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Abstract: This research introduces a stochastic version of the multi-mode resource-constrained project
scheduling problem (MRCPSP) and its mathematical model. In addition, an efficient multi-start
iterated local search (MS-ILS) algorithm, capable of solving the deterministic MRCPSP, is adapted to
deal with the proposed stochastic version of the problem. For its deterministic version, the MRCPSP
is an NP-hard optimization problem that has been widely studied. The problem deals with a trade-off
between the amount of resources that each project activity requires and its duration. In the case of
the proposed stochastic formulation, the execution times of the activities are uncertain. Benchmark
instances of projects with 10, 20, 30, and 50 activities from well-known public libraries were adapted
to create test instances. The adapted algorithm proved to be capable and efficient for solving the
proposed stochastic problem.

Keywords: stochastic project scheduling; metaheuristic; multiple modes; resource constraints;
iterated local search
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1. Introduction

The multi-mode resource-constrained project scheduling problem (MRCPSP) is con-
sidered to be an extension of the resource-constrained project scheduling problem (RCPSP).
This problem consists of a set of project activities that need to be scheduled. The activities
have finish-to-start precedence relationships, meaning that some activities have to be fin-
ished for other activities to start. There is a limited amount of resources, non-renewable and
renewable. Each activity has a known duration and requires a certain amount of resources
to be completed. In the specific case of the MRCPSP, project activities may be executed
according to different modes, with different resource requirements and activity durations
determined by each execution mode. According to Blazewicz et al. [1], the deterministic
version of the MRCPSP is considered as non-deterministic polynomial-time hard (NP-hard).
A feasible solution requires the selection of an execution mode and a start (or finish) time
for each activity without exceeding the available resources (of each type) while complying
with the relationships of precedence. The objective of the MRCPSP is to find the feasible
solution that results in the shortest execution time of the complete project.

This research introduces and solves a stochastic version of this problem, which in-
creases the complexity of the original MRCPSP. In this proposed version, the duration of
the activities is uncertain and modeled by means of a stochastic parameter related to a
probability distribution, instead of being a deterministic parameter. The possible values
of the stochastic parameter are independent for each activity, resulting in many possible
scenarios given by different combinations of activity durations. The proposed stochastic
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formulation of the problem, along with its corresponding mathematical model, is described
in more detail in Section 2.1.

The MRCPSP becomes relevant when managing projects in pursuit of determining
a trade-off between the activities’ duration and the total resource consumption. In this
approach, each activity can accelerate its execution by consuming more resources, or it can
be performed with a longer execution time but using fewer resources (with respect to its
ordinary execution time).

Regarding the resources, some of them are renewable, meaning that a certain limited
amount is available each period (i.e., labor or equipment), while other resources are non-
renewable, meaning that a certain limited amount is available for the complete project
(the monetary budget is a clear example, since most projects have a determined maximum
allotment). To better illustrate our modeling approach, let us consider a couple of activities
involved in a construction project. The required setting time for concrete can be accelerated
by using a more expensive fast-setting concrete mix, which increases the consumption of a
non-renewable resource. The excavation can also be performed in less time by assigning
more equipment or workers (renewable resources) to its execution; however, this would
result in having fewer equipment or workers available to execute other project activities,
which would have to be delayed due to this shortage of resources, probably resulting in
a longer total completion time of the project. This trade-off shows the complexity of this
problem, which is also present in several other business or industrial sectors such as cargo
transportation, software development, and medical diagnosis [2]. Thus, designing and
implementing efficient and reliable methods for solving the MRCPSP becomes relevant.
Since there is usually some degree of uncertainty in those industrial and business cases, it
is useful to have a capable method to solve stochastic versions of the problem, and more
specifically, when the duration of the activities is uncertain.

Small instances of the deterministic version of the MRCPSP have been successfully
solved via exact mixed-integer linear programming (MILP) methods [3], such as branch and
cut [4] or branch and bound [5,6]. However, problem instances involving three execution
modes per activity and more than twenty project activities cannot be solved using exact
methods in a reasonable computational time [7], arising the convenience of employing
heuristic and metaheuristic methods to obtain high-quality solutions for large instances of
the MRCPSP or to provide solutions for its stochastic version.

This study introduces a stochastic version of the MRCPSP with uncertain activity
duration, and proposes an efficient solution approach by adapting a multi-start iterated
local search (MS-ILS) metaheuristic originally developed by Ramos et al. [8] for solving
the deterministic version of the problem. The iterated local search strategy works in the
following way: first, an initial solution is generated and a local search is applied to it to
obtain a local optimum; then for a given number of iterations, a perturbation move is
applied to the local optimum, a new local search is performed, and a new local optimum is
found [9]. After all of the iterations have been completed, the algorithm restarts, generating
a new initial solution that is unrelated to the previous ones. After a certain number of
restarts, the algorithm stops, providing the best solution that has been found in all the
iterations of all the restarts.

1.1. Literature Review

The resource-constrained project scheduling problem (RCPSP) is a well-known op-
timization problem with the objective of minimizing the total duration of a project by
scheduling its activities, complying with resource and precedence constraints [10–14].
With respect to the multi-mode resource-constrained project scheduling problem (MR-
CPSP), it was introduced by Elmaghraby [15] as a generalization of the RCPSP. Talbot [16]
presented its first mathematical model, and as aforementioned, it was classified as NP-hard
by Blazewicz et al. [1]. According to Kolisch and Drexl [17], when the problem involves
several types of renewable resources, just finding feasible solutions becomes by itself an
NP-complete optimization problem.
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To address the deterministic version of the MRCPSP, different authors over the last
few decades have developed diverse solution methods involving heuristic or metaheuris-
tic algorithms, and have provided, in some cases, optimal solutions. The proposed ap-
proaches include population-based schemes, such as: genetic algorithms [18–24], parti-
cle swarm optimization [25,26], scatter search [27,28], differential evolution [29], evolu-
tionary algorithms [30], estimation of distribution algorithms [31], ant colony optimiza-
tion [32,33], multi-agent learning [34]; or trajectory based algorithms, such as: simulated
annealing [35–37], path-relinking [38], and multi-start iterated local search [8].

Regarding stochastic versions of the MRCPSP, to the best of the authors’ knowledge,
only a few published studies have been found in the literature. Chen and Zhang [39]
proposed an ant colony system with Monte Carlo simulation to solve a stochastic MRCPSP
with discounted cash flows, with the objective of maximizing the expected net present
value of the cash flows of the project, given uncertain activity durations and costs. They
considered uniform distributions for the duration to follow and the cost. Chakrabortty
and Ryan [40] proposed a robust optimization scheme for the MRCPSP in order to mini-
mize the project makespan. The robust optimization framework is based on a modified
version of the variable neighborhood search heuristic, and demonstrated its effectiveness
by successfully solving data instances up to 30 activities and a real-life project involving
25 activities. Balouka and Cohen [41] developed a robust optimization approach using
Benders decomposition with specialized cuts to solve the MRCPSP with uncertain activity
durations that vary within polyhedral uncertainty sets with the objective of minimizing the
worst-case project duration. Xie et al. [42] defined an MRCPSP with uncertain activity cost
which follows a normal distribution with the objective of minimizing the risk of exceeding
a given budget for the entire project. They developed a hybrid construction heuristic
and genetic algorithm method to solve it. Each author proposed a different version of
a stochastic MRCPSP, with varying stochastic parameters and probability distributions
associated with them, as well as different approaches to solving it. Regarding the MR-
CPSP involving multiple objectives, Azimi and Sholekar [43] proposed a simulation-based
approach to solve a biobjective problem that seeks to minimize both project makespan
and the present value costs. The algorithm operated in four steps: (1) Decision variable
relaxation and the transmutation of the multi-objective problem to a linear single objective
model, (2) Solving the new linear model, (3) Simulating the model using the results of the
linear model, and (4) Solution fixing. The proposed scheme also solved instances up to
30 activities in reasonable computational times. Another biobjective approach has been
recently presented by Yuan et al. [44], who studied a prefabricated building construction
project that consider activities with uncertain duration times with the purpose of seeking
the best trade-off between the project makespan and its respective operational cost. As a
solution method, the authors present a hybrid cooperative co-evolution algorithm that
incorporated a self-adaptive mechanism and a self-adaptive selection process (execution
mode for the activities). Their experimental results indicate that the proposed algorithm
outperformed some existing methods from the literature, previously developed for similar
problems, for both the quality of the solution and the elapsed computational time when
solving benchmark datasets involving up to 90 activities for the single-mode version of
the problem, and up to five different execution modes for datasets of 18 activities of the
multi-mode version of the problem.

