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Abstract: The proliferation of cardiac signals, such as high-resolution electrocardiograms (HRECGs),
ultra-high-frequency ECGs (UHF–ECGs), and intracardiac electrograms (IEGMs) assist cardiologists
in the prognosis of critical cardiac diseases. However, the accuracies of such diagnoses depend on
the signal qualities, which are often corrupted by artifacts, such as the power line interference (PLI)
and its harmonics. Therefore, state space adaptive filters are applied for the effective removal of PLI
and its harmonics. Moreover, the state space adaptive filter does not require any reference signal
for the extraction of desired cardiac signals from the observed noisy signal. Nevertheless, the state
space adaptive filter inherits high computational complexity; therefore, filtration of the increased
number of PLI harmonics bestows an adverse impact on the execution time of the algorithm. In this
paper, a parallel distributed framework for the state space least mean square with adoptive memory
(PD–SSLMSWAM) is introduced, which runs the computationally expensive SSLMSWAM adaptive
filter parallelly. The proposed architecture efficiently removes the PLI along with its harmonics even
if the time alignment among the contributing nodes is not the same. Furthermore, the proposed
PD-SSLMSWAM scheme provides less computational costs as compared to the sequentially operated
SSLMSWAM algorithm. A comparison was drawn among the proposed PD–SSLMSWAM, sequen-
tially operated SSLMSWAM, and state space normalized least mean square (SSNLMS) adaptive filters
in terms of qualitative and quantitative performances. The simulation results show that the proposed
PD–SSLMSWAM architecture provides almost the same qualitative and quantitative performances
as those of the sequentially operated SSLMSWAM algorithm with less computational costs. More-
over, the proposed PD–SSLMSWAM achieves better qualitative and quantitative performances as
compared to the SSNLMS adaptive filter.

Keywords: adaptive noise cancellation; cardiac signal processing; PD–SSLMSWAM; power line
interference; state space adaptive filter

MSC: 92C55

1. Introduction

The cardiac signal represents the electrophysiology of atrial and ventricular depolar-
ization and repolarization of the heart. Additionally, the cardiac signal contains information
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regarding the structure and conduction of the heart’s electrical conduction system. Due
to rapid growth in biomedical technologies in the past decade, the acquisition of cardiac
signals has also evolved. Therefore, instead of recoding the normal electrocardiogram
(ECG) of cardiac patients, high-resolution ECGs (HRECGs), and ultra-high-frequency ECGs
(UHF–ECGs) are also monitored by cardiologists for the diagnosis of sudden cardiac death
(SCD), atrial and ventricular abnormalities, ventricular electrical dyssynchrony (e-DYS),
pericarditis, heart rate variability (HRV), etc. [1–3]. The acquisition of HRECG and UHF–
ECG signals provides in-depth details about the high-resolution in the time and frequency
domains, assisting cardiologists in the prognosis of critical cardiac diseases [1,2]. Likewise,
an electrophysiology study (EPS) monitors the real-time localized cardiac activity through
an intracardiac electrogram (IEGM), which provides aid to electrophysiologists for the
ablation of particular heart muscles in the case of critical cardiac arrhythmia [3]. On account
of these advancements, the frequency band of interest of cardiac signals may vary up to
1 kHz as compared to standard ECG frequency bands of [0–80] Hz; likewise, the HRECG
signal has a bandwidth of 500 Hz while the UHF–ECG and IEGM signal frequency bands
may increase to 1 kHz in the cases of atrial/ventricular abnormalities, heart rate variability
(HRV), etc. [4–6].

Due to a wider frequency band span, the HRECG, UHF–ECG, and IEGM cardiac
signals are more prone to different types of external noises, e.g., baseline wander (BW),
high-frequency noise, and power line interference (PLI). Among these noises, the PLI is the
most usual and catastrophic noise. For example, the cables carrying cardiac signals in car-
diac activity monitoring laboratories are vulnerable to electromagnetic interference (EMI).
Therefore, the PLI noise cannot be completely eluded from the cardiac signal even though
the recording device has a high common mode rejection ratio (CMRR). Moreover, the fre-
quency (i.e., 50 Hz or 60 Hz depending on the region) of the PLI’s fundamental component
and its harmonics superimpose with the cardiac signal spectrum span, overwhelms critical
features that may mislead cardiologists for diagnosis of myocardial infarction. Therefore,
the removal of the PLI’s fundamental component and its harmonics are challenging tasks
while preserving the underlying cardiac activity.

In the literature, numerous techniques have been proposed for PLI removal from
cardiac signals [7–13]. One of the most conventional approaches for PLI removal from
the observed cardiac signal is notch filtering, which may be implemented through finite
impulse response (FIR) and infinite impulse response (IIR) filters [7–9]. However, notch
filtering using FIR and IIR filters provides longer observational delays, ringing effects,
and non-linear phase distortions, respectively [10–13]. Moreover, PLI removal through
notch filtering may distort the underlying cardiac activity, which could mislead the results,
especially in the case of the aforementioned critical diseases.

