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Abstract: Mathematical models of the nonlinear transversal oscillations for a beam moving along its
axis have been studied. These models deal with the nonlinearity of body elastic properties and with
the influence of physical–mechanical and kinematic parameters on the oscillation amplitude and
frequency of the moving one-dimensional nonlinear systems as well. A procedure for studying both
cases, non-resonance and resonance oscillation regimes, has been developed. The paper focuses on
the influence of the longitudinal velocity, nonlinear elastic material properties, and external periodical
perturbations on the dynamical process of beam transversal oscillation. The obtained mathematical
model could be applied to describe the oscillation behavior of the different types of pipelines (liquid or
gas). The proposed results allow the estimation of the influence of these parameters on the amplitude
and frequency of the oscillations. Mathematical analysis realized by asymptotic methods enables
the prediction of the resonance phenomena and proposal of a numerical algorithm to plan the most
effective operation regime. Applications of this approach in engineering, particularly to construct the
corresponding elements of industrial environments and pipelines, are also discussed.

Keywords: nonlinear oscillations; asymptotic methods; longitudinal velocity; moving beam; transverse
tvibrations

MSC: 74G10

1. Introduction

It is common knowledge [1–4] that the transverse vibrations of a beam moving along its
axis are widely used in industry, technological processes, construction, etc. For example, it is
important to study the telescopic boom of a crane [3]. Models of axially moving materials can
be used in the field of automotive and aerospace structures, in mathematical models of robot
motion, etc. The equation of motion is the same for the vibration of a pipeline with liquid
or gas flowing through it [5,6]. In all the above cases, as well as in some other mathematical
models of vibrations, the equation of motion is a weakly nonlinear equation of the hyperbolic
type. Asymptotic methods of nonlinear mechanics are effectively used to study such nonlinear
systems with distributed parameters when describing single-frequency vibration modes [7,8].
For these systems, the perturbed nonlinear boundary problem with single-frequency vibration
is solved (in the first approximation) by asymptotic expansion in the form of corresponding
normal vibrations of the unperturbed system. At the same time, amplitudes and phases are
time-varying quantities. For engineering calculations, it is sufficient to know the influence of
the speed, disturbing force, and the values of the physical and mechanical characteristics of
the material (density, modulus of elasticity, mass, etc.) of the beam on the law of change in the
amplitude and the phase of transverse vibrations [9–11]. According to the asymptotic method,
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such influences on the amplitude–frequency characteristics of vibrations are determined
from the system of ordinary differential equations for self-vibrating systems and, in the
non-resonant case, for non-autonomous systems.

This approach is quite effective for the study of the dynamic processes of one-dimensional
systems, which are described by partial differential equations. Depending on the method of
fixing the medium, the boundary conditions can be divided into homogeneous (when the
ends are rigidly fixed and stationary) and non-homogeneous (when the ends vibrate or can be
affected by forces, moments, etc.) [12].

The subject of study in this article is the influence of the following parameters of the
dynamic process on the amplitude and phase characteristics (APC) of the dynamic process
during transverse vibrations of the beam: the longitudinal speed of the beam, nonlinear
elastic characteristics of its material, and external periodic disturbances. The research is
based on the principle of single-frequency vibrations in nonlinear systems with many
degrees of freedom and distributed parameters and the asymptotic method of solving
certain classes of differential equations with partial derivatives.

In [13], free transverse vibrations of beam-type bodies with a variable cross-section
were investigated using the Wentzel, Kramers, and Brillouin (WKB) approximation. The
authors obtained mathematical models that were used to determine natural frequencies
and forms of modes. Several examples of vibrating systems of the beam type with and
without a distributed axial force were given.

In [14], the dynamics of a hyperelastic beam in a curved state affected by a harmonic
axial load is investigated. For the static case, the curved configuration of the hyperelastic
beam is first determined using the asymptotic method when the axial load exceeds the
critical load. The amplitude–frequency characteristics of a hyperelastic curved beam are
obtained using the Runge–Kutta method and the harmonic balance method. The authors
numerically investigated the effect of the external average axial load, the amplitude of the
axial load change, and geometric and physical parameters on the amplitude–frequency
characteristics of the curved beam.

In [15], the asymptotic method was used to study the free vibrations of heterogeneous
beams with different boundary conditions.

A new theoretical approach to the characterization of transverse vibrations of cantilever
beams under the effect of a continuous spatially distributed load was proposed in [16]. Despite
certain limitations (time-independent load, homogeneous boundary conditions), the obtained
result is quite general and applicable to a wide class of spatially dependent loads.

In [17], a frequency equation of the transverse vibrations of a non-uniform and non-
homogeneous beam was derived using asymptotic approximation. The authors obtained
a mathematical model that is simple and accurate enough to determine the frequency of
vibration, but also general enough to be used in engineering calculations. In these materi-
als, the asymptotic perturbation approach (APA) is applied to obtain a simple analytical
expression for the analysis of free vibrations of non-uniform and non-homogeneous beams
with different boundary conditions.

Free vibrations of a two-layer beam were studied. Asymptotic approximation was
used to estimate when axial and rotational inertia and shear deformations, and the normal
compliance of the interface could be neglected [18].

In [19], a nonlinear algebraic system was solved with the help of the asymptotic method,
which was used for the main vibration mode of a nonlinear beam loaded with a finite number
of masses. The method was based on Hamilton’s principle and spectral analysis for nonlinear
free vibrations that show large displacement amplitudes. The problem is reduced to solving a
nonlinear algebraic system by numerical or analytical methods.

