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Abstract: The aim of this paper is to investigate the qualitative behavior of the COVID-19 pandemic
under an initial vaccination program. We constructed a mathematical model based on a nonlinear
system of delayed differential equations. The time delay represents the time that the vaccine takes to
provide immune protection against SARS-CoV-2. We investigate the impact of transmission rates,
vaccination, and time delay on the dynamics of the constructed system. The model was developed for
the beginning of the implementation of vaccination programs to control the COVID-19 pandemic. We
perform a stability analysis at the equilibrium points and show, using methods of stability analysis
for delayed systems, that the system undergoes a Hopf bifurcation. The theoretical results reveal that
under some conditions related to the values of the parameters and the basic reproduction number,
the system approaches the disease-free equilibrium point, but if the basic reproduction number is
larger than one, the system approaches endemic equilibrium and SARS-CoV-2 cannot be eradicated.
Numerical examples corroborate the theoretical results and the methodology. Finally, conclusions
and discussions about the results are presented.

Keywords: mathematical modeling; delay differential equations; SARS-CoV-2 virus; vaccination;
stability analysis

MSC: 92-10; 37N25; 37M05; 34K05; 34K60; 37G15

1. Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 moved rapidly around
the world since it was first identified in Wuhan, China. The world has been suffering one
of the worst pandemics in history, and how it will end is unclear at this time. Vaccination
programs to control the spread of SARS-CoV-2 started at the very end of 2020 in a few
countries [1,2]. Then, during 2021, more countries were able to implement vaccination
programs. The vaccines worked well for the SARS-CoV-2 variants that were circulating
at the beginning of the pandemic and mostly during 2021. However, in 2022, the efficacy
of the vaccines has decreased due to the appearance of new SARS-CoV-2 variants and the
effect of immune escape [3–8].

Many mathematical models have been used to study biological systems [9]. There are
many dynamical systems connected to biology phenomena that are described by PDEs that
involve dissipation actions [10,11]. In particular, some of them have been implemented for
COVID-19 pandemic dynamics with spatial effects [12,13]. Some models have been used to
investigate the impact of vaccines on the dynamics of the pandemic [2,14–18]. In addition,
a few of these models have included and analyzed the effect of time delays on the pandemic
dynamics [19–26]. For example, in [19], the authors proposed a model with a time delay in
order to take into account the delay before an exposed individual could become infected.
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Other work is presented in [21], where an SEIR model with a time delay was used to study
the COVID-19 pandemic. In [23], the authors presented a mathematical model based on a
set of coupled delay differential equations with extensive delays, in order to estimate the
incubation, recovery, and decease periods of COVID-19.

Different models have focused on different stages of the COVID-19 pandemic. Some
models were used in the investigation of the period before vaccines were available [25–34].
Others focused on the beginning of vaccine availability. These models, however, are not
applicable to the current situation where there are very different new SARS-CoV-2 variants
and where booster vaccination programs have been implemented. For instance, factors
such as variant competition, immune escape features, and cross-immunity are not present
in many of the models developed at the beginning of the COVID-19 pandemic.

In this work, we design a mathematical model to study the impact of transmission
rates, vaccination, and time delays on the dynamics of the COVID-19 pandemic. The model
was created for the stage in which the vaccination programs were just starting. We use
mathematical tools of dynamical systems and particularly from mathematical epidemiology
for our aims. It has been shown that mathematical models, together with computational
analysis techniques, have become important aids in testing hypotheses and analyzing the
impact of different factors on infectious disease processes.

Many mathematical models that deal with infectious diseases rely on systems of
differential equations to represent the dynamics of the disease at different levels, such as
within-host and between hosts [16,18,35–37]. For some epidemic scenarios, it is suitable
from a realistic viewpoint to include time delays into the models. Thus, to reflect dynamic
behaviors more realistically, it is reasonable to rely on differential equations with time
delays [26]. In this order of ideas, we use an SVEIR (susceptible, vaccinated, latent, infected,
and recovered)-type mathematical epidemiological model to represent the dynamics of the
COVID-19 pandemic for the beginning of the vaccination stage. The mathematical model
developed includes the application of a vaccine that requires two doses and two mutually
exclusive vaccinated subpopulations. The first subpopulation comprises individuals who
have received only one dose, and the second one is those who have received two doses.
The mathematical model constructed is based on a system of delay differential equations
with a discrete time delay, where the inclusion of the time delay allows us to take into
account that the vaccine does not provide immune protection instantaneously [22]. In addi-
tion, the model takes into account the possibility that individuals have only had one dose
of the vaccine [1,15,22,38–40].

We begin the study of the time-delayed model by first obtaining the disease-free equi-
librium point. Then, we find the basic reproduction numberR0 using the next-generation
matrix method [41]. Then, we find the unique endemic equilibrium point and we investi-
gate the stability of the disease-free and the endemic equilibrium points. We also find the
conditions for the system to show a Hopf bifurcation. Finally, with the appropriate choice
of parameters, some numerical simulations are presented to check the effectiveness of the
theoretical results obtained using nonstandard stable numerical schemes.

The organization of this paper is as follows: In Section 2 we construct and present the
mathematical model. In Section 3 we study the existence and uniqueness, and positivity
of the solution. The stability of the equilibrium points and the computation of the basic
reproduction numberR0 are presented in Section 4. In Section 5, the numerical simulations
of the mathematical model are presented. Section 6 is devoted to conclusions.

2. Construction of the Mathematical Model

The study population is divided into several subpopulations. S(t) denotes the pop-
ulation susceptible to the virus. If a susceptible individual comes into contact with an
infectious individual and becomes infected, it transits to the latent population E(t) as soon
as the incubation period of the virus elapses and there is no transmissibility of the virus.
When they can transmit the virus and show manifestations of the disease, we represent
them as infectious I(t), or if they infect without manifestations of the virus, we call them
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asymptomatic A(t). With the variable H(t) we denote hospitalized individuals, and in
this model we assume that hospitalized individuals H(t) cannot transmit the virus, as-
suming that conditions in hospitals are safe with respect to virus transmission. We denote
with V1(t) and V2(t) the populations of susceptibles vaccinated for the first time and the
individuals who are vaccinated and receive a dose for the second time, respectively. Now,
with the variable R(t) we denote the recovered population. We also assume that only
susceptible individuals S(t) are those who can be vaccinated and obviously those who have
received the first dose of vaccination V1(t). This assumption may seem debatable, but in
view of the risks involved in receiving vaccination while latent, infected, asymptomatic,
or hospitalized, the viral load would increase in these populations and the consequences
could be unfavorable on the health of the patients.

Thus, using the law of conservation of population and the law of mass action, the fol-
lowing equations are obtained:

• The change in S(t) at time t is given by the inflow of new susceptibles Λ and outflow
of a proportion of first-dose vaccines at a rate ν1 of the form ν1S(t− τ), the propor-
tion infected due to the force of infection given by (β I I(t) + βA A(t))S(t), and the
proportion of deaths naturally by the death rate which is d S(t). It follows that

Ṡ(t) = Λ− dS(t)−
(

β I I(t) + βA A(t)
)

S(t)− ν1 S(t− τ).

• The variation of V1(t) is given by the inflow of susceptibles vaccinated with the
first dose ν1S(t− τ) and the outflow of the proportion of first-time vaccinees when
there is the interaction with the force of infection ε1(β I I(t) + βA A(t))V1(t), plus the
proportion of those vaccinated with the second dose ν2V1(t− τ), and, in addition,
those vaccinated who die naturally at a rate d. One obtains

V̇1(t) = ν1 S(t− τ)− ε1

(
β I I(t) + βA A(t)

)
V1(t)− ν2 V1(t− τ)− d V1(t).

• The variation of V2(t) will consist of the entry of those vaccinated with the second
dose ν2V1(t − τ) and the exit of a proportion of individuals who have been given
the second dose but become infected due to interaction with the force of infection
ε2(β I I(t) + βA A(t))V2(t) and exit, and, also, people die naturally at a rate d. Thus,
we obtain the equation

V̇2(t) = ν2 V1(t− τ)− ε2

(
β I I(t) + βA A(t)

)
V2(t)− d V2(t).

• On the other hand, the variation of E(t) is given by the inflow of new infectees which
is represented by the expression

(β I I(t) + βA A(t))(S(t) + ε1 V1(t) + ε2 V2(t)),

while the outflow is given by individuals who transition to symptomatic or asymp-
tomatic infectious stages in which they can transmit SARS-CoV-2 virus to others.
The latent population transits to the infectious classes represented by the expression
αE(t) and another part of latents that die naturally at a rate d. In conclusion, we obtain
the equation

Ė(t) =
(

β I I(t) + βA A(t)
)(

S(t) + ε1 V1(t) + ε2 V2(t)
)
− (d + α)E(t).