In our proposed stochastic MRCPSP, the stochastic parameter is the activity duration
which follows a discretized triangular distribution [45]. Discrete triangular distributions
have been proposed for stochastic parameters of other problems, such as the RCPSP
(single mode) [46,47], the capacity-constrained supplier selection model with lost sales
under stochastic demand behavior [48], the single machine maximum lateness stochastic
scheduling problem [49], the stochastic Vehicle Routing Problem with Restocking [50], and
the vehicle routing problem with hard time windows, and stochastic travel and service
time [51]. The stochastic version of the MRCPSP with uncertain activity duration, which
follows an approximately discrete triangular distribution, is proposed for the first time in
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this research. We aim to contribute to filling the gap in the literature since only four research
papers were found regarding stochastic versions of the MRCPSP, each one proposing a
different one.

In recent years, multi-start iterated local search (MS-ILS) algorithms have been pro-
posed as a solution method for different optimization problems, including the periodic ve-
hicle routing problem [52], the two-echelon routing problem [53], the generalized quadratic
multiple knapsack problem [54], the mixed fleet vehicle routing problem [55], the covering
salesman problem [56], the uncapacitated single allocation hub location problem [57], and
the capacitated vehicle routing problem [58]. More specifically, ref. [8] proposed for the
first time an MS-ILS algorithm as a method for solving the deterministic version of the
MRCPSP, and they obtained good results. This research aims to adapt that algorithm to
solve the proposed stochastic MRCPSP with uncertain activity duration.

To evaluate the effectiveness of the adapted MS-ILS metaheuristic to solve the pro-
posed stochastic MRCPSP, subsets of publicly available benchmark instances for the deter-
ministic version of the problem were adapted to create stochastic instances and to carry out
computational experiments. The deterministic instances were taken from the MMLIB [59]
and the PSPLIB [60] libraries.

This research provides the following main contributions:

• A previously unstudied stochastic version of the MRCPSP with uncertain activity
duration was proposed and formulated, along with its mathematical model.

• A recently developed MS-ILS metaheuristic to solve the deterministic version of the
MRCPSP was successfully adapted to solve the proposed stochastic problem.

• The adapted MS-ILS method proved to be capable and efficient for solving the afore-
mentioned problem.

The remainder of this research is presented as follows. Section 2 describes the math-
ematical formulation for the proposed stochastic MRCPSP, as well as the MS-ILS meta-
heuristic algorithm developed by Ramos et al. [8] for solving the deterministic MRCPSP,
and adapted in this research to solve a stochastic version of the problem. It also explains
the computational experiments developed to assess the performance of the algorithm.
In Section 3, the results obtained from the computational experiments are presented and
discussed. Section 4 presents the conclusions of this research.

2. Materials and Methods
2.1. Problem Description and Mathematical Model

This section describes the proposed stochastic multi-mode resource-constrained project
scheduling problem, shows its complexity, and introduces the mathematical formulation to
represent it.

The multi-mode resource-constrained project scheduling problem (MRCPSP) can be
formally defined as the set ACT of project activities to be scheduled. These activities are
labeled as i = 0, . . . , I + 1, where activity 0 is a dummy “start” activity, activities 1 to
I are the real project activities, and activity I + 1 is a dummy “finish” activity. The set
PRE contains the relationships of precedence between pairs of project activities, defined
as the arcs (i, j) ∈ PRE, where i is an immediate predecessor of j. All of the immediate
predecessors of any activity must be finished before such an activity may start. Each
project activity has an activity number that is greater than those of all its predecessors,
making the set ACT topologically ordered. Figure 1 shows an example project involving
four real activities (and the corresponding dummy activities), represented as a network
diagram where the nodes represent project activities and the arrows represent relationships
of precedence, which are given by PRE = {(0, 1), (0, 2), (1, 4), (2, 3), (3, 4), (4, 5)}.
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Figure 1. Network diagram of a project.

The execution of each activity requires a certain amount of resources, either non-
renewable, renewable, or both. Non-renewable resources can be of Rnr types, belonging
to the set NON, and labeled as nr = 1, . . . , Rnr, while renewable resources can be of Rr
types, belonging to the set REN, and labeled as r = 1, . . . , Rr. There is a limited availability
of each type of non-renewable resource for the whole project given by the parameter Knr,
and a limited availability of each type of renewable resource for each time period (being
refilled at the beginning of the next period) given by the parameter Kr. There is a set
MOD with M different execution modes for the activities, labeled as m = 1, . . . , M, which
determine the resource consumption and the duration of each activity. The amount that
activity i executed in mode m requires of each type of non-renewable resource nr is given
by the parameter Uim(nr), and the amount that activity i executed in mode m requires
of each type of renewable resource r per time period t is given by the parameter Uimr.
The duration of activity i executed in mode m is given by the parameter dim. Both dummy
activities require no amount of resources of any type, and the duration of both is 0 time
units. The parameter EFi provides a lower bound for the finish time of activity i (earliest
finish), and the parameter LFi provides an upper bound for its finish time (latest finish) [21].

The main difference between the proposed stochastic MRCPSP and its deterministic
version is that the duration of the project activities implies uncertainty. Thus, the parameter
dim (duration of activity i in mode m), instead of being deterministic, is redefined as a
stochastic parameter dim(k) whose value is given by a discrete random variable with K
possible realizations, each one with an associated probability P(k) of occurrence. The value
of K is the same for all activities, and the values of k = 1, . . . , K are considered to be
independent for each activity i and each mode m, resulting in independent values of dim(k),
meaning that for an instance with I activities and M modes, there are S = K IM possible
scenarios, one for each different combination of values of dim(k).

The objective of the problem is to select the execution mode m of all activities i to
minimize the expected value of the total project duration over all evaluated scenarios S.
This can be obtained by scheduling the activities for each evaluated scenario s = 1, . . . , S,
considering their durations and precedence relationships. This solution represents a base-
line schedule. The decision variable ximts takes a value of 1 if activity i is executed in mode
m, and finishes at time period t in the scenario s, and a value of 0 otherwise; the parameter
dims, duration of activity i in mode m in scenario s replaces the parameter dim from the
deterministic version of the problem; and an auxiliary binary variable yim with a value of 1
if the activity i is executed in mode m, and a value of 0 otherwise is also added to the model.

The trade-off between the duration and the resource requirement of the activities
makes this problem a complex one. The decision to execute an activity in its mode with
the shortest duration may result in a longer duration of the complete project, since that
activity would require more resources, which would leave fewer resources available for
other activities, resulting in the need for delaying them or executing them in a mode with a
longer duration.

The sets, parameters, and variables required for the mathematical formulation of the
proposed stochastic MRCPSP with uncertain activity duration are the following:



Mathematics 2023, 11, 337 6 of 25

Sets:

• ACT: project activities i = 1, . . . , I.
• MOD: execution modes m = 1, . . . , M.
• TIM: time periods t = 1, . . . , T.
• PRE: relationships of precedence (i, j). Set of arcs (i, j), meaning activity i is an

immediate predecessor of activity j.
• REN: types of renewable resources: r = 1, . . . , Rr.
• NON: types of non-renewable resources: nr = 1, . . . , Rnr.
• SCE: probabilistic scenarios.