Numerous studies [20] were performed to analyze the transverse vibrations of elastic
beams loaded with a finite number of point masses at a limited position of the beam
with only one or two boundary conditions. Most of these studies were presented without
considering the effect of inertial forces in beams.
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In [21], the linear dynamics of an elastic beam consisting of three linear–elastic isotropic
layers was studied using asymptotic expansion.

The study most similar to ours was carried out in [22], where the numerical analysis
of jump-like sliding vibrations of a beam moving in the transverse direction is presented.
The effect of axial load and motion speed on the dynamic response is also studied.

Paper [23] considered the eigen-frequencies and dynamic characteristics of a thick
beam composed of saturated porous materials resting on a viscoelastic foundation. The
authors’ obtained results show that, under some conditions, the beam has the smallest
fundamental frequency, and when increasing the Skempton coefficient, the fundamental
frequency of the beam also increases. Our study deals with another mathematical model
describing thin beam oscillations.

In [24], the nonlinear transverse vibration of an axially accelerating moving viscoelastic
sandwich beam with time-dependent tension has been analyzed. Numerical results that
show the influence of the initial tension and phase angle effect on the natural frequencies
and response curves are presented.

Paper [25] described the free oscillation behavior of multi-layer composite beams
reinforced with graphene platelets with a viscoelastic foundation. The main issue of the
paper concentrated on the graphene platelets’ material characteristics. All parameter effects
on the oscillations were studied thoroughly.

It is useful to notice that, as considered in this paper, differential equations can be
applied in other scientific fields as well (chemistry, biology, etc.). They describe the oscilla-
tions of chemical reactions [26]. The modeling of such types of reactions depends on the
choice of the velocity values and the initial and boundary conditions.

However, in all the aforementioned studies of beam vibrations, the influence of its
longitudinal velocity was not taken into account, and in [22], the authors only tried to
consider a similar problem and did not obtain mathematical models for nonlinear–elastic
one-dimensional systems in a general form.

A specific feature of our study is the possibility to take into account the influence
of the longitudinal velocity, elasticity modulus, material density, and beam length on
the amplitude–frequency characteristics of the transversal oscillations. It enables us to
establish more exactly the oscillation amplitude for nonlinear elastic moving systems in
the resonance and non-resonance cases as well. This is why the use of simple calculation
formulae for the description of amplitude change laws is reasonable.

2. Materials and Methods
2.1. Mathematical Models of Transverse Vibrations of a Moving Beam under Homogeneous
Boundary Conditions

Let us consider the transverse vibrations of a beam moving along an undeformed axis
at a constant speed (Figure 1). The following conditions are assumed: (a) the material of the
beam satisfies a law of elasticity close to the linear one; (b) external periodic disturbances
act on the beam; (c) the beam is moving along its geometric axis at a constant speed.
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The following notations are used in Figure 1:

• M is the torque acting on the beam element with coordinate x;
• Q is the force acting on the beam element with coordinate x;
• M + dM is the torque acting on the beam element with coordinate х + dx;
• Q + dQ is the force acting on the beam element with coordinate х + dx;
• H is the harmonic force acting on the beam with its own amplitude and frequency;
• l is the beam length;
• V is the longitudinal speed of a beam moving along its axis.

To describe transverse vibrations, we will take the rectilinear axis x as the coordinate
axis, and from it we will calculate the deviation of the beam elements during transverse
vibrations. Let us assume the following:

1. Deviations of individual points of the axis of the beam are perpendicular to its rec-
tilinear, undeformed direction. At the same time, the displacement of these points
parallel to the axis Ox is neglected;

2. Deviations of the points of the beam axis for transverse vibrations occur in one plane
(“in the plane of vibrations”);

3. The cross-section of the beam is always perpendicular to the axis—that is, it does not
undergo deplenation [27].

Under such assumptions, the deviations of the beam axis points during transverse
vibrations are uniquely determined by one function of two variables—the coordinate х
and the time t. Let us denote such a function by u = u(x, t), which is the function that
determines the position of a point with the coordinate x at any moment of time t.

Let us also introduce the following denotations:

• m(x) is the mass of a unit of the beam length;
• E is the modulus of elasticity of the first kind (Young’s modulus);
• I is the moment of inertia of the cross-section of the beam relative to the neutral axis of

the section, which is perpendicular to the vibration plane.

The mathematical model that we consider uses the Euler–Bernoulli beam theory.
This is due to the fact that the deformations of the beam are small and are under a
transverse load.

Then, the differential equation of transverse vibrations of the beam has the following
form [7,28]:

d2u
dt2 + α2 ∂4u

∂x4 = ε F
(

u, θ,
∂u
∂t

,
∂u
∂x

,
∂2u
∂x2 ,

∂3u
∂x3 ,

∂4u
∂x4

)
(1)

where α2 = EI
m ; ε is a small positive parameter; θ is the phase of vibrations of the harmonic

force acting on the beam; dθ
dt = ν(t) is a positive function (instantaneous frequency of

disturbance force fluctuations); F
(

u, θ, ∂u
∂t , ∂u

∂x , ∂2u
∂x2 , ∂3u

∂x3 , ∂4u
∂x4

)
is analytical 2π periodic to the

ν t = θ function that is infinitely differentiated by all its arguments. It is necessary to
present F

(
u, θ, ∂u

∂t , ∂u
∂x , ∂2u

∂x2 , ∂3u
∂x3 , ∂4u

∂x4

)
below as a Fourier series. According to [25,26], it can

be presented as follows:

F
(

u, θ,
∂u
∂t

,
∂u
∂x

,
∂2u
∂x2 ,

∂3u
∂x3 ,

∂4u
∂x4

)
= ∑N

n=−N einνtFn

(
u,

∂u
∂t

,
∂u
∂x

,
∂2u
∂x2 ,

∂3u
∂x3 ,

∂4u
∂x4

)
(2)

where Fn

(
u, ∂u

∂t , ∂u
∂x , ∂2u

∂x2 , ∂3u
∂x3 , ∂4u

∂x4

)
are the values of the function F

(
u, θ, ∂u

∂t , ∂u
∂x , ∂2u

∂x2 , ∂3u
∂x3 , ∂4u

∂x4

)
in points (n = 0, ±1, ±2, ±3...). Moreover, we need to calculate the horizontal speed of the
beam. For this purpose, let us write the following:

d
dt

=
∂

∂x
dx
dt

+
∂

∂t
= V

∂

∂x
+

∂

∂t
, (3)
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d2

dt2 =
∂2

∂x2

(
dx
dt

)2
+ 2

dx
dt

∂2

∂x∂t
+

∂2

∂t2 = V2 ∂2

∂x2 + 2V
∂2

∂x∂t
+

∂2

∂t2 . (4)

At the same time, let us assume that the coefficients Fn

(
u, ∂u

∂t , ∂u
∂x , ∂2u

∂x2 , ∂3u
∂x3 , ∂4u

∂x4

)
in the

right-hand part of (2) are certain polynomials relative to ∂u
∂t , ∂u

∂x , ∂2u
∂x2 , ∂3u

∂x3 , ∂4u
∂x4 [7].

The beam moves along its axis with a constant speed; therefore, considering the
movement of the medium (3) and (4), Equation (1) acquires the following form:

∂2u
∂t2 + α2 ∂4u

∂x4 + 2V
∂2u
∂x∂t

+ V2 ∂2u
∂x2 = εF

(
u, θ,

∂u
∂t

,
∂2u
∂x2 , . . . ,

∂4u
∂x4

)
(5)

The function F
(

u, θ, ∂u
∂t , ∂u

∂x , ∂2u
∂x2 , ∂3u

∂x3 , ∂4u
∂x4

)
takes into account the nonlinear elastic fea-

tures of the medium as well as dissipative and resistance forces if such forces are small in
comparison with nonlinear elastic forces and external periodic disturbances.

For Equation (5), we shall consider boundary conditions that correspond to the imper-
fect hinged fastening of the ends of the beam [1,6]—that is,

u (x, t)|x=l
x=0 = εpj (θ, u)|x=l

x=0,
∂2u
∂x2 (x, t)

∣∣∣∣x=l

x=0
= εrj

(
θ,

∂u
∂t

)∣∣∣∣x=l

x=0
at j = 0, l, (6)

where pj(θ, u), rj

(
θ, ∂u

∂t

)
is a nonlinear function relative to u, ∂u

∂t and quite smooth relative
to their arguments. In practice, the following methods of beam fastening are possible [12]:

- the end of the rod is free, and at this end the bending moment and the transverse force

are equal to zero: ∂2u
∂t2 = 0, ∂3u

∂t3 = 0 at x = l;
- the end of the rod is rigidly fixed, while the deflection and the rotation angle are equal

to zero: u = 0, ∂u
∂t = 0 at x = l;

- the end of the rod is freely supported or hinged; then, the deflection and the bending

moment are also zero: u = 0, ∂3u
∂t3 = 0 at x = l.

When studying the transverse vibrations of the beam, we will assume that the speed
of longitudinal movement is small. Such a limitation allows the asymptotic method of
nonlinear mechanics to be applied to the study of vibrations [28].

According to this approach, we will search for the solution of Equation (5) in the first
approximation in the following form:

u(x, t) = aXk(x)T(ψ, θ) + εu1(a, ψ, θ, x) (7)

where a is the amplitude of single-frequency vibrations; u1(a, ψ, θ, x) is a function periodical
by ψ and θ with the period 2π; ψ is the phase of transverse vibrations of the beam; dψ

dt = ω is a
positive function (frequency of natural vibrations of the beam); T(ψ, θ) = cos(ωt− θ); Xk(x)
is a function that determines the shape of the vibrations and can take the following form:

(a) during vibrations of a homogeneous beam fixed at points with coordinates 0 and l,

Xk(x) = sin
kπx

l
, k = 1, 2, . . . , (8)

that is, this form of the function allows for movement and will have the appearance
of a fixed hinge type [29,30];

(b) during vibrations of a homogeneous beam, which is immovably fixed at one end, and

its other end is free Xk(x) = C
[
U(kx)− V(kl)

S(kl) V(kx)
]
, where C is a certain constant,

which is selected in such a way that the resulting expression at certain t should not
go beyond the sign of sine or cosine, V(x) and S(x) is Krylov’s function, V(x) =
1
2 (shkx− sin kx), S(x) = 1

2 (chkx + cos kx) and U(x) = 1
2 (chkx− cos kx);
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(c) during vibrations of a homogeneous beam, the ends of which are immovably fixed

Xk(x) = C
[
U(kx)− T(kl)

U(kl)V(kx)
]
, T(x) is Krylov’s function, T(x) = 1

2 (shkx + sin kx);

(d) during vibrations of a homogeneous beam with free ends Xk(x) = A
[
S(kx)− T(kl)

U(kl)T(kx)
]
,

A is a certain constant, which is selected in such a way that the resulting expression at certain
t should not go beyond the sign of sine or cosine;

(e) during vibrations of a homogeneous beam, one end of which is rigidly fixed and the

other one is hinged, Xk(x) = C
[
U(kx)− S(kl)

T(kl)V(kx)
]
.

