‖xn+1 − p‖ = ‖ξnwn + (1− ξn)vn − p‖
≤ ξn‖wn − p‖+ (1− ξn)‖vn − p‖
≤ ξn‖wn − p‖+ (1− ξn)‖wn − p‖
= ‖wn − p‖
≤ (1− αn)‖xn − p‖+ αn M1

≤ max{‖xn − p‖, M1}
...

≤ max{‖xN − p‖, M1},

which implies that {xn} is bounded. Hence, {wn}, {yn,i}, {un,i} and {vn} are all bounded.

Lemma 10. Let {wn} and {vn} be two sequences generated by Algorithm 1 with subsequences
{wnk} and {vnk}, respectively, such that lim

k→∞
‖wnk − vnk‖ = 0. Suppose wnk ⇀ z ∈ H, then

z ∈ Ω.

Proof. From (25), we have

‖vnk − p‖2 ≤ ‖wnk − p‖2 −
N

∑
i=0

δnk ,iηnk ,i[1− (φnk ,i + φi)]‖Tiwnk − unk ,i‖2. (26)

From the last inequality, we obtain

N

∑
i=0

δnk ,iηnk ,i[1− (φnk ,i + φi)]‖Tiwnk − unk ,i‖2 ≤ ‖wnk − p‖2 − ‖vnk − p‖2

≤ ‖wnk − vnk‖
2 + 2‖wnk − vnk‖‖vnk − p‖ (27)

Since by the hypothesis of the lemma lim
k→∞
‖wnk − vnk‖ = 0, it follows from (27) that

N

∑
i=0

δnk ,iηnk ,i[1− (φnk ,i + φi)]‖Tiwnk − unk ,i‖2 → 0, k→ ∞,

which implies that

δnk ,iηnk ,i[1− (φnk ,i + φi)]‖Tiwnk − unk ,i‖2 → 0, k→ ∞, ∀i = 0, 1, 2, . . . , N.

By the definition of ηn,i, we have

δnk ,i(φnk ,i + φi)[1− (φnk ,i + φi)]
‖Tiwnk − unk ,i‖4

‖T∗i (Tiwnk − unk ,i)‖2 → 0, k→ ∞, ∀i = 0, 1, 2, . . . , N.

From this, we obtain

‖Tiwnk − unk ,i‖2

‖T∗i (Tiwnk − unk ,i)‖
→ 0, k→ ∞, ∀i = 0, 1, 2, . . . , N,

Since {‖T∗i (Tiwnk − unk ,i)‖} is bounded, it follows that

‖Tiwnk − unk ,i‖ → 0, k→ ∞, ∀i = 0, 1, 2, . . . , N. (28)

Hence, we have
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‖T∗i (Tiwnk − unk ,i)‖ ≤ ‖T∗i ‖‖(Tiwnk − unk ,i)‖ = ‖Ti‖‖(Tiwnk − unk ,i)‖ → 0, k→ ∞, ∀i = 0, 1, 2, . . . , N. (29)

From (19), we obtain

(
1−

λ2
nk ,i

λ2
nk+1,i

(cnk ,i + ci)
2
)
‖Tiwnk − ynk ,i‖2 ≤ ‖Tiwnk − Ti p‖2 − ‖unk ,i − Ti p‖2

≤ ‖Tiwnk − unk ,i‖
(
‖Tiwnk − Ti p‖+ ‖unk ,i − Ti p‖

)
. (30)

By applying (28), it follows from (30) that

(
1−

λ2
nk ,i

λ2
nk+1,i

(cnk ,i + ci)
2
)
‖Tiwnk − ynk ,i‖2 → 0, k→ ∞, i = 0, 1, . . . , N.