Signal decomposition-based techniques for cardiac signal denoising have been re-
ported in the literature, e.g., the Fourier decomposition (FD) method [14–17], empirical
mode decomposition (EMD) [18,19], and eigenvalue decomposition (EVD) [20]. The FD
method decomposes the cardiac signal into different frequency bands and takes out the
complete frequency band to remove the PLI interference [21]. The elimination of the com-
plete band bestows a critical impact on the denoised cardiac signal. Likewise, the EMD
and its modified algorithms [22,23] decompose the PLI signal into different intrinsic mode
functions (IMFs). Hence, removing the PLI noise means setting these IMFs to zero, which
leads to the loss of significant underlying cardiac activities. Similarly, the EVD-based
techniques [24] estimate the PLI interference eigenvectors and, thereafter, remove these
eigenvectors for PLI elimination from cardiac signals, which also eradicate some critical
features of cardiac signals.

To overcome such a problem, adaptive filtration techniques have been introduced
to better handle and retain the underlying cardiac activity intact [25,26]. In this context,
Widrow et al. introduced the concept of adaptive noise cancellation (ANC) and Glover et al.
applied ANC for PLI removal by adaptively tracking PLI sinusoids with known parameters,
such as amplitude, phase, and frequency [27,28]. Later on, H.C. So modified the ANC
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technique for two unknown parameters, the amplitude and phase of the PLI signal, while
the frequency of the observed signal is known [29]. Likewise, Satija modified the ANC
algorithm for all three unknown parameters [30]. Therefore, the ANC’s need for a reference
signal, makes the medical devices expensive.

Overcoming the issues related to reference-based signals for adaptive filtering that
state space adaptive filters introduce does not require reference signals for the removal of
the PLI interference from cardiac signals [31–34]. On the other hand, the state space adaptive
filter provides fast convergence and efficiently handles the frequency drifts on behalf of
higher computational costs. Moreover, the computational burden is further increased due
to PLI and its harmonics that need to be removed from the cardiac signal [32].

In this paper, the scope of [34] is extended by making it useful for the effective removal
of PLI plus its harmonics from HRECCG, UHF–ECG, and IEGM signals. In this context,
the parallel distributed state space least mean square with adaptive memory (SSLMSWAM)
framework is proposed to adaptively track and eliminate the PLI and its harmonics from
these cardiac signals. The proposed PD–SSLMSWAM algorithm provides lesser computa-
tional costs compared to the sequentially operated SSLMSWAM algorithm. The simulation
results show that the proposed architecture provides lesser computational costs and it
shows almost the same qualitative and quantitative performances as compared to the
sequentially operated SSLMSWAM algorithm. The remainder of the paper is organized
as follows. In Section 2, the generalized state space model for PLI and its harmonics is
modeled. The concept’s sequentially operated SSLMSWAM algorithm and proposed paral-
lel distributed framework PD–SSLMSWAM along with the computational comparison is
explained in Section 3. Section 4 describes the computer simulation results and discussions.
Finally, the conclusion is outlined in Section 5.

2. State Space Model of PLI

The cardiac signal is corrupted by the PLI signal at the time instant k and can be
modeled as

y[k] = xcl [k] + I[k] (1)

where y[k] is the contaminated signal, xcl [k] is the pure cardiac signal, and I[k] is the PLI
signal, which can be defined as

I[k] =
M

∑
i=1

aisin(2π f i∆Tk + θi) (2)

where M shows the total number of harmonics of the PLI signal, ai is the amplitude of the
ith harmonic component, f is the fundamental frequency component, ∆T is the sampling
period, and θi is the phase of the ith harmonic. The PLI signal for the fundamental frequency
at i = 1 can be expressed as.

I[k] = a1sin(ωk + θ1). (3)

where ω = 2π f ∆T is the frequency in the rad/esc. The state space representation of the
PLI model of the 1st harmonic given in (3) has two states, which can be written as.

x1[k] = a1sin(ωk + θ1)

x2[k] = a1sin(ωk + θ1 + π/2) = a1cos(ωk + θ1)
(4)

With the help of trigonometric identities, the (4) can be rewritten as.

x1[k] = a1sin(ωk)cos(θ1) + a1cos(ωk)sin(θ1)

x2[k] = a1cos(ωk)cos(θ1)− a1sin(ωk)sin(θ1)
(5)
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By rewriting (5) in the matrix form, we have[
x1[k]
x2[k]

]
=

[
cos(ωk) sin(ωk)
−sin(ωk) cos(ωk)

][
a1sin(θ1)
a1cos(θ1)

]
(6)

The initial conditions at k = 0, (6) can be expressed as

x1[0] = a1sin(θ1)

x2[0] = a1cos(θ1)
(7)

Putting the initial conditions as defined in (7) into (6) at k = 0, we have[
x1[1]
x2[1]

]
=

[
cosω sinω
−sinω cosω

][
x1[0]
x2[0]

]
(8)

Likewise, the generalized form for k > 1, (8) can be expressed as[
x1[k + 1]
x2[k + 1]

]
=

[
cosω sinω
−sinω cosω

][
x1[k]
x2[k]

]
(9)

Ideally, the main power lines comprise only fundamental frequency components of
50 Hz or 60 Hz (depending on the regional area). However, in practical situations, the
integer multiples of the fundamental frequency component, called harmonics, are also
present. Due to the half-wave symmetry property, the power line system only has odd
harmonics [35]. Therefore, the generalized PLI state space model for M harmonics can be
expressed in (10), which is presented at the top of the next page.

x1[k + 1]
x2[k + 1]

...
x2M−1[k + 1]

x2M[k + 1]

 =


cosω sinω · · · 0
−sinω cosω · · · 0

...
...

