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Abstract: Due to insufficient epidemic detection and control, untimely government interventions,
and high epidemic prevention costs in the early stages of the epidemic outbreak, the spread of
the epidemic may become out of control and pose a great threat to human society. This paper
optimized and improved the traditional Susceptible-Exposed-Infectious-Removed (SEIR) model for
investigating epidemic control and public health emergency management. Using the Corona Virus
Disease 2019 (COVID-19) outbreak as an example, this paper simulates and analyzes the development
of an epidemic outbreak during various periods with the optimized SEIR model, to explore the
emergency control capacity of conventional medical control measures, such as large-scale outbreak
testing capacity, hospital admission capacity, or daily protection of key personnel, and analyze
the government’s emergency management strategies to achieve low-cost epidemic control. The
model developed in this study and the results of its analysis demonstrate the differences in outbreak
emergency control capacity under different conditions and different implementation strategies. A low-
cost local outbreak emergency management strategy and the timing of the government’s resumption
of work and school are discussed on this basis.
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1. Introduction

Infectious epidemics are a potential threat to the productive life of contemporary
human society. In the early stages of an infectious disease outbreak, there is no effective
drug for the virus in question, nor is there time to develop a vaccine for it, and the early
spread of the disease will increase exponentially if there is no effective public health emer-
gency management. Human society has been threatened by large-scale infectious diseases
multiple times, with smallpox, plague, and cholera not far behind, followed by Spanish flu,
AIDS, and SARS. Once the early exponential growth of a highly contagious disease with
severe symptoms or high mortality is not controlled early, the rapidly increasing number
of critically ill patients will quickly “damage” the capacity of the local health care system
and may eventually cause a serious humanitarian crisis.

A large-scale outbreak of the Corona Virus Disease 2019, also known as COVID-19,
occurred in Hunan and Hubei provinces of China and the surrounding areas in January 2020.
The World Health Organization (WHO) declared the outbreak a Public Health Emergency of
International Concern (PHEIC), and the Chinese government also considered the outbreak
a major security threat affecting people’s public health [1]. Emphasis was placed on how
to contain the “exponential” growth of the epidemic at the start of an epidemic [2]. Many
scholars have confirmed through different studies that taking effective blocking measures,
targeted reduction in person-to-person contact, reduction in the frequency of area-to-area
contact, etc., can effectively restrain the rate of increase. For example, Fu [2] conducted a
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systematic comparison and analysis of the first wave of COVID-19 epidemic trends in China.
With the government’s “containment” measures, such as school closures, travel restrictions,
cell-level lockdowns, and contact tracing, the local transmission within the country has
been effectively reduced. Zeller et al. [3] investigated New Orleans with validated data
during the first wave of the COVID-19 epidemic in Louisiana, USA, including population
flow and genetic data. The results suggested that COVID-19 infections were present in
New Orleans prior to Mardi Gras, and that the primary cause of the outbreak was the
special festival with large crowd exposure and inadequate initial nucleic acid testing.
Ghafari et al. [4] conducted a detailed analysis of the Iranian COVID-19 outbreak for
802 genetic samples, and identified 36 cases of extraterritorial migration that formed a large
spread in different regions of the country. The results of the study indicate that the main
outbreak of the epidemic is due to Iran’s underestimation of the “tracking”, “detection”
and “blocking” of foreign travelers by border management, leading to the outbreak of the
national epidemic. They also used the SEIR model to extrapolate the future prevalence
of each region. In Taiwan, Hsieh and Hsia [5] studied government measures to restrict
people’s travel behavior by adopting public transportation services during the pre-, mid-,
and post-outbreak phases of the COVID-19. In Italy, Cereda et al. [6] conducted a systematic
retrospective survey for the state of Lombardy, and found that more than 500 cases had been
reported before the first official case was reported which had spread in 222 of Lombardy’s
1506 (14.7%) municipalities, with an average transmission interval of 6.6 days, and a basic
regeneration number ranging from 2.6 to 3.3. The number of cases decreased after the
government’s initial “blocking” measures. Kwok et al. [7] used the Markov Chain Monte
Carlo method to analyze COVID-19 case data in Hong Kong. Studies have shown that
stopping transmission at the initial stage of the epidemic in Hong Kong is attributed to
effective prevention measures taken by the government, such as wearing masks, hand
hygiene, and social distance, and border control.

The establishment of epidemic system dynamics models can provide powerful pre-
diction methods and decision-making tools for public health emergency management
practices, by simulating the transmission pattern, disease evolution, and emergency man-
agement of epidemics [8]. The main common epidemic system dynamics models are the
SIR model [9], the SIS model [10], and the SEIR model [11]. Chen and Ting [9] studied a SIR
epidemic model with distributed time lags and saturated incidence, applied differential
inequality theory to obtain a set of sufficient conditions to guarantee the permanence of
the system, and obtained some sufficient conditions for global asymptotically stability
of endemic equilibrium by constructing suitable Lyapunov functions. Yuan et al. [10]
studied a class of SIS epidemic models containing finitely distributed time delays, obtained
sufficient conditions for the global stability of the epidemic equilibrium point and the
disease-free equilibrium point, and revealed the influence of time delays on the stability of
the equilibrium point. Cha et al. [11] created an age-structured SEIR epidemiological model
for both longitudinal and horizontal transmission epidemics, and the study confirmed the
threshold results in the presence epidemiological status in most cases.

With the above-mentioned problems and methods, a mathematical optimization
model of SEIR was proposed to numerically simulate and analyze a variety of factors
related to the emergency prevention and control capacity of the epidemic, mainly including
(1) daily prevention and control measures, such as wearing masks, washing hands fre-
quently, maintaining social distance, and isolating infected individuals; (2) daily mass
sampling; and (3) expansion of the admission capacity of the medical system. The model
we developed and the results of its analysis demonstrate the differences in outbreak emer-
gency control capabilities under different conditions and different execution strategies. In
addition, a low-cost local outbreak emergency management strategy and the timing of the
government’s resumption of work and schooling are discussed. The models, methods,
and results constructed in this paper are expected to provide an important reference for
managers or decision makers in government health authorities in the future emergency
management prevention and control mechanisms for responding to epidemic diseases.
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Section 2 briefly introduces the application of the SEIR system dynamics model in
epidemic public health emergency management, and present the modeling approach and
case hypothesis of this paper. Section 3 shows the results and analysis of simulation based
on the optimized SEIR model, and discussed the emergency control effect and strategy
during different stage of COVID-19 epidemic. Section 4 gave a further discussion about
the results and formulated future research directions and limitations of this study. Finally,
Section 5 gathers the results of the research and presents the conclusions and suggestions of
the analysis. The essential part of this paper will be discussed specifically in the following
four sections.

