
Supplementary Materials of “An Ensemble Method for

Feature Screening”

Xi Wu1, Shifeng Xiong2, and Weiyan Mu3

1 National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,

Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021,

China

2 NCMIS, KLSC, Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing 100190, China

3 School of Science,

Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract The Supplementary Materials are organized as follows. Section A presents sim-

ulation results with analytic functions for regression and classification. Section B provides

all proofs.

A Simulations for regression and classification

A.1 Regression

Here we also consider the test functions in Section 5.1, but assign random errors εi ∼

N(0, σ2) in the responses. The data of predictors are generated from the uniform distribution

(UD), X1, . . . ,Xn identically and independently distributed from U(0, 1)p, or the normal

distribution (ND), X1, . . . ,Xn identically and independently distributed from N(1p/2,Σ),

where Σ = (σij)i,j=1,...,p with σii = 1 for i = 1, . . . , p and σij = ρ for i 6= j. For each test

function, the selections of n, p, p0, σ, ρ, and the distribution of the predictors are displayed

in Table S1.

The coverage rates that the selected subset include the true submodel over 1000 rep-

etitions are given in Table S1. We also conduct a simulation for equation (3) in Exam-
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Table S1: Coverage rates in regression

function (I), σ = 1, UD
n = 100, p = 150 n = 200, p = 500 n = 400, p = 2000
p0 = 5 p0 = 10 p0 = 5 p0 = 10 p0 = 5 p0 = 10

DC-SIS 0.234 0.004 0.242 0.016 0.471 0.060
MDC-SIS 0.260 0.006 0.263 0.039 0.537 0.081
LSLB 0.730 0.295 0.876 0.551 0.993 0.811
LSQB 0.833 0.742 0.955 0.949 0.998 0.963
ensemble (δ = 0.6) 0.807 0.742 0.954 0.949 0.998 0.963
ensemble (δ = 0.7) 0.807 0.742 0.953 0.945 0.998 0.961
ensemble (δ = 0.8) 0.807 0.742 0.950 0.945 0.990 0.955

function (II), σ = 1/4, UD
n = 100, p = 150 n = 200, p = 500 n = 400, p = 2000
p0 = 5 p0 = 10 p0 = 5 p0 = 10 p0 = 5 p0 = 10

DC-SIS 0.884 0.018 0.999 0.287 1.000 0.882
MDC-SIS 0.915 0.024 1.000 0.389 1.000 0.902
LSLB 0.975 0.086 1.000 0.613 1.000 0.988
LSQB 0.655 0.004 0.974 0.108 1.000 0.634
ensemble (δ = 0.6) 0.979 0.087 1.000 0.610 1.000 0.988
ensemble (δ = 0.7) 0.973 0.086 1.000 0.589 1.000 0.985
ensemble (δ = 0.8) 0.919 0.030 1.000 0.324 1.000 0.890

function (III), σ = 1/10, UD
n = 100, p = 150 n = 200, p = 500 n = 400, p = 2000
p0 = 5 p0 = 10 p0 = 5 p0 = 10 p0 = 5 p0 = 10

DC-SIS 0.895 0.062 0.995 0.582 1.000 0.966
MDC-SIS 0.924 0.100 0.995 0.687 1.000 0.970
LSLB 0.980 0.494 1.000 0.998 1.000 0.997
LSQB 0.998 0.668 1.000 1.000 1.000 1.000
ensemble (δ = 0.6) 0.995 0.629 1.000 0.999 1.000 1.000
ensemble (δ = 0.7) 0.991 0.628 1.000 0.998 1.000 1.000
ensemble (δ = 0.8) 0.945 0.497 1.000 0.865 1.000 0.991

function (IV), σ = 1/2, p0 = 3, ND
n = 100, p = 100 n = 200, p = 300 n = 400, p = 800
ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

DC-SIS 0.719 0.620 0.879 0.709 0.996 0.883
MDC-SIS 0.603 0.514 0.786 0.592 0.933 0.788
LSLB 0.593 0.177 0.826 0.354 0.952 0.476
LSQB 0.499 0.660 0.742 0.772 0.887 0.859
ensemble (δ = 0.6) 0.763 0.706 0.896 0.772 0.983 0.879
ensemble (δ = 0.7) 0.749 0.706 0.879 0.772 0.991 0.881
ensemble (δ = 0.8) 0.736 0.706 0.879 0.772 0.999 0.883

function (V), σ = 1/10, p0 = 3, ND
n = 100, p = 100 n = 200, p = 300 n = 400, p = 800
ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

DC-SIS 0.927 0.952 1.000 0.995 1.000 1.000
MDC-SIS 0.125 0.870 0.083 0.981 0.040 0.998
LSLB 0.024 0.656 0.010 0.906 0.012 1.000
LSQB 0.023 0.094 0.010 0.064 0.001 0.081
ensemble (δ = 0.6) 0.903 0.800 0.986 0.829 1.000 0.973
ensemble (δ = 0.7) 0.923 0.814 1.000 0.932 1.000 0.993
ensemble (δ = 0.8) 0.927 0.887 1.000 0.986 1.000 1.000
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Table S2: Coverage rates in classification
n = 100, p = 100 n = 200, p = 400 n = 400, p = 1000
p0 = 3 p0 = 5 p0 = 3 p0 = 5 p0 = 3 p0 = 5