. . .
...

0 · · · cosMω sinMω
0 · · · −sinMω cosMω




x1[k]
x2[k]

...
x2M−1[k]

x2M[k]

 (10)

3. Methodology
3.1. SSLMSWAM Algorithm

The SSLMSWAM adaptive algorithm is based on the state space model, which provides
good tracking capabilities with high accuracy [36]. The unforced discrete time state space
model for the removal of PLI plus its harmonics from cardiac signals is defined as.

x[k + 1] = Ax[k]

y[k] = cx[k] + v[k]
(11)

where y[k] is the observed output signal at time index k, v[k] is the observation noise, c is
the output vector, x[k] is the state vector, and A is the state transition matrix. Moreover, for
SSLMSWAM adaptive filter modeling, it is assumed that A and c should be invertible and
full rank, respectively, while their pairs (A, c) should be l-step observable [37]. Furthermore,
the predicted state x̄[k] that is formulated through the a priori estimated state x̂[k− 1] can
be written as follows:

x̄[k] = Ax̂[k− 1] (12)

Similarly, the predicted output ȳ[k] and the prediction error ε[k] can be defined as

ȳ[k] = cx̄[k] (13a)

ε[k] = y[k]− ȳ[k] (13b)
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The SSLMSWAM is a recursive algorithm that recursively estimates the state x̂[k]
given the prior estimated state x̂[k− 1] on the advent of observation y[k]. The SSLMSWAM
adaptive algorithm updates the states in a well-known estimator form [38].

x̂[k] = x̄[k] + k[k]ε[k] (14)

where k[k] is the observational gain. Likewise, the estimated output ŷ[k] and the estimated
error e[k] can be defined as

ŷ[k] = cx̂[k] (15a)

ε[k] = y[k]− ŷ[k] (15b)

The observational gain for SSLMS can be expressed as [39].

k[k] = µGcT (16)

where µ is the step size, which controls the convergence rate while the matrix G is chosen
in a way to make the pair (A− k[k]cA, k[k]) controllable for such an estimator. Likewise,
the observational gain for the normalized SSLMS (SSNLMS) can also be represented as [40].

k[k] = µGcT(γI + ccT)−1 (17)

where ccT is the normalization factor and γ is a small number to ensure the invertibility of
matrix ccT .

The generalized PLI state space model (10) contains the frequency drifts in a real-time
scenario; therefore, the state space adaptive filter should adaptively tune the step size
to better handle these frequency drifts. Hence, the SSLMS with the adaptive memory
iteratively tunes the step-size parameter µ by minimizing the following cost function [37].

J[k] =
1
2

E
[
εT [k]ε[k]

]
(18)

where ε[k] is the prediction error defined in (13) and E[•] is the expectation operator.
Differentiating J[k] with respect to µ can be written as

∇µ[k] =
∂J[k]
∂µ

= E
[∂εT [k]

∂µ
ε[k]

]
(19)

By taking the partial fraction of (13), we have

∂ε[k]
∂µ

=
∂

∂µ

[
y[k]− cAx̂[k− 1]

]
= −cAΨ[k− 1], (20)

where Ψ[k] = ∂x̂[k]
∂µ and ∂εT [k]

∂µ is a row vector; therefore, (19) can be rewritten as

∇µ[k] = −E
[
Ψ[k− 1]ATcTε[k]

]
(21)

Differentiating (14) with respect to µ and using (12), (16) and (20), we have

Ψ[k] =
(

A− k[k]cA
)

Ψ[k− 1] + GcTε[k], (22)

Moreover, the updated equation of the time-varying step size µ[k] based on the stochas-
tic gradient method can be defined as [38].

µ[k] = µ[k− 1]− α∇µ[k], (23)
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where α is a small positive learning rate parameter. Furthermore, the instantaneous estimate
of the scalar gradient ∇µ[k] mentioned in (21) can be taken as

∇̂µ[k] = −ΨT [k− 1]ATcTε[k], (24)

Hence (23) can be rewritten as

µ[k] =
[
µ[k− 1]− αΨT [k− 1]ATcTε[k]

]µ+

µ−
, (25)

where µ− is the lower limit, which is generally set close to zero and µ+ is the upper limit
that depends on the natural variations in the PLI frequency. The complete SSLMSWAM is
summarized in (26), where µ is replaced with µ[k] in the observational gain (16).

x̂[k] = Ax̂[k− 1] + k[k]ε[k]

ε[k] = y[k]− cAx̂[k− 1]

k[k] = µGcT

µ[k] =
[
µ[k− 1]− αΨT [k− 1]ATcTε[k]

]µ+

µ−

Ψ[k] =
(

A− k[k]cA
)

Ψ[k− 1] + GcTε[k]

(26)

Likewise, the SSNLMS adaptive filter algorithm is summarized in (27)

x̂[k] = Ax̂[k− 1] + k[k]ε[k]

ε[k] = y[k]− cAx̂[k− 1]

k[k] = µGcT(γI + ccT)−1

(27)

The estimated noise-free cardiac signals x̂[k] can be obtained by taking the difference
of the estimated output signal ŷ[k] and the contaminated cardiac signal y[k], which can be
written as

x̂[k] = y[k]− ŷ[k] (28)

The flow diagram of the sequentially operated SSLMSWAM algorithm is shown in
Figure 1.

c Delay A

k c

y[k] ȳ[k] x̄[k]

ε[k] x̂[k] ŷ[k]

y[k] x̂[k]

+ −

+
−

+
+

Figure 1. Working of the SSLMSWAM adaptive filter in sequential form.