2. Materials and Methods
2.1. Public Health Emergency Management during COVID-19

Emergency management provides a valuable theoretical approach and practical refer-
ence for the scientific management of public health emergencies. The methodological theory,
system construction, and practical empirical evidence on public health emergency manage-
ment have been hot research topics of long-term concern for scholars and active practice
for governments [12]. Yang [13] introduced the United States to its advanced emergency
management concept and system for public health emergencies, constructing an omnidirec-
tional, tridimensional, and comprehensive emergency network that can effectively achieve
coordination between horizontal government departments and vertical national, state, and
regional public health departments. Wang [14] explored the ways to build emergency
management systems in urban places that are prone to increasing and concentrating public
health emergencies, and the progress and problems of local governments in establishing
and improving urban public emergency management systems. Ying-Lian [15] argued that
the system is the key to public health emergency management and introduced four types
of emergency management institutions: emergency office, command headquarters, “joint
defense and air defense”, and joint conference. Moreover, he also analyzed the effectiveness
of different agencies in mobilization, decision-making, and coordination in comparison to
public health emergencies. Sun et al. [16] adopted the risk analysis method based on the
basic theory of risk management and conducted a risk analysis of emergency management
of public health emergencies according to their characteristics. Cao et al. [17] discussed the
development and problems of Chinese public health emergency management in the context
of the major public health emergencies that occurred in the past decade. He concluded that
China’s public health emergency system has been gradually established, the monitoring
and early warning system has been significantly strengthened, and the material stockpile
and transfer management system has been improved, yet there are still problems, such
as the low operational efficiency of the command and decision-making system, the low
number of professional emergency management personnel, and the insufficient investment
in emergency management funds.

Emergency management is the main preventive and control measure of the COVID-19
epidemic, and its research has continued to increase this year with the continuous practical
exploration of COVID-19 emergency management in various countries. Martinez et al. [18]
described the experience of emergency management in a hospital in Barcelona, Spain,
during a COVID-19 pandemic emergency, in which teamwork, emotional management,
and orderly execution were among the capabilities that effectively protected good health
and prevented the spread of the epidemic. Wang et al. [19] introduced the effectiveness
of emergency management in a dental clinic in Beijing during the 2019 COVID-19 pan-
demic. The number of dental patients in this clinic has dropped dramatically due to public
health policies and dental emergency management, which has been effective in controlling
COVID-19 cross-infection in the dental clinic. Song [20] reviewed Japan’s experience in
building public health emergency management system, including emergency management
organizational system, operating mechanism, emergency plan system, laws and regula-
tions, and emergency supply management system, and focused on China’s response to the
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new crown pneumonia epidemic. During the process, the lack of emergency management
capabilities for public health emergencies was exposed.

2.2. Application of SEIR System Dynamics Model in Epidemic Public Health Emergency Management

The SEIR system dynamics model is one of the basic mathematical models for the
study of epidemics, mainly applied to the study of infectious disease transmission speed,
spatial scope, transmission pathways, dynamic mechanism, and other issues. Bokler [21]
compared the SEIR model with other infectious disease models based on epidemiological
modeling of recurrent epidemics of measles in developed countries. He suggested that the
SEIR model is more consistent with the epidemic transmission patterns of measles and
influenza viruses than other models, and pointed out the necessity of establishing a SEIR
measles model that includes age and spatial structure, which is an important guide for the
effective prevention and control of infectious diseases. The SEIR model has recently been
widely used for public health emergency management due to epidemic outbreaks, which
can simulate and predict some characteristics of early outbreak behavior of epidemics and
provide countermeasure reference for emergency management of government and medical
institutions [22–24].

The SEIR model consists of an epidemiological evolutionary pathway that includes
the Susceptible-Exposed-Infected-Removed equations [25]. Susceptible refers to people
who have not been infected with the infectious disease and are so far healthy. The Exposed
are people who are in the incubation period of the infectious disease. The Infected is a
group of people who have been diagnosed. Removed is the removed population, including
recovered and deceased people. The traditional SEIR model is designed with multiple
spaces that can be modified for specific infectious disease characteristics [26]. Different
scholars have adopted different model improvements and uses for the analysis of the
development process of the COVID-19 outbreak. The SEIR model of hidden transmitters
(SUEIR model) was developed in the study of Lin [22], which closely fits the characteristics
of the means of dealing with the new crown epidemic in the country of prevention and
control. The model fairly accurately describes the course of the epidemic in China and
predicts rather precisely the inflection point of the spread of the epidemic, and the eventual
cumulative number of confirmed cases. Ku et al. [23] analyzed the kinetic parameters
of the epidemic’s transmissibility using provincial transmission data within China at the
beginning of the epidemic, with simple set-up modifications based on the SEIR model,
and measured the impact of the correlation between the transmissions of the epidemic
from province to province. They agreed that the virus is extremely transmissible and that
vigilance is needed to prevent a possible second wave of infection outbreaks brought on by
the resumption of work and school. Danon et al. [24] also modified the traditional SEIR
model for the characteristics of the COVID-19 outbreak by adding another parameterfor
the number of people with infectious status without symptoms to the SEIR model setting
to form the model. Furthermore, they used the dynamics of infectious disease data from
China, England, and Wales, and concluded that in England and Wales, without human
intervention, the epidemic would have reached its peak of transmission approximately
four months after the onset of the epidemic.

2.3. Case Assumptions and Model Construction

The conventional SEIR system dynamics model assumes a total population of
N and divides the study population into four states S, E, I, and R according to the
specific states of the population regarding the course of the infectious disease, and
N = S + E + I + R. S (Susceptible) represents the susceptible people, healthy people
who have never been infected with infectious diseases; E (Exposed) refers to the latent
people, people who have actually been infected with infectious diseases, but have not
yet developed symptoms, and traditional models generally set the exposed as not yet
having the ability to transmit; I (Infected) means the infected people, the one who have
developed symptoms related to infectious diseases and have the ability to transmit.
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The model further assumes that infected individuals are exposed to an average of
r individuals per day, where the probability of encountering a person in state S is
assumed to be S/N and the probability of achieving transmission after exposure is
assumed to be β; R (Removed) denotes the number of people who move out of the
transmission loop, which specifically includes those who died after infection and those
who were cured after infection, and the migration rate is usually labeled as γ, the sum
of the cure rate and the mortality rate.