Let us focus on the simplest case, when the ends of the beam are hinged but allow
transverse movements. Taking into account that the studied system is subject to periodic
disturbances, two cases should be considered for its study: non-resonant—ω 6= ν and
resonant—ω ≈ ν (in our investigation, we shall focus on the case of the main resonance).
As for longitudinal vibrations, the magnitude of the frequency of the disturbing force has a
significant effect on the APC.

2.2. Non-Resonant Case of Vibrations

In contrast to the linear case, the parameters a and ψ will be variable and in represen-
tation (7) will take into account the influence of nonlinear, periodic forces, as well as the
effect of the moving environment on the APC of the dynamic process. As in [7,9], we will
set the laws of change in the specified parameters using differential equations:

da
dt = εA1(a) + . . .

dψ
dt = ω + εB1(a) + . . .

(9)

while finding the functions A1(a) and B1(a) in such a way as in Equation (7), in which we
substitute the derivatives (9) instead of a(t) and ψ(t), and they should satisfy the boundary
conditions (6) with the required degree of accuracy.

Therefore, the task of constructing an approximate solution of the system of Equation (9)
consists in finding the functions A1(a), B1(a) and u1(a, ψ, θ, x). For this, let us differentiate the
dependence (7) taking into account (8). For the first approximation, the following is received:

∂u
∂t = εA1(a)Xk(x) cos ψ− aXk(x)(sin ψ(ω + ε B1(a)))

+ ∂u1
∂ψ (ω + εB1(a)),

(10)

∂2u
∂t2 = −aω2Xk(x) cos ψ− 2εa A1(a)Xk(x) sin ψ

−2aB1(a) ω Xk(x) cos ψ + ∂2u
∂ψ2 ω2,

(11)

∂u
∂x = aX′k(x) cos ψ + ε ∂u1

∂x , ∂2u
∂x2 = aX′′k (x) cos ψ + ε ∂2u1

∂x2 ,

∂3u
∂x3 = aX′′′k (x) cos ψ + ε ∂3u1

∂x3 , ∂4u
∂x4 = aX′′′′k (x) cos ψ + ε ∂4u1

∂x4

(12)

Given these ratios, let us write the general representation for the first approximation:

∂2u1
∂ψ2 ω2 + α2 ∂4u1

∂x4 = 2aωA1(a)Xk(x) sin ψ

+2ω aB1(a)Xk(x) cos ψ + V2aX′′ k(x) cos ψ + 2VaωX′k(x) sin ψ + F(a, ψ, x).
(13)

Then, the function F(a, ψ, x)will acquire the following form for the case under consideration:

F(a, ψ, x) = f
(

a sin
kπ

l
x cos ψ, a

kπ

l
cos

kπ

l
x cos ψ

)
(14)

To determine the unknown functions A1(a), B1(a), let us impose an additional condition
on u1(a, ψ, x), similarly to [7]. This condition is the absence of summands proportional
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to sin kπ
l x cos ψ and sin kπ

l sin ψ in its expansion. This allows us to obtain the aforesaid
functions in the following form:

A1(a) = − 1
p

1
4ωπ2

∫ l
0

∫ 2π
0 F(a, x, ψ)Xk(x) sin ψdxdψ

B1(a) = − 1
p

1
4ωπ2a

∫ l
0

∫ 2π
0 F(a, x, ψ)Xk(x) cos ψdxdψ,

(15)

where p =
∫ l

0 sin2 π
l xdx = l

2 .
The additional condition imposed on the function u1(a, ψ, θ, x) allows us to state that

in the first approximation, the APC of the dynamic process in the non-resonant case is
determined by the dependence:

da
dt = ε 1

p
1

4ωπ2

∫ l
0

∫ 2π
0 F(a, x, ψ)Xk(x) sin ψdxdψ,

dψ
dt = ω−

(
kπ
l

)2 V2

ω + ε 1
p

1
4ωπ2a

∫ l
0

∫ 2π
0 F(a, x, ψ)Xk(x) cos ψdxdψ.

(16)

Thus, in the first approximation, the dynamic process in a vibrating system is described
by the ratio u(x, t) = cos ψX(x), where a and ψ are connected by a system of differential
Equation (16). These formulas show that the constant velocity of the medium affects the
frequency of its transverse vibrations.

2.3. Resonant Case of Vibrations

Let us consider the same system (16) for the resonant case. As in the non-resonant
case, the solution can be found in the form (7). In contrast to the non-resonant case, in
the resonant case, the APC of the process significantly depends on the phase difference
between natural vibrations and forced vibrations [7]. Therefore, let us present dφ

dt and da
dt as

functions not only from a, but also from φ = ψ− θ—that is,

da
dt = εA1(a, φ) + ε2 A2(a, φ) + . . .

dφ
dt = ω− ν + εB1(a, φ) + ε2B2(a, φ) + . . .

(17)

Therefore, we need to determine the functions A1(a, φ), B1(a, φ) and u1(a, ψ, θ, x),
for the first approximation. For this purpose, by differentiating (7) and by taking the
aforesaid into consideration, we have

∂u
∂t

= εA1(a, φ)Xk(x) cos ψ− aXk(x)(sin ψ(ω− ν + ε B1(a, φ))) +
∂u
∂θ

ν (18)

∂2u
∂t2 = εν

∂A(a,φ)
∂φ Xk(x) cos ψ− εA1(a, φ)Xk(x) sin ψ(ω− ν + εB1(a, φ))

−a cos ψXk(x)(ω + εB1(a, φ))2 − aεXk(x) sin ψ
∂B1(a,φ)

∂φ (ω− ν)

+ ∂2u
∂ψ2 ω2 + ∂2u

∂θ2 ν2 + 2 ∂2u
∂θ∂ψ νω.