3.2. Proposed Parallel Distributed System Model

In the conventional SSLMSWAM algorithm, all filter parts are interdependent of
each other, which makes the algorithm run in a cascade fashion. Due to the cascade
fashion, the SSLMSWAM algorithm provides high computational costs as compared to
the SSLMS adaptive filter. However, in the proposed PD–SSLMSWAM algorithm, all filter
parts are capable of working in a parallel fashion and this was done by placing the time
non-alignment among the parts of the SSLMSWAM algorithm. While setting the time’s
non-alignment among the participating parts of the algorithm, it must be realized that the
behavior of the filter is not uncertain while it implements the desired application; secondly,
all of the filter parts are able to operate in a parallel fashion. The flow diagram of the
proposed PD–SSLMSWAM is depicted in Figure 2.
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x̂[k] = Ax̂[k−1]+k[k−1]ε[k]

ε[k] = y[k] − cAx̂[k − 1]

N1

k[k] = µ[k − 1]GcT

N2

ψ[k] = (A − k[k − 1]cA)
×ψ[k − 1] + GcT ε[k − 1]

N4

µ[k] = µ[k − 1] +
αψT [k − 1]AT cT ε[k − 1]

N3

cA

N5

z−1

z−1

z−1z−1

z−1

z−1

z−1

z−1z−1

z
−
1

Figure 2. The proposed parallel distributed architecture for the SSLMSWAM adaptive filter.

The sequentially operated state space adaptive filter operated on a single computa-
tionally capable unit, as shown in Figure 1. However, if the same state space adaptive filter
operates on a group of computationally incapable platforms using the proposed parallel
distributed scheme, these filter nodes, namely N1, N2, N3, N4, and N5 would be executed
parallelly on various individual platforms, as shown in Figure 3.

Figure 3. Working procedure for the transmission of data.

Let the processing time taken by the estimated state x̂k, predicted error εk, observation
gain kk, step size µk, Ψk, and cA be represented as Tx̂, Tε, Tk, Tµ, TΨ, and TcA, respectively.

Consequently, the overall time required by the SSLMSWAM algorithm when it oper-
ates sequentially can be written as

Ttot = Tx̂ + Tε + Tk + Tµ + TΨ + TcA (29)

Here, TΨ is the maximum contributor to the overall processing time; the strict and
sufficient condition based on multiplication and addition computations with respect to fast
convergence performance can be defined as

Tx̂, Tε, Tk, Tµ, TcA ≤ TΨ (30)

The mismatch factor ξ between the aligned and nonaligned time indexes can be
defined as

ξ = ‖εseq − εNA‖ (31)

where εseq and εNA are the errors based on the sequentially operated SSRLMSWAM al-
gorithm and proposed PD–SSLMSWAM algorithm, respectively. The pseudocode of the
proposed PD-SSLMSWAM is given in Algorithm 1.
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Algorithm 1: Pseudocode of the proposed PD-SSLMSWAM

Input: xcl [k], I[k]
Output: x̂[k]
Initialization: α← 0.0001
G← I10×10 , µ[0]← 0.01
x̂[0]← 010×1 , k[0]← 010×1
c← [1 0 1 0 1 0 1 0 1 0]

y[k]← xcl [k] + I[k]
for k = 1 to n

A← Compute through Equation (10)
Compute cA
Do in Parallel
ε[k]← y[k]− cAx̂[k− 1]
x̂[k]← Ax̂[k− 1] + k[k− 1]ε[k]
k[k]← µ[k− 1]GcT

µ[k]←
[
µ[k− 1]− αΨT [k− 1]ATcTε[k− 1]

]µ+

µ−

Ψ[k]←
(

A− k[k− 1]cA
)

Ψ[k− 1] + GcTε[k− 1]

ŷ[k]← cx̂[k]
x̂[k]← y[k]− ŷ[k]

3.3. Computational Complexity

The computational costs of the adaptive algorithm provide significant impacts, par-
ticularly in real-time applications. In this section, the complexity comparison of SSNLMS,
sequentially operated SSLMSWAM, and proposed PD–SSLMSWAM adaptive filters are
discussed. The computational complexity of the sequentially operated SSLMSWAM (26) is
given in Table 1 while the computational costs of SSNLMS (27) are mentioned in Table 2.
It can be realized that the sequentially operated SSLMSWAM requires 6n2 + 6n + 1 mul-
tiplications and 6n2 − n additions per iteration. Similarly, the SSNLMS needs 3n2 + 6n
multiplications and 3n2 additions in each iteration, where n shows the system order.