Case (A)
DC-SIS 0.883 0.301 0.973 0.491 1.000 0.920
MDC-SIS 0.883 0.301 0.973 0.492 1.000 0.920
MV-SIS 0.870 0.276 0.968 0.473 1.000 0.899
LSLB 0.935 0.562 0.998 0.913 1.000 0.995
LSQB 0.429 0.013 0.583 0.017 0.855 0.065
ensemble (δ = 0.6) 0.918 0.557 0.987 0.913 1.000 0.991
ensemble (δ = 0.7) 0.919 0.557 0.987 0.913 1.000 0.991
ensemble (δ = 0.8) 0.917 0.557 0.987 0.911 1.000 0.988

Case (B)
DC-SIS 0.779 0.107 0.884 0.184 0.987 0.461
MDC-SIS 0.779 0.107 0.884 0.184 0.987 0.461
MV-SIS 0.735 0.122 0.828 0.192 0.965 0.427
LSLB 0.331 0.003 0.436 0.001 0.728 0.033
LSQB 0.981 0.261 1.000 0.532 1.000 0.933
ensemble (δ = 0.6) 0.964 0.226 0.988 0.428 1.000 0.866
ensemble (δ = 0.7) 0.964 0.226 0.988 0.428 1.000 0.866
ensemble (δ = 0.8) 0.962 0.226 0.987 0.426 1.000 0.866

Case (C)
DC-SIS 0.814 0.073 0.924 0.228 0.994 0.468
MDC-SIS 0.814 0.073 0.924 0.228 0.994 0.468
MV-SIS 0.767 0.083 0.865 0.227 0.981 0.437
LSLB 0.395 0.000 0.527 0.005 0.820 0.014
LSQB 0.994 0.158 0.996 0.608 1.000 0.923
ensemble (δ = 0.6) 0.978 0.128 0.993 0.472 0.997 0.822
ensemble (δ = 0.7) 0.978 0.128 0.993 0.472 0.997 0.822
ensemble (δ = 0.8) 0.978 0.128 0.993 0.471 0.995 0.822

Case (D)
DC-SIS 0.750 0.078 0.971 0.205 1.000 0.661
MDC-SIS 0.750 0.078 0.971 0.205 1.000 0.661
MV-SIS 0.743 0.081 0.966 0.203 1.000 0.615
LSLB 0.400 0.022 0.668 0.052 0.983 0.303
LSQB 0.664 0.063 0.944 0.225 1.000 0.597
ensemble (δ = 0.6) 0.746 0.081 0.944 0.260 1.000 0.657
ensemble (δ = 0.7) 0.754 0.081 0.952 0.256 1.000 0.696
ensemble (δ = 0.8) 0.755 0.084 0.952 0.256 1.000 0.701

Case (E)
DC-SIS 0.778 0.130 0.916 0.184 0.993 0.317
MDC-SIS 0.778 0.130 0.916 0.184 0.993 0.317
MV-SIS 0.767 0.127 0.912 0.156 0.989 0.306
LSLB 0.992 0.321 1.000 0.407 1.000 0.661
LSQB 0.853 0.057 0.927 0.048 1.000 0.139
ensemble (δ = 0.6) 0.989 0.319 0.992 0.401 1.000 0.658
ensemble (δ = 0.7) 0.989 0.319 0.992 0.401 1.000 0.658
ensemble (δ = 0.8) 0.989 0.319 0.992 0.401 1.000 0.657
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ple 2 in Section 3.1 where the SIS-type methods fail. In this example of p0 = 2, let

(n, p) = (100, 200) with 198 noisy predictors from U(0, 1)198, and the coverage rates of

correct screening over 1000 repetitions of DC-SIS, MDC-SIS, LSLB, LSQB, and the ensem-

ble methods with δ = 0.6, 0.7, and 0.8 are 0.094, 0.101, 0.995, 0.922, 0.995, 0.995, and 0.892,

respectively. From these simulation results, main findings are similar to those in the interpo-

lation cases. The performance of ensemble screening is satisfactory even when the SIS-type

methods or the linear screening methods fail. A different finding from the interpolation

cases is that the selection of δ influences the performance of ensemble screening. As shown

in Section 3.2, the linear screening methods may perform poorly when the predictors are

correlated, and thus we should select relative large δ in ensemble screening. From Table S1

we can see that δ = 0.8 is a good choice for such cases.

A.2 Classification

We now consider binary response y ∈ {0, 1} and the following five cases.

