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Abstract: The aim of this article was to solve a multi-objective maintenance optimization problem by
minimizing both unavailability and cost through the use of an optimal maintenance strategy. The
problem took into account three different system designs upon which the objective functions are
dependent, and the time to start preventive maintenance (PM) was used as a decision variable. This
variable was optimized for all system components using a discrete maintenance model that allows for
the specification of several discrete values of the decision variable in advance to find the optimal one.
The optimization problem was solved using innovative computing methodology and newly updated
software in MATLAB, which was used to quantify the unavailability of a complex system represented
through a directed acyclic graph. A cost model was also developed to compute the cost of different
maintenance configurations, and the optimal configuration was found. The results for a selected real
system (a real fluid injection system adopted from references) showed that unavailability was less
sensitive to variations in maintenance configurations, while cost variations were more noticeable in
relation to different maintenance configurations. Applying PM, the increasing value of the decision
variable increased cost because it led to more frequent corrective maintenance (CM) actions, and
recovery times due to CM were more expensive than recovery times due to PM.

Keywords: multi-objective optimization; unavailability; cost; maintenance; acyclic graph; alternating
renewal process
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1. Introduction

A real complex system can either be in a functioning or failed state. The probability of
a functioning state under specified conditions over an intended period of time is usually
defined [1] as system reliability R(t). System maintainability is defined to be the probability
the system can be restored to a functional state within a specified period of time known
as downtime. To model reliability and maintainability, we define two relevant random
variables: time to system failure and time to repair. Maintainability and reliability are the
two most important factors that must be considered while designing the system. They
directly affect the availability A(t) of the system, which is defined as the probability that
the system will continue to operate satisfactorily at any given point of time when it is being
used under the specified conditions. The term reliability is often associated with systems
that cannot be repaired; availability, however, is a term associated with repairable systems
because it encompasses the full failure-recovery cycle over the mission time of the system.
Thus, repairable systems operate during a time to failure (random variable) until a failure
occurs. To recover the system’s operating state, time to repair (random variable) is needed.
Both random variables are modelled by appropriate continuous probability distributions.

Various maintenance strategies have been subjected to intense study and research in
order to improve the reliability, availability, and usability of relevant industrial systems.
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Unexpected failures can endanger human lives, cause unplanned production outages, etc.,
and this is why systems must be protected against them. A relevant tool to significantly
improve system reliability is maintenance, both preventive and corrective. The authors
in [2] state that maintenance is no longer a necessary evil and that production companies
should invest in maintenance to maximize profit. To find the most suitable maintenance
strategy for every component or subsystem, one must also consider the economic impact
of the strategy employed to ensure profitable production. Therefore, different strategies
must be evaluated in terms of their performance [2,3].

One of the common maintenance policies applied is a CM strategy, quite often denoted
as a repair policy. It is launched at the time of failure when the system is already broken.
Thereafter, the system is repaired into a functioning state through applying a CM action.
The aim of a PM policy is to prevent the system from undesired breakdowns. PM is usually
carried out while the system is still operational—it reduces the ageing processes, correlating
to a decreased probability of system failure. Maintenance modeling is an emerging scientific
discipline with rapid developments, and we do not want to present here a general overview
of references on maintenance as this article is oriented towards the optimization of PM
policy in context of system design. Several papers oriented towards both aspects are
discussed below.

Many techniques can be utilized to either maximize the system availability or minimize
the unavailability. Unavailability is the complement of system availability to one. The
present article is focused on two of them. First, this is done by modifying the design
process for the system to ensure enough redundancies are present to reduce the system’s
unavailability. For a system with a series-parallel configuration, redundancy can be thought
of as a modification to the configuration to increase the number of parallel paths [4]. Second,
an overall decrease in system unavailability is possible through PM [5]. The unavailability
of a system due to its failure can occur at any time, requiring a significant endeavor to
revert it back to the operating state. Contrarily, a planned shutdown to perform a PM task
can represent a controlled situation with materials, spares, and human teams available,
resulting in a reduced period of unavailability.

It is clear now that the unavailability of repairable systems can be improved in two
ways, either by modifying the design or applying PM strategies. Only a few research articles
are devoted to looking at the simultaneous optimization of both ways from a multi-objective
perspective. In [6], a methodology for integrated safety system design and maintenance
optimization based on a bi-level evolutionary process was demonstrated. The authors
tried to find both the optimum maintenance strategy and the optimum system design by
applying genetic algorithms (GAs) as the optimization method and cost and unavailability
as objective functions. The simultaneous optimization of design and maintenance during
the life cycle was also presented in [7]. Optimization was performed using GAs, and
objective functions were used for system reliability, redundancy, and life-cycle cost. A new
approach to parallel optimization of maintenance and design of complex systems using
reliability and cost as objective functions was demonstrated in [8].