Parameters:

• EFi: earliest possible finish time of activity i.
• LFi: latest possible finish time of activity i.
• Kr: renewable resources availability.
• Knr: non-renewable resources availability.
• dims: duration of activity i executed in mode m in scenario s.
• Uimr: amount of renewable resource r required by activity i executed in mode m for

each period of time t (this amount is the same for each period of time).
• Uim(nr): amount of nonrenewable resource nr required by activity i executed in mode

m.
• Ps: probability of scenario s.

Variables:

• Ximts: binary decision variable that takes a value of 1 if activity i is executed in mode
m and finishes at time t in scenario s, and a value of 0 otherwise.

• Yim: auxiliary binary variable that takes a value of 1 if activity i is executed in mode m,
and a value of 0 otherwise.

The mathematical formulation for the proposed stochastic MRCPSP with uncertain
activity duration (based on the deterministic formulation in [8]) is the following:

Minimize:
S

∑
s=1

Ps

LFI+1

∑
t=EFI+1

txI+1,1,t,s, (1)

subject to:

Mi

∑
m=1

LFi

∑
t=EFi

ximts = 1 ∀i ∈ ACT, ∀s ∈ SCE (2)

Mi

∑
m=1

yim = 1 ∀i ∈ ACT (3)

LFi

∑
t=EFi

ximts = yim ∀i ∈ ACT, ∀s ∈ SCE, ∀m ∈ MOD (4)

Mj

∑
m=1

LFj

∑
t=EFj

(t− djms)xjmts ≥
Mi

∑
m=1

LFi

∑
t=EFi

tximts ∀(i, j) ∈ PRE, ∀s ∈ SCE (5)

I

∑
i=1

Mi

∑
m=1

Uimr

t+dims−1

∑
q=t

ximqs ≤ Kr ∀r ∈ REN, ∀t ∈ TIM, ∀s ∈ SCE (6)

I

∑
i=1

Mi

∑
m=1

Uim(nr)

LFi

∑
t=EFi

ximts ≤ Knr ∀nr ∈ NON, ∀s ∈ SCE (7)

ximts ∈ {0, 1}, yim ∈ {0, 1}, m = 1, . . . , M, i = 1, . . . , I, t = EF0, . . . , LFI+1, s = 1, . . . , S. (8)
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The objective function (1) aims to minimize the expected value for all evaluated
scenarios of the completion time of a “finish” dummy activity I+1, and therefore, the
expected total project duration. Constraints set (2) guarantee that, for each scenario, all
the activities are scheduled considering an execution mode and are assigned a finish
time between their EF and LF times. Constraints (3) and (4) ensure that each activity is
executed in only one mode, and that the mode chosen for each activity is the same for each
scenario. Constraints (5) establish that, for each activity j, it must start after its immediate
predecessors’ i is finished. Constraints (6) make sure that the sum of renewable resources r
being consumed at each time t does not exceed availability Kr. Constraints (7) ensure that,
for each non-renewable resource nr, its total consumption must not exceed their respective
availability Knr.

The mathematical complexity of this proposed stochastic MRCPSP with uncertain
activity duration is greater than that of the deterministic version, since the inclusion of
the scenarios significantly increases the number of possible schedules. Specifically, in the
deterministic version, there are MI possible different solutions, one for each combination of
modes m assigned to activities i. In the case of the proposed stochastic formulation of the
problem, the number of possible solutions is multiplied times the number of scenarios to
evaluate, since there are K IM possible scenarios. If all of them were evaluated, there would
be K IM(MI) possible schedules.

2.2. Multi-Start Iterated Local Search (MS-ILS) Methodology

This section details the components of the multi-start iterated local search method
developed by [8] for the deterministic version of the multi-mode resource-constrained
project scheduling problem (MRCPSP) and adapted in this research for the proposed
stochastic version of the problem with uncertain activity duration.

2.2.1. General Methodology

The general procedure for the proposed multi-start iterated local search (MS-ILS)
metaheuristic is described next. A feasible initial solution is generated by randomly
selecting the modes of each activity and by scheduling the activities according to those
modes for a certain number of scenarios, followed by a local search applied to the initial
solution. Later, a perturbation move is performed on the previously obtained local optimum
for a certain number of iterations. The perturbed solution is improved using local search
again. These steps are repeated until a stopping criterion is met. All of this process is
restarted a number of times to produce different solutions, and the best solution of these
restarts is the output of the metaheuristic. A flowchart of the description explained above
is presented in Figure 2.

The proposed codification structure for the solutions of the stochastic MRCPSP is
as follows:

1. Ximsb f variables are stored in a matrix with I+2 rows and 4 columns. The rows
correspond to each i activities (0 ≤ i ≤ I + 1), where I denotes the number of
activities in the project, a dummy “start” activity i = 0 is at the first row, and the last
row is for the dummy “finish” activity, i.e., activity I+1. The first column indicates
the mode m (1 ≤ m ≤ M) of each activity, where M denotes the number of modes
to perform an activity. The second column indicates the scenario s (1 ≤ s ≤ S),
where S denotes the number of different scenarios to be evaluated. The third column
stores the start time b of each activity. The last column stores the finish time of each
activity f = b + dims, with dims being the duration of activity i executed in mode m in
scenario s.

2. The objective function is stored in another variable, whose value will be equal to
the expected value for all evaluated scenarios of the finish time f of the dummy
activity I + 1.

3. Feasibility is stored in a binary variable that takes the value of 1 when the solution is
feasible, and the value of 0 otherwise.
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The metaheuristic works with feasible solutions only. The non-renewable resource
consumption is added after all activities have their modes settled. If this sum is greater
than the available non-renewable resources, the activity mode must be adjusted. Once this
constraint is met, the scheduling of the activities is calculated, activity-by-activity. Each
activity starts as early as possible, considering the precedence constraints and the limits on
the renewable resources consumption.

Figure 2. Flowchart of the multi-start iterated local search. ITER = Iterations, RST = Restarts.

2.2.2. Initial Solution Generation

The search space for an instance of this problem is determined by M, the number of
execution modes, and I, the number of activities. That is, there are MI possible solutions.
Nevertheless, since the resource constraints induce some solutions to be infeasible, in highly
constrained instances, a reduced portion of the solutions are feasible. Regarding the
ximts variables, the computation of the number of variables is the multiplication of set
sizes M, I, S, and the time length. For example, an instance with 50 activities, 3 modes
per activity, 20 scenarios, and a time length of 200 units, will produce a model with
600,000 binary variables. The huge size of the search space and the number of variables
that this problem has, require a challenging computational time and resources to solve it.
Therefore, the convenience of using heuristic or metaheuristic methods to solve them is
justified by this complexity. According to [17], referring to the deterministic case of the
problem, when two or more non-renewable resources are available, the task of finding
feasible solutions represents an NP-complete problem.

An initial solution within the search space is obtained with the procedure shown in
Algorithm 1. It starts by selecting a mode m for each activity i until a feasible solution is
found. An adaptive heuristic procedure is used to find a feasible solution. The heuristic
begins selecting, for each activity, a random execution mode. If, after a number of iterations
only infeasible initial solutions are found, the algorithm randomly chooses a value of 0 or
1 for each activity (RAND {0,1}). The activities with a value of 0 receive a random mode.
For those activities with a value of 1, the mode with the lowest sum of nonrenewable
resource requirements is selected. If, only infeasible solutions are obtained after a number
of additional iterations, the algorithm randomly selects a value of 0, 1, or 2 for each activity
(RAND {0,1,2}). The modes of the activities with a value of 0 are selected randomly, and the
activities with a value of 1 or 2 receive the mode with the lowest sum of nonrenewable
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resource requirements. If after a certain number of additional iterations, only infeasible
solutions are still found, the algorithm stops. If a feasible solution is found, the output of the
algorithm is the selection of modes for each activity i, represents as a vector with the mode
m selected. (See Algorithm 1, algorithm Select_Modes). This procedure was demonstrated
in practice to be effective in finding a feasible combination of modes, because none of the
tests exceeded the limit of iterations without finding a feasible solution.