Evolutionary systems described in previous research, such as Lin’s model [22], only
simulated the natural transmission process of a disease without considering the impact
of an intervention or assuming a government with unlimited capabilities that all E and
I states will be treated properly and immediately. This paper introduces the government
intervention factors into Lin’s evolution model [22], and investigates the evolution process
of the epidemic under the intervention of a government whose daily detection capacity
is only K, and the total treatment capacity of the medical system is only G. More specific
model modifications to the settings are as follows.

1. The exposed (E) is also infectious, but because it does not have symptoms of an ill-
ness, the exposed is mixed in with the general susceptible population (S). Identifying
the exposed cases from the population through screening tests and isolating them
to eliminate the problem of transmission is necessary. With the assumption of the
transmission property of the latent person, the average number of contacts per day is
rE, where the probability of encountering a susceptible person is S/N, and the proba-
bility of successful disease transmission after contact is βE. Meanwhile, the exposed
individuals who are tested are able to be detected and switched to the symptomatic
infected (I) type. Or, the exposed spontaneously develops symptoms without testing
and shifting to the infected (I) type, and the probability of this spontaneous state shift
is assumed to be α.

2. The infected (I) is someone with symptomatic manifestations of the disease. Due
to the already clearly perceptible symptoms, and with adequate attention to the
epidemic, it is assumed that infected individuals will be spontaneously or forcibly
isolated, without additional testing, and without mixing into the social population.
Nonetheless, even if quarantined, because of the imperfect nature of quarantine itself,
it is assumed that the quarantined person may still come into contact with a small
number of susceptible people. To distinguish between markers, the average number
of people an infected person comes into contact with per day is assumed to be rI ,
where the probability of encountering a susceptible person is S/E, and the probability
of successfully achieving disease transmission after contact is β I .

3. Assuming that strict official quarantine measures are not enforced, this corresponds to
the period in the actual situation when governments do not take coercive measures at
the beginning of the epidemic, or the period at the end of the epidemic when officials
deregulate the epidemic, but continue to search for the infected and the exposed. It is
presumed that the testing facility has a perfect capability to determine whether the
virus has been transmitted, and that the false negative and false positive rates of the
test are 0%, and that the facility has the capacity to perform multiple K tests per day.
The test was performed on a mixed group of exposed (E), and a general susceptible
population (S).

4. If the total capacity of the health care system in a region is G (the upper limit of the
total number of patients that the health care system can receive at the same time), and
assuming that the limit of the daily capacity of the health care system is a constant
D. The prevention and control of the epidemic will be achieved by identifying the
exposed (E) through extensive sampling, isolating, and treating the infected (I) and
the exposed (E) population, and controlling the proportion of the population with the
virus so that the sum of the average daily number of infected persons in the population
plus the number of infected persons tested on the same day will be lower than the
assumed capacity constant (T) of the healthcare system. Therefore, the model can
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generate a threshold value for when the population base and the number of patients is
adequately enough that the capacity of the given health care system (the total capacity
G and the daily capacity D) is no longer possible to contain the epidemic, and that
value is the outbreak point at which the development of the epidemic is out of control.

Any one state has N = S + E + I + R. On this basis, the differential equation for the
dynamics of the daily epidemic change is analyzed as follows:

dS
dt

= −rI β I IS/N − rEβEES/N (1)

dE
dt

= rI β I IS/N + rEβEES/N − αE − min(K, S + E)E/(S + E) (2)

dI
dt

= αE + min(K, S + E)E/(S + E)− γI (3)

dR
dt

= γI (4)

In the equation above, both E and I states are also contagious, the average number of
contacts per day is rE and rI , and the probability of successful disease transmission after
contact is βE and β I . Other parameters are the same as normal SEIR model, such as α is
the probability of E transmit to I without testing, and γ is the probability of I transmit to R.
Kis the maximum detection capacity of the relevant institution, the target testing people is
S + E, thus, the actual number of people tested is min(K, S + E). When the testing capacity
K has exceeded the total number of susceptible and the exposed patients remaining at that
time, it is possible to test all of them at once on the same day. Transforming the above
differential equation into a discretized difference equation yields the following results:

St = St−1 − rI β I It−1St−1/N − rEβEEt−1St−1/N (5)

Et = Et−1 + rI β I It−1St−1/N + rEβEEt−1St−1/N − αEt−1 −
min(K, St−1 + Et−1)Et−1

(St−1 + Et−1)
(6)

It = It−1 + αEt−1 +
min(K, St−1 + Et−1)Et−1

St−1 + Et−1
− γIt−1 (7)

Rt = Rt−1 + γIt−1 (8)

With the above model, a community is assumed to have a relatively homogeneous
mix of people, corresponding to real-world work or residential clusters that are relatively
spatially close to each other. It is assumed that there is an initial population of 10,000 people
in the region (N = 10,000), where one person in the initial state is already infected but is
still in the latent state because it is not tested (I0 = 1), and the number of people in the
other conditions in the initial state are (E0 = 0, R0 = 0, S0 = N − E0 − I0 − R0 = 9999). It is
noted that Lin [22] has estimated the amount of people who carry the virus and will get
sick within 14 days; thus, we assume the same approximate incubation period of 14 days,
and the corresponding daily probability that the exposed (E) turns to be infected (I) would
be about 7%. As normal contacts would vary very widely in different cities and different
periods, we set βE = 15 (15 days for a person with no symptoms) and β I = 3 (3 days for a
person with symptoms or infected), as an approximation for the imperfect prevention and
control. The ability of the new coronavirus to infect both infected and exposed individuals
is consistent with exposure to a susceptible population. From the parameter calibrated by
Lin [22], the estimated successful transmission probability is about 3% to 80% (based on
different period in the disease control by Chinese government), thus we assume that all
people will wear masks and wash hands frequently, and we set a probability of 3% to be
able to convert an infected individual to a latent individual. The infected individuals (I) will
be admitted to hospital for treatment, and the value of the removal rate is assumed to be 5%
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based on the estimated duration of treatment for the outbreak from Lin [22]. All parameters
can also vary to simulate different variants of COVID-19, different countries or different
seasons, and this model can deduce the evolution characteristics of an infectious disease at
this level under the action of large-scale control measures, changing a few parameters the
characteristics still remains.