The authors in [9] implemented optimization of both system design and PM strategy
by coupling a multi-objective evolutionary algorithm and discrete simulation. System
design can be optimized for reliability using redundant components, whereas PM strategy
optimizes the PM times of each system component. The system availability and operation
cost were the objective functions that were maximized and minimized, respectively. They
applied a simulation approach in which each solution generated by the multi-objective
evolutionary algorithm was evaluated through the use of a discrete simulation. This method
explains the evolution of the system as it varies depending on operation and recovery times.
This technique enables the analysis of complex real systems. Several configurations of the
multi-objective evolutionary algorithm non-dominated sorting genetic algorithm II (NSGA-
II) were explored in [10]. The authors in [11] realized an exhaustive encoding comparative
study, wherein some binary encoding alternatives were investigated. The authors were able
to determine the optimal time to start a PM activity. All these approaches were based on a
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simulation technique that suffers from uncertainty, although the evolutionary processes can
be improved in different ways, as for example, the effect of several chromosome lengths.

The system unavailability and operation cost are the objective functions as well in this
article, but their optimization was solved by an alternative method. The effective analytical
method based on modelling was developed, proceeding from our previous findings in
renewal theory and alternating renewal processes [12]. The theorem, called a recurrent
linear integral equation, was modified to implement the new decision variable, i.e., time to
start a PM activity, in the context of problem formulation. In addition, a new cost model
for the system configuration corresponding to the desired PM strategy is defined in this
paper. The innovative theorem, cost model, and optimization algorithm were numerically
modeled using the high-performance programming language MATLAB.

This article describes a new method to find the optimal PM policy to solve the designed
optimization problem. The time to start PM was used as a decision variable in the optimiza-
tion problem. This variable, which determines different maintenance modes of a system
component, was optimally selected from a set of possible realistic maintenance modes.
Optimization was performed for all system components. Thus, the discrete maintenance
model was considered, wherein each component can function in one of several maintenance
modes. The fixed value of the decision variable determined one maintenance mode of the
component that predetermines both the evolution of unavailability and cost. Different
maintenance modes of system components resulted in different system configurations,
with each having a specific unavailability course as well as cost. The optimization process
often demands plenty of computation time because a complex system can have several
maintenance configurations. The discrete maintenance optimization is demonstrated on
a real system selected from practice: the fluid injection system was adopted from the
reference authorized by Cacerefio et al. [11].

Literature on Maintenance Optimization Approaches

There are different methods to solve the multi-objective maintenance optimization
problem. A recent thorough classification can be found in [13]. In our article, we try to
optimize the parameters of an a priori selected maintenance strategy. This problem can be
solved by different approaches:

e  Our approach can be classified into mathematical approaches, wherein the optimiza-
tion problem is formulated by means of mathematical equations, which are then solved
by means of differential calculus to identify the optimal parameters of the maintenance
strategy. In [14], a mathematical approach was used for optimizing maintenance
profitability. Mathematical approaches were used in other references: for example,
a single unit was optimized in [15] to optimize the scheduled maintenance strategy
and the inventory management, optimal maintenance in the context of uncertainty is
solved in [16,17], etc. Mathematical approaches can be used for the systems for which
the optimization problem can be solved analytically or numerically.

e  Mixed integer programming is the field of optimization that addresses optimization
problems with continuous and integer variables in the objective or in the constraints.
Linear or nonlinear problems can be solved by means of the method in [18]. If the
method is used for maintenance optimization, the possible maintenance optima are
represented by integer variables. Examples of application of the method are the follow-
ing: in [19], the authors optimized the maintenance schedule of a wind farm, in [20], a
power distribution system was optimized; etc. In [21], the authors developed a mixed
integer programming model for integration production and scheduled maintenance
planning that considers the system’s manufacturing capacity and its reliability. The
use of the method for maintenance optimization is mainly limited to simple systems
because the computation time rapidly increases with the intricacy of systems [22].

e  Dynamic programming is a method for solving multi-stage decision problems. The
basic idea of the method is that complex problems are decomposed into simpler sub-
problems to be solved recursively at each time step. Examples of using the method
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are the following: the optimal maintenance strategy of road networks under budget
constraints was solved in [23], the optimization of the maintenance check schedules in
the aeronautical industry was determined in [24], the optimal maintenance strategy
for power cables was solved in [25], etc. The main problems with dynamic program-
ming are the curse of dimensionality and the need to explicitly define the transition
probabilities among all the possible system states, which makes it inapplicable for
complex systems [26].

e  Metaheuristic search algorithms are computational processes where the solution of an
optimization problem is found approximately by iteratively improving the candidate
solutions [27]. For example, GAs are based on the principles of genetics and natural se-
lection. GAs have been used in many situations to solve the maintenance optimization
problems: the scheduled maintenance strategy of a wind farm was optimized in [28],
the scheduled maintenance strategy of a multi-unit system was optimized in [29],
the PM plan was optimized by means of multi-objective GAs in [30], etc. Moreover
the maintenance optimization problems can be solved by other metaheuristic search
algorithms: the particle swarm optimization algorithm was used to optimize the
predictive maintenance interval of a manufacturing system [31], the harmony search
algorithm was applied to find the best maintenance strategy for bridge infrastruc-
tures [32], simulated annealing was used to find the optimal scheduled maintenance
plan of bridge networks [33], ant colony optimization was applied to optimize the
maintenance scheduling of multi-unit systems [34], etc. These algorithms are easy to
understand and easily adaptable to different optimization problems. A drawback of
these algorithms is that they are slow to converge and do not guarantee convergence
towards the global optimum.