Consequently, we have

‖Tiwnk − ynk ,i‖ → 0, k→ ∞, i = 0, 1, . . . , N. (31)

Since yn,i = PCi (Tiwn − λn,i AiTiwn), by the property of the projection map, we obtain

〈Tiwnk − λnk ,i AiTiwnk − ynk ,i, Tix− ynk ,i〉 ≤ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N,

which implies that

1
λnk ,i
〈Tiwnk − ynk ,i, Tix− ynk ,i〉 ≤ 〈AiTiwnk , Tix− ynk ,i〉, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

From the last inequality, it follows that

1
λnk ,i
〈Tiwnk − ynk ,i, Tix− ynk ,i〉+ 〈AiTiwnk , ynk ,i − Tiwnk 〉 ≤ 〈AiTiwnk , Tix− Tiwnk 〉, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N. (32)

By applying (31) and the fact that lim
k→∞

λnk ,i = λi > 0, from (32) we obtain

lim inf
k→∞

〈AiTiwnk , Tix− Tiwnk 〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N. (33)

Observe that

〈Aiynk ,i, Tix− ynk ,i〉 = 〈Aiynk ,i − AiTiwnk , Tix− Tiwnk 〉+ 〈AiTiwnk , Tix− Tiwnk 〉+ 〈Aiynk ,i, Tiwnk − ynk ,i〉. (34)

By the continuity of Ai, from (31) we obtain

‖AiTiwnk − Aiynk ,i‖ → 0, k→ ∞, ∀i = 0, 1, 2, . . . , N. (35)

Using (31) and (35), it follows from (33) and (34) that

lim inf
k→∞

〈Aiynk ,i, Tix− ynk ,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N. (36)

Next, let {ϑk,i} be a decreasing sequence of positive numbers such that ϑk,i → 0 as
k→ ∞, i = 0, 1, 2, . . . , N. For each k, let Nk denote the smallest positive integer such that

〈Aiynj ,i, Tix− ynj ,i〉+ ϑk,i ≥ 0, ∀ j ≥ Nk, Tix ∈ Ci, i = 0, 1, 2, . . . , N, (37)

where the existence of Nk follows from (36). Since {ϑk,i} is decreasing, then {Nk} is
increasing. Moreover, since {yNk ,i} ⊂ Ci for each k, we can suppose AiyNk ,i 6= 0 (otherwise,
yNk ,i ∈ VI(Ci, Ai), i = 0, 1, 2 . . . , N) and let
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zNk ,i =
AiyNk ,i

‖AiyNk ,i‖2

Then, 〈AiyNk ,i, zNk ,i〉 = 1 for each k, i = 0, 1, 2, . . . , N. From (37), we have

〈AiyNk ,i, Tix + ϑk,izNk ,i − yNk ,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

It follows from the pseudomonotonicity of Ai that

〈Ai(Tix + ϑk,izNk ,i), Tix + ϑk,izNk ,i − yNk ,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N,

which is equivalent to

〈AiTix, Tix− yNk ,i〉 ≥ 〈AiTix− Ai(Tix + ϑk,izNk ,i), Tix + ϑk,izNk ,i − yNk ,i〉 − ϑk,i〈AiTix, zNk ,i〉, ∀Tix ∈ Ci, i = 0, 1, . . . , N. (38)

In order to complete the proof, we need to establish that lim
k→∞

ϑk,izNk ,i = 0. Since

wnk ⇀ z and Ti is a bounded linear operator for each i = 0, 1, 2, . . . , N, we have Tiwnk ⇀
Tiz, ∀i = 0, 1, 2, . . . , N. Thus, from (31), we obtain ynk ,i ⇀ Tiz, ∀ i = 0, 1, 2, . . . , N. Since
{ynk ,i} ⊂ Ci, i = 0, 1, 2, . . . , N, we have Tiz ∈ Ci. If AiTiz = 0, ∀ i = 0, 1, 2, . . . , N, then
Tiz ∈ VI(Ci, Ai) ∀ i = 0, 1, 2, . . . , N, which implies that z ∈ Ω. On the contrary, we
suppose AiTiz 6= 0, ∀ i = 0, 1, 2, . . . , N. Since Ai satisfies condition (12), we have for all
i = 0, 1, 2, . . . , N

0 < ‖AiTiz‖ ≤ lim inf
k→∞

‖Aiynk ,i‖.

