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Abstract: The development of abnormal cell growth is caused by different pathological alterations
and some genetic disorders. This alteration in skin cells is very dangerous and life-threatening, and
its timely identification is very essential for better treatment and safe cure. Therefore, in the present
article, an approach is proposed for skin lesions’ segmentation and classification. So, in the proposed
segmentation framework, pre-trained Mobilenetv2 is utilised in the act of the back pillar of the
DeepLabv3+ model and trained on the optimum parameters that provide significant improvement
for infected skin lesions’ segmentation. The multi-classification of the skin lesions is carried out
through feature extraction from pre-trained DesneNet201 with N × 1000 dimension, out of which
informative features are picked from the Slim Mould Algorithm (SMA) and input to SVM and KNN
classifiers. The proposed method provided a mean ROC of 0.95 ± 0.03 on MED-Node, 0.97 ± 0.04 on
PH2, 0.98 ± 0.02 on HAM-10000, and 0.97 ± 0.00 on ISIC-2019 datasets.

Keywords: skin cancer; skin segmentation; skin classification; melanoma; DeepLabv3+; CNN

MSC: 68U10

1. Introduction

Skin acts as the most important and massive part of the human body, covering about
20 square feet. The skin plays the role of regulating temperature, allowing the sense of
touch, feeling hot and cold, and protecting the inner body from ultraviolet rays [1]. Skin
accounts for 15% weight of the whole body, with a surface area of about 2 m2 [2]. Skin
consists of 3 main layers. skin [3]. In skin cancer the rare growing of the skin cell has
become uncontrolled [4].In daily routine, some skin cells die, and new cells come on their
place [5]. Skin cancer has become common these days. According to the report of cancer
statistics estimation in the US in 2021, the new skin cancer (melanoma) estimated score has
reached 34,920, where 19,320 are male and 15,600 are female. The death rate estimation is
12,410, with 5570 females and 6840 males [6]. The support of computer-aided diagnosis
can motivate dermatologists to develop real-time skin cancer identification algorithms.
One of the most essential steps for the analysis of the problem is to extract and select the
most prominent and promising features. After that, the designed algorithm must be able to
provide better measures than the previous one. The limitation in existing approaches acts
as a motivation for the presented work, as semantic segmentation is required to extract the
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exact boundaries of the lesion and deep features, and their selection is required for more
accurate classification. The main contributions of the presented work are:

� Skin lesions are segmented using the proposed segmentation model, in which features
are drawn out through a pre-trained Mobilenetv2 model, which acts as a base of
DeepLabv3+ for boundary extraction. The model is attained on the chosen hyperpa-
rameters that provide more accurate segmentation results.

� A classification framework is designed in which features are taken through a pre-
trained DenseNet-201 model and optimal features are picked using SMA. These
optimal features are passed to the machine learning classifier along with labels to
perform classification.

2. Related Work

Timely and accurate skin lesion recognition and classification [7,8] is a very important
task [9–12]. In the skin lesion analysis segmentation [13,14], it is the most important and
second step, coming after pre-processing [15,16]. It divides the image into parts, with these
parts being called segments [17]. A hybrid model is proposed which is the combination
of k-means with a level set [18,19]. A method is defined in which, segments the input
image using k-mean clustering [20,21]. An initial contour edges Chan–Vese model is
applied with a genetic algorithm for the recognition of skin lesion boundaries [22,23]. The
researcher proposed new pyramid pooling for lesion segmentation [24,25]. A system with
Mask-R-CNN is proposed [26,27]. A dense framework is utilised for improvement [28,29].
Segmentation is performed using an adaptive dual attention module [30,31]. An algorithm
using Bezier curves used for global optimization [32,33]. The segmentation is performed
to accurately discover the lesion using deep learning-based methods, i.e., DeepLab V3+
and Mask R-CNN [34–36]. The encoder is joined with DeepLabV3 and decoder [37,38] for
lesion segmentation. Deconvolutional coating are utilised to change the volume of input
and output [39,40]. Hierarchical supervision is used to refine the prediction mask [41,42].
To segment, the image fuzzy clustering is utilised [43]. Researchers utilised colour features
to partition the image [44–46]. The CNN classification with the novel regularising method
proposed provided an accuracy of 0.974 [47]. The ensembles for melanoma classification,
are utilised [48,49]. The ARL-CNN classification model is used for effectiveness [50].

3. Proposed Methodology

We developed novel segmentation and classification models. In the proposed seg-
mentation model, a pre-trained Mobilenetv2 model and DeepLabv3+ are utilised. In the
proposed classification framework, features are investigated using DesnseNet-201 and
novel features are extracted with SMA for multi-classification of skin lesions as presented
in Figure 1.