Case (A): Generate X1, . . . ,Xn as the ND in Section A.1. ρ = 0.5. y1, . . . , yn are in-

dependently generated from the Bernoulli distribution B(1, pr(Xi)), where pr(Xi) =

exp(−4 + 2
∑p0

j=1Xij)/
[
1 + exp(−4 + 2

∑p0
j=1Xij)

]
Case (B): Generate X1, . . . ,Xn as the ND in Case (A) but let ρ = 0.1. y1, . . . , yn are

independently generated from the Bernoulli distribution B(1, pr(Xi)), where pr(Xi) =

exp(f(Xi1, . . . , Xip0)−5)/
[
1+exp(f(Xi1, . . . , Xip0)−5)

]
, where f is the weighted sphere

function in Section 5.1.

Case (C): Generate the data in the same manner as in Case (B) except let pr(Xi) =

Φ(f(Xi1, . . . , Xip0)− 5).

Case (D): Generate X1, . . . ,Xn i.i.d. ∼ 0.5N(−1p,Σ) + 0.5N(1p, Ip) with ρ = 0.2 in Σ.

y1, . . . , yn are independently generated from the Bernoulli distribution B(1, pr(Xi)),

where pr(Xi) = exp(f(Xi1, . . . , Xip0) − 5)/
[
1 + exp(f(Xi1, . . . , Xip0) − 5)

]
and f is

Ackley’s model.

4



Case (E): Generate the data in the same manner as in Case (D) except let pr(Xi) =

Φ(f(Xi1, . . . , Xip0)− 100) and f is Zakharov’s model.

Combinations of (n, p, p0) used in the simulations are displayed in Table S2. Besides the

methods compared in the previous two subsections, we add Cui, Li, and Zhong (2015)’s

MV-SIS method which is a model-free feature screening approach for high dimensional dis-

criminant analysis. The simulation results based on 1000 repetitions are presented in Table

S2. We can see that, similar to the previous two subsections, the coverage rates of the

proposed methods are close to the best one from the existing methods in most cases. In

particular, they have much better overall performance than the SIS-type methods.

B Proofs

Lemma B.1. Under Assumption 1, for A ⊂ Zp, fA = fA∩A0.

Proof. To simplify the notation, let p = 3, p0 = 2, and A = {1, 3}. The proof of the general

case is almost the same. Let X1, X2, X3 be independent random variables distributed from

U(0, 1). By Assumption 1, we have fA(x1, x3) = E(f(X1, X2, X3)|X1 = x1, X3 = x3) =

E(fA0(X1, X2)|X1 = x1, X3 = x3) = E(fA0(X1, X2)|X1 = x1) = E(f(X1, X2, X3)|X1 =

x1) = fA∩A0(x1).

Proof. of Proposition 1. By Lemma 1 and Assumption 2, fA = fA∩A0 = fA0 , which implies

A = A0.

It is obvious to obtain the following lemma.

Lemma B.2. Under Assumption 3, for f, g ∈ L2(Ip)∩L2
P (Ip), f =P g if and only if f = g.

Proof. of Proposition 2. (i)⇒(ii): Note that fA0 ∈ L2
P (IA0) and f = fA0 . It follows that

fA0 = fA0,P , which implies f =P fA0,P by Lemma B.2. Similarly we can prove fA = fA,P for

A & A0. Therefore, fA,P 6= fA0,P , which implies fA,P 6=P fA0,P by Lemma B.2.

(ii)⇒(i): Since fA0,P ∈ L2(IA0), we have fA0,P = fA0 , which implies f = fA0 . Similarly we

can prove fA,P = fA for A & A0, and thus fA0 6= fA.
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Lemma B.3. Under Assumptions 1-4,

βj(P ) =

(∫
Ip
b(xj)fA0(xA0)ψ(x)dx− ζ

∫
Ip
fA0(xA0)ψ(x)dx

)
/(η − ζ2) for j = 1, . . . , p0,

βj(P ) = 0 for j = p0 + 1, . . . , p,

where ζ =
∫
I b(x)ϕ(x)dx and η =

∫
I b(x)2ϕ(x)dx.

Proof. Under Assumption 4, u = ζ1p and Σ = (σij)p×p with σii = η for i = 1, . . . , p and

σij = ζ2 for i 6= j. Some algebra gives

 1 u′

u Σ

−1 =

 1 + pζ2/(η − ζ2) −ζ1′p/(η − ζ2)

−ζ1p/(η − ζ2) Ip/(η − ζ2)

 ,

where Ip denotes the p× p identity matrix. By (5),

β(P ) = − ζ

η − ζ2

∫
Ip
f(x)ψ(x)dx +

v

η − ζ2
. (B.1)

The result of the lemma for j = 1, . . . , p0 follows from (B.1) and Assumption 1. For j =

p0 + 1, . . . , p,

∫
Ip0+1

b(xj)fA0(x1, . . . , xp0)ϕ(x1) · · ·ϕ(xp0)ϕ(xj)dx1 · · · dxp0dxj

=

∫
I
b(xj)ϕ(xj)dxj

∫
Ip0

fA0(x1, . . . , xp0)ϕ(x1) · · ·ϕ(xp0)dx1 · · · dxp0 = ζ

∫
Ip0

fA0(x)ψ(x)dx,

which implies βj(P ) = 0.

Proof. of Proposition 4. This proposition follows from Lemma B.3 and Assumption 4.
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