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Abstract: Diabetic retinopathy (DR) is a leading cause of blindness in middle-aged diabetic patients.
Regular screening for DR using fundus imaging aids in detecting complications and delays the
progression of the disease. Because manual screening takes time and is subjective, deep learning has
been used to help graders. Pre-trained or brute force CNN models are used in existing DR grading
CNN-based approaches that are not suited to fundus image complexity. To solve this problem, we
present a method for automatically customizing CNN models based on fundus image lesions. It uses
k-medoid clustering, principal component analysis (PCA), and inter-class and intra-class variations
to determine the CNN model’s depth and width. The designed models are lightweight, adapted to
the internal structures of fundus images, and encode the discriminative patterns of DR lesions. The
technique is validated on a local dataset from King Saud University Medical City, Saudi Arabia, and
two challenging Kaggle datasets: EyePACS and APTOS2019. The auto-designed models outperform
well-known pre-trained CNN models such as ResNet152, DenseNet121, and ResNeSt50, as well as
Google’s AutoML and Auto-Keras models based on neural architecture search (NAS). The proposed
method outperforms current CNN-based DR screening methods. The proposed method can be
used in various clinical settings to screen for DR and refer patients to ophthalmologists for further
evaluation and treatment.

Keywords: classification; deep learning; DeepPCANet; diabetic retinopathy; medical imaging; PCA;
AutoML; NAS

MSC: 68T07

1. Introduction

Diabetes is a leading global health dilemma. One of its serious complications is
diabetic retinopathy (DR), which has a prevalence of 34.6% worldwide and is considered
a primary cause of blindness among middle-aged diabetic patients [1,2]. A patient has a
high DR risk if he or she has had diabetes for a long time or is poorly managed. The DR
treatment at its early stage slows down the retinal microvascular degeneration process.
Graders manually screen fundus images to detect DR prognosis, which is time-consuming
and subjective [3–5]. On the other hand, screening a large number of diabetic patients for
the possible prevalence of DR puts a heavy load on graders and reduces their efficiency. It
necessitates intelligent systems for DR screening, and many ML-based systems have been
proposed that show good results on public data sets. However, their performance is not
certain in real DR screening programs, where there are different ethnicities, and the retinal
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fundus images are captured using different cameras. These factors affect these systems’
performance and remain a challenge in their widespread use [6].

Deep CNN has shown remarkable results in many applications [7–11] and has been
employed in DR screening [2,12–15]. A CNN model usually involves a large number
of parameters and needs a large amount of data for training. A brute force approach,
which has been widely used for DR screening, is to adopt a highly complex CNN model
designed for object recognition and pre-trained on the ImageNet dataset and fine-tune
them using fundus images [16–19]. As the ImageNet dataset consists of natural images,
and the structural patterns of natural images and fundus images are entirely different, the
architectures of the fine-tuned models do not adequately encode the fundus images. In
addition, the complexity of pre-trained models is very high and not customized to DR
screening from fundus images.

Instead, CNN models are manually designed from scratch. The design process starts
with a CONV layer of a small width (i.e., the number of filters) and increases the widths of
CONV layers by a fixed ratio as the network goes deeper [16–18]. There is no way to know
what the depth should be (i.e., the number of layers) of a CNN model; a hit–trial strategy is
used to fix the depth. In addition, CNN models are trained using iterative optimization
algorithms such as stochastic gradient descent algorithms, and their convergence heavily
depends on the initial guess of learnable parameters. Different data-independent [20,21]
and data-dependent [22,23] approaches have been proposed to initialize them.