Table 1. Computational complexity of the SSLMSWAM mentioned in Equation (26).

Eq.# Operation Multiplications Additions

d1×n = c1×nAn×n n2 n2 − n

(26.1) x̂[k]n×1 = An×nx̂[k− 1]n×1 + k[k]n×1ε[k]1×1 n2 + n n2

(26.2) ε[k]1×1 = y[k]1×1 − d1×nx̂[k− 1]n×1 n n

(26.3) k[k]n×1 = µ[k]1×1Gn×ncT
1×n n2 + n n2 − n

pn×1 = dT
n×1ε[k]1×1 n –

q1×1 = ΨT [k− 1]1×npn×1 n n− 1
(26.4) µ[k]1×1 = µ[k− 1]1×1 + α1×1qn×1 1 1

2n + 1 n

hn×1 = Gn×ncT
n×1ε[k]1×1 n2 + n n2 − n

Jn×n = k[k]n×1d1×n n2 –
On×n = An×n − Jn×n – n2

sn×1 = On×nΨ[k− 1]n×1 n2 n2 − n
(26.5) Ψ[k]n× 1 = sn×1 + hn×1 – n

3n2 + n 3n2 − n

Total 6n2 + 6n + 1 6n2 − n
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Table 2. Computational complexity of the SSNLMS mentioned in Equation (27).

Eq.# Operation Multiplications Additions

(27.1) x̂[k]n×1 = An×nx̂[k− 1]n×1 + k[k]n×1ε[k]1×1 n2 + n n2

(27.2) ε[k]1×1 = y[k]1×1 − c1×nAn×nx̂[k− 1]n×1 n2 + n n2

pn×1 = µ1×1Gn×ncT
n×1 n2 + n n2 − n

q1×1 = c1×ncT
n×1 n n− 1

r1×1 = γ1×1 I1×n + q1×1 n 1
s1×1 = r−1

1×1 1 –
(27.3) k[k]n×1 = pn×1s1×1 n –

n2 + 4n + 1 n2

Total 3n2 + 6n + 1 3n2

On the other hand, the proposed PD–SSLMSWAM framework entails less computa-
tional costs than sequentially operated SSLMSWAM and SSNLMS adaptive filters. The pro-
posed PD–SSLMSWAM architecture requires parallel 3n2 + n multiplications and 3n2 − n
additions per iteration at maximum, and this reduced complexity is based on the fact
that node N4 provides the maximum computational cost as compared to other nodes in
the distributed network, which is clearly presented in Table 1. The summarized forms
of complexity comparisons among the proposed PD–SSLMSWAM, sequentially operated
SSLMSWAM, and SSNLMS adaptive filters are presented in Table 3. It can be seen that
the proposed architecture provides reduced complexity compared to those of sequentially
operated SSLMSWAM and SSNLMS adaptive filters.

Table 3. Comparison of computational complexity.

Algorithm Multiplications Additions

Sequentially operated SSLMSWAM 6n2 + 6n + 1 6n2 − n

SSNLMS 3n2 + 6n + 1 3n2

Proposed PD–SSLMSWAM 3n2 + n 3n2 − n

3.4. Performance Parameters

Besides the visual inspection, a quantitative measure of the efficiency of the filtering
method and the clinical acceptability of the reconstructed signal are employed to provide
accurate accessions on the proposed approach. Consequently, four performance evaluation
indexes are employed to compare the original (noise-free) cardiac signal with the filtered
signal. Therefore, among these performance metrics, the suppression ratio can be written
as [41].

γ = 10log10

{
‖y‖2

2

‖x̂‖2
2

}
(32)

where y is the contaminated cardiac signal and x̂ is the filtered signal. in the case of a highly
corrupted cardiac signal (low input SNR), the value of the suppression ratio γ should be
observed as high as possible.

Secondly, Pearson’s correlation coefficient, which shows the shape similarity of the
filtered signals to the original noise-free cardiac signals can be expressed as [42]

ρ =
E
[
xx̂
]

σxσx̂
(33)

where σx and σx̂ are the standard deviations of pure noise-free cardiac signals and denoised
signals, respectively. The value of the correlation coefficient shows the shape similarity of
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the filtered signals to the original noise-free cardiac signals. Furthermore, the well known
SNR and mean square error (MSE) are expressed as [15].

SNRout = 10log10

{
σ2

x

σ2
(x−x̂)

}
(34)

MSE =
1
N

N

∑
n=1

(x[k]− x̂[k])2 (35)

The output SNR should be high because the remaining interference should be as low
as possible. On the other hand, the MSE defines how close the recovered signal is to the
clean signal.

4. Results and Discussions

In this section, both the qualitative and quantitative-based results are presented.
The proposed PD–SSLMSWAM algorithm is then compared with those of sequentially
operated SSLMSWAM and SSNLMS adaptive algorithms. To substantiate the validation
of the proposed algorithm, three types of cardiac signals are used in this study, namely,
HRECG, UHF–ECG, and IEGM. The HRECG and atrial IEGM signals were acquired from
the National Institute of Heart Diseases (NIHD), with a sampling rate of 1000 samples/s
and 2000 samples/s, respectively [43]. While the UHF–ECG signal used in this paper is
provided by Dr. Pavel Jurak with a sampling rate of 5000 samples/s [4].