• Variations of I(t) and A(t), İ(t), and Ȧ(t), respectively, will first consist of individuals
who are infected and initially remain in the latent stage E for a certain time with mean
α, and a proportion a of latent individuals enter the asymptomatic class A(t) in a



Mathematics 2023, 11, 369 4 of 30

proportion aαE(t). The remaining proportion (1− a) of latent individuals develop
the symptoms of the disease and pass into the infected class I(t) in a proportion of
(1− a)αE(t). The population in the asymptomatic class A(t) transits at a rate γ to
the recovered class R(t), that is, the factor γA(t) leaves and enters R(t). Similarly,
infected persons I can pass into the recovered class R at a rate γ in a proportion γI(t)
and enter R(t). Now, a part of the infected persons I can pass into the hospitalized
class H at a rate h in a factor hI(t). In addition, it is possible that infected I(t) and
asymptomatic A(t) die naturally at a rate d. Thus, we obtain the equations

Ȧ(t) = a αE(t)− (d + γ)A(t), and

İ(t) = (1− a) αE(t)− (d + h + γ)I(t).

• The variations of H(t) and R(t), Ḣ(t), and Ṙ(t), respectively, are given by the transi-
tion to class H of class I with a factor hI(t) of infected individuals who are hospitalized.
The γI(t) and γA(t) arefactors of infected and asymptomatic individuals who recover
enter the class R, that is, with a factor γ(I(t) + A(t)). Persons of class H hospitalized
die from the virus at a rate δ, that is, they come out with a factor of δH, as well as the
recovery of a percentage of those hospitalized at a rate ρ, that is, they enter the class R
with a factor ρH. In addition, it is possible that they die naturally hospitalized H(t)
and recovered R(t) at a rate d. From all of the above, the equations are

Ḣ(t) = hI(t)− (d + δ + ρ) H(t), and

Ṙ(t) = γ(I(t) + A(t)) + ρH(t)− dR(t).

The flows between the interacting subpopulations can be seen in Figure 1. The above
equations can be rewritten as the following system:

Ẏ(t) = f (t, Y(t)), t ∈ [0, ∞), (1)

where Y(t) = (S(t), V1(t), V2(t), E(t), A(t), I(t), H(t), R(t))T , and

f (t, Y(t)) =



Λ− dS(t)−
(

β I I(t) + βA A(t)
)

S(t)− ν1 S(t− τ)

ν1 S(t− τ)− ε1

(
β I I(t) + βA A(t)

)
V1(t)− ν2 V1(t− τ)− d V1(t)

ν2 V1(t− τ)− ε2

(
β I I(t) + βA A(t)

)
V2(t)− d V2(t)(

β I I(t) + βA A(t)
)(

S(t) + ε1 V1(t) + ε2 V2(t)
)
− (d + α)E(t)

a αE(t)− (d + γ)A(t)
(1− a) αE(t)− (d + h + γ)I(t)

hI(t)− (d + δ + ρ) H(t)
γ(I(t) + A(t)) + ρH(t)− dR(t)



,

where t ∈ [0, ∞), and with initial conditions given by

S(θ) = ζ1(θ) > 0, V1(θ) = ζ2(θ) > 0, V2(θ) = ζ3(θ) ≥ 0, E(θ) = ζ4(θ) ≥ 0,

A(θ) = ζ5(θ) ≥ 0, I(θ) = ζ6(θ) ≥ 0, H(θ) = ζ7(θ) ≥ 0, R(θ) = ζ8(θ) ≥ 0,

for θ ∈ [−τ, 0]with ζi(θ), i = 1, · · · , 8 continuous functions defined from the inter-
val [−τ, 0] to R+ and with norm ‖ζi‖ = sup

−τ≤θ≤0
|ζi(θ)|, i = 1, · · · , 8. Let b > 0 and
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S = C
(
[−τ, b],R8

+

)
be the Banach space of continuous functions defined on the interval

[−τ, b] to R8
+ with the norm

‖x‖ = sup
−τ≤θ≤b

‖x(θ)‖, x ∈ S ,

where ‖x(θ)‖ =
8
∑

i=1
|xi(θ)|, [42].

S(t)

V1(t)

V2(t)

E(t)

I(t)

A(t)

H(t)

R(t)

Λ

d

d

d

d

d

d

d

d

δ

ργ

h

ν1

ν2

γ

ε1(β I I + βA A)

ε 2(
β II

+
β A

A)

β
I I +

β
A A

(1
−

a)
α

aα

Figure 1. Flow diagram of the transit of the subpopulations over time of the model (1).

To analyze the dynamics of the solutions of system (1), we assume that

N(t) = S(t) + E(t) + I(t) + A(t) + H(t) + R(t) + V1(t) + V2(t), (2)

and the initial values are given by

S(0) = S0 > 0, V1(0) = V1,0 ≥ 0, V2(0) = V2,0 ≥ 0, E(0) = E0 ≥ 0,

A(0) = A0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, H(0) = H0 ≥ 0; (3)

moreover,

S0 = ζ1(0)and V1,0 = ζ2(0) (4)

satisfy the compatibility conditions.
In this model, two vaccination rates, ν1 and ν2, are considered for the populations

S(t) and V1(t), respectively, such that ν2 < ν1, since the second dose has less demand
than the first one. We are interested in studying the impact of vaccination rates and
vaccine efficacies on the vaccination strategy [2,43,44]. For example, according to studies
by Elisabeth Mahase [45], the Pfizer-BioNTech vaccine reached an effectiveness of 52% after
the first dose (ε1 = 0.52) and 95% after the second dose (ε2 = 0.95). It is important to
highlight that despite the plans made by health institutions regarding vaccination, there
are many uncertainties present in the logistics. Therefore, here, we consider two different
vaccination rates in this study.

Regarding the parameters βA and β I , which represent the transmission rate between
A and S and the transmission rate between I and S, respectively, we vary them due to the
uncertainty of these rates. For instance, in [46], the authors concluded that asymptomatic
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carriers have a higher viral load and, taking into account that asymptomatic carriers may
have more physical contacts, it is possible to assume that βA > β I . However, there are a
variety of results for each region or country, as can be seen in [47–51].

3. Existence and Uniqueness of the Model Solution

Here, we prove the existence and uniqueness of the solution of the model (1). We start
using the following theorem,

Theorem 1 (Theorem 2.2. [42]). Suppose Ω is an open set in R× S , f : Ω→ Rn is continuous,
and f (t, φ) is Lipschitzian in φ, on every compact set in Ω. If (σ, φ) ∈ Ω, then there exists a
unique solution of system (1) with initial value φ in σ.

To prove the existence of the solution through a point (σ, φ) ∈ [0, ∞)×S , we consider
a b > 0 and all functions x on [σ− τ, σ + b] which are continuous and coincide with φ on
[σ− τ, σ].

Theorem 2. Consider f as in (1) and suppose that Ω is an open set in R×S , such that f : Ω→ Rn

is continuous. Let C0 = [0, b]× S for every compact set in Ω. If f (t, φ) is Lipschitzian in φ, then
there exists a unique solution of system (1) with initial value φ in 0.

Proof. In particular for σ = 0, we have that the function f : [0, ∞)× S → R8 given by (1)
is continuous and satisfies the local Lipschitz condition. Indeed, for φ1, φ2 ∈ C0,

φ1(t) =
(

S1(t), V1
1 (t), V1

2 (t), E1(t), A1(t), I1(t), H1(t), R1(t)
)T

,

φ2(t) =
(

S2(t), V2
1 (t), V2

2 (t), E2(t), A2(t), I2(t), H2(t), R2(t)
)T

,

and for t ∈ [−τ, b], one obtains∥∥ f (t, φ2)− f (t, φ1)
∥∥ ≤ M sup

t∈[−τ,b]

{∣∣∣S2(t)− S1(t)
∣∣∣+ ∣∣∣V2

1 (t)−V1
1 (t)

∣∣∣+ ∣∣∣V2
2 (t)−V1

2 (t)
∣∣∣

+
∣∣∣E2(t)− E1(t)

∣∣∣+ ∣∣∣A2(t)− A1(t)
∣∣∣+ ∣∣∣I2(t)− I1(t)

∣∣∣+ ∣∣∣H2(t)− H1(t)
∣∣∣

+
∣∣∣R2(t)− R1(t)

∣∣∣} = M
∥∥φ2 − φ1

∥∥,

i.e., ∥∥ f (t, φ2)− f (t, φ1)
∥∥ ≤ M

∥∥φ2 − φ1
∥∥,

where

M = max
t∈[−τ,b]

{
d + 2ν1 + 2|g1(t)|, d + 2ν2 + 2ε1|g1(t)|, d + 2ε2|g1(t)|, d + 2α,

d + 2γ + 2βA|g2(t)|, d + 2γ + 2h + 2β I |g2(t)|, d + δ + ρ + γ, d
}

,

g1(t) = β I I2(t) + βA A2(t) and g2(t) = S1(t) + ε1V1
1 (t) + ε2V1

2 (t).

Then f (t, Y(t)) given by (1) is local Lipschitzian. Applying Theorem 1, it follows the
conclusion of the theorem.

3.1. Positivity of Model Solutions

Since system (1) is a population model, the solutions must be positive. We reached the
following result.
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Theorem 3. The model (1) with initial conditions given by (3) has positive solutions(
S(t), V1(t), V2(t), E(t), A(t), I(t), H(t), R(t)

)
for all t ∈ [0, ∞), when τ → 0+.