3.1. Segmentation of Skin Lesion

In the proposed segmentation model, features are extracted using Mobilenetv2 [51].
Features obtained from pre-trained Mobilenetv2 are input to the DeepLabv3+ network.
DeepLabv3+ [52] is an enhanced version of atrous spatial pyramid pooling, with the
addition of image-level features and batch normalization. Atrous convolutional in the last
few blocks of the backbone to control the feature map size. The atrous spatial pyramid
pooling is added on the peak of taken features that classify every pixel corresponding to
their classes. The proposed framework is joined with Mobilenetv2 and Deeplabv3+, which
contains 186 layers, in which 01 input, 67 convolutions, 59 batch-norm, 40 flip ReLU, 13
addition, 02 2D-crops, 02 depth concatenation, 01 softmax, and 01 classification layers are
included, as illustrated in Figure 2.
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Table 1. Hyper parameters of the proposed framework.

Batch-size 32

Training epochs 100

Rate of learning 0.0001

Optimizer solver Sgdm

In Table 1, the parameters are concluded after long experimentation, in which 32
batch-size, 100 epochs, 0.0001 rate of learning with sgdm optimizer solver provide good
segmentation results.

3.2. Classification of Skin Lesions

The proposed classification model consists of three phases, including features extrac-
tion using DenseNet-201, optimal features selection using a slime mould algorithm, and
pictorial classification, as in Figure 3.
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Figure 3. Steps of the proposed classification model.

3.2.1. Features Extraction and Selection

Pre-trained DenseNe-t201 [53,54] model is used to obtain the feature, taken from a
fully-connected FC-1000 layer measuring N× 1000, and is input into the slime mould
algorithm (SMA) [55]. SMA is an optimization technique used for the best feature selection.
SMA [56] is naturally established within slime mould oscillation. Thus, SMA is influenced
by the actions of morphological alterations and slime mould. The individual swarms
are categorized into three groups. Some of them are picked at the origin, through a
proportional number, to be resurrected and carry out their exploration. Some of them
pursue their investigation built on their current position and the remaining would be direct
towards the foremost candidate. The selected SMA parameters are described in Table 2.

Table 2 depicts the selected parameters of SMA which are utilised for the selection
of optimum features, in which the total number of 5 neighbours, 0.2 hold-out validation
ratio, the total number of 100 solutions, and maximum 100 iterations are included. The
convergence curve in terms of fitness is obtained using SMA, as revealed in Figure 4.
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Table 2. Selected parameters of SMA.

Features selection model SMA

No. of K Nearest Neighbour Opts.k = 5

Validation data ratio Ho = 0.2

No. of solutions Opts. N = 10

Maximum iterations Opts. T = 100
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The above graph shows the outcomes of the best feature selection on the PH2 dataset
using the SMA algorithm. The SMA’s mathematical model is discussed below:

→
Z (iu+1)

=


→

zb(iu)
+→

xb
· (→

C
· →

ZA(iu)
− →

ZB(iu)
), g < h

→
gc
· →

Z(iu),
g ≥ h

(1)

where the→
xb

in Equation (3),→
gc

linearly decreasing towards one to zero. The iu presents the

current iteration. The→
Zb

stands for the current highest accuracy position and it describes

the current position,→
Z

defines slime Mould location,→
zA

and→
ZB

present randomly selected

two individuals from swarms,→
C

defines the weight of slime mould’s, and h is shown in

Equation (2):
h = tanh |V (j) − eF| (2)

where the V (j) shows the fitness of→
Z

where j ∈ 1, 2, 3, . . . n, and eF define the finest fitness

in iterations. The→
xb

is defined as bellow:

→
xb

= [−d, d] (3)

where the calculation of d is shown in Equation (4)

d = arctanh (−
(

iu
maximum_iu

)
+ 1) (4)

where (maximum iu) shows the maximum iteration.
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The→
C

is presented as follows:

→
C (index (j))

=

 1 + g. log
(

aF−V(j)
aF−cF + 1

)
, Cond.

1− g. log
(

aF−V (j)
aF−cF + 1

)
, others

(5)

where aF stands for best fitness, cF stands for worst fitness, cond. describes that V (j)
categorizes the population in the initial half, g defines a random value between [0, 1]
interval. Index defines sorted values of fitness and computed, as described in Equation (6).

index = Sort (V) (6)

The uncertainty is described in Equation (5), simulated using r. The log decreased the
change rate of numerical values; therefore, not too many changes occur in frequency.