In addition, Lin’s [22] model only examined how to estimate the parameters of the
SEIR model based on real infection data. In order to further investigate the impact of large-
scale infection control measures, we introduced two specific infection control measures,
large-scale screening (assuming that the maximum daily screening capacity is K, and there
is a perfect screening method without any false negatives or false positives) and large-scale
admissions (the number of daily admissions is D). While in the former dynamics, K is in
the Formulas (2), (3), (5) and (6), and D is going to be tested how much will be needed or
how high will it reach, which will be discussed later. K is the maximum detection capacity
every day, and the testing target would be the susceptible and the exposed (S + E), so the
actual number of people tested every day would be min(K, S + E).

3. Results
3.1. Simulation Analysis of the Emergency Control Effect of Daily Testing Capacity in the Early
Stage of the Epidemic

Given the above model settings, if the daily testing capacity of the sampling agency is
always K and testing starts just after the outbreak begins to spread, the obtained results of
the evolutionary path of the outbreak are shown in Figure 1 (more details and amplified
figures can be found in Appendix A, Figures A1–A6).

From Figure 1, it can be seen that, starting from the same initial state, the peak of
the epidemic is rapidly delayed and the number of infected persons at the peak of the
epidemic decreases as the testing capacity of the authorities increases. Once the outbreak
sampling capacity reaches the more extreme level of being able to test 3000 people per
day, the peak of the outbreak is delayed until about day 70 relative to a hypothetical initial
local population of 10,000 people in total, while the peak number of infected people in the
outbreak is suppressed to a level of less than 1000. It can be tentatively concluded that the
higher the epidemic testing capacity of the authorities is, the better the emergency control
of the epidemic and the lower the peak number of epidemics are.

The model evolves by default in the absence of a vaccine and an effective drug, thus
the model will always evolve to the point where everyone will eventually be “infected”.
However, the speed of infection is much slower with human interventions, thus ensuring
that the number of patients never exceeds the capacity of the local health system. In
Figure 1a shows the case without human intervention, the epidemic would have peaked at
about 4300 and would have reached its peak in about 46 days. In Figure 1b–d, with daily
testing capacity increasing from 0 to 100, 300, and 1000, the epidemic would have peaked at
about 4800, 5600, and 4800, and would have reached its peak in about 47, 46, and 46 days,
respectively. We see that with daily testing capacity slightly change, the peak number and
the peak days will not be controlled greatly. While in Figure 1e,f, when the daily testing
capacity grows to 2000 and 3000, the epidemic would have peaked at about 2500 and 1200,
and would have reached its peak in about 55 and 80 days, respectively. We found that the
peak day will change slowly at first, then quickly with the changing daily testing capacity.
Thus, as for the daily testing capacity, we either not do it or should do a lot.
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Figure 1. The influence of the daily testing capacity of the epidemic on the evolutionary process
of the epidemic. (a) Daily testing capacity of 0; (b) Daily testing capacity of 100; (c) Daily testing
capacity of 300; (d) Daily testing capacity of 1000; (e) Daily testing capacity of 2000; (f) Daily testing
capacity of 3000.

Except regarding the progression of the epidemic evolution over the whole time,
if only the time of the arrival of the epidemic peak is analyzed, the relevant numerical
simulation results are shown in Figure 2.

It can be seen from Figure 2 that the time of peak arrival of the epidemic can vary
significantly for different epidemic testing efforts, and the number of infections can also
differ greatly at the time of peak arrival. As the testing capacity K increases, the time
when the peak of the epidemic (which refers to the state where the infected (I) reaches
its maximum) appears, and the size of its number of infections at this time are shown in
Figure 2a. As the testing capacity increases, the time of arrival of the epidemic peak is
not even greatly affected when K < 2000 people, but as K increases further, the time of
arrival of the epidemic peak is promptly delayed. It is ultimately due to the fact that with
increased testing capacity, the exposed mixed in with the general susceptible population
can be tested more effectively, thus effectively containing the outbreak. When the testing
capacity reaches about 3000 people per day, the peak of the epidemic can be delayed until
the arrival of about 75 days while when the testing capacity reaches about 4000 people per
day, the peak of the epidemic can be delayed until the arrival of about 151 days.
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Raising testing capacity can always postpone the occurrence of the peak of an epidemic,
but the relationship between the number of people at the peak and testing capacity is
complicated. In Figure 2b, the number of patients showed a trend of increasing, then
decreasing when the peak of the epidemic arrived as the daily testing capacity K increased.
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If the authorities had no epidemic detection capacity at all, the number of infected people at
the peak of the epidemic under natural evolution would be about 4200. At this point, as the
testing capacity increases, the exact number of patients at the peak increases at a fast rate.
If the number of people tested daily reaches about 500, the number of infected people will
reach about 6500 at the peak of the epidemic. Nevertheless, the number of infections at the
peak will gradually decrease as the testing capacity is further enhanced for the outbreak. If
it is possible to test 3000 people per day, the confirmed cases in the epidemic peak are only
about 700. If 4000 people could be tested daily, the peak number of confirmed cases in the
epidemic would be only about 550.

It is worth emphasizing that the efficiency of outbreak testing can be significantly
improved by using “suspected patient tracking systems (e.g., China’s Epidemiological
Survey Information System)”. In the above simulation, assuming that the susceptible (S)
and the infected (I) are completely mixed together and cannot be traced, the efficiency of
testing to detect the exposed can be significantly improved if the population to which the
potentially infected individuals are exposed can be traced, thus enabling the delineation
of the suspected infected individuals. Supposing that this efficiency can be increased by a
factor of about 10, it is possible to postpone the peak of the epidemic by about three times
(151 days) with a daily testing of 4% (=4000/10,000/10) of the population.

According to the indicator of the number of ICU beds per 10,000 people in the
world [27,28], the current figures in the United States and Germany are the highest, reach-
ing 3.47 and 2.97 beds per 10,000 people, respectively, while the number of ICU beds per
10,000 people in China is only 0.36. With an estimated serious illness rate of about 10–25%
in the COVID-19 epidemic in each country, the capacity (G) for COVID-19 epidemic in
a community of 10,000 people in the real situation is less than 100 people in magnitude
without expansion of the healthcare system. When further considering a 10-fold increase
in the admission capacity (G) of the local health system, the admission capacity is only in
the order of 1000 people (as marked by the dashed line in Figure 2b). Accordingly, a daily
testing capacity of 3500 people is required (taking into account that with the help of the
suspected patient tracking system the testing capacity can be reduced by about 10 times,
requiring only about 350 people per day), in order to be able to effectively cooperate in the
total number of epidemic admissions and to ensure that the development of the epidemic
itself does not penetrate the local medical system’s admission capacity.