Proof. For the proposed model, we have the following:

• S(t) > 0, ∀t > 0. Suppose that there existst1 > 0 such that Ṡ(t1) ≤ 0, S(t1) = 0 and
S(t) > 0 for all t ∈ [0, t1), so that

Ṡ(t1) = Λ− dS(t1)−
(

β I I(t1) + βA A(t1)

)
S(t1)− ν1 S(t1 − τ)

Ṡ(t1) = Λ− ν1 S(t1 − τ),

for all τ > 0. Using the continuity of the solutions, it follows that Λ− ν1 S(t1− τ)→ Λ
as τ → 0, therefore we have a contradiction. Thus, S(t) > 0 for all t > 0. In the same
way, it is verified that V1(t) > 0, V2(t) > 0, ∀t > 0.

• E(t), A(t), I(t) > 0 ∀t > 0. To show that E(t) > 0 for all t > 0, let us reason by
contradiction. We assume that there exists t4 > 0 such that Ė(t4) ≤ 0, E(t4) = 0 and
E(t) > 0 for all t ∈ [0, t4). Thus,

Ė(t4) =

(
β I I(t4) + βA A(t4)

)(
S(t4) + ε1 V1(t4) + ε2 V2(t4)

)
− (d + α)E(t4)

Ė(t4) = p(t4)g(t4),

where p(t4) = β I I(t4) + βA A(t4) and g(t4) = S(t4) + ε1 V1(t4) + ε2 V2(t4). Now,

(i) g(t4) > 0 because S(t), V1(t), V2(t) > 0 for all t > 0.
(ii) We affirm that p(t4) > 0. Indeed, from (1) it follows that

A(t) = A(0)e−(d+γ)t + e−(d+γ)t
∫ t

0
aαe(d+γ)sE(s)ds, (5)

and by the continuity of A(t),

A(t4) = lim
t→t4

A(t) = A(0)e−(d+γ)t4 + e−(d+γ)t4

∫ t4

0
aαe(d+γ)sE(s)ds > 0,

and for I(t),

I(t4) = lim
t→t4

I(t) = I(0)e−(d+h+γ)t4 + e−(d+h+γ)t4

∫ t4

0
(1− a)αe(d+h+γ)sE(s)ds > 0.

Therefore, p(t4) = β I I(t4) + βA A(t4) > 0 and from (i) and (ii)

0 ≥ Ė(t4) = f (t4)g(t4) > 0,

which is a contradiction. Thus E(t) > 0 for all t > 0, and, as a consequence, I(t) > 0
and A(t) > 0 for all t > 0. In the same way, one obtains that H(t) > 0, R(t) > 0,
∀t > 0.

Remark 1. This proof shows the positivity of the solution of model (1) when τ approaches zero,
which still keeps system (1) as a system with a time delay. The theorem affirms that there is a τ such
that the positivity of the solution of system (1) is guaranteed. It does not give an interval for τ such
that the positivity can be guaranteed.
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3.2. Boundedness of the Solutions

Adding the equations of system (1) and using (2), one obtains that

Ṅ(t) = Λ− dN(t)− δH(t) < Λ− dN(t),

and applying comparison theory for differential equations [52], it follows that

N(t) ≤ N(0)e−dt +
Λ
d

[
1− e−dt

]
.

In such a way,

• If N(0) ≤ Λ
d

, then

N(t) ≤ Λ
d

e−dt +
Λ
d

[
1− e−dt

]
, i.e., N(t) ≤ Λ

d
.

• If N(0) >
Λ
d

, then

N(t) < N(0)e−dt + N(0)
[
1− e−dt

]
, i.e., N(t) < N(0).

For the above reasons, if K = max
{

Λ
d

, N(0)
}

, then we have that all the solutions of

system (1) remain bounded in the region

Ω =
{
(S, V1, V2, E, A, I, H, R) ∈ R8

+|0 ≤ S, V1, V2, E, A, I, H, R ≤ K
}

,

which is a positively invariant set.

4. Stability Analysis

The equilibrium points of system (1) are found by considering the final steady state,
i.e., the constant solutions Ẏ(t) ≡ 0. From system (1), we solve the following
algebraic system:

Λ− dS− β I IS− βA AS− ν1 S = 0, (6)

ν1S− ε1β I IV1 − ε1βA AV1 − ν2V1 − dV1 = 0, (7)

ν2V1 − ε2β I IV2 − ε2βA AV2 − dV2 = 0, (8)

β I IS + βA AS + ε1β I IV1 + ε1βA AV1 + ε2β I IV2 + ε2βA AV2 − (d + α)E = 0, (9)

aαE− (d + γ)A = 0, (10)

(1− a)αE− (d + h + γ)I = 0, (11)

hI − (d + δ + ρ)H = 0, (12)

γI + γA + ρH − dR = 0. (13)
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4.1. Disease-Free Equilibrium Point

The disease-free point appears when the populations I, E, and A of infected, latent, and
asymptomatic individuals, respectively, are I0 = E0 = A0 = 0. Thus, from Equation (12),
H0 = 0, and, therefore, from Equation (13), R = 0. On the other hand, from Equation (6),
since I0 = 0 and A0 = 0, then

S0 =
Λ

d + ν1
.

Thus, using Equation (7), it follows that

V0
1 =

ν1Λ
(d + ν1)(d + ν2)

.

Finally, it is deduced from Equation (8) that

V0
2 =

ν2

d
V0

1 , i.e., V0
2 =

ν1ν2Λ
d(d + ν1)(d + ν2)

.

Therefore, the disease-free equilibrium is given by

L0 = (S0, V0
1 , V0

2 , E0, A0, I0, H0, R0)

=

(
Λ

d + ν1
,

ν1Λ
(d + ν1)(d + ν2)

,
ν1ν2Λ

d(d + ν1)(d + ν2)
, 0, 0, 0, 0, 0

)
.

(14)

4.2. Basic Reproduction Number

To identify the potential for contagion in a disease, we use a threshold called the basic
reproduction number, which is the average number of new infections produced by an
infectious element when it interacts in a population of susceptibles. To determine this
parameter, we use the methodology defined in [53]. Thus, we obtain the following result.

Theorem 4. The basic reproduction number for the epidemiology model given by system (1) is

R0 =
α(1− a)Kβ I

(d + α)(d + γ + h)
+

αaKβA
(d + α)(d + γ)

, (15)

where

K = S0 + ε1V0
1 + ε2V0

2 = Λ
(

d2 + (ε1ν1 + ν2)d + ε2ν1ν2

d(d + ν1)(d + ν2)

)
. (16)

Proof. The basic reproduction number associated with the model (1) is obtained by calcu-
lating the spectral radius of the matrix FV−1, which is the next generation matrix (see [53]).
Indeed, we construct the next-generation matrix operator associated with the model, where
only the classes of the subpopulations where the disease is in progression initially and
the subsystems where the secondary infections enter are considered.Thus, we have the
following vectors:

F =


(

β I I(t) + βA A(t)
)(

S(t) + ε1 V1(t) + ε2 V2(t)
)

0
0
0

,

V =


(d + α)E(t)

−a αE(t) + (d + γ)A(t)
−(1− a) αE(t) + (d + h + γ)I(t)
−hI(t) + (d + δ + ρ)H(t)

.
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Therefore, we obtain the matrices F and V as the Jacobian matrices evaluated at the disease-
free point (14), which are

F =


0 βAK β IK 0

0 0 0 0

0 0 0 0

0 0 0 0

, V =


d + α 0 0 0

−aα d + γ 0 0

−(1− a)α 0 d + h + γ 0

0 0 −h d + ρ + δ

,

where K is defined by (16). Thus, the inverse of V is

V−1 =



(d + α)−1 0 0 0

aα
(d+α)(d+γ) (d + γ)−1 0 0

− (−1+a)α
(d+α)(d+h+γ)

0 (d + h + γ)−1 0

− h(−1+a)α
(d+α)(d+h+γ)(d+ρ+δ)

0 h
(d+h+γ)(d+ρ+δ) (d + ρ + δ)−1


.

Next, one obtains that

FV−1 =



βAKaα
(d+α)(d+γ)

− β I K(−1+a)α
(d+α)(d+h+γ)

βAK
d+γ

β I K
d+h+γ 0

0 0 0 0

0 0 0 0

0 0 0 0

.

The characteristic polynomial of the above matrix is

P(λ) =
(adβ I − adβA − ahβA + γ aβ I − γ aβA − dβ I − γ β I)Kα λ3

(α + d)(d + γ)(d + h + γ)
+ λ4.

Finally, the dominant eigenvalue is the basic reproduction number, represented by the
expression

R0 = RI0 +RA0 , (17)

with

RI0 =
α(1− a)Kβ I

(d + α)(d + γ + h)
, RA0 =

αaKβA
(d + α)(d + γ)

. (18)

4.3. Endemic Equilibrium Point

The existence of the single endemic point is guaranteed by the following theorem.

Theorem 5. IfR0 > 1, there is a unique positive endemic equilibrium point of system (1), given by

L∗ = (S∗, V∗1 , V∗2 , E∗, A∗, I∗, H∗, R∗), (19)
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where

S∗ =
Λ

(d + ν1) + θR0 I∗
,

V∗1 =
ν1Λ

((d + ν1) + θR0 I∗)((d + ν2) + ε1θR0 I∗)
,

V∗2 =
ν1ν2Λ

((d + ν1) + θR0 I∗)((d + ν2) + ε1θR0 I∗)(d + ε2θR0 I∗)
,

E∗ =
(

d + γ + h
(1− a)α

)
I∗.