2. Formulation of a Multi-Objective Optimization Problem

Any multi-objective optimization problem works on the assumption that in general
m-objective functions f1(x), f2(x), ... fm(x), each one varying in a given range has to be
optimized, i.e., either maximized or minimized, constrained by several restrictions imposed
on the decision variables that are mostly related to system components. The optimization
problem in this article is formulated using the two following objective functions: f1(x),
which represents the cost function Cg, and f7(x), which represents the stabilized unavail-
ability function Us. Thus, we searched for an optimal vector of decision variables x,
here considered as the vector of times to start PM all of k components (TP, ..., TP) that
minimize both f1(x) and f(x):

min [f1() N f2(0)] (1)

In our notation, we searched for the optimal decision vector (TP, ..., TP;), minimiz-
ing both objective functions:

min [Cs(Tpl,...,TPk) N US(TP1,...,TPk)] (2)

Cs(TPy,..., TP) ... total cost of maintenance of a system configuration;

Us(TPy, ..., TP) ... stabilized (asymptotic) system unavailability at the end of a mission
time Ty;

(TPy,..., TP) ... decision variable vector;

k ... number of system components, each having the decision variable TP; (time to start
PM of i-th component), which is optimized in this article.

From the point of view of computational feasibility, the optimization process was
realized under following constraints: each decision variable has a prescribed domain con-
taining three possible values, namely, TP,;;;, TPy, and the middle point TP,,;; between
minimal and maximal possible values.

TPi€[TPi min; TP mia; TPimax]i = 1,..., k 3)
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Different values of TP; constitute different maintenance modes of the component, and
for each maintenance mode, one can first compute the time evolution of unavailability
function U(t) using the methodology described in Section 4.2, followed by the cost C; 1,,
described in Section 4.3. Evolutions of U(t) of individual modes are then aggregated by
means of the methodology based on directed acyclic graph (AG) described in Section 4.1 in
order to compute the unavailability evolution of one system configuration. One system
configuration is characterized by an asymptotic value Us and total cost Cg. All system
configurations are finally ordered with respect to Equation (2). This is the main idea of the
discrete maintenance model further introduced in Section 3.

In most cases, both Cg and Ug are usually complex linear or non-linear functions of the
decision variable vector (TP, ..., TPy), representing variables for which optimal values
have to be found.

Sometimes, the optimization problem is complicated by other constraints that apply
for a given scope (e.g., a limitation for system performance). Such matters must be solved
by finding the global optimum not violating any constraint. Thus, optimization, objective
functions, and constraints cannot be managed independently because they influence each
other. Solution of such optimization issues require advanced numerical algorithms [35-37].
The optimization problem with one objective function and restrictions including a specified
limitation of maximal permissible value of the unavailability function was solved in our
previous research work, for example, in [38]. In this article, we solved the optimization
problem minimizing two objective functions (see Equation (2)) and respecting k restrictions
given by Equation (3).

Another tool to solve similar optimization problems results from GAs that have been
frequently used in previous research, for example in [39], where GAs were used to optimize
surveillance testing and maintenance, or in [11], which provided a real application example
to demonstrate the innovative methodology presented in this article.

As mentioned above, concerning the optimization outcome and decision variables, the
discrete maintenance model can be classified as a process that finds optimized parameter
values defining a single maintenance strategy selected a priori, e.g., in this paper, the time
to start a PM activity must be found optimally, in the context of the problem formulation.
To solve the multi-objective optimization problem, we selected a mathematical approach
for the following reasons:

e  The search algorithm of the optimization problem requires good conditions for comput-
ing unavailability. We have the long-term experience to generate effective numerical
algorithms for quantifying instantaneous unavailability of different types of main-
tained components, as well as complex systems. For example, in [12], we created and
numerically elaborated the recurrent linear integral equation proceeding from alter-
nating renewal processes. In this paper, the algorithms were further developed, i.e.,
properly modified and adopted to solve the formulated optimization problem.

e  We have long-term experience with the high-performance programming language
MATLAB that was effectively used for the development of all numerical algorithms in
the paper that are absolutely necessary to compute the optimization problem.

e Inthe future, we intend to continue the research work in close collaboration with power
industry experts, who are oriented towards the optimization of complex distribution
networks that are hard to solve by the other above-mentioned alternative approaches.

3. Discrete Maintenance Model

In [40], we introduced the discrete maintenance model for complex real systems with
non-identical components. The model investigates systems with repairable components
and latent failures to find optimal maintenance strategies to minimize cost and maintain
unavailability under restriction. Latent failures are indicated using adaptable periods of
inspections as a decision variable.

A real complex system consists of a multitude of components that can be maintained
in different ways, both by corrective and preventive interventions. Any component can
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function in different maintenance modes. One discrete maintenance mode of the ith compo-
nent is determined by a selected value of the decision variable (in our application x; = TP;)
that immediately affects the maintenance cost of the mode. On the condition that a system
consists of k components, wherein each component can have five maintenance modes, in
total, we have to explore 5° maintenance configurations of the system. Each configuration
is characterized by a typical unavailability value (mostly maximal or asymptotical) and
total cost Cs, which is commonly computed as a sum of the costs of all component modes
constituting the configuration. It is necessary to find the optimal system configuration that
meets requirements (2). We call this maintenance model the discrete maintenance model in
this article.