3.2. Simulation Analysis of Timing Options for the Emergency Management of an Outbreak

In the following, an analysis of the impact of emergency management policies for
large-scale testing at different stages of outbreak development on outbreak control
is presented.

The same simulation was used to examine the effect of different outbreak testing
capabilities (K) and different starting emergency intervention timings (T) on the peak of
the outbreak, and the related results are shown in Figure 3a. Overall, the earlier the start
of testing for different outbreak testing capacities, the easier it is to control the peak level
of the outbreak and prevent it from exceeding the total capacity of the local hospital (G).
Regarding the transmissibility similar to COVID-19, the number of infections is relatively
small during the initial period of nearly 18 days of the spread of the epidemic, and the
premature implementation of emergency testing is not very effective. Rather, it is better to
wait until the outbreak already has a significant local spread and start performing mass
testing. Since about day 20 of the epidemic’s evolution, the epidemic has reached the rapid
outbreak stage, when it is very critical to the starting intervention date. Even starting
intervention a day earlier can lead to a very significant impact. If the epidemic is left to
evolve for about 30~37 days (see Figure 3a), the effect on the increasing number of the
infected at the peak of the epidemic is no longer significant, or the epidemic itself is out of
control. However, if the epidemic is left unchecked for about 37–45 days, the epidemic is
considered to have reached the middle stage of infection, when a high percentage of the
population has already been screened for infection-recovery-immunization or infection-
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death, and the remaining general susceptible population is already small. If mass testing of
susceptible and latent populations (asymptomatic populations) is conducted at this time, a
better control effect of reducing the number of infections at the peak of the outbreak can
be achieved. Finally, when the outbreak has been uncontrolled for 45 days or more, when
the population has acquired a significant degree of “herd immunity” and the peak of the
epidemic has passed, it is no longer meaningful to start mass testing to control the number
of infections at the peak of the epidemic.
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To compare the effect of mass testing with different testing capabilities at the same
intervention time, it can be found that starting to perform mass testing at the beginning of
the outbreak (from around day 20 to day 30) is highly effective in controlling the number of
infections at the top of the outbreak. Using no testing performed (K = 0) as a comparison
(dotted dashed line in the figure), it can be seen that a small amount of testing at this stage
instead raises the number of infections at the peak of the epidemic. As the testing capacity
increases further, the number of infections at the peak of the epidemic will rapidly decrease.
If reasonable mass testing measures are not implemented at this stage, the increase in
testing capacity will instead lead to an increase in the number of infections at the peak of
the epidemic by around day 30 to 37. The last chance to significantly reduce the number
of infections at the peak of the epidemic is if the mass testing measures continue to be
implemented until the epidemic reaches around day 37 to 45. Once this opportunity is
missed, an epidemic’s peak of infection has passed.

If the issue of the time of arrival of the epidemic peak is considered, as shown in
Figure 3b, it is less affected when the testing capacity is relatively weak. With the increased
testing capacity, the sampling department may need to reach a capacity of more than
2000 people per day to significantly impact the timing of the peak of the outbreak without
the help of the “suspected patient tracking system”. It can be observed that the stronger
the testing capacity and the earlier the start of large-scale testing, the better it is to control
the arrival of the epidemic peak. For smaller outbreak testing capacity, once the outbreak
enters the outbreak period, its peak must occur around day 45. In general terms, in times
of weak mass detection capacity, unless the arrival of the epidemic peak can be delayed
by a small amount in the very early or mid to late stages of the epidemic, the increase
in epidemic testing capacity in the mid-stage will instead lead to the early arrival of the
epidemic peak, although the advance will be roughly only about 7 days.

The timing of emergency management of an epidemic is a matter of cost–benefit
trade-offs for the government to take emergency interventions. Clearly, an expansion of the
government’s capacity to intervene in an outbreak, regardless of cost, will always help to
strengthen the control of the outbreak. However, in the early stages of the epidemic, the
number of infected and exposed individuals in the population is too small to justify the
cost of performing daily testing of thousands of people. Second, the numerical simulation
once again proved that the lack of guidance from the necessary “suspect information
tracking system” resulted in slow changes in the effectiveness of the improved outbreak
testing capacity.

3.3. Simulation Analysis of Outbreak Control Effectiveness and Emergency Management Decisions
during the Peak of COVID-19

If the COVID-19 epidemic is not effectively controlled in emergency situations in the
early stages, we can estimate the limitations imposed by the daily capacity limit D of the
health care system aside from considering the limitation G of the total capacity of the health
care system once it has developed into a high epidemic period.

In all virus-carrying populations, both the infected (I) and the exposed (E) are already
carrying the virus and have the ability to infect others; therefore, disease control needs to
focus on both the number of new infected and exposed individuals in order to achieve
control of the growth in the number of the infected cases toward the next day. Under
the current measures taken for the disease, we suppose that the infected are already well
isolated and controlled, and that it is the exposed that pose the real risk of transmission,
which is why we need to calculate the constraint between the proportion of the exposed
and the testing capacity.

Considering different initial states, in order to control the number of next-day infec-
tions in one day without exceeding the daily admission capacity D of the health care system,
then the screening capacity K that the community needs to be equipped with. If the total
number of new infections in that community on that day is set to M:

M = ∆E + ∆I = rI β I IS/N + rEβEES/N − γI < D (9)
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The result is:
E <

DN
rEβES

+
γN − rI β IS

rEβES
I (10)

Or can be written in:

E
N

<
D

rEβES
+

γ − rI β IS/N
rEβES

I (11)

Making the critical value E∗ = DN
rE βES + γI−rI β I S

rE βES I, with respect to the single-day
sampling problem, and letting the current initial state be (St, Et, It, Rt), so that, according
to Equation (6), the number of infected persons Et+1 on the next day can be labeled as:

Et+1 = Et + rI β I ItSt−1/N + rEβEEtSt/N − αEt −
min(K, St + Et)Et

(St + Et)
< E∗ (12)

It follows that the necessary testing capacity to control the number of new infections in
the next day’s outbreak should satisfy K < K∗, where K∗ is the critical testing capacity (The
expression for K∗ is not concise enough, so numerical methods are used here to calculate it).
If the authorities are unable to provide more than this capacity, the epidemic will exceed
the hospital’s daily capacity D on the next day, and this situation will result in an excessive
ratio between mixed latent (I) and susceptible (S) individuals on one day, which will result
in the number of new infections again exceeding the hospital’s capacity on the next day.
Consequently, calculating the daily critical testing capacity can help us understand the
capacity requirements at different stages. The variation of (St, Et, It, Rt) values with the
current conditions in the environment is given in Figure 4 (more details and amplified
figures can be found in Appendix A, Figures A7–A12). The critical testing capacity K∗ that
is currently required to guarantee that the admission capacity D of the healthcare system
will not be exceeded on the next day.