A∗ =
(

a(d + γ + h)
(1− a)(d + γ)

)
I∗,

I∗ > 0,

H∗ =
(

h
d + δ + ρ

)
I∗,

R∗ =
[

γ(d + γ + ah)
d(1− a)(d + γ)

+
ρh

d(d + δ + ρ)

]
I∗.

Proof. Considering the existence of the infection vectors, i.e., A > 0, I > 0, and E > 0, we
have from Equations (12) and (21) that

H =

(
h

d + δ + ρ

)
I, (20)

E =

(
d + γ + h
(1− a)α

)
I. (21)

Using (10) and (21), it can be deducedthat

A =

(
aα

d + γ

)
E =

(
a(d + γ + h)
(1− a)(d + γ)

)
I. (22)

Next, from (13) and (20)–(22), it yields that

R =
γ

d
(I + A) +

ρ

d
H =

[
γ(d + γ + ah)

d(1− a)(d + γ)
+

ρh
d(d + δ + ρ)

]
I. (23)

However,

βA A + β I I =
a(d + γ + h)βA
(1− a)(d + γ)

I + β I I

=
(d + γ + h)(d + α)

(1− a)αK

[
αaKβA

(d + α)(d + γ)
+

α(1− a)Kβ I
(d + α)(d + γ + h)

]
I,

that is,

βA A + β I I = θR0 I, where θ =
(d + γ + h)(d + α)

(1− a)αK
. (24)

Moreover, from Equations (6)–(8) and (24), it follows that

S =
Λ

(d + ν1) + θR0 I
, (25)

V1 =
ν1

(d + ν2) + ε1θR0 I
S, (26)
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V2 =
ν2

d + ε2θR0 I
V1. (27)

Next, from (6)–(13) one obtains

Λ− dN = δH ⇐⇒ Λ− d(S + V1 + V2 + E + I + A + H + R) = δH;

this is
Λ− d(S + V1 + V2) = d(E + I + A + H + R) + δH;

and using (20)–(23), we obtain

Λ− d(S + V1 + V2) = x8 I, x8 = θK. (28)

With Equations (25)–(27), it is obtained that

S + V1 + V2 =
x1R2

0 I2 + x2R0 I + x3

x4R3
0 I3 + x5R2

0 I2 + x6R0 I + x7
, (29)

where
x1 = ε1ε2Λθ2,

x2 = [ν1ε2 + dε1 + (d + ν2)ε2]Λθ,

x3 = (d + ν1)(d + ν2)Λ,

x4 = ε1ε2θ3,

x5 = [ε1ε2(d + ν1) + dε1 + (d + ν2)ε2]θ
2,

x6 = [d(d + ν2) + (d + ν1)(dε1 + (d + ν2)ε2)]θ,

x7 = d(d + ν1)(d + ν2),

(30)

which are all positive terms. Thus, replacing relation (29) in Equation (28), we obtain for I
the following expression:

F1 I4 + F2 I3 + F3 I2 + F4 I + F5 = 0, (31)

with

F1 = x4x8R3
0,

F2 = (x5x8 − x4ΛR0)R2
0,

F3 = (x6x8 + (dx1 −Λx5)R0)R0,

F4 = x7x8 + (dx2 −Λx6)R0,

F5 = dx3 −Λx7,

and it is verified that

F1 = ε1ε2Kθ4R3
0 > 0,

F4 = d(d + ν1)(d + ν2)θK(1−R0) < 0,

F5 = d(d + ν1)(d + ν2)Λ−Λd(d + ν1)(d + ν2) = 0,

provided thatR0 > 1. This implies that Equation (31) reduces to

I
(

F1 I3 + F2 I2 + F3 I + F4

)
= 0.

Since we need I > 0, the roots of the following equation must be analyzed:

F1 I3 + F2 I2 + F3 I + F4 = 0. (32)
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Indeed, ifR0 > 1, then F1 > 0 and F4 < 0. Now, if F2 = 0 and F3 = 0, then I = 3

√
− F4

F1
> 0,

that is, a unique point I > 0. Now, if we assume that F2 < 0 and F3 > 0, then

x5x8 − x4ΛR0 < 0 and x6x8 + (dx1 −Λx5)R0 > 0,

thus,
x5x6x8 − x4x6ΛR0 < 0 and x5x6x8 +

(
dx1x5 −Λx2

5

)
R0 > 0.

Hence,

x5x6x8 − x4x6ΛR0 < x5x6x8 +
(

dx1x5 −Λx2
5

)
R0 ⇐⇒ −x4x6ΛR0 <

(
dx1x5 −Λx2

5

)
R0.

AsR0 > 1 > 0, this implies that

0 < dx1x5 + Λx4x6 −Λx2
5 = −Λθ4

(
dν1ε1

2ε2
2 + ν1

2ε1
2ε2

2 + dν1ε1
2ε2 + dν1ε1ε2

2 + ν1ν2ε1ε2
2

+ d2ε1
2 + d2ε1ε2 + d2ε2

2 + dν2ε1ε2 + 2 dν2ε2
2 + ν2

2ε2
2
)
< 0,

which is a contradiction. Consequently we conclude that F2 ≥ 0 or F3 ≤ 0. Then, only the
following cases occur:

1. F1 > 0, F2 ≥ 0, F3 ≥ 0, F4 < 0;
2. F1 > 0, F2 ≥ 0, F3 ≤ 0, F4 < 0;
3. F1 > 0, F2 ≤ 0, F3 ≤ 0, F4 < 0;

provided thatR0 > 1. Finally, applying Descartes’ rule of signs [54] to the equation given
in (32), the existence of a unique positive root I∗ > 0 is deduced.

Remark 2. For the case whereR0 = 1, we can see that

F1 > 0,

F2 =
Λ θ3

d(d + ν1)(d + ν2)

(
d2ν1ε1

2ε2 + dν1
2ε1

2ε2 + dν1ν2ε1ε2
2 + ν1

2ν2ε1ε2
2

+ d2ν1ε1
2 + d2ν1ε1ε2 + 2 dν1ν2ε1ε2 + dν1ν2ε2

2 + ν1ν2
2ε2

2 + d3ε1

+ d3ε2 + d2ν2ε1 + 2 d2ν2ε2 + dν2
2ε2

)
> 0,

F3 =
Λ θ2

d(d + ν1)(d + ν2)

(
d3ν1ε1

2 + d2ν1
2ε1

2 + d2ν1ν2ε1ε2 + d2ν1ν2ε2
2

+ dν1
2ν2ε1ε2 + dν1

2ν2ε2
2 + dν1ν2

2ε2
2 + ν1

2ν2
2ε2

2 + d3ν1ε1

+ d2ν1ν2ε1 + d2ν1ν2ε2 + dν1ν2
2ε2 + d4 + 2 d3ν2 + d2ν2

2
)
> 0,

F4 = 0.

Thus, Equation (32) reduces to

I
(

F1 I2 + F2 I + F3

)
= 0.
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Therefore, the discriminant D := F2
2 − 4F1F3 is such that if

D =
(

K2d2ε1
2ε2

2 + 2 K2dν1ε1
2ε2

2 + K2ν1
2ε1

2ε2
2 − 2 K2d2ε1

2ε2 − 2 K2d2ε1ε2
2

− 2 K2dν1ε1
2ε2 − 2 K2dν1ε1ε2

2 − 2 K2dν2ε1ε2
2 − 2 K2ν1ν2ε1ε2

2

− 2 KΛ dε1
2ε2

2 + 2 KΛ ν1ε1
2ε2

2 + K2d2ε1
2 − 2 K2d2ε1ε2 + K2d2ε2

2

− 2 K2dν2ε1ε2 + 2 K2dν2ε2
2 + K2ν2

2ε2
2 + 2 KΛ dε1

2ε2 + 2 KΛ dε1ε2
2

+ 2 KΛ ν2ε1ε2
2 + Λ2ε1

2ε2
2
)

θ6 ≥ 0,

then the roots of equation F1 I2 + F2 I + F3 = 0 are negatives. Thus, the disease-free equi-
librium collides with the unique endemic point when R0 = 1. In fact, these equilibrium
points exchange stability asR0 smoothly varies, which is a transcritical bifurcation [55,56].