4.1. Qualitative Performance

The normalized two-second segment of the pure HRECG signal and its frequency
spectrum are shown in Figure 4. The frequency spectrum shows that the recorded HRECG
signal has no PLI component or harmonics; however, it contains high-frequency content.
The removal of the high-frequency content is not within the scope of this paper, mean-
while the existence of the high-frequency content does not affect the performance of the
proposed architecture.
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(b)
Figure 4. Thenoise-free HRECG cardiac signal, plus its frequency spectrum with a sampling rate of
1000 samples/s. (a) Pure HRECG signal; (b) frequency response of the HRECG test signal.

Moreover, to demonstrate the effectiveness of the proposed algorithm on the significant
harmonic content, the following composite PLI interference signal is taken from (2) and
can be expressed as

xPLI(n) = A.1.0sin(ωn + θ1) + A.0.2sin(3ωn + θ3)

A.0.01sin(5ωn + θ5) + A.0.04sin(7ωn + θ7)

A.0.09sin(9ωn + θ9)

(36)
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where ω = 2π f0/ fs denotes the normalized angular frequency, A = 1 is the amplitude and
θi = {0◦, 180◦, 0◦, 0◦, 180◦} are the initial phases of the harmonics of order i. The selected
signal is rich in odd harmonic content for being the most usual case for PLI interference.
The fundamental frequency of the PLI interference signal is set as f0 = 48.79 Hz.

To validate the qualitative performance of the proposed algorithm, the PLI noise, with
a fundamental frequency of 48.79 Hz, as well as its next four odd harmonics, are considered.
The normalized magnitudes of the 1st, 3rd, 5th, 7th, and 9th harmonic components along
with the composite PLI signal, are shown in Figure 5. Furthermore, the contaminated
HRECG signal with an SNR value of 3 dB is shown in Figure 6. The PLI-contaminated
HRECG signal is the mixture of the compound PLI signal and pure HRECG signal. On
the other hand, the frequency spectrum of the contaminated HRECG clearly depicts the
harmonic as an odd integer multiple of 50 Hz, as illustrated in Figure 6a. For a PLI signal
with five harmonic components (including fundamental), the system matrix A entails the
dimensions of 10× 10. Likewise, the state vector w requires the dimension of 10× 1 and the
observational vector c entails the dimension of 1× 10. For tracking of 1st, 3rd, 5th, 7th, and
9th harmonics of the PLI, the C vector in (15) can be chosen as c = [1 0 1 0 1 0 1 0 1 0]. The
SSLMSWAM adaptive filter updates the states based on the recursive approach; therefore,
initialization of the parameters, such as α, G, x̂[0], µ[0], and k[0] is required. For the
simulation purpose, these parameters are initialized as α = 0.0001, G = I10×10. Moreover,
the predicted states x̂[k] and the observational gain k[k] are presumed to have zero initial
conditions except for µ[0], which is set to be 0.01. The frequency spectrum of the adaptive
tracking of the PLI signal by using the proposed PD–SSLMSWAM architecture is shown
in Figure 6b. It can be seen that the proposed architecture provides good tracking for five
harmonics components of the PLI signal, including the fundamental component.
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(b)
Figure 5. The PLI-corrupted cardiac signal plus its frequency spectrum. (a) PLI-corrupted HRECG
signal; (b) the frequency response with the 1st, 3rd, 5th, 7th, and 9th harmonics of PLI.

Furthermore, to validate the qualitative performances of the proposed PD–SSLMSWAM
algorithm, a comparison was drawn among the proposed PD–SSLMSWAM adaptive algo-
rithm, sequentially operated SSLMSWAM adaptive algorithm, and the SSNLMS adaptive
filter for the PLI interference signal with fundamental and harmonic components. The step
size µ is taken as 0.05 for the SSNLMS adaptive filter throughout the rest of the paper. For
the simulation, a segment of a PLI-contaminated cardiac signal is shown in Figure 7. The
results show that the proposed PD–SSLMSWAM scheme provides an equivalent perfor-
mance than that of the sequentially operated SSLMSWAM algorithm. However, it is also
evident that the transition period of the SSNLMS adaptive filter is greater than that of the
proposed PD–SSLMSWAM architecture.
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Figure 6. The amplitude scale of PLI harmonics and their tracking. (a) The amplitude scale of odd
harmonics in the composite PLI signal; (b) the frequency spectrum of the tracked PLI signal.
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Figure 7. Filtration comparison among the proposed PD–SSLMSWAM, sequentially operated SSLM-
SWAM, and SSLNLMS adaptive filters for the HRECG cardiac signals.