4. Methodology for Computing Unavailability and Cost of a System Configuration
4.1. Graph Structure as a System Representation

Any system structure can be represented with the help of a directed acyclic graph.
Figure 1 demonstrates the AGs of a real system from practice—a fluid injection system,
which is later analyzed and optimized in detail in the next section. AGs are frequently used
as systematic schemes to quantify the unavailability of complex systems [41] because they
enable a reflective description of a system’s functionality. Obviously, AGs contain nodes
and edges, wherein the exceptional node is the TOP node that describes the functionality
of all systems depending on the functionality of its inferior subsystems and components
that constitute internal and terminal nodes. Nodes are interconnected by edges, and AGs
are acyclic, meaning that feedback loops are inadmissible. Terminal nodes—for example,
V1 or P3—are denoted by blue squares, and they represent system components. Failure
time as well as repair time or time necessary for PM of a system component are described
by a suitable probability distribution. Applying these distributions, the time evolution of
unavailability for each component can be computed using advanced renewal theory [40].

(s}
O
e
5
— 0] - — o~
= = = = =i
1 1
I
o) o
> > ¥ o

Figure 1. Directed acyclic graph of a system from practice.

Internal nodes are denoted by blue triangles, e.g., ul or u2, respresenting subsystems
of the fluid system. Subsystems as well as components (i.e., internal respectively terminal
nodes) at a given time are either correctly working or in a failed state (under restoration).
A node is in a functioning state when the number of child nodes is greater or equal to the
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number of nodes inside the triangle, otherwise it is in a failed state. For example, the node
ul is correctly working if the number of correctly working directly inferior nodes is either 1
or 2.

The knowledge of the unavailability functions of terminal nodes (components) can
be used to quantify the unavailability function of internal nodes (subsystems), with both
serving as inputs for computing the unavailability function of the TOP node U(t), which
represents all systems. The unavailability function U(t) demonstrates the time-dependent
probability that the system is unavailable at time ¢ due to a failure or due to a still ongoing
repair process.

4.2. Model for Unavailability Exploration of a Terminal Node with Both CM and PM

To find the unavailability function of TOP node U(f), it is necessary to find a model
and algorithm for the unavailability quantification of terminal nodes that undergo both PM
and CM. At first, the model with CM will be introduced, which will be further generalized
to enable the implementation of both PM and CM.

Applying CM, we have to consider two mutually cooperating random variables: the
lifetime X, described by either distribution function F(t) or probability density function (pdf)
f(t), and a random time necessary for completing the repair, actually repair, or recovery
time Y, described by either distribution function G(t) or pdf g(f). Resulting from renewal
theory and alternating renewal processes, availability A(f) can be computed as follows [12]:

A(t) = +/ F(t—x)] +/ R(t—x)d 4)

where R(t) = 1 — F(¢t) is the reliability function and h(x) is the renewal density of the
corresponding alternating renewal process.
The unavailability U(t) is given as follows:

U)=1-—A(t fth F(t—x)]dx (5)
0

To compute the unavailability from the Formula (5), h(x) must be known, which
could be a problem in practice, bringing about a large number of numerical complications
because the renewal density is numerically represented as an infinite sum of probability
densities—here, each being computed as a convolution. Fortunately, Formula (5) can be
superseded by the equivalent Formula (6), which brings the following theorem, called the
recurrent linear integral equation, which was first mentioned and proven in [12].

Theorem 1. The unavailability U(t) in Formula (5) is equivalent to the unavailability U(t) in the
following Formula (6)

/f [1— Gt —x)] dx+/ Frg)(x) U(t — x)dx ©)
where x means convolution.

Following this, we consider the PM strategies to maintain the operating status of
the node.

These operations performed before failure are usually less complex than CM activities
that must be undertaken in the case of failure. Obviously, each PM activity starting at
time TP that serves as a decision variable in our discrete maintenance model requires some
recovery time, which we define to be a new random variable Z. Thus, the operational time
of a component is interrupted either by the time to failure X (lifetime) or by the time to
start a PM activity TP, whichever occurs first. A recovery time can be realized either by the
recovery time Y due to CM or recovery time Z due to PM. In other words, PM activities
are scheduled shutdowns, and recovery times are usually shorter and less expensive than
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Fy (1) = P(min(X, TP) < t) = P(X < t) + P(TP < t) — P(X < t).P(TP < t) = 1 — P(min(X, TP)

u(t)

the same due to CM. Examples of PM include ensuring the availability of spare parts and
the training of human personnel. PM activities should be conducted optimally before the
failure but as close as possible to it. From an optimization point of view, it is necessary to
minimize the system unavailability as well as cost due to recovery times.