Algorithm 1: Select_Modes. Algorithm for the selection of modes.
Input: Uim(nr), Knr

Initialize Solution_counter = 1;
repeat

if Solution_counter ≤ CounterLimit_1 then
for i = 1 to i = I do

Select randomly a mode m for activity i; i = i + 1;

if CounterLimit_1 < Solution_counter ≤ CounterLimit_2 then
for i = 1 to i = I do

a← RAND{0,1};
if a = 0 then

Select randomly a mode m for activity i;
else

Select the mode m with the lowest non-renewable resource
requirements for activity i;

i = i + 1;

if CounterLimit_2 < Solution_counter ≤ CounterLimit_3 then
for i = 1 to i = I do

a← RAND{0,1,2};
if a = 0 then

Select randomly a mode m for activity i;
else

Select the mode m with the lowest non-renewable resource
requirements for activity i;

i = i + 1;

if Solution_counter > CounterLimit_3 then
Output: “No feasible solution found”
End Algorithm;

Solution_counter = Solution_counter + 1;
until ∑ Uim(nr) ≤ Knr ∀nr ∈ NON; /* Non-renewable resource constraints
satisfied */

Output: Mode m selected for each activity i

When each activity has a selected mode (using the Select_Modes algorithm), the
activities are sequentially scheduled for each scenario s to be evaluated, employing a serial
schedule generation scheme (SGS) [61]. Each activity is scheduled to start at the earliest
time period t possible, satisfying the precedence constraints and not exceeding the limit
on renewable resources. This generates an active schedule where all activities in each
scenario are scheduled as early as possible, as required by [62]. An initial feasible solution
with the objective function value calculated as the expected value of the project finish time
considering all evaluated scenarios and their probabilities, is obtained. (See Algorithm 2,
algorithm Schedule_Scenarios).
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Algorithm 2: Schedule_Scenarios. Algorithm for solution scheduling for the
scenarios.

Input: Selection of modes from algorithm Select_Modes
for s = 1 to S ; /* For each scenario */
do

Schedule dummy activity 0 to start at t = 0 and finish at t = 0;
for i = 1 to i = I+1 do

Schedule activity i in scenario s to start at time b immediately after all its
predecessors’ finish;

bis = start time of activity i in scenario s;
fis = bis + dims; /* Finish time of activity i in scenario s */

if ∑
f
t=b Uimr > Kr then
repeat

Reschedule activity i to start at b + 1;
bis = bis + 1, fis = bis + dims;

until ∑
f
t=b Uimr ≤ Kr ∀r ∈ REN; /* Renewable resource

constraints satisfied */

i = i + 1;

OFs = f I+1,s; ; /* Objective function of the scenario = finish time
of last activity */

OF = ∑S
s=1 OFsPs; /* Objective function = expected value of all OFs

*/
Output: Solution Sol

To exemplify the procedure shown in Algorithm 2, the project schematized in Figure 1,
along with the information in Table 1, is taken as an example, considering only one mode
and one scenario, and taking into account the following way to graphically represent the
project (shown in Figure 3): each gray block depicts an activity with its number; the width
of the block symbolizes the activity duration for a certain execution mode, and the height
symbolizes the consumption of the renewable resource by the activity on that execution
mode. The activities are scheduled as early as their immediate predecessors are finished
when sufficient renewable resources are available. In this case, two units of one renewable
resource are available per time period. The steps required to schedule the activities of this
example project are presented in Figure 3, and describe the following. First step: activity 1
can be scheduled to start at time t = 0 since it has no predecessors, with the exception of the
dummy activity, and it finishes at time t = 4. It consumes one unit of renewable resource
per time period. Second step: activity 2 is also scheduled to start at time t = 0 because it
has no predecessors, with the exception of the dummy activity. This activity consumes
1 unit of renewable resource per time period and finishes at time t = 3. During the first
three time periods, both activities 1 and 2 are active, consuming each one 1 unit of the
renewable resource, 2 units in total, which is the available limit. Third step: activity 3
has only one predecessor which is activity 2, which means that it could start as soon as
activity 2 finishes at time t = 3. However, since activity 3 requires 2 units of the renewable
resource, and activity 1 is already consuming 1 unit during period 4, activity 3 can start
only at time t = 4, when the 2 units of the renewable resource become available. Fourth
step: The sooner activity 4 can start is when both its predecessors (activities 1 and 3) are
finished, which is at time t = 6. The finish time of activity 4 is a time t = 7, which is also the
finish time of the complete project, with a total duration of seven time units. The resulting
schedule is shown in Table 2.
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Table 1. Parameters of a sample project.

Activity Predecessors Mode Duration Consumption of Renewable Resource

1 0 1 4 1
2 0 1 3 1
3 2 1 2 2
4 1, 3 1 1 1

Table 2. Schedule of a sample project.

Activity Mode Duration Start Time Finish Time

1 1 4 0 4
2 1 3 0 3
3 1 2 4 6
4 1 1 6 7

The Select_Modes algorithm for selecting the modes, and the Schedule_Scenarios
algorithm for scheduling the activities are repeated at each restart of the metaheuristic to
create a starting solution.

Figure 3. Step by step scheduling of a solution for a sample project following a serial schedule
generation scheme (SGS) [61].

2.2.3. Neighborhood Structure and Local Search

The local search of the ILS explores a neighborhood structure that is defined by all
the solutions with one and only one activity executed in a different mode with respect to
the original solution. The neighborhood structure exhibited in Table 3 shows an example.
The idea is to produce a short-range neighborhood that intensifies the local search. All
neighbors are explored using a descent local search, changing randomly the mode of one
activity at a time. The change of mode is shown in bold/italics for every neighbor solution.
For each new solution, the objective function and feasibility are evaluated, and the feasible
solution with the shortest expected value of the project duration is stored as the new
solution and the local optimum (see Algorithm 3, algorithm Local_Search).
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Table 3. Neighborhood structure example.

Solution S Neighbor S1 Neighbor S2 Neighbor S3 Neighbor S4
Activity Mode Activity Mode Activity Mode Activity Mode Activity Mode

1 2 1 1 1 2 1 2 1 2
2 1 2 1 2 2 2 1 2 1
3 1 3 1 3 1 3 2 3 1
4 2 4 2 4 2 4 2 4 1

Algorithm 3: Local_Search. Algorithm for the local search.

Input: Sol0 or Solp; /* initial solution or perturbed solution generated
with algorithm Schedule_Scenarios */

Sol ← Sol0 or Sol ← Solp;
Sol∗ ← Sol; /* Make Sol the best solution found */
for i = 1 to i = I do

Change mode m randomly of activity i in solution Sol;
Reschedule activities from i to I + 1 to obtain the new solution Sol′ ; /* using
algorithm Schedule_Scenarios */

if Sol′ is feasible and Sol′ is better than Sol∗ then
Sol∗ ← Sol′;
i∗ ← i;

i = i + 1;

Output: Sol∗, i∗; /* Best solution found in the neighborhood, activity i
whose mode was changed to obtain Sol∗ */

This local search delivers good local optima on short-range neighborhoods, favoring
intensification over diversification. The diversification of the search is achieved with the
perturbation phase and the restart strategy.