Likewise, the comparative analysis in terms of the convergence performance for
the UHF–ECG signal and IEGM signal are shown in Figures 8 and 9, respectively. It
can be observed that the proposed architecture provides almost the same convergence
performance as that of the sequentially operated SSLMSWAM algorithm. It can also be
realized that the error, which is provided by the proposed PD–SSLMSWAM algorithm, is
much less than that of the SSNLMS adaptive filter.
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Figure 8. Filtration comparison among proposed PD–SSLMSWAM, sequentially operated SSLM-
SWAM, and SSLNLMS adaptive filters for the UHF–ECG cardiac signal.
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Figure 9. Filtration comparison among the proposed PD–SSLMSWAM, sequentially operated SSLM-
SWAM, and SSLNLMS adaptive filters for the HRA–IEGM cardiac signal.
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The qualitative performance of the proposed PD–SSLMSWAM architecture is almost
the same as that of the sequentially–operated SSLMSWAM for all types of cardiac signals.
Therefore, the proposed PD–SSLMSWAM algorithm is only compared with the SSNLMS
adaptive filter to analyze the convergence performance for abrupt, linear, and sinusoidal
deviations in both the amplitude and frequency of the PLI interference. For simulation
purposes, a change in the amplitude of the PLI with a range of 0 to 300 mV and a funda-
mental frequency of 48.79 Hz of the composite PLI signal with a deviation of ∆F = ±0.75
Hz are considered.

As the state space adaptive filters track the amplitude of the PLI signal based on the
given frequency; therefore, to estimate the change in frequency, the high-resolution fre-
quency estimation technique mentioned in [31] is applied for the proposed PD–SSLMSWAM,
sequentially–operated SSLMSWAM, and SSNLMS adaptive filters. Figure 10 shows the cor-
rupted cardiac signal of the PLI with abrupt changes in both the amplitude and frequency
of the composite PLI signal. It can be realized that the proposed PD–SSLMSWAM algorithm
takes approximately 500 ms, while the SSNLMS adaptive filter requires approximately 1500
ms to track the abrupt deviations in the amplitude and frequency of the PLI signal.
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(b)
Figure 10. Filtration comparison between the proposed PD–SSLMSWAM and SSNLMS adaptive
filters for PLI-corrupted cardiac signals.(a) Abrupt changes in amplitude; (b) abrupt changes in the
frequency of the composite PLI signal.

Moreover, the linear deviated PLI-corrupted cardiac signal with respect to amplitude
and frequency is shown in Figure 11a and Figure 11b, respectively. It can be observed that
the tracking error of the proposed algorithm is less than that of the SSNLMS adaptive filter.
Additionally, sinusoidal low variations in the amplitude and frequency of the composite
PLI signals are incorporated as shown in Figure 12. It can be evident that the proposed
PD–SSLMSWAM algorithm successfully tracks the variations in both the amplitude and
frequency of the PLI signal as compared to the SSNLMS adaptive filter.
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Figure 11. Filtration comparison between the proposed PD–SSLMSWAM and SSNLMS adaptive
filters for the PLI-corrupted cardiac signals. (a) Linear change in the amplitude; (b) linear change in
the frequency of the composite PLI signal.
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Figure 12. Filtration comparison between the proposed PD–SSLMSWAM and SSNLMS adaptive
filters for PLI-corrupted cardiac signals.(a) Sinusoidal low change in amplitude; (b) sinusoidal low
change in frequency of the composite PLI signal.

4.2. Qualitative Performance

In this section, the proposed PD–SSLMSWAM technique is compared with those of
sequentially operated SSLMSWAM and SSNLMS adaptive filters in terms of computational
complexity, suppression ratio [41], correlation coefficient factor [42], the output SNR, and
mean square error (MSE) [15].

Figure 13 represents the multiplication and addition complexity comparison of the
proposed PD–SSLMSWAM and sequentially operated SSLMSWAM and SSNLMS adaptive
filters. It is observed that the proposed technique using nonaligned time indexes parallelly
provides lesser multiplication and addition complexities than the sequentially operated
SSLMSWAM. However, in the case of the SSLMSWAM adaptive filter, the node N5 based on
Ψ[k] provides the maximum computational cost as compared to other nodes, as presented
in Table 1. Moreover, the parallelly reduced complexity provides serious impacts on
the efficiency of the distributed network in terms of less computational costs, which are
performed at each processing node.
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Figure 13. Computational complexity comparison among the proposed PD–SSLMSWAM, sequen-
tially operated SSLMSWAM and SSLNLMS adaptive filters. (a) Multiplication complexity; (b) addi-
tion complexity.

The performance criteria of the suppression ratio γ with respect to various SNR
values are compared in Figure 14. The proposed PD–SSLMSWAM algorithm has the
same suppression ratio as a sequentially operated SSLMSWAM. It is also evident that the
SSNLMLS adaptive filter provides much less of a suppression ratio for the low input SNR
as compared to the proposed algorithm.
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Figure 14. Suppression ratio.

In the cases of critical cardiac diseases, such as SCD, e-DYS, and HRV, the shape or
pattern of the cardiac signal helps the cardiologist in the clinical prognosis and diagnosis.
Therefore, to measure the shape distortion due to the PLI interference, the correlation coef-
ficient provided by the proposed PD–SSLMSWAM sequentially operates the SSLMSWAM
algorithm and the SSNLMLS adaptive filter, as compared in Figure 15. The proposed
architecture has almost negligible impacts in terms of shape distortion, while the overall
correlation coefficient factor of the SSLMSWAM adaptive filter for the PLI removal is very
high even when the corrupted HRECG has an input SNR of −20 dB compared to the
SSNLMLS adaptive filter.