To compute component unavailability U(t) respecting both CM and implemented PM
activities, our Formula (6) can be employed with the modification that the random variable
X will be substituted by the random variable V = min(X, TP), which represents interruption
of the operation time. The distribution function Fy of V can be easily found:

t) =
G
Consequently, the following formulas hold:

Fy (t) = F(t) fort < TP ®)
Fy () 1 fort > TP

Thus, in the latter case, theorem (6) is modified as follows:

TP TP t—TP
/f(x)[l —G(t— x)]dx—i—/ (f *g)(x)-U(t — x)dx + / w(x) U(t— TP — x)dx )
0 0 TP

where the last integral of (9) mathematically represents the remaining contribution to
unavailability function U(t) for t > TP, provided that at time TP the recovery time started
due to PM. w(x) is the pdf of recovery time Z.

The expected value py of V can be found according to the following formula:

TP
EV=py= [ (1-F(®)at (10)

Computing possibilities of the method for unavailability quantification of complex
multi-component and highly reliable systems were successfully demonstrated in a compar-
ison study in [42], as well as in [12].

4.3. Cost Model of a System Configuration

The cost model of a system configuration can be obtained by adding up all contri-
butions resulting from both CM and PM replacement interventions of a mode over all of
the system components. Components can operate in different maintenance modes; the
cost of one maintenance mode consists of two main contributions generated by CM on the
one hand and PM on the other. The cost of CM further depends on the mean number of
all recovery times due to both CM and PM during mission time Ty; and CM parameters.
The cost of PM depends on the decision variable TP and PM’s parameters. In practical
situations, the cost contributions result from a year database to gain an average yearly cost
for system configurations in a monitored period. In the remainder of this article, the cost
computed in non-identified cost units on the basis of the summation principle is provided.

To obtain the cost of one system configuration, we simply add up the costs of all
maintenance modes of all system components. The cost of one maintenance mode of i-th
component C; ,, can be computed as follows:

City = nir-F(TP;).Ci g + 1;g-R(TP;).Ci pm (11)

where

R — T . .
MR = WTTIAMRT, --- the mean number of recovery actions of the i-th component per

mission Ty;
MTTI; = py ... is the mean time to intervention caused by either CM or PM;
MRT; ... mean recovery time of the i-th component, which is due to either PM or CM.
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MRT; = F(TP;).MTRCM; + R(TP;).MTRPM,; (12)

MTRCM,; ... mean recovery time due to CM;

MTRPM,; ... mean recovery time due to PM;

TP; ... decision variable of the i-th component determining PM strategy;

Cir ... CM cost = cost of one CM intervention of the i-th component in cost units;
CipMm - .. PM cost = cost of one PM intervention of the i-th component in cost units.

The total cost of one system configuration Cg is given by summing up these contribu-
tions described by Formula (11) over all of the system components k:

k
Cs=)Y . ,Ciry, (13)

5. Results with the Real Complex System—Fluid Injection System and Discussion

The discrete maintenance optimization was demonstrated on the industrial fluid injec-
tion system adopted by authors in [11], wherein the authors created a massive simulation
to study the system using GA to achieve both maximum availability and minimum cost,
paying attention to the possible impact on solutions as a result of different encodings, chromo-
some lengths, and parameter configurations. This article differs in computing methodology—it
is based on probabilistic modelling resulting from alternating renewal processes.

It was necessary to optimize both the design and the PM policy, i.e., to find the optimal
decision variable vector x = (TPj, ... , TPy) minimizing both unavailability and cost. The
system consisted of valves (V) and pumps (P) and is depicted in its full version in Figure 2.
Two other partial versions (designs) were taken into account: Version 1 intended as the
simplest version without parallel ordered components P2 and V4, and Version 2, which was
intended as the full version without pump P2. The functionality of the system (full version)
is described and analyzed within the framework of Section 4.1, utilizing the AG depicted
in Figure 1. Unavailability of the system can be decreased by increasing investment in the
PM on the one hand, but it signifies the growth of cost on the other hand.

Figure 2. Real fluid injection system adopted from [11].

Other assumptions:

only two component states are admissible: operational and faulty state;

the components are mutually independent;

if failure of a component comes, the repair starts immediately;

if a repair is completed, the component’s state is equivalent to that of a new component.

Table 1 brings about the data used in the analysis. Additional information on the input
parameters is found in the Notations. The data were adopted from the special source for
reliability analysis OREDA (offshore reliability data handbook [43]), further from expert
appraisal (originating from the experience of the Machinery and Reliability Institute (MRI),
Alabama, USA) and corresponding reliability mathematics. The OREDA has traditionally
been focused on the reliability and availability of production systems and equipment.
As we declared above, the discrete maintenance optimization process was carried out,
resulting from the minimization of both unavailability and cost due to maintaining system
stages including both PM and CM. To realize this, one must
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Table 1. Reliability and cost data for system components.
Parameters for Pump Value pdf
Mission time Ty 2920 days -
CM cost Cg 0.5 units -
PM cost Cpp 0.125 units -
Failure rate A 159.57 x 1070 h~1 Exponential
Parameters of Y (TR;;,,; TRyax) (5.23;16.77) h Rectangular
Pump TP * (TP,;i; TPrax) (240; 365) days -
Parameters of Z (TRP,,;;;; TRPyax) (4;8)h Rectangular
Parameters for Valve Value pdf
Mission time 2920 days -
CM cost Cg 0.5 units -
PM cost Cppg 0.125 units -
Failure rate A 4461 x 107 h~! Exponential
Parameters of Y (TR,;i,; TRyax) (4.6;14.4) h Rectangular
Valve TP * (TP,in; TPimax) (830; 1460) days -
Parameters of Z (TRP,;,;;; TRPyax) (1;3)h Rectangular

* Decision variable for optimization.

find optimal times TP to start PM actions for the system components, and

make a decision related to the system version, i.e., which version should be applied
(full version, Versions 1 and/or 2). For this reason, it was necessary to evaluate
all three versions. It is clear that if redundant components are included, system
unavailability will decline on the one hand but system operation cost will be increased
on the other hand.