2.2.4. Perturbation and Restart

When the Local_Search algorithm (Algorithm 3) produces a local optimum, a per-
turbation move is applied to this local optimum. In the perturbation, the activity whose
mode was changed in the local search is maintained. Only a certain number of the other
activities randomly change their modes (number of movements). In this way, the part of the
solution that produced a benefit is conserved in the new solution. This memory condition
applies only to the perturbation phase, avoiding a bias that could produce an entrapment
in a local optimum, and enforcing diversification. If this new solution is infeasible, a new
perturbation is applied until a feasible solution is found (see Algorithm 4, Perturbation
algorithm). This solution is used for the next iteration of the local search–perturbation cycle
until a stopping criterion is reached.

The best solution found is stored when the stopping criterion is reached. After that,
a complete ILS restarts, creating a new random initial solution. A certain number of restarts
occur, and the best solution to be found in all restarts is returned.
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Algorithm 4: Perturbation. Algorithm for the perturbation process

Input: Sol∗, i∗; /* Best solution found in the Local_Search algorithm,
an activity for whose mode was changed to obtain Sol∗ in the
Local_Search algorithm */

Sol ← Sol∗;
Sol∗∗ ← Sol; /* Make Sol the best solution found */
i f ixed ← i∗;
for ITER = 1 to ITER = Lim_ITER ; /* for a certain number of
iterations */
do

repeat
for nm = 1 to nm = Mv; /* for a certain number of movements */
do

Select randomly an activity i from solution Sol, except i f ixed;
Select randomly a mode m for activity i;
nm = nm + 1;

until ∑ Uim(nr) ≤ Knr ∀nr ∈ NON; /* Non-renewable resource
constraints satisfied */

Schedule activities to obtain the perturbed solution Solp; /* using algorithm
Schedule_Scenarios */

Perform Local_Search algorithm on Solp to obtain a new solution Sol′;
if Sol′ is better than Sol∗∗ then

Sol∗∗ ← Sol′

Sol ← Sol′;
ITER = ITER + 1;

Output: Sol∗∗; /* Best solution found in the ILS */

2.2.5. Parameters and Assumptions of the Algorithm

A multi-start iterated local search (MS-ILS) metaheuristic proposed initially by Ramos
et al. [8] for the multi-mode resource-constrained project scheduling problem (MRCPSP)
was adapted in this study to solve the proposed stochastic formulation of the problem with
uncertain activity duration, with the next features:

• Initial solution: The modes are assigned randomly using an adaptive heuristic proce-
dure to produce a feasible start solution. A serial schedule generation scheme (SGS)
is used.

• Feasibility handling: Infeasible solutions are not allowed.
• Local search: All of the activities are subject to the change of their mode. The modes

to be changed are one at a time for each activity.
• Perturbation phase: the activity whose mode was changed to obtain the local optimum

during the local search algorithm keeps its mode. Some of the other activities randomly
change their modes.

The MS-ILS functioning depends on the following parameters:

• Number of iterations for the local search–perturbation cycle.
• Number of restarts.

2.3. Computational Tests

In this section, the computational resources used for the experimentation are men-
tioned, then the generation of the test instances is described, then the method used to
calibrate the parameters of the algorithm is explained, and finally, the different experiments
performed are described.
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2.3.1. Computational Resources

A computer with 16GB of RAM, an Intel core i7 processor, and a 2.9 GHz CPU was used
to carry out the computational tests. To code the MS-ILS algorithm, Visual C++ 2019 was
used as a programming language and Visual Studio 16.3.6 as a compiler. The mathematical
models of the deterministic and stochastic versions of the MRCPSP were coded using the
AMPL modeling language. The solver Gurobi was used for experiments involving solving
instances with an exact method. The statistical analysis software Minitab 2019 was used to
perform the required statistical analyses.

2.3.2. Test Instances

Given the lack of available libraries of benchmark instances for the proposed stochastic
MRCPSP, the necessary instances for these experiments were generated during this re-
search. We adapted benchmark instances of the deterministic MRCPSP from the MMLIB50
library [59] and the J10MM, J20MM, and J30MM datasets from the PSPLIB library [60].
In this case, instances up to 50 activities were selected, because given the nature of the
algorithm, they will present a computational complexity that compromises the performance
of our computational equipment, particularly considering that as the number of scenarios
increases, the number of iterations to execute will exponentially increase.

For these instances, the original (deterministic) parameter dim (duration of activity i in
mode m) was modified into a stochastic parameter dim(k) that follows a discrete triangular
distribution with K possible realizations, each one with an associated probability P(k) of
occurrence. This distribution has been considered since it has been widely implemented
for modeling the duration time for these types of activities (as mentioned in Section 1.1). A
value of K = 3 for all activities and the density function displayed in Table 4 were used to
create the test instances.

Table 4. Probability distribution of dim(k).

k dim(k) Probability P(k) Cumulative Probability

1 1, if dim = 1 0.25 0.25dim − 1, if dim > 1
2 dim 0.50 0.75
3 dim + 1 0.25 1.00

According to this discrete triangular distribution, the duration of each activity can
take three possible values in each mode; the most likely one, with a probability of 0.50, is
the value of the original parameter from the deterministic version. It can also take two
other values: the value of the original parameter from the deterministic version plus 1 unit
of time and the value of the original parameter from the deterministic version minus 1 unit
of time, each with a probability of 0.25. In the case for when the value from the original
deterministic version was 1, the value of the original deterministic version minus 1 unit
would be 0; however, since the duration of an activity cannot be 0, in that case, it will take
a value of 1. The reasoning behind selecting these lower and upper values lies in the fact
that in the original instances, the values for dim are small. Therefore, a deviation of ±1 unit
could represent relative variations up to 33% with respect to the most likely value. It is
worth mentioning that all of the instances from the mentioned public libraries use only
discrete values for dim.

The values of k are considered to be independent for each activity i and mode m,
meaning that for an instance with I activities and M modes, there are S = K IM possible
scenarios. For example, given the proposed value of k = 3, an instance with 10 activities and
3 modes has 2.06× 1014 possible scenarios. Given this large amount of possible scenarios,
even for small instances, samples of scenarios were created for the test instances.

To create a sample of a certain number of scenarios for each stochastic instance, a Monte
Carlo simulation procedure was carried out, generating random numbers to determine the
different values of dim(k) according to the described probability distribution. Once each
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particular scenario s is generated with a realization for each variable dim(k), with the Monte
Carlo procedure, the duration of each activity in each mode for that particular scenario is
denoted as dims. When solving an instance for a certain number of scenarios, all scenarios
were considered to have the same probability of occurrence.

2.3.3. Parameter Tuning

To calibrate the number of restarts Rs and the number of iterations It of the meta-
heuristic algorithm to use in the experiments for the proposed stochastic MRCPSP, a pre-
experiment was carried out. Twenty instances with 30 activities from the J30MM dataset
of the PSPLIB library, and 20 instances with 50 activities from the MMLIB50 library were
adapted to generate their stochastic versions with 20 scenarios according to the procedure
described in Section 2.3.2. They were solved with the proposed MS-ILS algorithm with
two different configurations: 50 iterations and 3 restarts, and 100 iterations and 10 restarts.
The objective function value O.F. of the best solution found, and the computational execu-
tion time ExecTime in seconds was obtained. The results of this pre-experiment are shown
in Tables 5 and 6, where Diff. O.F is the difference in the value of the objective function
obtained with the two different configurations, and Diff ExecTime is the difference in the
computational execution time in seconds obtained with the two different configurations.

Table 5. Results of the pre-experiment for instances with 30 activities.