Applying the facts that {yNk ,i} ⊂ {ynk ,i} and ϑk,i → 0 as k → ∞, i = 0, 1, 2 . . . , N,
we have

0 ≤ lim sup
k→∞

‖ϑk,izNk ,i‖ = lim sup
k→∞

( ϑk,i

‖Aiynk ,i‖

)
≤

lim sup
k→∞

ϑk,i

lim inf
k→∞

‖Aiynk ,i‖
= 0,

which implies that lim sup
k→∞

ϑk,izNk ,i = 0. Applying the facts that Ai is continuous, {yNk ,i}

and {zNk ,i} are bounded and lim
k→∞

ϑk,izNk ,i = 0, from (38) we get

lim inf
k→∞

〈AiTix, Tix− yNk ,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

From the last inequality, we have

〈AiTix, Tix− Tiz〉 = lim
k→∞
〈AiTix, Tix− yNk ,i〉 = lim inf

k→∞
〈AiTix, Tix− yNk ,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

By Lemma 4, we obtain

Tiz ∈ VI(Ci, Ai), i = 0, 1, 2, . . . , N,

which implies that

z ∈ T−1
i
(
VI(Ci, Ai)

)
, i = 0, 1, 2, . . . , N,

Consequently, we have z ∈ ⋂N
i=0 T−1

i
(
VI(Ci, Ai)

)
, which implies that z ∈ Ω as de-

sired.

Lemma 11. Suppose {xn} is a sequence generated by Algorithm 1 under Assumption B. Then,
the following inequality holds for all p ∈ Ω :

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αndn − (1− ξn)
N

∑
i=0

δn,iηn,i[1− (φn,i + φi)]‖Tiwn − un,i‖2 − ξn(1− ξn)‖wn − vn‖2.
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Proof. Let p ∈ Ω. By applying Lemma 3 together with the definition of wn, we obtain

‖wn − p‖2 = ‖(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)− αn p‖2

≤ ‖(1− αn)(xn − p) + (1− αn)θn(xn − xn−1)‖2 + 2αn〈−p, wn − p〉
≤ (1− αn)

2‖xn − p‖2 + 2(1− αn)θn‖xn − p‖‖xn − xn−1‖+ (1− αn)
2θ2

n‖xn − xn−1‖2

+ 2αn〈−p, wn − xn+1〉+ 2αn〈−p, xn+1 − p〉
≤ (1− αn)‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖+ θ2

n‖xn − xn−1‖2 + 2αn‖p‖‖wn − xn+1‖
+ 2αn〈p, p− xn+1〉. (39)

Now, using the definition of xn+1, (25), (39) and applying Lemma 3, we obtain

‖xn+1 − p‖2 = ‖ξnwn + (1− ξn)vn − p‖2

= ξn‖wn − p‖2 + (1− ξn)‖vn − p‖2 − ξn(1− ξn)‖wn − vn‖2

≤ ξn‖wn − p‖2 + (1− ξn)
[
‖wn − p‖2 −

N

∑
i=0

δn,iηn,i[1− (φn,i + φi)]‖Tiwn − un,i‖2
]

− ξn(1− ξn)‖wn − vn‖2

= ‖wn − p‖2 − (1− ξn)
N

∑
i=0

δn,iηn,i[1− (φn,i + φi)]‖Tiwn − un,i‖2 − ξn(1− ξn)‖wn − vn‖2

≤ (1− αn)‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖+ θ2
n‖xn − xn−1‖2 + 2αn‖p‖‖wn − xn+1‖

+ 2αn〈p, p− xn+1〉 − (1− ξn)
N

∑
i=0

δn,iηn,i[1− (φn,i + φi)]‖Tiwn − un,i‖2 − ξn(1− ξn)‖wn − vn‖2

= (1− αn)‖xn − p‖2 + αn

[
2‖xn − p‖ θn

αn
‖xn − xn−1‖+ θn‖xn − xn−1‖

θn

αn
‖xn − xn−1‖

+ 2‖p‖‖wn − xn+1‖+ 2〈p, p− xn+1〉
]
− (1− ξn)

N

∑
i=0

δn,iηn,i[1− (φn,i + φi)]‖Tiwn − un,i‖2

− ξn(1− ξn)‖wn − vn‖2

= (1− αn)‖xn − p‖2 + αndn − (1− ξn)
N

∑
i=0

δn,iηn,i[1− (φn,i + φi)]‖Tiwn − un,i‖2 − ξn(1− ξn)‖wn − vn‖2,

where dn = 2‖xn− p‖ θn
αn
‖xn− xn−1‖+ θn‖xn− xn−1‖ θn

αn
‖xn− xn−1‖+ 2‖p‖‖wn− xn+1‖+

2〈p, p− xn+1〉, which is the required inequality.