In Figure 4, the options that can be compared with each other are listed. For example,
Figure 4a,b represent the average required testing capacity for the initial spread phase
of the outbreak, respectively. In Figure 4b, for example, the susceptible and the exposed
populations are mixed together without discrimination, but the total number of people
reaches S + E = 9000, while the number of people already infected and hospitalized reaches
1000. With the gradual increase in the proportion of E in the undifferentiated (S + E)
population from 0, the demand for the test all rises rapidly. However, if the ratio of E
increases further and the extreme value is taken around E/(E+S) = 25%, then even if the
daily admission capacity of the health care system is 200, it will require a daily testing
capacity of about 8300. For a community of 10,000 people, this is an almost “census” level
of testing capability required. Even with the help of the “suspect information tracking
system”, it is necessary to sample about 10% of the population in the community every
day, which is also a considerable pressure. However, if the proportion of E increases, the
demand for testing will instead fall. This is mainly due to the decrease in the proportion of
S in susceptible populations. In fact, when the percentage of E reaches about 90% or more,
the test is no longer needed. Such situations correspond to a time when the admission
capacity of the healthcare system is in extremely high demand. Assuming that the treatment
period for the disease is 20 days, the daily admission capacity of the health care system at
full capacity is 1/20 of the total admission capacity = 5% of the level; therefore, the daily
admission capacity D = 200 corresponds to the total admission capacity G = 4000 people. A
healthcare system of this size is clearly ambitious for this community.
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Furthermore, by comparing the subplots (c, d, e, f), it is observed that as the number
of undiagnosed people (S + E) decreases, the demand for testing capacity also decreases
rapidly. When the epidemic has reached the middle stage of development (S + E = 5000), the
daily testing capacity requirement for the epidemic has been much smaller. For example,
for the case of daily admission capacity D = 100, the corresponding daily testing capacity
needs to meet around 2000 people. The strong contagiousness of the outbreak is evident in
the fact that the testing capacity for that day was still an impressive 40~60% of the testing
requirement relative to the total population of 10,000 people in that community during that
period. If with the support of the “suspect information tracking system”, the scale of this
daily testing capacity is acceptable, but still at a very high level.

When the outbreak has reached an advanced stage, for example, when the total number
of undiagnosed people is only 2000 (accordingly, indicating that 80% of the community has
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already been infected with the virus), there is still a need for a high capacity of the health
system for patient admission. If the daily admission capacity is reduced to only about
D = 10 (corresponding to a total admission capacity of S = 200), it is still necessary to examine
approximately 800 to 1200 people per day. With the help of the “suspect information
tracking system”, the testing capacity requirement can be adjusted downward to about 1%
of the total community population.

Figure 4 demonstrates the striking transmissibility of the COVID-19 epidemic. At the
level of the epidemic’s infectious capacity parameters, trying to contain the epidemic would
require either building a medical system of staggering size or constructing a huge number
of testing capabilities. For this reason, if effective emergency control of the epidemic is not
accomplished in the early stages of the epidemic, it will be difficult to achieve actual control
of th epidemic under the existing conditions in the middle and late stages of the epidemic.
In addition to the above two means of expanding the medical system and improving the
testing capacity, if we can enhance the awareness of epidemic prevention and control, both
for the protection of the contacts of the infected (I) and the self-protection of the susceptible
and the exposed people (e.g., by wearing masks and washing hands regularly), the average
daily number of contacts of the infected (I) decreases from rI = 3 to rI = 1 and the average
daily number of contacts of the latent people (E) decreases from rE = 15 to rE = 5. The
same analysis method can significantly reduce the requirements in terms of expanding
the health care system and improving the testing capacity, and the related results are
illustrated in Figure 5 (more details and amplified figures can be found in Appendix A,
Figures A13–A18).

Figure 5 shows that if the equivalent number of contacts in the infectious capacity factor
for COVID-19 can be reduced to one-third of the original number by everyone wearing
a mask and washing their hands regularly, the minimum number of tests corresponding
to the capacity requirement of the health care system for a single day can be drastically
reduced. Comparing subfigures in Figure 5 to the correspondence subfigures in Figure 4,
we see that with the help of low-cost instructions, such as wearing mask and washing
hand, in order to contain the peak infected number to half of the population, the critical
daily capacity of testing based on the same admission capacity D to ensure that D of
the healthcare system will not be exceeded on the next day has changed drastically. In
subfigure (a), when the daily admission capacity D = 200, the raw system needs K* = 10,000
in Figure 4, but only needs K* ≈ 5000 in the new system. The same situation also applies
to other starting point of simulation. In subfigure (b), if set D = 200, K* ≈ 8800 in the raw
system while K* ≈ 2000 in Figure 5. In subfigure (c), if set D = 100, K* = 10,000 in the
raw system while K* ≈ 3200 in Figure 5. In subfigure (d), if set D = 10, K* = 10,000 in
the raw system while K* ≈ 2000 in Figure 5. In subfigure (e), if set D = 10, K* ≈ 1700 in
the raw system while K* = 0 in Figure 5, which means this starting point (S + E = 3000,
I = 1000), we do not need testing anymore, and only have to keep the daily admission
capacity of treatment to 10, which is enough to control the disease. In subfigure (f), if set
D = 10, K* ≈ 1300 in the raw system while K* = 0 in Figure 5, means that from this starting
point, we do not need any testing, we only need to keep a small treatment capacity, as
this is enough. If the outbreak is in the middle to late stages (more than half of the total
population has already been infected), daily testing is no longer necessary by maintaining
a daily admission capacity of only 0.5% of the total population. If the scale of the health
care system is further reduced to a 0.1% intake capacity, only 1% of the population’s daily
testing capacity will be required in the middle and late stages of the epidemic. With the
help of the “suspect information tracking system” to improve the testing efficiency E, the
outbreak of COVID-19 can be effectively controlled at a lower cost.
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3.4. Decision on the Timing of Resumption of Work and School under the Consideration of
Epidemic Control Costs