The slime mould changes its search pattern, conforming to the nature of the worth of
the food. When the mass is greater, food concentration becomes sufficient, and the mass
should decrease when the food concentration becomes poor, as presented in Equation (7).

→
z∗

=


random· (ub− lb) + lb, random < k
→

Zb(iu)
+→

Xb
· (→

C
· →

ZA(iu)
− →

ZB(iu)
), g < h

→
gc
· →

Z(iu),
g ≥ h

(7)

where the ub and lb define the upper and lower boundaries, and g defines the random
value of 0 and 1. Figure 5 depicts the optimization process of the feature vector.
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Table 3. Selected numbers of features in each dataset.

Datasets Total Features No. of Selected Features

PH2

N× 1000

N × 50

MED-NODE N × 30

HAM10000 N × 227

ISIC 2019 N × 251

Table 3 shows the best-selected features number on PH2, MED-NODE, HAM10000,
and ISIC 2019 datasets in both the training and testing phases.

3.2.2. Classification Using Selected Classifiers

The classifier takes the value of numerous features to make a prediction and consists
of the number of parameters that it should learn from training data. The learned classifier
shows the correspondence between the labels in training data and features [57]. In the
proposed methodology, by using optimal features, the three classifiers have been utilised
to differentiate the skin lesions into relevant classes.

The cubic kernel SVM [58] and its chosen parameters are stated in Table 4.

Table 4. Parameters of SVM.

Model Cubic SVM

Function of Kernel Cubic

Scale of Kernel Automatic

Level of box constraint 01

Multiclass method One-vs-One

Data Standardization True

For classification purposes, the weighted KNN [59] and fine KNN [60] selected param-
eters are presented in Table 5.

Table 5. Parameters of KNN classifier.

Model Fine KNN Weighted KNN

No. of neighbours 1 10

Metric of distance Euclidean Euclidean

Distance weight Equal Square inverse

Data Standardization True True

4. Experimental Discussion/Setup

The achievement of the proposed segmentation approach is estimated on four public
datasets ISIC 2016 [61], 2017 [62], 2018 [63], and PH2 [64,65]. The four public datasets ISIC
2019 [66,67], HAM10000 [66], PH2 [64], and MED-NODE [68,69] were utilised to estimate
the performance of the proposed classification framework after augmentation. MATLAB
2020b is utilised as an implementation tool, using Intel core i5 6th Generation hardware on
Windows 10.

4.1. Experiment#1: Segmentation

The proposed segmentation approach performance is computed based on global
accuracy, mean Accuracy, meanIoU, weightedIoU, and mean BF score using ISIC 2016,17,18,
and PH2 datasets, as shown in Table 6.
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Table 6. Skin lesion segmentation performance on ISIC-2016, 2017, 2018, and PH2 datasets.

Dataset Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

ISIC 2016 0.97481 0.96253 0.93960 0.95082 0.88649

ISIC 2017 0.97297 0.96841 0.94483 0.94724 0.84741

ISIC 2018 0.98642 0.91472 0.88139 0.97390 0.78364

PH2 0.95914 0.96005 0.90477 0.92299 0.82448

Table 6 depicts the proposed segmentation results, in which we achieved a global
accuracy of 0.97481, 0.97297, 0.98642, 0.95914 on ISIC 2016, 2017, 2018, and PH2, respectively.
The proposed framework segmentation outcomes using benchmark ISIC 2016 and PH2
datasets are stated in Figures 6 and 7.
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The achieved results are also compared to existing research work, as presented in
Table 7.

Table 7. Comparison of the existing research works on similar datasets.

Ref# Year Datasets Accuracy

[70] 2022

ISIC 2016

96%

[71] 2021 95.4%

[22] 2021 96.2%

[72] 2020 93.8%

[32] 2020 95.24%

[73] 2019 95.78%

Proposed Method 97.48%

[70] 2022

ISIC 2017

95%

[71] 2021 92.6%

[72] 2020 93.8%

[74] 2020 95.14%

[75] 2020 94.58

[76] 2018 94.03%

Proposed Method 97.29%

[77] 2022

ISIC 2018

97.39

[28] 2021 96.95%

[78] 2021 95.0%

[30] 2020 94.7%

[79] 2019 96.23

[80] 2018 96.80%

Proposed Method 98.64%

[81] 2022

PH2

95.14

[71] 2021 94.3%

[18] 2021 94.6%

[72] 2020 94.9%

[32] 2020 93.2%

[82] 2019 93.1%

Proposed Method 95.91%

On the 2016 challenge dataset, the existing technique provides a maximum of 96.2%
accuracy using GA-based optimization [22]. On the 2017 segmentation challenging dataset,
FC-DPN provides 95.14% accuracy but some lesions are not segmented accurately due
to blurry and low-contrast images [74]. The w-net model provides 97.39% accuracy of
segmentation, though an improvement is required in the deep learning framework to
increase the segmentation results [77]. Antialiasing convolution model is utilised for skin
lesion segmentation, providing 95% prediction scores. The segmentation scores might be
increased using the improved features optimization approach [70].