(19)

Therefore, by equating the coefficients at ε, we obtain the boundary value problem for
u1(a, ψ, θ, x) under the boundary conditions (6):

∂2u1
∂ψ2 ω2 + 2 ∂u1

∂ψ∂θ νω + ν2 ∂2u1
∂θ2 + α2

(
kπ
l

)4
∂4u1
∂x4 = −aV2X′′k (x) cos ψ− ∂2u1

∂ψ2 ω2 + 2 ∂u1
∂ψ∂θ νω

+2VX′k(x) cos ψ + F(x, a, ψ, θ) + εXk(x)

×
(

cos ψ
(
− ∂A(a,φ)

∂φ (ω− ν) + 2aωB
)
+ sin ψ

(
a ∂B(a,φ)

∂φ (ω− ν) + 2Aω
))

.

(20)
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Next, using the indicated method, we will find a solution in the form of a series:

u1(x, a, ψ, θ) = ∑n
m=1 Xm(x)U1m(a, θ, ψ) (21)

where U1m(a, θ, ψ) are periodic by the ψ and θ functions.
The boundary conditions (6) in this representation (21) exclude arbitrary constants [31,32].

After substituting (20) in (5), we have the following:

(a) for the case of k = 1—

∂2u11
∂ψ2 ω2 + 2 ∂u11

∂ψ∂θ νω + ν2 ∂2u11
∂θ2 + α2(π

l
)4u11 = aV2

(
π2

2l

)
cos ψ

+ 1
p
∫ l

0 F(a, x, θ, ψ)X1(x)dx

+
(

cos ψ
(
− ∂A(a,φ)

∂φ (ω− ν) + 2aωB
)
+ sin ψ

(
a ∂B(a,φ)

∂φ (ω− ν) + 2Aω
))

,

(22)

(b) for the case of k 6= 1—

∂2u1k
∂ψ2 ω2 + 2 ∂u1k

∂ψ∂θ νω + ν2 ∂2u1k
∂θ2 + α2

(
kπ
l

)4
u1k = aV2 (kπ)2

2l cos ψ

+ 1
p
∫ l

0 F(a, x, θ, ψ)Xk(x)dx.
(23)

We will search for the solution of the obtained Equations (22) and (23) in the form of
Fourier series. The complex-exponential form of the multiple Fourier series [33] is quite
convenient for calculations. This form is equivalent to the usual sine–cosine expansion
form, so that the convergence conditions are the same. Thus, the function u1k(a, ψ,θ) will
be presented as follows:

u1k = ∑ U1kbr(a)ei(b(φ+θ)+rθ), (24)

while b, r are mutually prime numbers; U1kbr(a) are complex coefficients of the Fourier
series, determined considering the orthonormality of the selected basis and related to the
amplitudes.

By imposing conditions similar to the non-resonant case on the function u1k(a, ψ,θ),
the following will be obtained for the main resonant case:

(ω− ν) ∂A
∂φ − 2aωB = 1

p
1

4π2 ∑s eisφ
∫ l

0

∫ 2π
0

∫ 2π
0 F(a, x, ψ, θ) sin kπ

l xe−isφ cos ψdxdψdθ

a ∂B
∂φ (ω− ν)− 2Aω + V2 π2

l2

= 1
p

1
4π2 ∑s eisφ

∫ l
0

∫ 2π
0

∫ 2π
0 F(a, x, ψ, θ) sin kπ

l xe−isφ cos ψdxdψdθ.

(25)

Thus, in the resonant case, for the first approximation of the solution of the problem,
we have a system of differential problems that connects the sought functions as follows:

(ω− ν) ∂2a
∂t∂φ − 2aω

∂φ
∂t = 1

p
1

4π2 ∑s eisφ
∫ l

0

∫ 2π
0

∫ 2π
0 F(a, x, ψ, θ) sin kπ

l xe−isφ cos ψdxdψdθ

a ∂2ψ
∂t∂φ (ω− ν)− 2a ∂a

∂φ + V2a π2

l2

= 1
p

1
4π2 ∑s eisφ

∫ l
0

∫ 2π
0

∫ 2π
0 F(a, x, ψ, θ) sin kπ

l xe−isφ cos ψdxdψdθ.

(26)

3. Results and Discussion

Let us consider the transverse vibrations of a moving beam under the action of a
harmonic disturbance in the case when its material satisfies the nonlinear technical law
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of elasticity [6]. The differential equation of motion of such a system can be written in
the form

∂2u
∂t2 + α2 ∂4u

∂x4 = −∂2u
∂x2 V2 − 2

∂2u
∂x∂t

V − ε
∂2u
∂x2

[
∂2u
∂x2

∂4u
∂x4 + 2

(
∂3u
∂x3

)2]
+ εH sin νt (27)

where the magnitude H is expressed as the maximum value of the disturbing force per
unit mass of the beam. If we assume that the boundary conditions for Equation (27)
correspond to hinged ends, then the single-frequency vibration process in a regime close to
the frequency of external disturbances can be described by the dependence

u(x, t) = a sin
π

l
x cos(νt + φ). (28)

The parameters a and φ for this case are determined by a system of differential
equations:

• non-resonant case—

da
dt = 0

dφ
dt = ω− ε

(
9

128
π2

l2
a2

ω−1 +
(

π
l
)2 V2

8ω

) (29)

• resonant case—

da
dt = − 2εH

π(ω+ν(t)) cos φ

dφ
dt = ω− ν− ε

(
9

128
π2

l2
a2

ω−1 +
(

π
l
)2 V2

8ω

)
+ 2ε H

π(ω+ν(t))a sin φ.
(30)

On the diagrams (Figures 2–6), the laws of natural frequency change are shown at
these numerical values: l = 2 m; I = 6.1× 10−6 m4; S = 0.12× 0.085 m2; r = 7900 kg/m3;
E = 2.06× 1011 N/m; a = 0.01 m.