It = 50, Rs = 3 It = 100, Rs = 10
Instance O.F. ExecTime O.F. ExecTime Diff. O.F. Diff. ExecTime

j3010_3s20 24.65 4.962 24.65 34.583 0.0% 597.0%
j3012_9s20 23.20 4.879 23.20 31.471 0.0% 545.0%
j3015_5s20 30.60 4.815 29.10 32.022 −4.9% 565.0%
j3016_5s20 31.20 5.458 31.10 33.973 −0.3% 522.4%
j3018_6s20 24.80 7.865 24.80 42.607 0.0% 441.7%
j3020_4s20 34.75 8.197 34.75 42.872 0.0% 423.0%
j3021_4s20 41.30 11.158 41.20 69.758 −0.2% 525.2%
j3022_5s20 33.70 10.190 33.70 65.115 0.0% 539.0%

j3023_10s20 22.50 7.981 22.50 33.60 0.0% 321.0%
j3025_2s20 34.65 10.144 34.65 61.084 0.0% 502.2%

Average −0.5% 498.2%

Table 6. Results of the pre-experiment for instances with 50 activities.

It = 50, Rs = 3 It = 100, Rs = 10
Instance O.F. ExecTime O.F. ExecTime Diff. O.F. Diff. ExecTime

j502_2s20 29.50 72.605 29.10 466.424 −1.4% 542.4%
j507_2s20 49.40 46.384 49.40 296.528 0.0% 539.3%

j5010_3s20 32.35 68.856 31.85 438.858 −1.5% 537.4%
j5017_3s20 17.40 36.239 17.40 230.484 0.0% 536.0%
j5025_4s20 30.35 28.432 30.10 154.289 −0.8% 442.7%
j5027_3s20 18.40 31.662 18.35 191.870 −0.3% 506.0%
j5028_5s20 21.30 34.928 21.35 222.153 0.2% 536.0%
j5039_3s20 30.25 37.155 29.55 247.680 −2.3% 566.6%
j5042_5s20 32.55 38.462 32.50 252.242 −0.2% 555.8%
j5045_3s20 44.35 59.220 44.40 376.401 0.1% 535.6%

Average −0.6% 529.8%

As can be seen in Tables 5 and 6, increasing the number of iterations from 50 to 100
and the number of restarts from 3 to 10 does not result in a significant difference in the
value of the objective function, and thus, the quality of the solution obtained. In the case of
instances with 30 activities, an average reduction of 0.5% was observed, and in the case of
the instances with 50 activities, the reduction was 0.6%. On the other hand, the impact of
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the change in the parameters in the computational execution time is considerable. The time
to solve instances with 30 activities increased to 498.2%, and the time to solve instances
with 50 activities increased to 529.8%.

These results show that 50 iterations and 3 restarts are enough to obtain good quality
solutions in a reasonable period of time. Increasing the values of those parameters does
not result in significantly better solutions, and results in a considerable increase in the
required computing time, which is a disadvantage when solving larger instances with
several scenarios. On the other hand, reducing the values of the parameters was not deemed
necessary, since the computing time is already short and the quality of the solutions could
be reduced. Thus, 50 iterations and 3 restarts were the parameters chosen for the rest of the
experiments of the stochastic version of the problem.

2.3.4. Computational Experiments

To test the proposed multi-start iterated local search metaheuristic method, and its ca-
pability to solve the proposed stochastic multi-mode resource-constrained project schedul-
ing problem (MRCPSP), several computational experiments were carried out once the
parameters of the MS-ILS algorithm were defined.

Experiment 1. This experiment was conducted to evaluate if the proposed method
to generate scenarios provides 20 scenarios that are representative of the universe of
all possible scenarios. One instance with 20 activities from the J20MM dataset of the
PSPLIB library was adapted to generate its stochastic version according to the procedure
described in Section 2.3.2. Ten different sets of 20 scenarios were created and solved with
the MS-ILS metaheuristic method, and the objective function values obtained for each set
were compared.

Experiment 2. A stochasticity test was carried out to assess if solving the stochastic
problem becomes relevant, compared with solving it only for the average scenario as a
deterministic problem (which would be faster). A commonly accepted approach to evaluate
the benefits of employing a two-stage stochastic programming model, instead of employing
an equivalent deterministic version, consists of optimizing a deterministic model that
assumes only a single scenario at the second stage (e.g., the average scenario), and then
evaluating the latter solution with the two-stage stochastic model. This comparison allows
for determining the benefits lost (cost increment) of discarding all stochastic information
of the problem [63,64]. In this paper, the deterministic version consists of considering a
single scenario at the second stage, which assumes the average values of processing times
for each activity and at each operation mode. Then, this solution is evaluated with the
stochastic version.

One instance with 20 activities from the J20MM dataset of the PSPLIB library was adapted
to generate its stochastic version according to the procedure described in Section 2.3.2. Ten
different sets of 20 scenarios were created and solved as stochastic problems with the
MS-ILS metaheuristic method (part A). The average scenario for each of the 20 sets was
also solved as a deterministic problem (part B). Then, for each set, the solution (selection
of activity modes) obtained by solving the deterministic average scenario (part B) was
evaluated in the 20 scenarios, and the resulting objective function value was compared
with the one obtained by solving the stochastic case for the 20 scenarios (part A).

Experiment 3. To test the performance of the proposed MS-ILS metaheuristic method
to solve the proposed stochastic MRCPSP, 5 instances with 10 activities and 5 instances
with 20 activities from the J10MM and the J20MM datasets of the PSPLIB library were
randomly selected and adapted according to the procedure described in Section 2.3.2,
with 20 scenarios generated for each one. Each instance was solved using the proposed
metaheuristic method and also with an exact linear programming method (LP) using
Gurobi as the solver and AMPL as a programming language. The value of the objective
function O.F. and the computational execution time ExecTime were obtained and compared.
A time limit of 5400 s was set for the exact method and once reached, the solver would stop
and provide the best feasible solution found, if any, in that amount of time. A comparison
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with other proposed methods for solving stochastic versions of the MRCPSP was not
feasible, since every author proposed different versions of the problem, with different
stochastic parameters, different probability distributions and different project objectives.
However, our method was compared with several other methods in Ramos et al. [8] for
solving the standard deterministic version of the problem, showing good results, especially
for larger instances.

Experiment 4. To evaluate whether creating more than 100 scenarios for each instance
is convenient, 5 instances with 10 activities, 5 instances with 20 activities, and 5 instances
with 30 activities from the J10MM, J20MM, and J30MM datasets of the PSPLIB library were
selected and adapted according to the procedure described in Section 2.3.2. Each one was
solved for 100 scenarios, 500 scenarios, and 1000 scenarios, and the differences in the values
of the objective function O.F. and in the computational execution time ExecTime were
recorded. Then, for each instance, the solution (selection of activity modes) obtained by
solving for the 100 scenarios was evaluated in the 500 scenarios and in the 1000 scenarios,
and the resulting objective function values were compared with the ones obtained by
solving for the 500 scenarios and 1000 scenarios.

The results of all these experiments are presented in Section 3.

3. Results and Discussion

This section exhibits and discusses the results of the experiments described in Section 2.3.4
for testing the multi-start iterated local search metaheuristic (MS-ILS) algorithm to solve
the proposed stochastic version of the multi-mode resource-constrained project scheduling
problem (MRCPSP) with uncertain activity duration.

The results of the experiment to test whether the proposed method to generate scenar-
ios provides 20 scenarios that are representative of the universe of all possible scenarios
(experiment 1) are shown in Table 7, where O.F.20S is the value of the objective function
obtained by solving for each set of 20 scenarios. If there is little dispersion among the
objective function values of the different sets, it would mean that the method is able to
generate representative sets of 20 scenarios.

Table 7. Experiment 1 results. Generation of scenarios.