From the point of view of computational feasibility, the optimization process was
realized by applying only three maintenance modes of each component related to the deci-
sion variable TP: factually TP,,;,, TPyax, and the middle point TP,,;; between minimal and
maximal possible values. This means that it is necessary to explore in total 37 = 2187 con-
figurations of the full system version, 3¢ = 729 configurations of the system version 2, and
3% = 243 configurations of the system version 1. All computations were performed for the
mission time Ty = 2920 days = 8 years.

5.1. Maintenance Optimization of the System Version 1

Figure 3 demonstrates the unavailability evolution U(t) of a simple basic configuration
of the fluid injection system considered as Version 1, having the decision variable of
all components in the mode TP = TP,,;;. We can see a clear decreasing trend, which is
stabilized to the value Ug(x) = 3.1923 x 1073 at the end of mission time Ty = 8 years. As
we mentioned above, PM activities should optimally be performed before the failure but as
close as possible to it. This idea corresponds to the choice of TP,,;;. Since TP,,;,, was placed
between median and MTTF, TP,,;; was placed closer to MTTF, mildly exceeding it. For
example, pump TP, = 240 days, median = 180 days, MTTF = 261 days, and TP,,;; = 302,
which was similar for valves. In the evolution, in Figure 3, maintenance actions are clearly
recognizable. The first unavailability jump came at 302 days, which was the PM time of
pump P3. Moreover, the decreasing of the height of unavailability jumps showed that the
effect of PM was dampened step by step, and the unavailability was stabilized at the end
of the mission time.
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Figure 3. Unavailability evolution of system Version 1 with TP = TP,,;; (all components).

Unavailability

Because the decreasing trend was indicated for any of the considered configurations,
the stabilized unavailability value Us at the end of mission time was selected as the typical
unavailability value for the optimization purpose because it appeared to be adequately
conservative, i.e., it exceeded future (decreasing) unavailability course, in the context of the
long-term time horizon.

When we compared the decreasing unavailability trend in Figure 3 with the system
configuration without PM, apparently PM had a positive influence to the unavailability
course, although the difference was not so relevant at the end of the mission time, as is evi-
dent from Figure 4, where asymptotic system unavailability without PM was 3.1949 x 1073,

x107°
3.195} et
3.1945] e
'._'
3.194} I
;!
-
3.1935} - ! -.=-=- without PM
* I
PM
3.193}
3.1925 ‘ : :
0 500 1000 1500 2000 2500 3000

Mission time (days)

Figure 4. Effect of PM on the unavailability evolution of system Version 1.

Solutions to the above-mentioned optimization problem relating to Version 1 of the sys-
tem are shown in Table 2. In total, 243 maintenance configurations of the system Version 1
were run, which were similar in shape to the evolution in Figure 3, and differences were
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only in locations of unavailability jumps that depended on maintenance configuration. The
sequence of index digits in Table 2 in the column configuration corresponded to the follow-
ing sequence of components: V7, V6, V5, P3, and V1 and specified component maintenance
modes. For example, sequence 11111 described such a maintenance configuration wherein
all components had the decision variable TP set in the mode TP,,;,,, Index 2 signified a
setting in the mode TP,,;;, and similarly, Index 3 a setting in the mode TP;;4x. The optimal
maintenance configuration respecting Formula (2) is found in the first row of Table 2, i.e.,
the decision variable of all components was set in the mode TP,,;,. The cost of the optimal
configuration was 83.5 cost units, which was comparable with the optimal solution in the
simulation study conducted by the authors in [11], which was 82.3 (after dividing the cost
by 10 because the simulation study was carried out for a mission time that was 10x longer,
time Ty = 80 years). Unavailability was somewhat greater (compare 3.1919 x 1073 versus
2.720 x 103), but as we showed previously, the unavailability had a decreasing trend and
the simulation study was carried out for 80 years, whereas our optimization was realized
for Tyt = 8 years.

Table 2. Decision variable vectors (TP, ..., TP;) for the configurations of system Version 1.
Confieuration Unavailability Cost Cg Vi P3 V55 Ve V7
& (Units) (Days) (Days) (Days) (Days) (Days)

11111 3.1919 x 1073 83.5 830 240 830 830 830
33333 3.1926 x 1073 99.557 1460 365 1460 1460 1460

No PM 3.1949 x 1073 112 oo % S o0 S
22222 3.1923 x 1073 92.69 1145 302 1145 1145 1145
31111 3.1920 x 1073 85.92 830 240 830 830 1460

Figure 5 demonstrates the unavailability evolution U(t) of Version 1, wherein all com-
ponents have the decision variable set in the mode TP = TP,;sx. The first three unavailability
jumps became smaller due to the time spent performing PM on the pump, and the fourth
was due to the time spent on PM for all the valves. We can observe in Table 2 that the
increasing value of the decision variable TP (time to start PM) resulted in slight unavailabil-
ity growth, whereas cost increased much more quickly, from 83.5 to almost 100, a natural
consequence of the PM process. Increasing time TP produced more frequented CM actions
and recovery times due to CM being more expensive than recovery times due to PM. In
real situations, operators of the system should be able to reach a compromise between the
growth of unavailability and cost, as is, for example, configuration 31111 in Table 2 (not
exceeding a hypothetical cost limit 86 units), wherein the valve V7 had the maximal value
of the decision variable TP,y and other components had a minimal value TP,,;,,.