Theorem 1. Let {xn} be a sequence generated by Algorithm 1 under Assumption B. Then, {xn}
converges strongly to x̂ ∈ Ω, where ‖x̂‖ = min{‖p‖ : p ∈ Ω}.

Proof. Let ‖x̂‖ = min{‖p‖ : p ∈ Ω}, that is, x̂ = PΩ(0). Then, from Lemma 11, we obtain

‖xn+1 − x̂‖2 ≤ (1− αn)‖xn − x̂‖2 + αnd̂n, (40)

where d̂n = 2‖xn− x̂‖ θn
αn
‖xn− xn−1‖+ θn‖xn− xn−1‖ θn

αn
‖xn− xn−1‖+ 2‖x̂‖‖wn− xn+1‖+

2〈x̂, x̂− xn+1〉.
Next, we claim that the sequence {‖xn − x̂‖} converges to zero. To do this, in view

of Lemma 1 it suffices to show that lim sup
k→∞

d̂nk ≤ 0 for every subsequence {‖xnk − x̂‖} of

{‖xn − x̂‖} satisfying

lim inf
k→∞

(
‖xnk+1 − x̂‖ − ‖xnk − x̂‖

)
≥ 0. (41)
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Suppose that {‖xnk − x̂‖} is a subsequence of {‖xn − x̂‖} such that (41) holds. Again,
from Lemma 11, we obtain

(1− ξnk )
N

∑
i=0

δnk ,iηnk ,i[1− (φnk ,i + φi)]‖Tiwnk − unk ,i‖2 + ξnk (1− ξnk )‖wnk − vnk‖
2

≤ (1− αnk )‖xnk − x̂‖2 − ‖xnk+1 − x̂‖2 + αnk d̂nk .

By (41), Remark 2 and the fact that lim
k→∞

αnk = 0, we obtain

(1− ξnk )
N

∑
i=0

δnk ,iηnk ,i[1− (φnk ,i + φi)]‖Tiwnk − unk ,i‖2 + ξnk (1− ξnk )‖wnk − vnk‖
2 → 0, k→ ∞.

Consequently, we obtain

lim
k→∞
‖wnk − vnk‖ = 0; lim

k→∞
‖Tiwnk − unk ,i‖ = 0, ∀i = 0, 1, 2, . . . , N. (42)

From the definition of wn and by Remark 2, we have

‖wnk − xnk‖ = ‖(1− αnk )(xnk + θnk (xnk − xnk−1))− xnk‖
= ‖(1− αnk )(xnk − xnk ) + (1− αnk )θnk (xnk − xnk−1)− αnk xnk‖
≤ (1− αnk )‖xnk − xnk‖+ (1− αnk )θnk‖xnk − xnk−1‖+ αnk‖xnk‖ → 0, k→ ∞. (43)

Using (42) and (43), we obtain

‖vnk − xnk‖ → 0, k→ ∞. (44)

From the definition of xn+1 and by applying (43) and (44), we obtain

‖xnk+1 − xnk‖ = ‖ξnk wnk + (1− ξnk )vnk − xnk‖
≤ ξnk‖wnk − xnk‖+ (1− ξnk )‖vnk − xnk‖ → 0, k→ ∞. (45)

Next, by combining (43) and (45), we obtain

‖wnk − xnk+1‖ → 0, k→ ∞. (46)

Since {xn} is bounded, wω(xn) 6= ∅. We choose an element x∗ ∈ wω(xn) arbitrarily.
Then, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗. From (42), it follows
that wnk ⇀ x∗. Now, by invoking Lemma 10 and applying (42), we obtain x∗ ∈ Ω. Since
x∗ ∈ wω(xn) was selected arbitrarily, it follows that wω(xn) ⊂ Ω.

Next, by the boundedness of {xnk}, there exists a subsequence {xnkj
} of {xnk} such

that xnkj
⇀ q and

lim sup
k→∞

〈x̂, x̂− xnk 〉 = lim
j→∞
〈x̂, x̂− xnkj

〉.