Instance and Set O.F. 20S

J2022_9 Set 1 23.35
J2022_9 Set 2 23.80
J2022_9 Set 3 23.55
J2022_9 Set 4 23.25
J2022_9 Set 5 23.15
J2022_9 Set 6 23.35
J2022_9 Set 7 23.21
J2022_9 Set 8 23.50
J2022_9 Set 9 23.05
J2022_9 Set 10 23.60

Mean 23.38
Variance 0.053
Standard deviation 0.230
Coefficient of variation 0.010

The values of the objective functions for each of the 10 sets of 20 scenarios are very
similar, with a mean value of 23.38, a variance of 0.053, and a standard deviation of 0.230.
The coefficient of variation is 0.01, which means that there is little dispersion between
the different values. This confirms that each of the sets of 20 scenarios is very similar
to the others, and thus suggests that they are a representative sample of the universe of
possible scenarios.
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The results of the stochasticity experiment (experiment 2) to test if solving the stochas-
tic problem becomes relevant, compared with solving the deterministic problem only for
the average scenario, are shown in Table 8, where O.F. 20S is the value of the objective
function obtained by solving for each set of 20 scenarios (part A), O.F. Avg. Eval. 20S is
the objective function value obtained by taking the solution (activity modes) of the deter-
ministic problem corresponding to the average scenario (part B), and evaluating it in the
20 scenarios, and Diff. stands for the percentage of the difference between both objective
function values. If the objective function value from solving the stochastic problem for
the 20 scenarios is lower than the value of the objective function obtained by solving the
deterministic problem for the average scenario and evaluating it for the 20 scenarios, it
would mean that solving the stochastic model is relevant.

Table 8. Experiment 2 results. Stochasticity.

Instance and Set O.F. 20S O.F. Avg. Eval. 20S Di f f .

J2022_9 Set 1 23.35 24.35 4.28%
J2022_9 Set 2 23.80 27.50 15.55%
J2022_9 Set 3 23.55 25.05 6.37%
J2022_9 Set 4 23.25 25.35 9.03%
J2022_9 Set 5 23.15 26.85 15.98%
J2022_9 Set 6 23.35 26.80 14.78%
J2022_9 Set 7 23.21 27.95 20.42%
J2022_9 Set 8 23.50 24.65 4.89%
J2022_9 Set 9 23.05 24.40 5.86%
J2022_9 Set 10 23.60 27.05 14.62%

Average 11.188%

Comparing the value of the objective function from solving the stochastic problem
for the 20 scenarios with the objective function obtained by evaluating the solution of the
average scenario in the 20 scenarios, for each of the 10 sets, it can be seen in Table 8 that the
value of the objective function obtained by solving the stochastic problem is consistently
lower than the value of the objective function obtained by solving the deterministic problem
for the average scenario and evaluating it for the 20 scenarios. The difference is significant,
11.18% on average, which justifies the need to solve the stochastic problem for a set of
scenarios instead of solving the deterministic problem for the average scenario.

The results of experiment 3 to test the performance of the proposed MS-ILS metaheuris-
tic method to solve the proposed stochastic MRCPSP, by comparing it to the performance of
an exact linear programming method using Gurobi as solver and AMPL as programming
language are shown in Tables 9 and 10, where O.F. is the value of the objective function,
ExecTime is the computational execution time in seconds, Diff. O.F. is the difference in
the value of the objective function obtained with the two methods, Diff. ExecTime is the
difference in the computational execution time in seconds with the two methods, Optimal
shows whether the solution from the exact method is optimal, and N/F means that no
feasible solution was found within the time limit.
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Table 9. Experiment 3 results. Performance test using instances with 10 activities.

MS-ILS Metaheuristic AMPL/Gurobi Exact
Instance O.F. ExecTime O.F. ExecTime Optimal Diff. O.F. Diff. ExecTime

J1019_5 13.20 0.716 13.20 256 Yes 0.00% 35,678%
J1023_6 19.60 0.985 19.60 2696 Yes 0.00% 273,631%
J1028_4 15.95 0.795 15.95 203 Yes 0.00% 25,488%
J1030_9 16.60 2.080 16.00 548 Yes −3.61% 26,258%
J1035_1 29.35 1.429 N/F 5400

Average 1.201 −0.91% 90,264%

Table 10. Experiment 3 results. Performance test using instances with 20 activities.

MS-ILS Metaheuristic AMPL/Gurobi Exact
Instance O.F. ExecTime O.F. ExecTime Optimal Diff. O.F. Diff. ExecTime

J2013_5 39.70 5.484 N/F 5400
J2015_6 21.35 3.633 N/F 5400
J2018_1 30.15 4.756 30.15 867 Yes 0.00% 18,147%
J2020_3 21.85 4.421 21.85 631 Yes 0.00% 14,192%
J2022_9 23.35 3.718 22.95 4138 Yes −1.71% 111,221%

Average 4.402 −0.57% 47,853%

Tables 9 and 10 show that while the proposed MS-ILS algorithm solved all of the
instances without problems in a short amount of time (1.201 s on average for the instances
with 10 activities and 4.402 s on average for the instances with 20 activities), the exact
method struggles to solve them. One instance with 10 activities and 2 instances with 20 ac-
tivities could not be solved with the exact method within the time limit of 5400 s. For the
instances that could be solved using both methods, the exact method took on average
90,264% more time than the metaheuristic algorithm for the instances with 10 activities and
47,853% more time for the instances with 20 activities. It was expected that the metaheuris-
tic would consume less time than the exact method, but it is relevant to report how much
the difference was. The values of the objective function of the solutions found with the
metaheuristic method are very similar to those found with the exact method. On average,
the exact method found values less than 1% lower than the metaheuristic, and in several of
the instances, both methods found the same value, which is optimal. This shows that the
proposed MS-ILS metaheuristic method provides good quality solutions in a small fraction
of the time elapsed using the exact method.

The results of experiment 4, to evaluate if creating more than 100 scenarios for each
instance is convenient, are shown in Tables 11–17. If there is not a significant difference
between the objective function value obtained by solving for 100 scenarios and the objective
function value obtained by evaluating for a greater number of scenarios (500 or 1000)
the solution obtained by solving for 100 scenarios, it would mean that using more than
100 scenarios is not necessary.

Tables 11–13 show the objective function value (O.F.) and the execution time (ExecTime)
obtained when solving the stochastic problem for 100 scenarios, 500 scenarios, and 1000 sce-
narios using instances with 10 project activities, 20 project activities, and 30 project activ-
ities, respectively. The comparisons between those results are shown in Table 14, where
Avg. Di f f . 500S− 100S is the average percentage of the difference between 500 scenarios
and 100 scenarios, and Avg. Di f f . 1000S− 100S is the average percentage of the difference
between 1000 scenarios and 100 scenarios. Tables 15–17 show the results of comparing
the objective function values obtained by solving for 500 scenarios (O.F. 500S) versus
by evaluating for the 500 scenarios the solution obtained by solving for 100 scenarios
(O.F.100SEval500S) and comparing the objective function values obtained by solving for
1000 scenarios (O.F. 1000S), versus by evaluating for the 1000 scenarios the solution ob-
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tained by solving for 100 scenarios (O.F. 100S Eval 1000S), for the 3 different sizes of
instances (10 activities, 20 activities, and 30 activities).

Table 11. Experiment 4 results. Different number of scenarios. Instances with 10 activities.

100 Scenarios 500 Scenarios 1000 Scenarios
Instance O.F. ExecTime O.F. ExecTime O.F. ExecTime

J1019_5 13.18 2.665 13.25 12.339 13.32 27.151
J1023_6 19.76 3.005 19.75 14.700 19.76 40.996
J1028_4 16.08 2.421 16.06 11.478 16.07 21.239
J1030_9 16.30 2.942 15.94 12.652 16.35 28.738
J1035_1 29.01 4.481 29.06 21.853 29.12 42.621

Table 12. Experiment 4 results. Different number of scenarios. Instances with 20 activities.

100 Scenarios 500 Scenarios 1000 Scenarios
Instance O.F. ExecTime O.F. ExecTime O.F. ExecTime

J2013_5 39.68 24.936 39.48 121.946 39.52 255.132
J2015_6 21.69 13.747 21.41 66.311 21.79 131.782
J2018_1 30.68 17.547 30.38 90.377 30.39 171.864
J2020_3 21.53 15.395 21.58 65.655 21.69 132.923
J2022_9 23.66 14.333 23.52 68.464 23.51 137.617

Table 13. Experiment 4 results. Different number of scenarios. Instances with 30 activities.