5.2. Maintenance Optimization of System Version 2 and Full System Version

Computer processing of the maintenance optimization was quite difficult because it
was necessary to explore a total of 37 = 2187 maintenance configurations of the full system
version and 3° = 729 configurations of system Version 2. For both system modifications,
we can make similar conclusions as for system Version 1 concerning unavailability and
cost trends in the context of changes of decision variable TP. Not surprisingly, one can
identify that absolute unavailability values were correspondingly less, whereas cost was
correspondingly greater. The results on maintenance optimization are found in Table 3 for
system Version 2 and in Table 4 for the full system version.
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Figure 5. Unavailability evolution of system Version 1 with TP = TP, (all components).
Table 3. Decision variable vectors (TP, ..., TP;) for the configurations of system Version 2.
Configuration Unavailability Cost Cg A\ V5 V7 Ve P3 A%
ontig ° Us (Units) (Days) (Days) (Days) (Days) (Days) (Days)
111111 2.7922 x 1073 94.6 830 830 830 830 240 830
222222 2.7926 x 1073 105.2 1145 1145 1145 1145 302 1145
333333 2.7929 x 1073 113.04 1460 1460 1460 1460 365 1460
No PM 2.7952 x 1072 136 o0 o oo oo % 0
113212 2.7934 x 1073 99.81 830 830 1460 1145 240 1145
Table 4. Decision variable vectors (TP, ..., TP;) for the configurations of the full system version.
Configu- Unavailability Cost Cg P2 V4 V55 P3 V7 Ve Vi1
ration Ug (Units) (Days) (Days) (Days) (Days) (Days) (Days) (Days)
111212111 1.2051 x 1073 133.81 240 830 830 240 830 830 830
2222222 1.2052 x 1073 147.967 302 1145 1145 302 1145 1145 1145
3333333 1.2053 x 1073 158.7 365 1460 1460 365 1460 1460 1460
No PM 1.2054 x 1073 192 S 0 0 S S ® ©
2111311 1.20525 x 1073 139.8 302 830 830 240 1460 830 830

Similarly to system Version 1, optimal maintenance configuration respecting For-
mula (2) is found in the first row of Tables 3 and 4, i.e., the decision variable of all compo-
nents had the value TP,,;,,. Again, we can state that results in both tables are comparable
with the optimal solutions found in the simulation study [11], even if markedly different
methods were used for computing both cost and unavailability. The cost of the optimal
configuration of Version 2 was 94.6 units (compared with 98.6, after dividing the cost by
10). Unavailability was somewhat greater (compare 2.7922 x 1073 versus 2.591 x 10~%),
but as we showed previously, the unavailability had a decreasing trend, and the simulation
study was carried out for 80 years, whereas our optimization was realized for Ty = 8 years.
Similar comparisons can be obtained for the full system version.
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Results of both system modifications showed that unavailability was less sensitive to
a variation of maintenance configurations, whereas cost variations were much greater in
the context of different maintenance configurations. For example, cost of all configurations
ranged from 94.6 to 113.04 cost units for system Version 2 and from 133.8 to 158.7 for the
full system version. Both intervals were significantly less than the cost of CM without
PM (136 units for Version 2, 192 for the full version), and therefore PM significantly
decreased cost.

The sequence of index digits in Table 3 in the column Configuration corresponds to
the following sequence of components: V4, V5, V7, V6, P3, and V1 and specifies compo-
nent maintenance modes. The last row of Table 3 specifies the still possible compromise
configuration (i.e., series ordered valves V1 and V6 with decision variable set to TP,,;;, V7
with the decision set to TPy, and remaining components with the decision set to TP,,;,,)
not exceeding a hypothetical cost limit of 100 units.

Similarly, in Table 4, the sequence of index digits in the column Configuration cor-
responds to the following sequence of components: P2, V4, V5, P3, V7, V6, and V1 and
specifies component maintenance modes. The last row of Table 4 specifies the still possible
compromise configuration (i.e., parallel ordered pump P2 with the decision variable set to
TP,,i4, series ordered valve V7 with the decision set to TPy, and remaining components
with the decision set to the mode TP,,;,,) not exceeding a hypothetical cost limit 140 units.