Now, in the local stability analysis, the characteristic equation of system (1) must be
found. In this case, it is given by

det[λI − J − e−λτ · JD] = 0, (33)

where

J =


−d− (β I I + βA A) 0 0 0 −βAS −β I S 0 0

0 −d− ε1(β I I + βA A) 0 0 −ε1 βAV1 −ε1 β I V1 0 0
0 0 −d− ε2(β I I + βA A) 0 −ε2 βAV2 −ε2 β I V2 0 0

β I I + βA A ε1(β I I + βA A) ε2(β I I + βA A) −(d + α) βA(S + ε1V1 + ε2V2) β I (S + ε1V1 + ε2V2) 0 0
0 0 0 aα −(d + γ) 0 0 0
0 0 0 (1− a)α 0 −(d + h + γ) 0 0
0 0 0 0 0 h −(d + δ + ρ) 0
0 0 0 0 γ γ ρ −d


and

JD =



−ν1 0 0 0 0 0 0 0
ν1 −ν2 0 0 0 0 0 0
0 ν2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


·

Thus, the determinant is given explicitly by∣∣∣∣∣∣∣∣∣∣∣

λ + d + m1 + ν1e−λτ 0 0 0 βAS β I S 0 0
−ν1e−λτ λ + d + ε1m1 + ν2e−λτ 0 0 ε1 βAV1 ε1 β I V1 0 0

0 −ν2e−λτ λ + d + ε2m1 0 ε2 βAV2 ε2 β I V2 0 0
−m1 −ε1m1 −ε2m1 λ + (d + α) −βAm2 −β I m2 0 0

0 0 0 −aα λ + (d + γ) 0 0 0
0 0 0 (a− 1)α 0 λ + (d + h + γ) 0 0
0 0 0 0 0 −h λ + (d + δ + ρ) 0
0 0 0 0 −γ −γ −ρ λ + d

∣∣∣∣∣∣∣∣∣∣∣
= 0, (34)

where
m1 = β I I + βA A and m2 = S + ε1V1 + ε2V2. (35)

4.4. Local Stability in L0

The local stability at the disease-free point L0 = (S0, V0
1 , V0

2 , E0, A0, I0, H0, R0) is ob-
tained by evaluating the determinant (34), obtaining(

λ3 + w1λ2 + w2λ + w3

)
(λ1 + d)2(λ2 + d + δ + ρ)

(
λ3 + d + ν1e−λ3τ

)(
λ4 + d + ν2e−λ4τ

)
= 0, (36)
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with

w1 = 3d + 2γ + h + α,

w2 = (d + γ)(d + γ + h) + (d + α)(d + γ + h)
[

1− α(1− a)Kβ I
(d + α)(d + γ + h)

]
+ (d + α)(d + γ)

[
1− αaKβA

(d + α)(d + γ)

]
= (d + γ)(d + γ + h) + (d + α)(d + γ + h)

[
1−RI0

]
+ (d + α)(d + γ)

[
1−RA0

]
,

w3 = (d + α)(d + γ)

[
1−

(
α(1− a)Kβ I

(d + α)(d + γ + h)
+

αaKβA
(d + α)(d + γ)

)]
= (d + α)(d + γ)[1−R0],

(37)
andR0,RI0 , andRA0 , as in (17) and (18). Now, we analyze the following cases:

• Case τ = 0. Then, Equation (36) reduces to

Q(λ)(λ1 + d)2(λ2 + d + δ + ρ)(λ3 + d + ν1)(λ4 + d + ν2) = 0, (38)

where
Q(λ) = λ3 + w1λ2 + w2λ + w3, (39)

and w1, w2, and w3, as in (37). Now, we first study the roots of the polynomial Q(λ),
making use of Descartes’ rule of signs for polynomials [54]. The following theorem
shows this result :

Theorem 6. LetR0 be defined by (17). IfR0 < 1, then the polynomial Q(λ) given in (39)
has roots with negative real part.

Proof. GivenR0 < 1, it is clear thatRI0 < 1 andRA0 < 1. Therefore, using (37), it
follows that w1 > 0, w2 > 0 ,and w3 > 0. Thus, wheneverR0 < 1, all the coefficients
of the equation

λ3 + w1λ2 + w2λ + w3 = 0, (40)

are positives. In this way, we see that there are no sign changes between the terms
of (40), and, making use of Descartes’ rule of signs, we conclude that there are no
positive roots. Now, if λ is replaced by −λ in (40), one obtains that

−λ3 + w1λ2 − w2λ + w3 = 0. (41)

Then, if R0 < 1, Equation (41) has three sign changes between its terms, and by
Descartes’ rule of signs it can be concluded that there are three negative roots of
Equation (40), that is, the polynomial Q(λ) given in (39) has roots with negative
real part.

Thus, by Theorem 6, Q(λ) has roots with a negative real part, and from Equation (38),

λ1 = −d < 0,

λ2 = −(d + δ + ρ) < 0,

λ3 = −(d + ν1) < 0,

λ4 = −(d + ν2) < 0.

(42)

From the above, all the roots of Q(λ) and λ1, λ2, λ3, and λ4 have negative real part.
Thus, we arrive at the following result:

Theorem 7. LetR0 be defined by (17). IfR0 < 1, then the equilibrium point L0 is asymptot-
ically stable for τ = 0.
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• Case τ > 0. From (36), we study the roots of the equations

λ3 + d + ν1e−λ3τ = 0 and λ4 + d + ν2e−λ4τ = 0 para τ > 0, (43)

and the results are summarized in the following theorem.

Theorem 8. LetR0 be as in (17) and d < ν2 ≤ ν1. IfR0 < 1, then there exists τ∗1 > 0 such
that the equilibrium point L0 given by (14) is asymptotically stable for all τ ∈

[
0, τ∗1

)
and

system (1) undergoes a Hopf bifurcation in L0 when τ = τ∗1 . That is, system (1) has a periodic
solution branch that bifurcates from equilibrium L0 near τ = τ∗1 .

Proof. For this, we use the following lemma whose proof can be found in [57].

Lemma 1. Let p and q be real numbers. Then, all the roots of the equation λ+ p+ qe−λτ = 0
have negative real part if and only if the following conditions are satisfied:

|q| ≤ p

or

|p| < q and 0 < τ <
1√

q2 − p2
arccos

(
− p

q

)
.

Since d < ν2 ≤ ν1, then 0 <
1

w∗1
≤ 1

w∗2
, with

w∗1 =
√

ν2
1 − d2 and w∗2 =

√
ν2

2 − d2. (44)

Since the arcsine function is decreasing and positive on the interval [−1, 1], then

0 ≤ arccos
(
− d

ν1

)
≤ arccos

(
− d

ν2

)
.

Hence,
0 < τ∗1 ≤ τ∗2 ,

where

τ∗1 =

arccos
(
− d

ν1

)
w∗1

and τ∗2 =

arccos
(
− d

ν2

)
w∗2

, (45)

and using Lemma 1, Equations in (43) have roots with negative real part if and only if

d < ν2 ≤ ν1 and τ ∈ (0, τ∗1 ).

That is, L0 is locally asymptotically stable for τ ∈
(
0, τ∗1

)
, with the above considera-

tions. Now, if there exists a critical value τ∗ such that a pair of roots of (43) cross the
imaginary axis, then the delay τ∗ can destabilize the equilibrium L0 (Hopf bifurcation).
Indeed, if the first equation in (43) has a pair of purely imaginary roots, say λ = ±iw1,
separating the real and imaginary parts gives us that

d + ν1 cos(w1τ) = 0,
w1 − ν1 sin(w1τ) = 0.

(46)
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This yields that cos(w1τ) = − d
ν1

and sin(w1τ) =
w1

ν1
. Squaring the previous equa-

tions, we arrive at w1 = ±w∗1 as in (44), in such a way that from (46), there is a pair of
pure imaginary roots of (43) when

τ
j
1 =

arccos
(
− d

ν1

)
w1

+
2jπ
w1

, j = 0, 1, . . . . (47)

Let λ(τ) = v(τ) + iw(τ) be a root of (43) such that v
(
τ∗1
)
= 0, w

(
τ∗1
)
= w1. We

need to verify that the derivative
dRe(λ)

dτ
is always positive in τ = τ∗1 . Indeed, when

deriving the first equation of (43) with respect to τ, it follows that

dλ

dτ
+ ν1e−λτ

(
−τ

dλ

dτ
− λ

)
= 0.

However, iw1 + d+ ν1e−iw1τ = 0 implies that ν1e−iw1τ = −iw1− d, and this yields that

dλ

dτ
+ ν1e−iw1τ

(
−τ

dλ

dτ
− iw1

)
= 0 ⇐⇒ dλ

dτ
=

w2
1 − iw1d

1 + τd + iw1τ
;

finally,
dλ

dτ
=

w2
1

(1 + τd)2 + w2
1τ2
− i

dw1 + d2τw1 + w3
1

(1 + τd)2 + w2
1τ2

,

and we see that {
dReλ

dτ

}
τ=τ∗1

=
w∗

2

1(
1 + τ∗1 d

)2
+ w∗2

1 τ∗
2

1

> 0.