Mathematics 2023, 11, 350 17 of 21

-30 -20 -10 0 10 20 30

SNR input (dB)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
co

rr
 (

dB
)

Correlation Coefficient

Proposed PD-SSLMSWAM
Sequntially operated SSLMSWAM
SSNLMS Filter
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Furthermore, the comparison between the proposed PD–SSLMSWAM and sequentially
operated SSLMSWAM and SSNLMLS adaptive filters for the output SNR and MSE are
shown in Figures 16 and 17, respectively. It can be seen that the output SNR provided by
the proposed PD–SSLMSWAM architecture is approximately 5 dB higher than that of the
SSNLMLS adaptive filter until the input SNR level is 0 dB. Likewise, the MSE error of the
proposed architecture is also much less than that of the SSNLMLS adaptive filter.
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Figure 16. Output signal-to-noise ratio (SNR).
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Figure 17. Mean square error (MSE).

Furthermore, to substantiate the validity of the proposed algorithm, a large dataset of
real cardiac signals was statistically analyzed to measure the quantitative performance of
PD–SSLMSWAM, sequentially operated SSLMSWAM, and SSNLMS adaptive filters. The
dataset includes 181 recordings of the HRECG signal, 360 recordings of the UHFECG signal,
and 230 recordings of the IEGM signal. Each recording of the real cardiac signal has a length
of 30 s. The statistical analysis of the proposed and sequentially operated SSLMSWAM and
SSNLMS algorithms for cardiac signals are illustrated in Table 4. The suppression ratios
of the proposed and sequentially operated SSLMSWAM are nearly the same for HRECG
and IEGM signals, but for the UHFECG signal, the proposed algorithm has more of a
suppression ratio than that of the sequentially operated SSLMSWAM. Likewise, the pro-
posed PD-SSLMSWAM algorithm achieves a higher suppression ratio for all three types of
cardiac signals compared to the SSNLMS adaptive filter. Moreover, the proposed algorithm
provides a much higher output SNR for all three types of cardiac signals, i.e., HRECG,
UHFECG, and IEGM than those of the sequentially operated SSLMSWAM and SSNLMS
algorithms. Likewise, the correlation coefficients of both the proposed and sequentially
operated SSLMSWAM are almost the same for HRECG and IEGM signals, but for the UH-
FECG signal, the proposed algorithm has a much higher correlation coefficient than that of
the sequentially operated SSLMSWAM. Likewise, the proposed PD-SSLMSWAM algorithm
achieves a higher suppression ratio for all three types of cardiac signals as compared to
the SSNLMS adaptive filter. Furthermore, the proposed algorithm provides a lesser mean
square error for all three types of cardiac signals, i.e., HRECG, UHFECG, and IEGM than
those of the sequentially operated SSLMSWAM and SSNLMS algorithms.



Mathematics 2023, 11, 350 19 of 21

Table 4. Statistical analysis of the proposed PD–SSLMSWAM, sequentially operated SSLMSWAM,
and SSNLMS algorithm for real cardiac data.

Cardiac Data No. of Recordings Proposed PD–SSLMSWAM Sequential SSLMSWAM SSNLLMS

Suppression Ratio

HRECG 181 2.6428 2.3376 2.2778
UHFECG 360 6.8996 0.54561 0.31098

IEGM 230 57.944 57.961 21.566

Output SNR

HRECG 181 8342.5 6561.7 6077.6
UHFECG 360 216.25 65.315 27.467

IEGM 230 120.67 118.11 110.62

Correlation Coefficient

HRECG 181 0.11652 0.092527 0.086663
UHFECG 360 40.007× 10−3 0.303× 10−3 0.187× 10−3

IEGM 230 0.01332 0.013302 0.079151

Mean Square Error

HRECG 181 291.4× 10−6 634.85× 10−3 25.125
UHFECG 360 4.6085× 10−6 205.48× 10−6 150.51× 10−3

IEGM 230 5.2041× 10−10 8.3774× 10−10 1.4554× 10−6

5. Conclusions

In this paper, a computationally efficient parallel distributed framework for the state
space least mean square with an adoptive memory (SSLMSWAM) adaptive filter is pro-
posed. The proposed parallel distributed architecture runs the computationally expensive
SSLMSWAM adaptive filter parts in a parallel manner. The proposed parallel distributed
SSLMSWAM (PD–SSLMSWAM) algorithm efficiently removes the PLI along with its har-
monics (even the time alignments among the contributing nodes are not the same). The
proposed PD–SSLMSWAM technique was compared with those of the sequentially oper-
ated SSLMSWAM and state space normalized least mean square (SSNLMS) adaptive filters
in terms of computational costs and convergence performances. It was observed that the
proposed PD–SSLMSWAM algorithm exhibits less computational costs and has nearly the
same convergence performance as that of the sequentially operated SSLMSWAM adaptive
filter. However, the proposed PD–SSLMSWAM architecture has a high convergence per-
formance for the effective removal of PLI, along with its harmonics from cardiac signals,
compared to the SSNLMS adaptive filter.

The source code can be accessed by clicking on the following link.
https://github.com/RaoInam-ur-Rehman/PDSSLMSWAM-for-removal-of-PLI-from-

cardiac-signals (accessed on 1 January 2020 ).
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