The proposed method in this article consists of Mobilenetv2 and DeepLabv3+, which
detects lesion boundaries more accurately, with an accuracy of 97.48%, 97.29%, 98.64%
and 95.91% on challenge 2016, 17, 18 and PH2, respectively, making it far more efficient
compared to the existing work.
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4.2. Experiment#2: Skin Lesions Classification

In the classification experiment, features are computed using pre-trained DenseNet-
201 and selected optimum features by SMA that are supplied to the classifiers on 5-fold
cross-validation. The graphical depiction of the proposed classification results is expressed
in Figures 8–11. The classification results are described in Table 8.
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Table 8. Proposed classification model outcomes on the MED-NODE dataset.

Classifiers Classes
Accuracy Precision Recall F1 Score Overall

AccuracyMelanoma (M) Nevus (N)

Cubic SVM
3 97.32% 0.98 0.97 0.98

97.87%
3 97.32% 0.96 0.97 0.97

Weighted KNN
3 97.62% 0.99 0.97 0.98

97.62%
3 97.62% 0.96 0.98 0.97

Fine KNN
3 99.33% 0.99 0.99 0.99

99.33%
3 99.33% 0.99 0.99 0.99

As given in Table 8, the classification of the MED-NODE dataset was performed
using three classifiers: cubic SVM, weighted KNN, and fine KNN, with an overall accu-
racy of 97.32%, 97.62%, and 99.33%, respectively. All the classifiers were trained using
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cross-validation 5 folds dataset distribution. The classification outcomes on the PH2 are
mentioned in Table 9.

Table 9. Proposed classification model results on PH2.

Classifiers Classes
Accuracy Precision Recall F1 Score Overall

AccuracyAN CN M

Cubic SVM

3 97.95% 0.97 0.97 0.97

97.87%3 98.06% 0.97 0.97 0.97

3 99.74% 1.00 1.00 1.00

Weighted KNN

3 98.17% 0.97 0.98 0.97

98.09%3 98.43% 0.98 0.97 0.98

3 99.59% 1.00 0.99 0.99

Fine KNN

3 98.99% 0.98 0.99 0.98

98.88%3 98.92% 0.99 0.98 0.98

3 99.85% 1.00 1.00 1.00

In Table 9, cubic SVM achieved an accuracy of 97.87%. The results of the weighted
KNN and fine KNN classifiers are 98.09% and 98.88%, respectively. The classification
outcomes on the HAM10000 are mentioned in Table 10.

Table 10. Proposed classification model results on HAM10000.

Classifiers Classes
Accuracy Precision Recall F1 Score Overall

AccuracyAK BCC BK D M N VL

Cubic SVM

3 97.18% 0.92 0.89 0.90

90.65%

3 97.35% 0.92 0.90 0.91

3 95.67% 0.84 0.86 0.85

3 98.93% 0.97 0.96 0.96

3 95.57% 0.84 0.85 0.84

3 96.91% 0.87 0.91 0.89

3 99.68% 0.99 0.99 0.99

Weighted KNN

3 95.89% 0.94 0.80 0.87

86.96%

3 96.49% 0.89 0.86 0.88

3 94.55% 0.71 0.88 0.79

3 97.22% 0.99 0.84 0.91

3 94.73% 0.80 0.82 0.81

3 95.67% 0.77 0.91 0.83

3 99.38% 0.98 0.98 0.98

Fine KNN

3 97.67% 0.95 0.89 0.92

92.01%

3 98.02% 0.94 0.92 0.93

3 96.74% 0.87 0.90 0.88

3 98.36% 0.98 0.91 0.95

3 96.82% 0.89 0.88 0.89

3 96.69% 0.81 0.96 0.87

3 99.7% 0.99 0.99 0.99
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Table 11 shows the outcomes of the cubic SVM, weighted KNN, and fine KNN, which
obtained an overall accuracy of 90.65%, 86.90%, and 92.01%, respectively. The classification
outcomes of the ISIC 2019 are depicted in Table 11.