Since x̂ = PΩ(0), it follows from the property of the metric projection map that

lim sup
k→∞

〈x̂, x̂− xnk 〉 = lim
j→∞
〈x̂, x̂− xnkj

〉 = 〈x̂, x̂− q〉 ≤ 0, (47)

Thus, from (45) and (47), we obtain

lim sup
k→∞

〈x̂, x̂− xnk+1〉 ≤ 0. (48)
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Next, by Remark 2, (46) and (48) we have lim sup
k→∞

d̂nk ≤ 0. Therefore, by invoking

Lemma 1, it follows from (40) that {‖xn − x̂‖} converges to zero as required.

5. Applications

In this section, we apply our result to study related optimization problems.

5.1. Generalized Split Variational Inequality Problem

First, we apply our result to study and approximate the solution of the generalized
split variational inequality problem (see [37]). Let Di be nonempty, closed and convex
subsets of real Hilbert spaces Hi, i = 1, 2, . . . , N, and let Si : Hi → Hi+1, i = 1, 2, . . . , N − 1,
be bounded linear operators, such that Si 6= 0. Let Bi : Hi → Hi, i = 1, 2, . . . , N, be single-
valued operators. The generalized split variational inequality problem (GSVIP) is formulated as
finding a point x∗ ∈ D1 such that

x∗ ∈ Γ := VI(D1, B1) ∩ S−1
1 (VI(D2, B2)) ∩ . . . S−1

1 (S−1
2 . . . (S−1

N−1(VI(DN , BN)))) 6= ∅; (49)

that is, x∗ ∈ D1 such that

x∗ ∈ VI(D1, B1), S1x∗ ∈ VI(D2, B2), . . . , SN−1(SN−2 . . . S1x∗) ∈ VI(DN , BN).

We note that by setting C = D1, Ci = Di+1, A = B1, Ai = Bi+1, 1 ≤ i ≤ N − 1, T1 =
S1, T2 = S2S1, . . . , and TN−1 = SN−1SN−2 . . . S1, then the SVIPMOS (10) becomes the
GSVIP (49). Consequently, we obtain the following strong convergence theorem for finding
the solution of GSVIP (49) in Hilbert spaces when the cost operators are pseudomonotone
and uniformly continuous.

Theorem 2. Let Di be nonempty, closed and convex subsets of real Hilbert spaces Hi, i =
1, 2, . . . , N, and suppose Si : Hi → Hi+1, i = 1, 2, . . . , N − 1, are bounded linear operators
with adjoints S∗i such that Si 6= 0. Let Bi : Hi → Hi, 1, 2, . . . , N be uniformly continuous
pseudomonotone operators that satisfy condition (12), and suppose Assumption B of Theorem 1
holds and the solution set Γ 6= ∅. Then, the sequence {xn} generated by the following Algorithm 2
converges in norm to x̂ ∈ Γ, where ‖x̂‖ = min{‖p‖ : p ∈ Γ}.
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Algorithm 2. A Relaxed Inertial Tseng’s Extragradient Method for Solving GSVIP (49).

Step 0. Select initial points x0, x1 ∈ H1. Let S0 = IH1 , Ŝi−1 = S1−1Si−2 . . . S0, Ŝ∗i−1 =
S∗0 S∗1 . . . S∗i−1, i = 1, 2, . . . , N and set n = 1.

Step 1. Given the (n− 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

min
{

θ, εn
‖xn−xn−1‖

}
, if xn 6= xn−1,

θ, otherwise.

Step 2. Compute
wn = (1− αn)(xn + θn(xn − xn−1)).

Step 3. Compute
yn,i = PDi (Ŝi−1wn − λn,iBiŜi−1wn).

Step 4. Compute
un,i = yn,i − λn,i(Biyn,i − BiŜi−1wn),

λn+1,i =

min{ (cn,i+ci)‖Ŝi−1wn−yn,i‖
‖Bi Ŝi−1wn−Biyn,i‖

, λn,i + ρn,i}, if BiŜi−1wn − Biyn,i 6= 0,

λn,i + ρn,i, otherwise.

Step 5. Compute

vn =
N

∑
i=1

δn,i
(
wn + ηn,iŜ∗i−1(un,i − Ŝi−1wn)

)
,

where

ηn,i =


(φn,i+φi)‖Ŝi−1wn−un,i‖2

‖Ŝ∗i−1(Ŝi−1wn−un,i)‖2 , if ‖Ŝ∗i−1(Ŝi−1wn − un,i)‖ 6= 0,

0, otherwise.