Let us determine the natural vibrations frequency of such a beam

ω =
(π

l

)2
√

EI
ρS

With the above parameter values, the natural frequency of the beam will be equal
to 308 Hz.
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Figure 2 illustrates behavior changes of the frequency under the amplitude and lon-
gitudinal velocity influence. As one can see in Figure 3, the movement speed shifts the
dependence curve down; that is, at V = 5 m/s, the vibration frequency drops by almost
2 Hz, but at V = 20 m/s, the vibration frequency drops to 267 Hz, i.e., the frequency
drops by 13%. At the same time, the size of the amplitude does not significantly affect the
frequency of transverse vibrations: if the amplitude of vibrations increases to 0.1m, then
the frequency will drop to only 305 Hz, which is equal to 1%.

The nature of the change in the frequency of vibrations of the moving beam as a
function of speed is also parabolic (as can be seen from Formulas (29) and (30)). Moreover,
if, at an amplitude value of the beam of 0.05 m, the effect is insignificant (around 6%), at an
amplitude value of 0.10 m, it reaches 18% (Figure 4). Analogical results can be concluded
from Figure 5. Thus, the change in amplitude depends only on the harmonic force acting
on the beam. The effect of the speed is manifested in the change in the system phase, and
the higher the speed, the more the system frequency drops.

It is possible to build the dependence of the influence of any other physical parameter:
length, modulus of elasticity, geometrical parameters of the beam, etc.

Tables 1 and 2 illustrate the dependencies of frequency on the length and amplitude at
four different longitudinal velocity values.

It is also possible to construct resonance curves at different speeds of the medium,
which make it possible to analyze the influence of this value on the amplitude of system
vibrations. Below is a graph (Figure 6) of such curves with similar physical parameters of
the studied system. It follows from Figure 6 that an increase in the speed of the medium
movement leads to an increase in the amplitude.

Table 1. Dependencies of frequency on the length and longitudinal velocity.

Beam’s
Length,

m

Natural
Frequency,

Hz

Beam’s Oscillation Frequency, Hz

at Velocity
V = 20 m/s

at Velocity
V = 10 m/s

at Velocity
V = 5 m/s

at Velocity
V = 0 m/s

1 1231 1182.419 1212.454 1219.963 1222.466

2 307.75 267.1695 297.2048 304.7137 307.2166

3 136.7778 96.6253 126.6606 134.1695 136.6724

4 76.9375 36.85705 66.89239 74.40122 76.90416

5 49.24 9.1723 39.21457 46.7234 49.22635

Table 2. Dependencies of frequency on the amplitude and longitudinal velocity.

Oscillation
Amplitude a, m

Beam’s Oscillation Frequency, Hz

at Velocity
V = 20 m/s

at Velocity
V = 10 m/s

at Velocity
V = 5 m/s

at Velocity
V = 0 m/s

0.01 267.451 297.462 304.965 307.466

0.02 265.850 295.861 303.3639 305.864

0.03 263.181 293.192 300.694 303.195

0.04 259.444 289.455 296.958 299.459

0.05 254.640 284.651 292.154 294.654

0.06 248.768 278.779 286.282 288.783

0.07 241.8289 271.8399 279.3426 281.8436

0.08 233.821 263.832 271.335 273.836

0.09 224.747 254.758 262.260 264.761

0.1 214.604 244.615 252.118 254.619
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For example, at a speed of V = 15 m/s, the system vibration amplitude increases by
22%. It can also be seen that the vibration frequency of the dynamic process decreases with
increasing speed.

In addition, it is visible how the frequency changes. As the longitudinal speed in-
creases, the vibration frequency of the system decreases, and the first stable amplitude
of the vibration process occurs later. In other words, when the system is not moving, the
amplitude is 16.2 mm in 0.4 s, and at a speed of V = 15 m/s, the amplitude is already equal
to 20.4 mm, but in 0.9 s.

4. Conclusions

1. The theoretical and practical novelty of this research can be formulated as follows:

• in the paper, firstly, we developed and systematized a procedure to estimate
the influence of kinematic and physical–mechanical beam characteristics on the
nonlinear transversal oscillations;

• asymptotic methods of the nonlinear mechanics that have been applied to analyze
the parameters of the immovable systems are generalized in the case of the
movable systems;

• the proposed procedure allows us to extend significantly the classes of problems
for which approximate solutions can be obtained with the necessary accuracy
in engineering;

• a specific advantage of the developed procedure is possibility to provide engi-
neering calculations using well-known computer packages (Maple, MatLab, etc.).