The local stability in the endemic point is given by the following. The characteristic
equation obtained for the point

L∗ = (S∗, V∗1 , V∗2 , E∗, A∗, I∗, H∗, R∗)

is
(λ1 + d + δ + ρ)(λ2 + d)

(
P(λ) +R(λ)e−λτ + S(λ)e−2λτ

)
= 0, (48)

where the roots of P(λ),R(λ), and S(λ) are determined by the following parameters:

g1 = aαβAm∗1S∗, g2 = ν1ε1g1, g3 = ε2g1, g4 = (1− a)αβ Im∗1S∗, g5 = ν1ε1g4,

g6 = ε2g4, g7 = ε2
1aαβAm∗1V∗1 , g8 = ν2

ε2

ε1
g7, g9 = ε2

1(1− a)αβ Im∗1V∗1 ,

g10 = ν2
ε2

ε1
g9, g11 = ε2

2aαβAm∗1V∗2 ,

g12 = ε2
2(1− a)αβ Im∗1V∗2 , g13 = −aαβAm∗2 , g14 = −(1− a)αβ Im∗2 .

q1 = ν1ν2(g3 + g6), q2 = q1(d + γ) + ν1ν2hg3, q3 = g2 + g5,

q4 = q3(2d + γ + ε2m∗1) + g2h,

q5 = (d + ε2m∗1)[q3(d + γ) + g2h], q6 = g8 + g10, q7 = ν1q6,

q8 = q6(2d + γ + m∗1) + g8h,

q9 = q7(d + γ) + ν1hg8, q10 = (d + m∗1)[q6(d + γ) + g8h], q11 = g1 + g4,

q12 = q11(3d + γ + m∗1(ε1 + ε2)) + g1h, q13 = ν2q11,
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q14 = (2d + m∗1(ε1 + ε2))[q11(d + γ) + g1h] + q11(d + ε1m∗1)(d + ε2m∗1),

q15 = q13(2d + γ + ε2m∗1) + ν2hg1, q16 = ν2(d + ε2m∗1)[q11(d + γ) + g1h],

q17 = (d + ε1m∗1)(d + ε2m∗1)[q11(d + γ) + g1h], q18 = g7 + g9,

q19 = q18(3d + γ + m∗1(1 + ε2)) + g7h, q20 = ν1q18,

q21 = (2d + m∗1(1 + ε2))[q18(d + γ) + g7h] + q18(d + m∗1)(d + ε2m∗1),

q22 = q20(2d + γ + ε2m∗1) + ν1hg7, q23 = ν1(d + ε2m∗1)[q18(d + γ) + g7h],

q24 = (d + m∗1)(d + ε2m∗1)[q18(d + γ) + g7h], q25 = g11 + g12,

q26 = q25(3d + γ + m∗1(1 + ε1)) + g11h, q27 = (ν1 + ν2)q25,

q28 = q25(d + m∗1)(d + ε1m∗1) + (2d + m∗1(1 + ε1))[q25(d + γ) + g11h],

q29 = ν1ν2q25,

q30 = q25[p2(2d + γ) + m∗1(ν1ε1 + ε2)] + p2hg11, q31 = q29(d + γ) + ν1ν2hg11,

q32 = [q25(d + γ) + g11h][dp2 + m∗1(ν1ε1 + ε2)],

q33 = (d + m∗1)(d + ε1m∗1)[q25(d + γ) + g11h].

p1 = 3d + m∗1(1 + ε1 + ε2), p2 = ν1 + ν2,

p3 = p2(2d + ε2m∗1) + m∗1(ν1ε1 + ε2), p4 = ν1ν2,

p5 = (d + m∗1)(d + ε1m∗1) + (d + ε2m∗1)(2d + m∗1(1 + ε1)), p6 = p4(d + ε2m∗1),

p7 = (d + ε2m∗1)[dp2 + m∗1(ν1ε1 + ε2)], p8 = (d + m∗1)(d + ε1m∗1)(d + ε2m∗1),

p9 = 3d + 2γ + h + α, p10 = (d + α)(d + γ) + (d + h + γ)(2d + γ + α),

p11 = (d + α)(d + γ)(d + h + γ).

q34 = g13 + g14, q35 = q34(d + γ + p1) + g13h, q36 = q34 p2, q37 = q34 p4,

q38 = q34(dp2 + γp2 + p3) + hp2g13, q39 = q34(dp1 + γp1 + p5) + hp1g13,

q40 = q34(dp4 + γp4 + p6) + hp4g13, q41 = q34(dp3 + γp3 + p7) + hp3g13,

q42 = q34(dp5 + γp5 + p8) + hp5g13, q43 = q34(dp6 + γp6) + hp6g13,

q44 = q34(dp7 + γp7) + hp7g13, q45 = q34(dp8 + γp8) + hp8g13,

q46 = p7 + p3 p9 + p2 p10, q47 = p8 + p11 + p5 p9 + p1 p10, q48 = p6 p9 + p4 p10,

q49 = p7 p9 + p3 p10 + p2 p11, q50 = p8 p9 + p5 p10 + p1 p11, q51 = p6 p10 + p4 p11,

q52 = p7 p10 + p3 p11, q53 = p8 p10 + p5 p11, q54 = p6 p11, q55 = p7 p11, q56 = p8 p11,

with
m1 = m∗1 = β I I∗ + βA A∗, m2 = m∗2 = S∗ + ε1V∗1 + ε2V∗2 .

Therefore, we obtain that

g1, g2, . . . , g12 > 0, q1, q2, . . . , q33 > 0, q46, q47, . . . , q56 > 0, p1, p2, . . . , p11 > 0

and
g13, g14 < 0 =⇒ q34, q35, . . . , q45 < 0.
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Otherwise,

b1 = p1 + p9 > 0,

b2 = b2∗ + q34, b2∗ = p5 + p10 + p1 p9 > 0,

b3 = b3∗ + q35, b3∗ = q11 + q18 + q25 + q47 > 0,

b4 = b4∗ + q39, b4∗ = q12 + q19 + q26 + q50 > 0,

b5 = b5∗ + q42, b5∗ = q14 + q21 + q28 + q53 > 0,

b6 = b6∗ + q45, b6∗ = q17 + q24 + q33 + q56 > 0,

b7 = p2 > 0,

b8 = p3 + p2 p9 > 0,

b9 = b9∗ + q36, b9∗ = q46 > 0,

b10 = b10∗ + q38, b10∗ = q6 + q13 + q20 + q27 + q49 > 0.

b11 = b11∗ + q41, b11∗ = q4 + q8 + q15 + q22 + q30 + q52,

b12 = b12∗ + q44 > 0, b12∗ = q5 + q10 + q16 + q23 + q32 + q55 > 0,

b13 = p4 > 0,

b14 = p6 + p4 p9 > 0,

b15 = b15∗ + q37, b15∗ = q3 + q48 > 0,

b16 = b16∗ + q40, b16∗ = q1 + q7 + q29 + q51 > 0,

b17 = b17∗ + q43, b17∗ = q2 + q9 + q31 + q54 > 0.

(49)

Finally, the expressions for P ,R,S are given by

P(λ) = λ6 + b1λ5 + b2λ4 + b3λ3 + b4λ2 + b5λ + b6, (50)

R(λ) = b7λ5 + b8λ4 + b9λ3 + b10λ2 + b11λ + b12, (51)

and
S(λ) = b13λ4 + b14λ3 + b15λ2 + b16λ + b17. (52)

The following cases are analyzed:

– Case τ = 0. Equation (48) can be reduced to

(λ1 + d + δ + ρ)(λ2 + d)W(λ) = 0, (53)

with
W(λ) = P(λ) +R(λ) + S(λ),

that is,
W(λ) = λ6 + α1λ5 + α2λ4 + α3λ3 + α4λ2 + α5λ + α6, (54)

where

α1 = b1 + b7 > 0,

α2 = b2 + b8 + b13 = (b2∗ + b8 + b13) + q34,

α3 = b3 + b9 + b14 = (b3∗ + b9∗ + b14) + q35 + q36,

α4 = b4 + b10 + b15 = (b4∗ + b10∗ + b15∗) + q37 + q38 + q39,

α5 = b5 + b11 + b16 = (b5∗ + b11∗ + b16∗) + q40 + q41 + q42,

α6 = b6 + b12 + b17 = (b6∗ + b12∗ + b17∗) + q43 + q44 + q45.

(55)
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Now, first, we study the roots of the polynomial W(λ) given by (54). Indeed, if we
suppose that

(b2∗ + b8 + b13) + q34 > 0, (b3∗ + b9∗ + b14) + q35 + q36 > 0,

(b4∗ + b10∗ + b15∗) + q37 + q38 + q39 > 0, (b4∗ + b10∗ + b15∗) + q37 + q38 + q39 > 0,

(b5∗ + b11∗ + b16∗) + q40 + q41 + q42 > 0, (b6∗ + b12∗ + b17∗) + q43 + q44 + q45 > 0,

(56)

then the coefficients of the equation

λ6 + α1λ5 + α2λ4 + α3λ3 + α4λ2 + α5λ + α6 = 0 (57)

are positives. In this way, we see that there are no sign changes between the terms
of (57) and, by Descartes’ rule of signs, we conclude that there are no positive
roots. Now, if λ is replaced by −λ in (57), one obtains that

λ6 − α1λ5 + α2λ4 − α3λ3 + α4λ2 − α5λ + α6 = 0. (58)

Then, Equation (58) has six sign changes between its terms and, by Descartes’ rule
of signs, it is concluded that there are six negative roots of Equation (57), that is,
the polynomial W(λ) given in (54) has roots with negative real part, and, from
Equation (53),

λ1 = −(d + δ + ρ) < 0,

λ2 = −d < 0.
(59)

Therefore, the equilibrium point L∗ is asymptotically stable for τ = 0.
– Case τ > 0. From (48), it is clear that (59) holds. Therefore, it is enough to study

the roots of the equation

P(λ) +R(λ)e−λτ + S(λ)e−2λτ = 0 for τ > 0, (60)

or
P(λ)eλτ +R(λ) + S(λ)e−λτ = 0 for τ > 0. (61)

Suppose that Equation (61) has a pair of purely imaginary conjugate roots
iw (w > 0). Substituting λ = iw into (61) and separating the real and imaginary
parts, one obtains that

(PI(w)− SI(w)) sin(wτ)− (PR(w) + SR(w)) cos(wτ) = RR(w),

−(PR(w)− SR(w)) sin(wτ)− (PI(w) + SI(w)) cos(wτ) = RI(w),
(62)

where PR(w), RR(w), and SR(w) are the real parts of P(iλ),R(iλ), and S(iλ),
respectively, and PI(w), RI(w), and SI(w) are the imaginary parts ofP(iλ),R(iλ),
and S(iλ), respectively. Therefore, the existence of purely imaginary roots of
Equation (61) is equivalent to the existence of solutions of the equations in (62).
Let

G(w) = |P(iw)|2 − |S(iw)|2 = P2
R(w) + P2

I (w)− S2
R(w)− S2

I (w). (63)

If G 6= 0, by combining the equations in (62) appropriately, it is verified that

sin(wτ) =
−RI(w)(PR(w) + SR(w)) +RR(w)(PI(w) + SI(w))

G(w)
,

cos(wτ) = −RI(w)(PI(w)− SI(w)) +RR(w)(PR(w)− SR(w))

G(w)
.