In the first three sections, this paper analyzes the effectiveness of the main measures
of emergency management of infectious diseases in terms of outbreak control in different
states. It is important to note that the costs of different outbreak emergency management
measures are not identical. The more affordable means, such as wearing masks and washing
hands, are often cheaper if the local information infrastructure is already in place (e.g., cell
phone use is widespread and can be tracked and located), and the cost of establishing a
“suspected information tracking system” on top of that is often cheaper less expensive.
If there is an inexpensive rapid testing reagents and detection means, the cost can be
controlled even if the large-scale expansion of the local daily testing capacity. The most
costly means in general is often to expand the capacity of the local health care system, as
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this involves a large infrastructure, medical equipment, population of doctors and nurses,
etc. Therefore, in the light of the cost elements of the resumption phase, it is necessary to
consider, on the one hand, the need to ensure the safety of people’s lives (the assumption
in this paper is to ensure that the capacity of the local medical system is at least sufficient to
meet the requirements of new patients) and, on the other hand, the need to consider the
cost of epidemic control and to achieve reasonable control of the epidemic at the lowest
possible cost under different realistic conditions. The cost of outbreak control is made up of
the following four main components:

1. The cost of reducing the average number of contacts to one-third or less by reduc-
ing the probability of the infected and the exposed people coming into contact with
susceptible people through daily preventive and control measures, such as wear-
ing masks, washing hands frequently, reducing social contact between people, and
isolating suspected infected persons.

2. The cost of establishing a “suspected information tracking system” to locate the
exposed (E) mixed in with the crowd.

3. The cost associated with expanding local capacity for routine testing.
4. The cost of the expansion of the local health care system’s capacity to admit and treat

patients, building more hospitals, hospital beds, supporting more equipment, such as
ventilators, hiring more doctors and nurses, etc.

Based on the simulation results and conclusions of Figure 5 on the demand for health-
care system size and daily testing capacity in the middle and late stages of the epidemic, it
is evident that a daily admission capacity at the 0.5% level of the total community popu-
lation (or a daily admission capacity at the 0.1% level of the total community population
plus a daily testing capacity at the 1% level) can achieve low-cost epidemic control. The
cost-optimal solution for effective epidemic control can then be derived by taking into
account the price conditions of different countries, different time periods, and different
infrastructure levels.

The price of daily prevention and control materials, for example, varies widely from
country to country. For example, in China, the masks are generally around 5 RMB per
piece, a hand sanitizer is around 20 RMB per bottle. The cost of isolation is relatively higher,
for example, hotel accommodation costs up to 200 RMB a day. Additionally, it is easier to
establish a “suspected patient tracking system” by means of China’s telecommunication
infrastructure. Through the relevant electronic information tracking system, it is feasible
to track the activities of a wide range of people at a relatively low cost and to detect the
possible population of suspected patients at an early stage, thus greatly improving the
efficiency of virus nucleic acid testing. With these two major costs in mind, results similar to
those in Figures 4 and 5 can be simulated to calculate the critical testing capacity K∗ that can
effectively control the outbreak based on the current intake capacity D. The corresponding
costs for maintaining the testing capacity and for maintaining the admission capacity can
then be accounted for. Among these, the unit testing capacity maintenance costs, such as
nucleic acid testing reagents, varies widely in price around the world. The cost of testing in
many countries ranges from 500–3000 USD, and the supply of testing reagents is severely
inadequate. However, the price of nucleic acid testing in China has dropped to 30 USD or
less, which is an important means of controlling the spread of the disease at low cost. The
most costly means of outbreak control is to amplify the capacity of the local health care
system. Referring to the relevant statements of the National Health Insurance Bureau, the
per capita medical cost of patients hospitalized with confirmed cases of COVID-19 reached
21,500 RMB, the per capita treatment cost of seriously ill patients exceeded 150,000 RMB,
and the treatment cost of a few critically ill patients reached hundreds of thousand dollars.

It can be calculated the minimum cost to resume work and school under the current
epidemic conditions through the above scheme, and the reasonable decision of resuming
can be made by examining whether the cost is already within the acceptable range. It
is worth noting that the decision to resume work and school is the least costly way to
control the development of the epidemic through the lowest possible means of epidemic
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control in the absence of specific drugs and vaccines, while ensuring that the capacity of
the health care system will not be knocked out by the epidemic. The specific situation
and specific timing vary greatly from place to place. If effective drugs and vaccines
have been discovered, these two means of epidemic prevention and control can also be
added in order to find the least costly means. Alternatively, perhaps the large-scale adoption
of both measures depends equally on cost; for example, if the cost of an effective drug is
higher than the degree of acceptance, the optimal decision for outbreak control may still be
to impose daily masking and hand washing on the entire population [29].

4. Discussion

The results suggest that the presence or absence of control measures can contribute to
large differences in the process of epidemic transmission and control effectiveness. Other
studies using kinetic models, such as SEIR, to simulate the natural transmission process of
COVID-19 have investigated only the characteristics of the virus itself without going further
into the control measures; therefore, we believe that they are insufficient. Depending on
the results of the model simulations in the previous section, it is shown that as the control
capacity increases, the spread of the epidemic is contained not in a linear but in a non-linear
relationship. We examined the characteristics of this nonlinear relationship and verified
that for viruses of COVID-19’s level of transmissibility, either no control at all or massive
control beyond a critical threshold is required, otherwise they are barely effective. To this
end, metrics such as critical sampling capacity were estimated, and the model revealed that
virus spread is not managed under this sampling capacity.

In fact, since 2020, the Chinese government has adopted large-scale control exceeding
the critical threshold that achieved effective epidemic control and has completely ignored
control after December 2022 due to cost considerations, which have verified our conclusion.
Therefore, the impact of large-scale control measures on infectious diseases must be taken
into account if they are to be implemented in a strong governance scenario, which is the
main contribution of this paper. The correlation simulation curves displayed in our previous
section elucidate the differences in epidemic control capacity in terms of the magnitude,
speed, and peak transmission number level of COVID transmission reflected by different
transmission coefficients, different initial states, and different control instruments, which
reveal the more complex characteristics of this dynamical system.

With the simulation results and analysis in the previous section, it is explained that
there are some effective emergency control measures for common infectious diseases. For
example, building mass testing capacity through strong government agencies to identify
and isolate hidden asymptomatic, but infectious carriers at an early stage, and developing
mass treatment capacity to quarantine and treat symptomatic and asymptomatic infected
people in a timely manner. While effective outbreak control measures for the ordinary indi-
vidual are to limit the range of activities, reduce the frequency of person-to-person contact,
wash hands regularly, wear masks, and other measures that can drastically minimize the
transmission coefficient.