2. After the graphical analysis of numerical simulations (Figures 2–6) and the corre-
sponding equation system, it can be concluded that the speed of movement reduces
the frequency of vibrations (for the non-resonant case with hinged fastening), i.e., at
V = 5 m/s, the frequency of vibrations decreases almost to 2 Hz, and when the am-
plitude increases, the frequency decreases slightly (by 1%) according to the parabolic
law, which is not as significant as when the longitudinal speed is affected.

3. Additionally, in the resonant case, it can be seen that an increase in the speed of
medium movement leads to an increase in the amplitude. For example, at a speed
of V = 15 m/s, the amplitude of vibrations of the system increases by 22%. It can
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also be seen that the vibration frequency of the dynamic process decreases with
increasing speed.

4. The amplitude of vibrations of the system remains unchanged and is equal to its
initial value, if the system is conservative (a = const). The influence of speed on the
change in system frequency is decreasing in nature; the higher the speed, the lower
the system frequency.

5. From the results of the work, as a special case, at V → 0 , we obtain results that are
relative to quasi-linear systems with distributed parameters that are not characterized
by longitudinal motion.

6. The obtained mathematical models allow design engineers to take into account the
influence of the characteristics listed in the study (speed, disturbing force, physical
and mechanical characteristics of the beam material) even at the stage of designing
homogeneous nonlinear elastic systems. The correlations obtained in the study make
it possible to research the influence of the parameters of the moving medium on the
nature of changes in the frequency and amplitude of vibrations and to predict dynamic
phenomena in them with the required accuracy. If properly applied in engineering
calculations of industrial equipment, the obtained dependences can be used for the
synthesis and optimization of the parameters of pipelines, through which a liquid
medium flows, and other similar structural elements.

7. Practical applications of the obtained results in the paper are as follows:

• Nonlinear transversal oscillations of the telescopic boom of a crane are stud-
ied as real phenomena. The numerical characteristics of the oscillating sys-
tem considered in the paper relate to the mathematical model of the telescopic
boom (CTD-KB P 3200 beam crane with two hooks). Optimization of parame-
ters for such types of technological constructions can be predicted due to the
considered procedure.

• Substitution of some physical parameters in the proposed model enables us to
consider mathematical models of nonlinear oscillations for liquid pipelines as
well. Optimization of parameters can be realized in the same way also.

The authors’ plans for future study are to consider how the proposed procedure works
in the case of more complicated forms of boundary value conditions.

Author Contributions: Conceptualization, A.S. and P.P.; Methodology, A.S.; Software, A.S.; Vali-
dation, A.S., P.P. and M.V.; Formal analysis, A.S.; Investigation, P.P.; Writing—original draft, M.V.;
Writing—review & editing, P.P.; Visualization, A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Andronov, A.; Witt, A.A.; Khaikin, S.E. Theory of Oscillators; Addison-Wesley Publ. Company, Inc.: London, UK, 1966. [CrossRef]
2. Anisimov, I.O. Oscillations and Waves; Akadempress: Kyiv, Ukraine, 2003.
3. Zviaduri, V.; Chelidze, M.; Tedoshvili, M. Dynamics of Vibratory Technological Machines and Processes; Lambert Academic Publ.:

Riga, Latvia, 2021.
4. Kneubühl, F.K. Oscillations and Waves; Springer: Berlin, Germany, 1997. [CrossRef]
5. Fidlin, A. Nonlinear Oscillations in Mechanical Engineering; Springer: Berlin, Germany, 2006. [CrossRef]
6. Wagg, D.; Neild, S. Nonlinear Vibration with Control; Springer Intern. Publ.: Basel, Switzerland, 2015. [CrossRef]
7. Andrukhiv, A.; Sokil, B.; Sokil, M. Resonant phenomena of elastic bodies that perform bending and torsion vibrations. Ukr. J.

Mech. Eng. Mater. Sci. 2018, 4, 65–73. [CrossRef]

http://doi.org/10.1016/c2013-0-06631-5
http://doi.org/10.1007/978-3-662-03468-2
http://doi.org/10.1007/3-540-28116-9
http://doi.org/10.1007/978-3-319-10644-1
http://doi.org/10.23939/ujmems2018.01.065


Mathematics 2023, 11, 322 14 of 14

8. Pukach, P.; Slipchuk, A.; Beregova, H.; Pukach, Y.; Hlynskyi, Y. Asymptotic Approaches to Study the Mathematical Models
of Nonlinear Oscillations of Movable 1D Bodies. In Proceedings of the 2020 IEEE 15th International Conference on Computer
Sciences and Information Technologies (CSIT), Zbarazh, Ukraine, 23–26 September 2020; Volume 1, pp. 141–145.

9. Slipchuk, A.; Pukach, P.; Vovk, M.; Slyusarchuk, O. Advancing asymptotic approaches to studying the longitudinal and torsional
oscillations of a moving beam. East.-Eur. J. Enterp. Technol. 2022, 3, 31–39. [CrossRef]

10. Yurish, S.Y. Sensors and Biosensors, MEMS Technologies and Its Applications. In Advances in Sensors: Reviews; International
Frequency Sensor Association Publ.: Barcelona, Spain, 2014; Volume 2.

11. Sokil, B.I.; Khytriak, O.I. Vibrations of drive systems flexible elements and methods of determining their optimal nonlinear
characteristics based on the laws of motion. Mil. Tech. Collect. 2009, 2, 9–12. [CrossRef]

12. Mittal, P.K. Oscillations, Waves and Acoustics; I.K. International Publishing House Pvt. Ltd.: New Delhi, India, 2010.
13. Firouz-Abadi, R.D.; Haddadpour, H.; Novinzadeh, A.B. An asymptotic solution to transverse free vibrations of variable-section

beams. J. Sound Vib. 2007, 304, 530–540. [CrossRef]
14. Wang, Y.; Zhu, W. Supercritical nonlinear transverse vibration of a hyperelastic beam under harmonic axial loading. Commun.