(64)
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Squaring both sides of the equations in (64) and adding them,we obtain that

G2(W) = [RR(w)(PI(w) + SI(w))−RI(w)(PR(w) + SR(w))]2

+ [RR(w)(PR(w)− SR(w)) +RI(w)(PI(w)− SI(w))]2.
(65)

Next, let

F(w) = G2(w)− [RR(w)(PI(w) + SI(w))−RI(w)(PR(w) + SR(w))]2

− [RR(w)(PR(w)− SR(w)) +RI(w)(PI(w)− SI(w))]2,
(66)

that is,
F(w) = 0. (67)

On the other hand, using (50)–(52), and λ = iw w > 0, we have

PR(w) = −w6 + b2w4 − b4w2 + b6, PI(w) = b1w5 − b3w3 + b5w,

RR(w) = b8w4 − b10w2 + b12, RI(w) = b7w5 − b9w3 + b11w,

and
SR(w) = b13w4 − b15w2 + b17, SI(w) = −b14w3 + b16w.

Next, with the parameters given in (49), we obtain the following constants :

e1 = b12 − b13, e2 = b15 − b4, e3 = b6 − b17, e4 = b8e1 + b10, e5 = b8e2 − b10e1 − b12,

e6 = b8e3 + b12e1 − b10e2, e7 = b12e2 − b10e3, e8 = b12e3, e9 = b14 − b3, e10 = b5 − b16,

e11 = b1b7, e12 = b7e9 − b1b9, e13 = b7e10 + b1b11 − b9e9, e14 = b11e9 − b9e10, e15 = b11e10,

e16 = e11 − b8, e17 = e4 + e12, e18 = e5 + e13, e19 = e6 + e14, e20 = e7 + e15, e21 = −b3 − b14,

e22 = b5 + b16, e23 = b1b8, e22 = b5 + b16, e23 = b1b8, e24 = b8e21 − b1b10,

e25 = b8e22 + b1b12 − b10e21, e26 = b12e21 − b10e22, e27 = b12e22, e28 = b2 + b13, e29 = −b4 − b15,

e30 = b6 + b17, e31 = −b7, e32 = b7 + b9, e33 = b7e29 − b9e28 − b11, e34 = b7e30 + b11e28 − b9e29,

e35 = b11e29 − b9e30, e36 = b11e30, e37 = −e31, e38 = e23 − e32, e39 = e24 − e33, e40 = e25 − e34,

e41 = e26 − e35, e42 = e27 − e36.

r1 = b2
1 − 2b2, r2 = b2

2 + 2b4 − b2
13 − 2b1b3, r3 = b2

3 + 2b1b5 + 2b13b15 − b2
14 − 2b6 − 2b2b4,

r4 = b2
4 + 2b2b6 + 2b14b16 − b2

15 − 2b3b5 − 2b13b17, r5 = b2
5 + 2b15b17 − b2

16 − 2b4b6,

r6 = b2
6 − b2

17.

β1 = 2r1 − e2
37,

β2 = 2r2 + r2
1 − e2

16 − 2e37e38,

β3 = 2r1r2 + 2r3 − e2
38 − 2e16e17 − 2e37e39,

β4 = r2
2 + 2r4 + 2r1r3 − e2

17 − 2e16e18 − 2e37e40 − 2e38e39,

β5 = 2r5 + 2r1r4 + 2r2r3 − e2
39 − 2e16e19 − 2e17e18 − 2e37e41 − 2e38e40,

β6 = 2r6 + 2r1r5 + 2r2r4 + r2
3 − e2

18 − 2e16e20 − 2e17e19 − 2e37e42 − 2e38e41 − 2e39e40,

β7 = 2r1r6 + 2r2r5 + 2r3r4 − e2
40 − 2e8e16 − 2e17e20 − 2e18e19 − 2e38e42 − 2e39e41,

β8 = r2
4 + 2r2r6 + 2r3r5 − e2

19 − 2e8e17 − 2e18e20 − 2e39e42 − 2e40e41,

β9 = 2r4r5 + 2r3r6 + 2r4r5 − e2
41 − 2e8e18 − 2e19e20 − 2e40e42,

β10 = r2
5 + 2r4r6 − e2

20 − 2e8e19 − 2e41e42,

β11 = 2r5r6 − e2
42 − 2e8e20,

β12 = r2
6 − e2

8,

(68)
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and one obtains that

F(w) = w24 + β1w22 + β2w20 + β3w18 + β4w16 + β5w14 + β6w12 + β7w10

+ β8w8 + β9w6 + β10w4 + β11w2 + β12, (69)

and substituting z = w2 in (69), with (67), it can be concluded that

z12 + β1z11 + β2z10 + β3z9 + β4z8 + β5z7 + β6z6

+ β7z5 + β8z4 + β9z3 + β10z2 + β11z + β12 = 0. (70)

Finally, given the βi, i = 1, . . . , 12 in (68), if

β1, β2, . . . , β12 > 0, (71)

we see that there are no sign changes between the terms of (70), and, by Descartes’
rule of signs, Equation (70) does not have positive roots, concluding, then, that the
defined endemic equilibrium point in (19) is asymptotically stable for all τ > 0.
On the other hand, without loss of generality, assume that Equation (70) has
12 positive roots, say zk, k = 1, 2, . . . , 12. Let wk =

√
zk, k = 1, 2, . . . , 12. Thus,

for k = 1, 2, · · · , 12 of system (64), one can obtain the corresponding τ
j
k > 0 such

that equation (61) has a pair of purely imaginary roots, ±iwk, given by

τ
j
k =

1
wk

arccos
(
RI(w)(SI(w)−PI(w)) +RR(w)(SR(w)−PR(w))

G(w)

)
+

2jπ
wk

,

j = 0, 1, . . . .
Now, consider λ(τ) = v(τ) + iw(τ) a root of (61) such that v

(
τ

j
k

)
= 0, w

(
τ

j
k

)
= wk.

Deriving Equation (61) with respect to τ, it follows that

P ′(λ)eλτ dλ

dτ
+ P(λ)eλτ

(
λ + τ

dλ

dτ

)
+R′(λ) dλ

dτ
+ S ′(λ)e−λτ dλ

dτ
− S(λ)e−λτ

(
λ + τ

dλ

dτ

)
= 0.

Thus,

dλ

dτ
=

λ
(
S(λ)e−λτ − P(λ)eλτ

)
P′(λ)eλτ + R′(λ) + S′(λ)e−λτ − τ

(
S(λ)e−λτ − P(λ)eλτ

) ,

so that (
dλ

dτ

)−1
=
P ′(λ)eλτ +R′(λ) + S ′(λ)e−λτ

λ
(
S(λ)e−λτ −P(λ)eλτ

) − τ

λ
.

We denote
τ∗0 = τ

(0)
k0

= min
k∈{1,...,12}

{
τ
(0)
k

}
, w∗0 = wk0 . (72)

After performing some algebraic manipulations (see [58]), we obtain

sgn
{

dReλ

dτ

}
τ=τ∗0

= sgn

{
Re
(

dλ

dτ

)−1
}

τ=τ∗0

= sgn

{
F′(w∗0

}
G
(
w∗0
) }.

For all of the above, we have the following result.

Theorem 9. Consider the given conditions in (56) and (71).

1. If Equations (57) and (70) do not have positive roots, the endemic equilibrium point
defined in (19) is asymptotically stable for all τ ≥ 0.
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2. If sgn

{
F′(w∗0)
G
(
w∗0
)} > 0, then the endemic equilibrium point is asymptotically stable for

τ ∈ (0, τ∗0 ), and system (1) undergoes a Hopf bifurcation at L∗ when τ = τ∗0 ; that
is, system (1) has a periodic solution branch that bifurcates from equilibrium L∗ near
τ = τ∗0 .

4.5. Local Stability in L∗

The local stability of the endemic point was analyzed in Theorem 9.

5. Numerical Solutions

In this section, we present some numerical results for different qualitative scenarios
that allow us to obtain deeper insight of the impact of the basic reproduction number
R0. These numerical results corroborate and show good agreement with the theoretical
results obtained in the previous sections. We compute the numerical solutions of the
nonlinear delay differential equations usingthe numerical routine dde23 from the Matlab
software routine [59,60]. Unless stated, we use the values of the parameters listed in Table 1.
Some of these values were reported in the scientific literature, and demographic ones are
related to Colombia [61]. Regardless of the accuracy of these values, the theoretical results
are corroborated.