Alternatively, automated machine learning (AutoML) has developed into a significant
area of research due to the widespread application of machine learning techniques [24].
AutoML’s purpose is to make machine-learning models accessible to those with limited
machine-learning prior knowledge. Some of the most commonly used methods for employ-
ing machine learning (ML) are easily available and may be used with just one or two lines
of code. These systems include Auto-WEKA, Hyperopt-Sklearn, TPOT, Auto-Sklearn, and
Auto-Keras [25–32]. Efforts have been made to automate the model selection and tuning
hyper-parameters automatically, and so forth. Within the perspective of profound NAS
stands for learning, neural architecture search [33], which aims to determine the optimal
neural network architecture for a given learning task and dataset, has evolved into a highly
effective computational tool for AutoML [34,35]. It achieved competitive performance on
the CIFAR-10 and Penn Treebank benchmarks by utilizing a reinforcement learning-based
search strategy; consequently, NAS became a mainstream research topic in the machine
learning community. NAS is prohibitively expensive and time-consuming in terms of
computation [36]. Zoph and Le [33] utilize massive computational resources (800 GPUs for
three to four weeks) to achieve their result.

The preceding discussion demonstrates that developing an AutoML-customized
lightweight CNN model for DR screening that uses a small subset of the target dataset and
consumes fewer resources in a variety of clinical settings is difficult; it entails answering
three design questions: (i) what must be the depth of the model, (ii) what must be the width
of each of its convolutional (CONV) layer, i.e., the number of its kernels, and (iii) how to
initialize the learnable parameters. To address these questions, we propose a constructive
data-dependent approach for designing CNN models for DR screening under diverse
clinical settings that automatically determine the depth of the model and the width of each
CONV layer and initialize the learnable parameters. A custom-designed model takes a
fundus image as input and grades it into normal or DR levels. We validated the proposed
approach on three datasets: a local DR dataset from King Saud University Medical City,
Saudi Arabia, and two benchmark Kaggle datasets: EyePACS [37] and APTOS2019 [38].
Specifically, the main contributions of the paper are as follows:

• We proposed a constructive data-dependent AutoML approach to design lightweight
CNN models customized to DR screening under various clinical settings. It automat-
ically determines the depth of the model, and the width of each COVN layer and
initializes the learnable parameters using the fundus images dataset.
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• To corroborate the usefulness of the proposed approach, we applied it to build an
AutoML custom-designed lightweight CNN architecture for three datasets.

• We performed extensive experiments to show that the custom-designed lightweight
CNN models compete well with the pre-trained models such as ResNet [17],
DenseNet [18], ResNeSt [39], an AutoML NAS method, and other state-of-the-art
methods for DR screening.

The layout of the rest of the paper is as follows: the literature view is presented in
Section 2, datasets are described in Section 3, the detail of the proposed method is given in
Section 4, the detail of experiments and the results are presented in Section 5, and finally,
Section 6 concludes the paper.

2. Previous Work

Different methods have been introduced for automatic DR screening; an extensive
literature review is given in [40–43]. There are some efforts to compress and reduce the
complexity of existing pre-trained CNN models by weights pruning [44,45] or filters prun-
ing [46–48]. First, we provide an overview of the previous work on building a deep model
and initializing its weights and then give an overview of the state-of-the-art techniques for
DR diagnosis.

2.1. Data-Dependent and Auto-Deep Models

Different researchers employed principal component analysis (PCA) in various ways to
build deep networks. Chan et al. [49] created an unsupervised two-layer model (PCANet).
It is not an end-to-end model and is used only for feature extraction. Philipp et al. [22] used
PCA to re-initialize pre-trained CNN models to avoid vanishing or exploding gradient
problems. Suau et al. [23] used PCA and correlation to compress the filters of pre-trained
CNN models. Seuret et al. [50] employed PCA to initialize the layers of stacked auto-
encoders (SAEs). The above PCA-based methods have been employed for designing a
CNN-like model for feature extraction, data-dependent re-initialization of the pre-trained
models, or compressing their weights to reduce their complexity, but not for the data-
dependent design of end-to-end CNN models.

Zhong et al. [51] introduced a method to build a BlockQNN module automatically
using the block-wise setup, Q-Learning paradigm, and epsilon-greedy exploration and
stacked them to obtain the automatic CNN model. They evaluated their method using
CIFAR-10, CIFAR-100, and ImageNet. It needs a lot of computational resources. They
used 32 GPUs and got the best CNN model with BlockQNN after three days and Faster
BlockQNN after 20 h.