5.3. Comparison of all System Versions

Comparing all three system versions where all components have the decision variable
set to the TP = TP,,;;, one can see in Figure 6 that parallel ordered pumps in the full
system version had a much greater influence on unavailability than parallel ordered valves
(version 2). Unavailability jumps due to PM were hard to distinguish for all system versions,
confirming our previous conclusion that PM influences the unavailability insignificantly.
The unavailability of system version 1 was about 2.65 times worse than the unavailability of
the full system, which was particularly recognizable in cost, increasing from 92.7 to almost
148 cost units for the full system.

-3

35 x 10 ' . r '
3
2.5
=
T 2
)
‘©
@
T 15
>
1
0.5 —version 1
' - - -version 2
== full version
0 I Il I Il
0 500 1000 1500 2000 2500 3000

Mission time (days)
Figure 6. Comparison of unavailability evolutions for all system versions with TP = TP,,;;; .

The system modifications in Version 1 and Version 2 were close to one another in terms
of expected unavailability, and therefore in special cases when the cost has a prescribed



Mathematics 2023, 11, 320

150f18

limitation, both versions can be interchanged by applying the influence of PM on cost.
For example, when the prescribed limitation on cost is 95 units and the difference in
unavailability is not taken into account, system Version 2 with TP configuration 111111
(cost is 94.6 cost units) can be substituted by system Version 1 with TP configuration 13331
(94.72) because the cost of both configurations is somewhat below the limitation. Or, when
the prescribed limitation on cost is 100 cost units, system Version 2 with TP configuration
322111 (cost is 99.8 cost units) can be substituted by system Version 1 with TP configuration
33333 (cost is 99.56 cost units).

6. Conclusions

This article formulated and solved the multi-objective optimization problem where
two objective functions were minimized for cost and unavailability. The system design
defines the objective functions, and three different designs were considered. All three
versions were explored, compared, and discussed. The main decision variable in the
optimization problem is the time to start PM (TP). To solve the optimization problem, we
innovated on the methods we had developed in the past to quantify system and component
unavailability as well as cost. Our original formula to compute unavailability had to be
modified in order to account for a new situation where the operating time of a component
is interrupted either by the time to failure X (lifetime) or by the time TP, whichever occurs
first. This means that that we can substitute the random variable X with V = min(X, TP). A
new formula to compute the cost of one system configuration was derived.

The results of all system modifications showed that unavailability was less sensitive
to a variety of maintenance configurations, whereas cost variations were much more
perceptible in context with different maintenance configurations. Comparing system
modifications with and without PM showed that PM significantly decreased cost, whereas
unavailability changes were mild. As TP increased for PM, cost increased, as increased TP
leads to more frequented CM actions, and recovery times from CM are more expensive than
recovery times due to PM. Comparing three system versions, we were able to conclude in
Figure 6 that parallel ordered pumps in the full system version had a much greater influence
on unavailability than parallel ordered valves (Version 2). In addition, for special cases,
when the cost has a prescribed limitation, the system Versions 1 and 2 can be interchanged
through applying a significant influence of PM on cost.

Numerical experiments applied on a real fluid injection system indicated that discrete
maintenance optimization is a useful method to make the most optimal decision. Although
the computing process may be complicated and time consuming for multi-component
systems (depending on the number of possible system configurations), time taken by all
of the optimization computations did not exceed 1 h. All computations were numerically
computed using the high-performance programming language MATLAB on computing
equipment with the following parameters: Intel (R) Core™ i7-3770 CPU @ 3.4 GHz 3.9 GHz,
8.00 GB RAM.
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Notations

Variables

X time to failure (the lifetime)

Y repair (recovery) time after a failure occurs
V4 time to perform a PM

TP decision variable—time to start a PM process

V = min(X, TP)
(TPy,..., TP)
TP;

TP min; TPimax
TPi,mid

Cs(TPy, ..., TP)
Us(TPy,..., TE)

time to interruption of the operation time caused by either failure or PM
vector of decision variables of k components, days

decision variable of i-th component determining its PM strategy, days
minimal and maximal possible values of TP;

(Tpi,min + TPi,max) /2

total cost of maintenance of a system configuration, cost units

stabilized (asymptotic) system unavailability at the end of Ty

ni R mean number of recovery actions of i-th component per mission time Ty
MTTI; mean time to intervention of i-th component caused by either CM or PM, days
MRT; mean recovery time of i-th component that is due to either PM or CM, days
MTRCM,; mean recovery time of i-th component due to CM, days

MTRPM,; mean recovery time i-th component due to PM, days

Indices

F(t) distribution function of a random variable X

R(t)=1 — F(¢) reliability function of a random variable X

f) probability density function (pdf) of a random variable X

G(t) distribution function of a random variable Y

gt probability density function (pdf) of a random variable Y

W(t) distribution function of a random variable Z

w(t) probability density function (pdf) of a random variable Z

Fy(t) distribution function of a random variable V

u(t) instantaneous time-dependent unavailability function

A =1—-U() instantaneous availability function

h(x) renewal density

Parameters

Cir CM cost = cost of one CM intervention of the i-th component in cost units
Cipm PM cost = cost of one PM intervention of the i-th component in cost units
Tm mission time, days

A the failure rate: parameter of exponential distribution of the random variable

[TRmin/' TRinax]
[TRP,i11; TRP yax]

X, h™!
parameters of rectangular distribution of the random variable Y
parameters of rectangular distribution of the random variable Z
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