Step 6. Compute
xn+1 = ξnwn + (1− ξn)vn.

Set n := n + 1 and return to Step 1.

5.2. Split Convex Minimization Problem with Multiple Output Sets

Let C be a nonempty, closed and convex subset of a real Hilbert space H. The convex
minimization problem is defined as finding a point x∗ ∈ C, such that

g(x∗) = min
x∈C

g(x), (50)

where g is a real-valued convex function. The solution set of Problem (50) is denoted by
arg min g.

Let C, Ci be nonempty, closed and convex subsets of real Hilbert spaces H, Hi, i =
1, 2, . . . , N, respectively, and let Ti : H → Hi, i = 1, 2, . . . , N, be bounded linear operators
with adjoints T∗i . Let g : H → R, gi : Hi → R be convex and differentiable functions. In this
subsection, we apply our result to find the solution of the following split convex minimization
problem with multiple output sets (SCMPMOS): Find x∗ ∈ C such that

x∗ ∈ Ψ := arg min g ∩
(
∩N

i=1 T−1
i
(

arg min gi
))
6= ∅. (51)

The following lemma is required to establish our next result.

Lemma 12 ([53]). Suppose C is a nonempty, closed and convex subset of a real Banach space E,
and let g be a convex function of E into R. If g is Fréchet differentiable, then x is a solution of
Problem (50) if and only if x ∈ VI(C,Og), where Og is the gradient of g.
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Applying Theorem 1 and Lemma 12, we obtain the following strong convergence
theorem for finding the solution of the SCMPMOS (51) in the framework of Hilbert spaces.

Theorem 3. Let C, Ci be nonempty, closed and convex subsets of real Hilbert spaces H, Hi, i =
1, 2, . . . , N, respectively, and suppose Ti : H → Hi, i = 1, 2, . . . , N, are bounded linear operators
with adjoints T∗i . Let g : H → R, gi : Hi → R be fréchet differentiable convex functions such that
Og,Ogi are uniformly continuous. Suppose that Assumption B of Theorem 1 holds and the solution
set Ψ 6= ∅. Then, the sequence {xn} generated by the following Algorithm 3 converges strongly to
x̂ ∈ Ψ, where ‖x̂‖ = min{‖p‖ : p ∈ Ψ}.

Algorithm 3. A Relaxed Inertial Tseng’s Extragradient Method for Solving SCMPMOS (51).

Step 0. Select initial points x0, x1 ∈ H. Let C0 = C, T0 = IH , Og0 = Og and set n = 1.
Step 1. Given the (n− 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

min
{

θ, εn
‖xn−xn−1‖

}
, if xn 6= xn−1,

θ, otherwise.

Step 2. Compute
wn = (1− αn)(xn + θn(xn − xn−1)).

Step 3. Compute
yn,i = PCi (Tiwn − λn,iOgiTiwn).

Step 4. Compute
un,i = yn,i − λn,i(Ogiyn,i −OgiTiwn),

λn+1,i =

{
min{ (cn,i+ci)‖Tiwn−yn,i‖

‖Ogi Tiwn−Ogiyn,i‖ , λn,i + ρn,i}, if OgiTiwn −Ogiyn,i 6= 0,

λn,i + ρn,i, otherwise.

Step 5. Compute

vn =
N

∑
i=0

δn,i
(
wn + ηn,iT∗i (un,i − Tiwn)

)
,

where

ηn,i =

{
(φn,i+φi)‖Tiwn−un,i‖2

‖T∗i (Tiwn−un,i)‖2 , if ‖T∗i (Tiwn − un,i)‖ 6= 0,

0, otherwise.

Step 6. Compute
xn+1 = ξnwn + (1− ξn)vn.

Set n := n + 1 and return to Step 1.

Proof. We know that since gi , i = 0, 1, 2, . . . , N are convex, then Ogi are monotone [53] and,
hence, pseudomonotone. Therefore, the required result follows by applying Lemma 12 and
taking Ai = Ogi in Theorem 1.

6. Numerical Experiments

Here, we carry out some numerical experiments to demonstrate the applicability of
our proposed method (Proposed Algorithm 1). For simplicity, in all the experiments, we
consider the case when N = 5. All numerical computations were carried out using Matlab
version R2021(b).