AutoML’s initial effort was led by academia and machine learning practitioners,
followed by startups and Auto-Weka (2013) [52] from the Universities of British Columbia
(UBC). Following that, the University of Freiburg published Auto-Sklearn (2014) [53].
TPOT was created by the University of Pennsylvania [27] in (2015). Following the success
of Zoph and Le in [33] in performing comparably to the CIFAR-10 and Penn Treebank
benchmarks, other recent efforts to develop NAS have been made [54,55], they incorporate
modern design elements previously associated with handcrafted architectures, such as
skip connections, which enable the construction of complex, multi-branch networks. To
maximize efficiency, state-of-the-art systems employ cell-search spaces [56], which involves
configuring only repeated cell architectures rather than the global architecture, and employ
gradient-based optimization [57]. Since 2013, Bayesian optimization has achieved several
early successes in NAS, resulting in state-of-the-art vision architectures [58]. Google Cloud
AutoML based on NAS method is one of the famous auto deep learning models’ auto-
generation [59]. It utilizes transfer learning and NAS to determine the optimal network
architecture and hyper-parameter configuration for that architecture that minimizes the
model’s loss function [60]. Another method for autoML-based NAS for generating deep
learning models is Auto-Keras (2017) [29] from Texas A&M University, which runs on top
of Keras, Tensorflow, and Scikit-learn
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2.2. DR Screening Methods

Clinical DR screening categorizes a patient based on fundus images into different
grades: level 0 (normal), level 1 (mild), level 2 (moderate), level 3 (severe), and level 4
(proliferative). In the state-of-the-art on DR screening, various deep learning-based meth-
ods have been proposed, which address mainly three image-level DR grading scenarios:
(i) scenario 1 (SC1): normal and different levels of DR severity—a multi-class problem,
(ii) scenario 2 (SC2): normal (level 0) vs. DR (levels 1~4)—a two-class problem, (iii) sce-
nario 3 (SC3): non-referral (level 0 and 1) vs. referral (levels 2–4)—a two-class problem.
In the following paragraphs, we give an overview of the state-of-the-art best methods.
Islam et al. [61] built a hand-designed CNN model consisting of 18 layers and 8.9 million
learnable parameters and got on the EyePACS dataset a sensitivity of 94.5%, a specificity
of 90.2% for SC2, a sensitivity of (98%) and a specificity of (94%) for SC3. Li et al. [62]
introduced two hand-designed CNN models with 11 and 14 layers for feature extraction
from the EyePACS dataset. The features from both models are fused and classified using
an SVM classifier. They achieved an accuracy of 86.17% for SC1 and an accuracy of 91.05%,
a sensitivity of 89.30%, and a specificity of 90.89% for SC2 using five-fold cross-validation.
Challa et al. [63] built a CNN model consisting of 10 layers for the EyePACS dataset and
obtained an accuracy of 86% for SC1. Tymchenko et al. [64] built an ensemble of 20 CNN
models. The ensemble used five versions of each of four pre-trained models: SE-ResNetXt50
with input sizes of 380 × 380 and 512 × 512, EfficientNet-B4, and EfficientNet-B5. It was
fine-tuned using the APTOS2019 dataset. They got an accuracy of 91.9%, a sensitivity of
84%, a specificity of 98.1%, and a Kappa of 96.9% for SC1 on the APTOS2019 dataset. Sikder
et al. [65] used an ensemble learning algorithm called ET classifier to classify the colored
information of the fundus images from the APTOS2019 dataset. They filtered the dataset
by removing many noisy samples and achieved an accuracy of 91% and a recall of 89.43%
for SC1. DR categorization was performed manually by Sikder et al. (2021) [66]. They
conducted significant preprocessing to fundus pictures before extracting the histogram
and GLCM features. The APTOS2019 dataset was utilized to validate the procedures, with
75% used for training and 25% for testing. The XGBoost algorithm was used to fine-tune
and pick the best features for optimal performance. Classification accuracy for DR (five
classes) was 94.20% (95% CI: 93.88–94.51%) for the whole set of features and 93.70% (95%
CI: 93.48–93.93%) for the subset.