100 Scenarios 500 Scenarios 1000 Scenarios
Instance O.F. ExecTime O.F. ExecTime O.F. ExecTime

j3012_9 22.83 44.290 22.97 195.676 22.92 388.492
j3016_5 31.38 43.619 31.47 197.785 31.44 494.349
j3020_4 35.31 59.833 35.41 292.149 35.49 605.811
j3022_5 34.05 93.276 33.92 457.841 33.97 831.533
j3025_2 34.81 73.723 35.00 364.050 35.05 755.391

Table 14. Experiment 4 results. Comparisons between the results obtained considering different
numbers of scenarios.

Avg. Di f f . 500S − 100S Avg. Di f f . 1000S − 100S
Instances O.F. ExecTime O.F. ExecTime

With 10 activities −0.32% 368% 0.33% 937%
With 20 activities −0.62% 378% −0.16% 856%
With 30 activities 0.27% 373% 0.30% 887%

As can be seen in Table 14, using more scenarios does not provide a significant
difference in the value of the objective function of the best solution found. Changing
from 100 scenarios to 500 scenarios resulted in a difference of −0.32% for the instances
with 10 activities, −0.62% for the instances with 20 activities and 0.27% for instances with
30 activities. Changing from 100 scenarios to 1000 scenarios resulted in a difference of 0.33%
for the instances with 10 activities, −0.16% for the instances with 20 activities, and 0.30%
for instances with 30 activities. All of those differences are significantly small.

In terms of the computational execution time, it is clear that there is a direct relationship
between the number of scenarios and the time taken to reach the solution. Changing from
100 scenarios to 500 scenarios resulted in a difference of 368% in the execution time for the
instances with 10 activities, 378% for the instances with 20 activities, and 373% for instances
with 30 activities. Changing from 100 scenarios to 1000 scenarios resulted in a difference of
937% for the instances with 10 activities, 856% for the instances with 20 activities, and 887%
for instances with 30 activities. This is shown in Table 14.
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As can be observed in Tables 15–17, where Di f f .A is the percentage of the difference
between the value of the objective function obtained by solving for 500 scenarios and the
value of the objective function obtained by evaluating in the 500 scenarios, the solution
(activity modes) is obtained by solving for 100 scenarios; Di f f .B is the percentage of the
difference between the value of the objective function obtained by solving for 1000 scenarios
and the value of the objective function obtained by evaluating in the 1000 scenarios the
solution (activity modes) obtained by solving for 100 scenarios; those differences are
significantly small. Taking the solution from solving for 100 scenarios and evaluating it
in 500 scenarios resulted in objective function values of 0.53% higher for instances with
10 activities, 0.37% higher for instances with 20 activities, and 0.03% lower for instances
with 30 activities, than solving them for the 500 scenarios. Taking the solution from solving
for 100 scenarios and evaluating it in 1000 scenarios resulted in objective function values
that were 0.01% higher for instances with 10 activities, 0.00% higher for instances with
20 activities, and 0.011% higher for instances with 30 activities, than solving them for the
1000 scenarios. This means that, for this stochastic version of the problem with the proposed
probability distribution, using 100 scenarios is enough to obtain a good quality solution,
and increasing the number of scenarios above 100 does not result in a substantial difference
in the value of the objective function, but only increases the execution time considerably.

Table 15. Experiment 4 results. Evaluation of the 100 scenarios solution in the 500 and 1000 scenarios.
Ten activities instances.

Instance O.F. 500S O.F. 100S Eval. 500S Di f f .A O.F. 1000S O.F. 100S Eval. 1000S Di f f .B

J1019_5 13.254 13.286 0.24% 13.317 13.324 0.05%
J1023_6 19.752 19.752 0.00% 19.755 19.755 0.00%
J1028_4 16.062 16.062 0.00% 16.070 16.070 0.00%
J1030_9 15.944 16.331 2.43% 16.353 16.353 0.00%
J1035_1 29.056 29.056 0.00% 29.117 29.117 0.00%

Average 0.53% 0.01%

Table 16. Experiment 4 results. Evaluation of the 100 scenarios solution in the 500 and 1000 scenarios.
Twenty activities instances.

Instance O.F. 500S O.F. 100S Eval. 500S Di f f .A O.F. 1000S O.F. 100S Eval. 1000S Di f f .B

J2013_5 39.478 39.666 0.48% 39.522 39.664 0.36%
J2015_6 21.412 21.694 1.32% 21.789 21.707 −0.38%
J2018_1 30.384 30.384 0.00% 30.387 30.387 0.00%
J2020_3 21.584 21.588 0.02% 21.692 21.693 0.00%
J2022_9 23.522 23.526 0.02% 23.511 23.511 0.00%

Average 0.37% 0.00%

Table 17. Experiment 4 results. Evaluation of the 100 scenarios solution in the 500 and 1000 scenarios.
Thirty activities instances.

Instance O.F. 500S O.F. 100S Eval. 500S Di f f .A O.F. 1000S O.F. 100S Eval. 1000S Di f f .B

J3012_9 22.974 22.912 −0.27% 22.916 22.916 0.00%
J3016_5 31.468 31.476 0.03% 31.436 31.436 0.43%
J3020_4 35.406 35.413 0.02% 35.488 35.488 0.02%
J3022_5 33.918 33.946 0.08% 33.972 33.972 0.11%
J3025_2 35.002 35.006 0.01% 35.048 35.048 0.00%

Average −0.03% 0.11%
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4. Conclusions

The multi-mode resource-constrained project scheduling problem (MRCPSP) is a
well-known NP-hard optimization problem that has been studied by several researchers
in recent history. Several heuristic and metaheuristic methods have been proposed to
solve its deterministic version. However, as stated in Section 1, only four published
studies were found regarding stochastic versions of the problem, each one proposing a
different version with different stochastic parameters, different probability distributions,
and different methods to solve them.

One contribution of this research is the formulation of a previously unstudied stochas-
tic version of the MRCPSP with uncertain activity duration, along with a method to create
test instances for that version of the problem, with its proposed probability distribution.

Another contribution of this research is the successful adaptation of a recently pro-
posed multi-start iterated local search algorithm (MS-ILS) to solve the proposed stochastic
MRCPSP. The result of the experiments show that the stochastic model is relevant, that
the MS-ILS algorithm is capable and efficient in solving it compared with exact methods,
that the method to generate scenarios provides a set of scenarios that is representative of
the universe of scenarios, and that using 100 scenarios is enough to obtain good quality
solutions in a very short time. There are very few studies regarding stochastic versions of
this problem, as described in Section 1.1; thus, the importance of developing new methods
to solve it, contributing to filling that gap.

The proposed algorithm, which was shown to be capable and efficient for solving the
proposed stochastic formulation of the problem, can be taken as a starting point for further
research. For example, the best solution found by the proposed MS-ILS algorithm could be
used as an initial solution for an exact mathematical method, thus creating a matheuristic
algorithm. As future research, specialized metaheuristics such as Tabu Search, Variable
Neighborhood Search, or Particle Swarm Optimization can be developed to compare
their performances to the one proposed here. In addition, the algorithm can be tested to
solve different versions of the stochastic case, apart from the one studied in this research;
for example, considering different probability distributions for the stochastic parameter or
considering uncertainty in another parameter such as the activity usage of non-renewable
resources, which in a real-life application could be the monetary cost.
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Abbreviations
The following abbreviations are used in this manuscript:

MRCPSP Multi-mode resource-constrained project scheduling problem
MS-ILS Multi-start iterated local search
RCPSP Resource-constrained project scheduling problem
NP-hard Non-deterministic polynomial-time hard
MILP Mixed-integer linear programming
SGS Schedule generation scheme
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