In all the computations, we choose αn = 1
3n+2 , εn = 5

(3n+2)3 , ξn = n+1
2n+1 , θ = 1.50, λ1,i =

i + 1.25, ci = 0.10, φi = 0.20, ρn,i =
50
n2 , δn,i =

1
6 .

Now, we consider the following numerical examples both in finite and infinite dimen-
sional Hilbert spaces for the proposed algorithm.
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Example 1. For each i = 0, 1, . . . , 5, we define the feasible set Ci = Rm, Tix = 3x
i+3 and Ai(x) =

Mx, where M is a square m×m matrix given by

aj,k =


−1, if k = m + 1− j and k > j,
1 if k = m + 1− j and k ≤ j,
0, otherwise.

We note that M is a Hankel-type matrix with a nonzero reverse diagonal.

Example 2. Let Hi = R2 and Ci = [−2− i, 2 + i]2, i = 0, 1, . . . , 5. We define Tix = 2x
i+2 , and

the cost operator Ai : R2 → R2 is defined by

Ai(x, y) = (i + 1)(−xey, y), (i = 0, 1, . . . , 5).

Finally, we consider the last example in infinite dimensional Hilbert spaces.

Example 3. Let Hi = `2 := {x = (x1, x2, . . . , xi, . . . ) :
∞
∑

j=1
|xj|2 < +∞}, i = 0, 1, . . . , 5. Let

ri, Ri ∈ R+ be such that Ri
ki+1 < ri

ki
< ri < Ri for some ki > 1. The feasible sets are defined as

follows for each i = 0, 1, . . . , 5 :

Ci = {x ∈ Hi : ‖x‖ ≤ ri}.

The cost operators Ai : Hi → Hi are defined by

Ai(x) = (Ri − ‖x‖)x.

Then Ai are pseudomonotone and uniformly continuous. We choose Ri = 1.4 + i, ri =
0.8 + i, ki = 1.2 + i, and we define Tix = 4x

i+4 .

We test Examples 1–3 under the following experiments:

Experiment 1. In this experiment, we check the behavior of our method by fixing the other pa-
rameters and varying cn,i in Example 1. We do this to check the effects of this parameter and the
sensitivity of our method on it.

We consider cn,i ∈ {0, 20
n0.1 , 40

n0.01 , 60
n0.001 , 80

n0.0001 } with m = 20, m = 40, m = 60 and m = 80.
Using ‖xn+1 − xn‖ < 10−3 as the stopping criterion, we plot the graphs of ‖xn+1 − xn‖

against the number of iterations for each m. The numerical results are reported in Figures 1–4 and
Table 1.

Table 1. Numerical results for Experiment 1.

m = 20 m = 40 m = 60 m = 80

Proposed Algorithm 1 Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

cn,i = 0 128 0.0889 156 0.1235 174 0.2028 189 0.2412

cn,i =
20

n0.1 128 0.0652 156 0.1241 174 0.2664 189 0.2930

cn,i =
40

n0.01 128 0.0719 156 0.1495 174 0.3013 189 0.3220

cn,i =
60

n0.001 128 0.0695 156 0.1549 174 0.2959 189 0.3342

cn,i =
80

n0.0001 128 0.0701 156 0.1678 174 0.2877 189 0.3129
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Figure 1. Experiment 1 : m = 20.
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Figure 2. Experiment 1: m = 40.
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Figure 3. Experiment 1: m = 60.
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Figure 4. Experiment 1: m = 80.

Experiment 2. In this experiment, we check the behavior of our method by fixing the other pa-
rameters and varying cn,i in Example 2. We do this to check the effects of this parameter and the
sensitivity of our method to it.

We consider cn,i ∈ {0, 20
n0.1 , 40

n0.01 , 60
n0.001 , 80

n0.0001 } with the following two cases of initial values
x0 and x1 :
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Case I: x0 = (2, 1); x1 = (0, 3);
Case II: x0 = (3, 2); x1 = (1, 1).

Using ‖xn+1 − xn‖ < 10−3 as the stopping criterion, we plot the graphs of ‖xn+1 − xn‖
against the number of iterations in each case. The numerical results are reported in Figures 5 and 6
and Table 2.

Table 2. Numerical results for Experiment 2.