Yet, different outbreak emergency management strategies and control measures have
tremendous differences in cost. The government can use cost optimized emergency man-
agement strategies to achieve efficient and comparatively inexpensive outbreak control
measures. For a virus, such as COVID-19, which is highly transmissible, the least costly and
efficient control measure may be to reduce the transmission factor by two to three times by
having everyone wearing a mask, washing their hands frequently, and reducing human
contact. Constructing a comprehensive screening policy is also a more cost-effective control
measure than constructing a mega treatment facility. The model simulation results led to
the finding that screening measures must either not be done or must exceed the critical
testing capacity matched by intake capacity to effectively contain the outbreak. The model
simulation results led to the finding that screening measures must either not be done or
must exceed the critical testing capacity matched by intake capacity to effectively contain
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the outbreak. Otherwise, the epidemic will not only be suppressed, but also the health care
system may be overwhelmed.

Epidemic transmission is a large and complex system that contains multiple parame-
ters which are quite intricately entwined. Of all preventive and control measures, if the
construction of one measure is significantly increased, the measures can often be appropri-
ately reduced, which involves cost considerations. As a result, more expenses should be
paid in the area of preventive and control measures with the highest marginal returns. This
paper makes a kinetic analysis based on simple assumptions only, revealing the approxi-
mate substitution relationship between the relevant factors and discovering the nonlinear
linkage characteristics among them.

Recently, some of the literature has adopted the SEIR evolution model to simulate
the evolution process of viruses in nature. Nevertheless, few of them have considered
introducing epidemic control methods into the SEIR model to simulate the control effects.
For example, Berger et al. [30] added testing and conditional quarantine into the SEIR
model, whose key setting is that a person in the period of asymptomatic infection can be
tested to reveal infection or would be revealed later when symptoms develop, and patients
in different states should have different quarantine policies. Especially the faster testing
method can dampen the economic impact of the virus and reduce the peak infections.
As the key calculation is still in a formula way, it might be not very easy to show the
non-linearity relation clearly. Chen et al. [31] took constrained medical resources into
consideration in a detailed way, to make more use of the three hospital admission policies
(which are hierarchy, mixed, and Fancang healthcare system) in different infectious stage.
They found very different dynamic states based on different treatment policies, and the
Fangcang system results in the largest reduction in infections and deaths, especially when
the medical capacity is small. Berger et al. [32] took testing methods into consideration in
detail with five kinds of testing methods, to control this disease in different transmission
stages based on the SEIR model. It was indicated that if we can take virological testing
every 2 weeks, the output loss would be cut in half and the death rate can be keep under the
status quo. Based on this literature, this paper has expanded the application mode of the
SEIR model with epidemic control methods taking into consideration and revealed some
interesting non-linear features that cannot be captured by natural-state disease transmission
models alone.

The limit of this paper lies in the applied cases without large-scale verification in
other countries and regions except China, and lack of comparison with methods or models
from other researches. In addition, a more detailed and specific discussion, and more
general preventive and control measures against other viruses, and the marginal cost of
each measure, are not fully considered. However, this paper pioneered the introduction of
the marginal cost of prevention and control measures into the paradigm of thinking about
epidemic prevention and control. This paradigm has excellent scope for expansion and is
suitable for incorporating specific country regions, virus types, etc., into the comprehensive
consideration, which is where such studies should be further pursued.

5. Conclusions

In this paper, the original SEIR model was developed to construct a mathematical
model for simulating and analyzing the infectious disease transmission process in the
specific case of COVID-19. Additionally, the model was applied to the COVID-19 epidemic
transmission case to simulate and analyze the ability of emergency control of the epidemic
using daily epidemic prevention, mass sampling, and hospital admission under different
realistic conditions, respectively. On the assumption of lack of specific drugs and vaccines,
we simulated and predicted the progress trend of epidemic prevention and control under
various actual situations such as different initial conditions, different testing capacity, and
different hospital admission capacity, and analyzed and optimized strategies for measures,
timing, and cost selection for emergency management of the epidemic.
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It is proven through numerical simulations that it is almost impossible to contain an
outbreak without daily preventive measures, such as wearing masks and washing hands
regularly on a large scale, with the infectious capacity demonstrated by COVID-19. Even
if large-scale daily vaccination measures could reduce the infectious capacity parameter
(average effective number of contacts) of COVID-19 to one-third or less of the previous
level, outbreak control would still require a very large daily testing capacity to be contained.
In addition, if the “suspect information tracking system” method can increase the efficiency
of finding the exposed (E) “mixed in” with the general susceptible population (S) by a factor
of 10, the difficulty of controlling infectious diseases can be significantly reduced. In other
words, if the above “affordable” means of combating the epidemic were not employed,
one would have to choose between large-scale routine testing or large-scale capacity of the
health care system, and both would be very costly.

The results of the mathematical model simulations and analysis illustrated in this
paper can provide scientific and effective recommendations for the authorities to implement
emergency management strategies for the COVID-19 outbreak:

1. At the beginning of the COVID-19 epidemic, the increase in the number of outbreak
testing can considerably enhance the emergency control capacity of the epidemic,
which can significantly delay the arrival of the peak of the epidemic and reduce the
number of infected people at the peak of the epidemic development. To conduct
the test among approximately 3500 people per 10,000 people per day can effectively
control the outbreak and protect the local health care system from being highly
stressed.

2. For the timing of emergency outbreak interventions, mass sampling for example, the
implementation of mass testing starting around the 20th to 30th day of the COVID-19
outbreak was most effective in controlling the number of infections at the peak of the
outbreak. The final window for limiting the number of infections at the peak of the
outbreak through emergency management measures is around day 37 to day 45 of the
outbreak.

3. When the COVID-19 epidemic is in the middle and late stages of development (more
than half of the total population has already been infected), it is no longer necessary
to perform daily testing when routine protective measures, such as wearing masks
and washing hands, are strictly enforced, as long as a daily treatment capacity of 0.5%
of the total community population is maintained. Alternatively, reducing the daily
treatment capacity to 0.1% of the total community population while maintaining a
daily testing capacity at the 1% level of the total community population could achieve
effective control of the COVID-19 outbreak at a lower cost.

4. The decision on the timing of resumption depends mainly on the magnitude of the
total cost of community epidemic prevention and control. This paper summarizes
the simulation results of the daily admission capacity and critical testing capacity
of the healthcare system generated under different SEIR model parameters, which
can be combined with the unit testing cost, unit treatment cost, and actual price level
corresponding to different epidemic stages to derive the total cost of epidemic control,
and thus decide whether to resume work and school at a particular time.
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