Nonlinear Sci. Numer. Simul. 2022, 112, 106536. [CrossRef]
15. Sah, S.M.; Thomsen, J.J.; Tcherniak, D. Transverse vibrations induced by longitudinal excitation in beams with geometrical and

loading imperfections. J. Sound Vib. 2019, 444, 152–160. [CrossRef]
16. Gritsenko, D.; Xu, J.; Paoli, R. Transverse vibrations of cantilever beams: Analytical solutions with general steady-state forcing.

Appl. Eng. Sci. 2020, 3, 100017. [CrossRef]
17. Cao, D.; Gao, Y.; Wang, J.; Yao, M.; Zhang, W. Analytical analysis of free vibration of non-uniform and non-homogenous beams:

Asymptotic perturbation approach. Appl. Math. Model. 2018, 65, 526–534. [CrossRef]
18. Lenci, S.; Rega, G. An asymptotic model for the free vibrations of a two-layer beam. Eur. J. Mech.-A/Solids 2013, 42, 441–453. [CrossRef]
19. Ahmed, A.; Rhali, B. Geometrically nonlinear transverse vibrations of Bernoulli-Euler beams carrying a finite number of masses

and taking into account their rotatory inertia. Procedia Eng. 2017, 199, 489–494. [CrossRef]
20. Torabi, K.; Jazi, A.J.; Zafari, E. Exact closed form solution for the analysis of the transverse vibration modes of a Timoshenko

beam with multiple concentrated masses. Appl. Math. Comput. 2014, 238, 342–357. [CrossRef]
21. Serpilli, M.; Lenci, S. Asymptotic modelling of the linear dynamics of laminated beams. Int. J. Solids Struct. 2012, 49, 1147–1157. [CrossRef]
22. Won, H.-I.; Chung, J. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional

wall. J. Sound Vib. 2018, 419, 42–62. [CrossRef]
23. Babaei, M.; Asemi, K.; Safarpour, P. Natural frequency and dynamic analyses of functionally graded saturated porous beam

resting on viscoelastic foundation based on higher order beam theory. J. Solid Mech. 2019, 11, 615–634. [CrossRef]
24. Lv, H.; Li, Y.; Li, L.; Liu, Q. Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially

varying moving velocity. Appl. Math. Model. 2014, 38, 2558–2585. [CrossRef]
25. Qaderi, S.; Ebrahimi, F.; Vinyas, M. Dynamic analysis of multi-layered composite beams reinforced with graphene platelets

resting on two-parameter viscoelastic foundation. Eur. Phys. J. Plus 2019, 134, 1–11. [CrossRef]
26. Vîlcu, R.; Bala, D. Particularities of some proposed models for the characterization of chemical oscillations. Model. Oscil. Chem.

React. 2004, 277–286.
27. Shesha Prakash, M.N.; Suresh, G.S. Textbook of Mechanics of Materials; PHI Learning Private Limited: New Delhi, India, 2011.
28. Bogolyubov, N.N.; Mitropolsky, Yu.A. Asymptotic Methods in the Theory of Non-Linear Oscillations; Hindustan Publ. Corp.: New

Delhi, India, 1961.
29. Tsmots, I.; Rabyk, V.; Kryvinska, N.; Yatsymirskyy, M.; Teslyuk, V. Design of the Processors for Fast Cosine and Sine Fourier

Transforms. Circuits Syst. Signal Process. 2022, 1–24. [CrossRef]
30. Davis, H.F. Fourier Series and Orthogonal Functions; Dover Publications, Inc.: New York, NY, USA, 2012.
31. Fetter, A.L.; Walecka, J.D. Nonlinear Mechanics; Dover Publications, Inc.: New York, NY, USA, 2006.
32. Sharma, A.K. Textbook of Differential Equations; Discovery Publishing House: New Delhi, India, 2010.
33. Dronyuk, I.; Fedevych, O.; Kryvinska, N. Constructing of Digital Watermark Based on Generalized Fourier Transform. Electronics

2020, 9, 1108. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.15587/1729-4061.2022.257439
http://doi.org/10.33577/2312-4458.2.2009.9-12
http://doi.org/10.1016/j.jsv.2007.02.030
http://doi.org/10.1016/j.cnsns.2022.106536
http://doi.org/10.1016/j.jsv.2018.12.027
http://doi.org/10.1016/j.apples.2020.100017
http://doi.org/10.1016/j.apm.2018.08.026
http://doi.org/10.1016/j.euromechsol.2013.07.007
http://doi.org/10.1016/j.proeng.2017.09.132
http://doi.org/10.1016/j.amc.2014.04.019
http://doi.org/10.1016/j.ijsolstr.2012.01.012
http://doi.org/10.1016/j.jsv.2017.12.037
http://doi.org/10.22034/jsm.2019.666691
http://doi.org/10.1016/j.apm.2013.10.055
http://doi.org/10.1140/epjp/i2019-12739-2
http://doi.org/10.1007/s00034-022-02012-8
http://doi.org/10.3390/electronics9071108

	Introduction 
	Materials and Methods 
	Mathematical Models of Transverse Vibrations of a Moving Beam under Homogeneous Boundary Conditions 
	Non-Resonant Case of Vibrations 
	Resonant Case of Vibrations 

	Results and Discussion 
	Conclusions 
	References