Table 11. Classification results on ISIC 2019 dataset.

Classifiers Classes
Accuracy Precision Recall F1 Score Overall

AccuracyAK BCC BK D M MN SCC VL

Cubic SVM

3 97.58% 0.88 0.88 0.88

89.99%

3 96.81% 0.89 0.88 0.88

3 95.81% 0.84 0.86 0.85

3 98.76% 0.96 0.94 0.95

3 96.23% 0.83 0.88 0.85

3 97.77% 0.90 0.90 0.90

3 97.37% 0.91 0.87 0.89

3 97.77% 0.91 0.87 0.89

Weighted KNN

3 96.65% 0.86 0.88 0.87

90.22%

3 96.44% 0.83 0.91 0.87

3 98.17% 0.98 0.88 0.93

3 96.4% 0.82 0.90 0.86

3 97.93% 0.90 0.91 0.91

3 97.67% 0.94 0.87 0.90

3 99.41% 0.99 0.97 0.98

3 97.77% 0.91 0.87 0.89

Fine KNN

3 98.13% 0.93 0.89 0.91

91.7%

3 97.16% 0.88 0.91 0.89

3 96.95% 0.88 0.90 0.89

3 98.66% 0.98 0.92 0.95

3 96.82% 0.85 0.91 0.88

3 97.97% 0.89 0.93 0.91

3 98.14% 0.95 0.89 0.92

3 99.57% 0.99 0.98 0.98

Table 11 shows the outcomes of the cubic SVM, weighted KNN, and fine KNN with an
overall accuracy of 89.99%, 90.22%, and 91.7%. The result shows that fine KNN performs
best among the three classifiers. The classification results comparison is mentioned in
Table 12.

In Table 12, the classification results with existing methods using ISIC 2019, HAM10000,
PH2, and MED-NODE datasets are shown. On dataset ISIC 2019, deep learning and an
entropy-based approach provided 91% accuracy; however, there is still room to improve
the model for better accuracy [83]. On the HAM-10000 dataset, the accuracy rate achieved
is 89.8% based on deep features extraction and selection approach [89]. On the dataset
PH2, 97.5% accuracy is achieved using a combination of deep and texture features. The
classification results might be increased using shape and colour features [91]. On MED-
NODE dataset, the accuracy is 97.70% using transfer learning model [69].
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Table 12. Comparisons of proposed classification method outcomes with existing approaches.

Ref# Year Datasets Accuracy

[83] 2019

ISIC 2019

91%

[84] 2020 84.79%

[85] 2020 82.5%

Proposed 91.7%

[86] 2022

HAM10000

80%

[87] 2021 85.50%

[88] 2021 88.50%

[89] 2019 89.8%

Proposed 92.01%

[90] 2022

PH2

94.97%

[91] 2021 97.5%

[92] 2020 96.9%

[93] 2020 85.7%

[94] 2020 94.0

Proposed 98.88%

[90] 2022

MED-NODE

92%

[95] 2021 97%

[96] 2020 83.33%

[69] 2019 97.70%

Proposed 99.33%

In this research, however, features from the selected layers of the pre-trained models
and the best features are selected using an SMA model that provides an accuracy of 91.7%
on ISIC 2019, 92.01% on HAM10000, 98.88% on PH2, and 99.33% on MED-NODE datasets.
The experimental outcomes show that the achieved outcomes are finer compared to the
newest works in this domain.

5. Conclusions

Skin lesions’ detection is a complex job due to resemblances among the classes of
skin lesions. To overcome the existing challenge, novel deep learning models are designed
for skin lesion analysis. To perform semantic segmentation, the deep features are taken
through the pre-trained model Mobilenetv2, which are then passed to the DeepLabv3+ for
the extraction of the exact border of the lesion. The proposed segmentation approach is
evaluated based on Mean Accuracy, Global Accuracy, BF Score, Weighted IoU, and Mean
IoU on ISIC 2016, 2017, 2018, and PH2 datasets, which provide a global accuracy of 0.97481,
0.97297, 0.98642, and 0.95914, respectively.

In the proposed classification model, deep features are taken using DenseNet-201,
and select optimal features by SMA, which are then evaluated on the MED-NODE, PH2,
HAM-10000, and ISIC 2019 benchmark datasets, providing an accuracy of 99.33%, 98.88%,
92.01%, and 91.7, respectively. The achieved outcomes of segmentation and classification
are far better compared to existing techniques.
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