Table 1. Symbols and average values of the parameters used in the model of (1) to carry out
numerical simulations.

Parameter Symbol Value

Incubation period α 365
5.2 year−1 [62–64]

Infection period γ 365
7 year−1 [62]

Hospitalization rate h
(

0.04
3.5

)
× 365 year−1 [47,62,65]

Hospitalization period ρ 365
10.4 year−1 [47,62,65]

Death rate (hospitalized) δ
(

0.103
10.4

)
× 365 year −1 [66,67]

Probability of being asymptomatic a [0.2–0.8] [68,69]
Vaccine efficacy (first dose) ε1 0.52 [45]
Vaccine efficacy (second dose) ε2 0.95 [45]
Transmission rate between I and S β I varied
Transmission rate between A and S βA varied
Vaccination rate (first dose) ν1 varied
Vaccination rate (second dose) ν2 varied
Delay for immune protection τ varied
Recruiting rate Λ 649,742 year −1 [61]
Death rate d varied (year−1) [61]

For the numerical simulations we use the following initial conditions and we vary
them without affecting the main qualitative outcomes:

S(0) = 46.054.839, V1(0) = 10.500, V2(0) = 3.000, E(0) = 52.005,

A(0) = 35.005, I(0) = 52.005 H(0) = 2.589, R(0) = 4.160.000,

which were normalized with respect to the total population to delimit the behavior of the
solutions, and we show the graphs of S, V1, V2, E, A, I, H, and R as a function of time.
These simulations are presented below.

In Figures 2 and 3, it can be seen that under the conditions stated in Theorem 8,
system (1) approaches the disease-free equilibrium. Thus, the latent E(t), infected I(t),
and asymptomatic A(t) subpopulations decrease and approach zero when t→ ∞. On the
other hand, the susceptible S(t), vaccinated with one dose V1(t), and vaccinated with two
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doses V2(t) subpopulations approach values different than zero, which is an ideal public
health situation.

Figure 2. Numerical simulation of system (1) with the following values for the parameters:
β I = 1× 10−6, βA = 1× 10−6, ν1 = 0.15, ν2 = 0.1, τ = 0.1 < τ∗1 , andR0 ≈ 0.87 < 1.

Figure 3. Numerical simulation of system (1) with the following values for the parameters:
β I = 1× 10−6, βA = 1× 10−6, ν1 = 0.15, ν2 = 0.1, τ = 0.1, andR0 ≈ 0.87 < 1.

Figure 4 shows that under the conditions stated in Theorem 9, the solution of system (1)
approaches the endemic equilibrium point. In this case, the latent E(t), infected I(t), and
asymptomatic A(t) subpopulations do not approach zero when t → ∞. The susceptible
S(t), vaccinated with one dose V1(t), and vaccinated with two doses V2(t) subpopulations
also approach values different than zero. This scenario is a public health concern since there
are people permanently spreading SARS-CoV-2 despite the vaccination of some proportion
of the susceptible population and the fact that the model assumes lifelong immunity.
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Figure 4. Numerical simulation of system (1) with the following values for the parameters:
β I = 0.16× 10−4, βA = 0.16× 10−4, ν1 = 0.15, ν2 = 0.1, τ = 0.1 < τ∗1 , andR0 ≈ 14 > 1.

The following isthe last scenario that we consider when we obtain periodic solutions
of system (1). Figures 5 and 6 show that under the conditions stated in Theorem 9, the
solution of system (1) undergoes a Hopf bifurcation where a periodic solution arises for a
threshold time delay τ = τ∗1 . Figure 5 shows the susceptible S(t), vaccinated with one dose
V1(t), vaccinated with two doses V2(t), and latent E(t) subpopulations. Note that these first
three aforementioned subpopulations oscillate, as the theoretical results proved. However,
notice that in order to obtain conditions such that periodic solutions arise, the time delay
must satisfy Equation (45). This threshold time delay depends on parameters ν1 and d. One
way to increase the time delay is by decreasing the proportion of first-vaccinated people,
i.e., decreasing ν1. However, when the time delay is large there is no guarantee that the
solutions of the delayed differential equation system are positive. In reality, the time delays
are small since they represent the time it takes to obtain some immune protection from the
vaccine. Thus, in the real world, the Hopf bifurcation scenario is unfeasible. We presented
this unrealistic scenario with a large time delay in order to show that, mathematically, the
system undergoes a Hopf bifurcation. Finally, Figure 5 shows the phase-space plot for
three state variables (S(t), V1(t), and V2(t)), where the periodic behavior for these three
subpopulations can be observed. These results are in good agreement with the theoretical
results presented in the previous section.

By analyzing the influence of various parameters in the simulations in the vaccination
model, we can conclude that

• From Figure 2, it can be seen that whenR0 < 1, that which is established in Theorem 7
is verified. In this case, the solutions tend to the equilibrium point L0 defined in (14),
and the behavior is stable. From a biological point of view, based on the chosen
parameter values, if the susceptible population is subject to the vaccination process,
growth is noted in the vaccinated subpopulations.

• In Figure 3, the validity of Theorem 9 is verified. In this case, the solutions tend to the
equilibrium point L∗ and the behavior is stable.

• From Figures 4 and 5, it can be seen that for the parameters established withR0 < 1,
that which is established in Theorem 8 is verified.In this case, the solutions S(t), V1(t)
and V2(t) are periodic when τ is around the threshold value τ∗1 . Therefore, system (1)
has a periodic solution branch that bifurcates from equilibrium L0 near τ = τ∗1 .
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Figure 5. Numerical simulation of system (1) with the following values for the parameters:
β I = 0.02× 10−5, βA = 0.02× 10−5, ν1 = 1.5, ν2 = 2.1, τ = 3.1 ≈ τ∗1 , andR0 ≈ 0.17 < 1.

Figure 6. Numerical simulation of system (1) with the following values for the parameters:
β I = 0.02× 10−5, βA = 0.02× 10−5, ν1 = 1.5, ν2 = 2.1, τ = 3.1 ≈ τ∗1 , andR0 ≈ 0.17 < 1.

6. Conclusions

Using mathematical tools, it is possible to obtain information about the dynamics of
many infectious diseases. This mathematical approach also helps to assess the possible
effects of health policies on the evolution of infectious disease processes. Mathematical
models provide information that is often difficult to anticipate due to the complexity of the
spread of viruses in a population.

In this work, we constructed a new COVID-19 mathematical model that includes
individuals that have been vaccinated with different number of doses. The model devel-
oped is based on a system of delay differential equations and takes into account the time
it takes for the vaccine to provide immune protection against SARS-CoV-2. This delay
time is included in the system as a time-discrete delay in the equations of susceptible
individuals and for people who have been vaccinated with one dose. First, we obtained
the disease-free equilibrium point and studied the local stability analysis by computing
the basic reproduction numberR0. This crucial secondary parameter depends mainly on
the transmission rate of SARS-CoV-2, the vaccine efficacy, and the vaccination rates for
first and second dose. We found that if R0 < 1 and the time delays are less than some
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critical threshold τ∗, then the disease-free equilibrium is locally stable. Thus, if public
health authorities are able to reduce transmission rates and increase vaccination rates, the
burden of the COVID-19 pandemic can be reduced. We also show that the model has a
unique endemic equilibrium point when R0 > 1. We find a critical value τ∗ where the
disease-free equilibrium point loses stability and the time delay of the system induces
the appearance of a Hopf bifurcation. Finally, with the appropriate choice of parameters,
numerical simulations were presented to provide further corroboration of the theoretical re-
sults. From a real-world viewpoint, it is important to remark that periodic solutions arising
from the Hopf bifurcation would not occur since the threshold value τ∗ is much larger than
potentially realistic values of the time delay for the vaccination against SARS-CoV-2. In
addition, it is important to mention that in reality, the time delay is relatively small since it
represents the time that it takes for the vaccine to start providing immunity against SARS-
CoV-2. The numerical simulations of the considered scenarios here show positive solutions,
but under different unrealistic conditions, such as large time delays, the solutions can be
negative. In summary, we can conclude that the model provides a reasonable realistic
scenario for the beginning of the COVID-19 pandemic when vaccines became available.
However, similar to any mathematical model related to the full real-world situation, there
are limitations. One important limitation of our model is the assumption that the vaccines
as well as the natural infection provide lifelong immunity. The model for a short time
period provides a good approximation regarding immunity since there is some period of
full immunity. The proposed model can be adapted for other diseases where vaccine and
natural infection provide lifelong immunity. Future work can be envisioned considering the
loss of immunity. Additionally, different SARS-CoV-2 variants could be included as well as
cross-immunity. This work could also be extended by including populations with booster
doses against SARS-CoV-2. Furthermore, the inclusion of several time delays would entail
a greater difficulty of solution of the mathematical model. In this article, we leave an open
problem. We proved the positivity of the solution of the mathematical model when τ
approaches zero, which still deals with a delayed system; however, finding an interval
for the time delay such that the positivity can be guaranteed would be very interesting
and challenging.
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