Case I Case II

Proposed Algorithm 1 Iter. CPU Time Iter. CPU Time

cn,i = 0 248 0.0916 248 4.0980

cn,i =
20

n0.1 248 0.0778 248 0.0816

cn,i =
40

n0.01 248 0.0852 248 0.0818

cn,i =
60

n0.001 248 0.0875 248 0.0753

cn,i =
80

n0.0001 248 0.0817 248 0.0811

0 50 100 150 200 250
Iteration number (n)

10-3

10-2

10-1

100

101

E
rr

or
s

Proposed Alg. (cn,i = 0)

Proposed  Alg. (cn,i = (20)/(n0.1))

Proposed  Alg. (cn,i = (40)/(n0.01))

Proposed  Alg. (cn,i = (60)/(n0.001))

Proposed  Alg. (cn,i = (80)/(n0.0001))

Figure 5. Experiment 2: Case 1.

Finally, we test Example 3 under the following experiment:

Experiment 3. In this experiment, we check the behavior of our method by fixing the other param-
eters and varying cn,i in Example 3. We do this to check the effects of these parameters and the
sensitivity of our method to it.

We consider cn,i ∈ {0, 20
n0.1 , 40

n0.01 , 60
n0.001 , 80

n0.0001 } with the following two cases of initial values
x0 and x1 :

Case I: x0 = ( 1
10 , 1

100 , 1
1000 , · · · ); x1 = ( 1

2 , 1
4 , 1

8 , · · · );
Case II: x0 = ( 3

10 , 3
100 , 3

100 , · · · ); x1 = ( 1
3 , 1

9 , 1
27 , · · · ).

Using ‖xn+1 − xn‖ < 10−4 as the stopping criterion, we plot the graphs of ‖xn+1 − xn‖
against the number of iterations in each case. The numerical results are reported in Figures 7 and 8
and Table 3.
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Figure 6. Experiment 2: Case 2.
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Figure 7. Experiment 3: Case 1.

Table 3. Numerical results for Experiment 3.

Case I Case II

Proposed Algorithm 1 Iter. CPU Time Iter. CPU Time

cn,i = 0 128 0.0682 128 0.0620

cn,i =
20

n0.1 128 0.0434 128 0.0422

cn,i =
40

n0.01 128 0.0446 128 0.0474

cn,i =
60

n0.001 128 0.0423 128 0.0414

cn,i =
80

n0.0001 128 0.0416 128 0.0424
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Figure 8. Experiment 3: Case 2.

Remark 5. By using different initial values, cases of m and varying the key parameter in Ex-
periments 1–3, we obtained the numerical results displayed in Tables 1–3 and Figures 1–8. In
Figures 1–4, we considered different initial values and cases of m with varying values of the key
parameter cn,i for Experiment 1 in Rm. As observed from the figures, these varying choices do not
have a significant effect on the behavior of the algorithm. Similarly, Figures 5 and 6 show that the
behavior of our algorithm is consistent under varying initial starting points and different values of
the key parameter cn,i for Experiment 2 in R2. Likewise, Figures 7 and 8 reveal that the behavior
of the algorithm is not affected by varying starting points and values of cn,i for Experiment 3 in
`2. From these results, we can conclude that our method is well-behaved since the choice of the key
parameter and initial starting points do not affect the number of iterations or the CPU time in all
the experiments.

7. Conclusions

In this article, we studied a new class of split inverse problems called the split vari-
ational inequality problem with multiple output sets. We introduced a relaxed inertial
Tseng extragradient method with self-adaptive step sizes for finding the solution to the
problem when the cost operators are pseudomonotone and non-Lipschitz in the framework
of Hilbert spaces. Moreover, we proved a strong convergence theorem for the proposed
method under some mild conditions. Finally, we applied our result to study and approxi-
mate the solutions of certain classes of optimization problems, and we presented several
numerical experiments to demonstrate the applicability of our proposed algorithm. The
results of this study open up several opportunities for future research. As part of our
future research, we would like to extend the results in this paper to a more general space,
such as the reflexive Banach space. Furthermore, we would consider extending the results
to a larger class of operators, such as the classes of quasimonotone and non-monotone
operators. Moreover, in our future research, we would be interested in investigating the
stochastic variant of our results in this study.
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