The above overview of the state-of-the-art methods shows that some used hand-
designed CNN models, and others employed pre-trained models and fine-tuning. For
creating hand-designed models, the architectures of CNN models were fixed empirically
using the hit-and-trial approach. In the case of fine-tuning, the complexity of the pre-trained
models is very high and is not customized to the structures of fundus images.

3. Materials

We developed and validated custom-designed CNN models using two Kaggle chal-
lenge datasets: EyePACS [37] and APTOS2019 [38], and one local dataset collected at King
Saud University Medical City (KSU-DR). Each dataset was preprocessed and augmented
using the procedure described in Section 4.2.1. KSU-DR and EyePACS were divided into
training (80%), validation (10%), and testing (10%). APTOS2019 consists of two sets: public
training and public testing; 90% of the public training data was used for training and the
remaining 10% for validation and public testing for testing.

3.1. KSU-DR

The data were collected after obtaining approval from King Saud University Medical
City’s local Institutional Review Board committee. The samples were collected randomly
from fundus images of diabetic patients acquired during their routine endocrinologist’s
appointment at the funduscopic screening clinic. Fundus images were captured with a non-
mydriatic fundus camera (3D-OCT-1-Maestro non-mydriasis fundus camera); a 45-degree
fundus photo was captured from each eye. All patients were from Saudi Arabia, 44% were
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males, and 56% were females. The mean patient age was 53 years; 17% had type 1 diabetes,
and 83% had type 2 diabetes. The mean duration of diabetes was 18 years (ranging from
4–42 years). Random samples of 1750 images were selected and graded by two expert
ophthalmologists; 1024 were graded as normal, 477 as mild non-proliferative DR, 222 as
moderate non-proliferative DR, 20 as severe non-proliferative DR, and 7 as proliferative
DR (PDR).

3.2. EyePACS

EyePACS [37] consists of 88,702 color retinal fundus images with varying resolutions
up to about 3000 × 2000 pixels [63], collected from 44,351 subjects, but only 35,126 labeled
images are available in the public domain; most of the researchers used this set for the
proposal of new algorithms [61,67]. We also used 35,126 labeled images to design and
evaluate the custom-designed CNN model. The images are graded into normal and 4 DR
classes—mild, moderate, severe, and proliferative.

3.3. APTOS2019

APTOS2019 dataset [38] was published by the Asia Pacific Tele-Ophthalmology Society
on the Kaggle competition website. Clinical experts graded the images into normal and 4
DR levels (mild, moderate, severe, and proliferative). The public domain version of this
database contains 3662 fundus images for training and 1928 fundus images for testing.

4. Proposed Method
4.1. Problem Formulation

The problem is to predict whether a subject has normal vision or suffering from DR
(with different levels of severity) using his/her retinal fundus images. Formally, let Rh×w×3

be the space of color retinal fundus images with resolution h× w and P= {1, 2, . . . , C} be
the set of labels where C is the number of classes, which represent different DR grades;
in case of two grades (i.e., normal and DR), C = 2, such that c = 1 means normal and
c = 2 stands for DR; when there are five grades, C = 5, and c = 1, 2, 3, 4, 5 are the labels
for normal, mild, moderate, severe, proliferative DR, respectively. To predict the grade
of a patient, we need to define a mapping φ : Rh×w×3 → P that takes a fundus image
x ∈ Rh×w×3 and associates it to a label c ∈ P, i.e., φ(x) = c. We model the mapping function
φ using a custom-designed CNN model.

4.2. Custom-Designed CNN Model

The main constituent layer of a CNN model is the CONV layer, and the widely adopted
CNN models contain a large number of CONV layers, e.g., VGGNet [68] contains 13 CONV
layers. The number of layers (depth) and the number of filters in each layer (width) are
fixed manually, keeping in view the ImageNet challenge dataset [69], without following
any formal procedure. Retinal fundus images have complex small-scale structures, which
form discriminative patterns and are entirely different from those of the natural images in
the ImageNet dataset. We design an AutoML CNN model for the DR problem by drawing
its architecture from the fundus images; we determine the depth of a model and the widths
of its CONV layers in a customized way using the discriminative information in fundus
images specific to different DR levels. In this direction, the first design decision is about
specifying the search space and extracting discriminatory information. For this purpose,
first, we reduce the search space and select the most representative fundus images from
the available DR dataset using the K-medoids clustering algorithm [70] and then apply
PCA [71] to determine the widths of CONV layers and initialize them. The next design
decision is about the depth (i.e., the number of CONV layers). We control the depth using
the ratio of the between-class scatter matrix Sb to the within-class scatter matrix Sw. Finally,
motivated by the design strategy of ResNet [17], we add global pooling layers that follow
the last CONV layer, and their outputs are fused and fed directly to a softmax layer. These
layers control the drastic increase in the number of learnable parameters (which cause
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overfitting). The design process is described in detail below, and its overview is shown in
Figure 1.
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4.2.1. Preprocessing

The retinal fundus images are usually not calibrated and are surrounded by a black
area, as shown in Figure 1a. To center the retina and remove the black area around it, firstly,
the retina circle is cropped, and the background is removed using the method presented
in [65], and then it is resized to 512 × 512 pixels. Usually, the DR datasets are imbalanced,
i.e., the numbers of images of different classes are significantly different; we increase the
data of minority classes using data augmentation. We apply affine transformations to
randomly rotate the image with an angle θ ∈ (−180, 180).

4.2.2. Selection of Representative Fundus Images

Using the EyePACS training dataset, we choose the most representative fundus images
using (K-means [72] and K-medoids [70], and random samples) selection methods to
customize a DeepPCANet model and then test it. The discriminative features are extracted
from training fundus images for clustering using the efficient LGDBP descriptor proposed
in [73]. The number K of clusters for K-means and K-medoids is specified using the gap
statistic method [74].

As indicated in Table 1, the K-medoids gave the best results and are the most precise.
Due to the fact that K-means gives mean feature vectors as cluster centers, it is inadequate
at selecting representative fundus images, and outliers are a serious concern. On the other
hand, because the K-medoids algorithm selects representative fundus images as cluster
centers, using representative fundus images is appropriate. Both K-medoids and K-means
outperform the random fundus image model.
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Table 1. Comparison between clustering methods based on Eyepacs (SC1).

Dataset Model ACC % SE %

Random fundus images 85.12 81.33Eye
PA

C
S K-means 89.32 83.45

K-medoids 94.22 86.56

4.2.3. Designing the Main DeepPCANet Architecture

The design of the AutoML customized architecture of DeepPCANet needs to address
two questions, i.e., (i) what should be the depth of the model and (ii) what should be
the width of each CONV layer? These questions are addressed by an iterative algorithm,
incrementally adding CONV layers, and stopping when a specific criterion is satisfied. It
is based on the idea of exploiting discriminative information of fundus images to select
the number of kernels in a CONV layer and initialize them. It takes representative fundus
images RIj, j = 1, 2, 3, . . . , K as input and divides them into patches of size 7 × 7. The
patches are vectorized and used to determine the number of kernels and initialize them.
One possible idea is to cluster the patches and select the cluster centers as kernels, but the
issue is choosing the number of clusters. We go for a simple and effective procedure, i.e.,
we employ PCA because it reduces the redundancy and helps to determine the kernels
and their number, exploiting the discriminative information in the patches. The principal
components (PCs), i.e., the eigenvectors along which the maximum energy is preserved,
serve as kernels of the first layer. After computing the PCs, the DeepPCANet is initialized
with an input layer and a CONV block (BN+ReLU+CONV) with kernels equal to the
number of PCs; the kernels are initialized by reshaping the PCs. Please note that we fix the
size of patches to 7× 7 so that the size of kernels of the first CONV layers is 7× 7 following
the convention of most of the existing CNN models such as Inception [16], ResNet [17], and
DenseNet [18]. Using the current architecture of DeepPCANet, activations aj, j = 1, 2, 3, . . . ,
K of representative fundus images RIj, j = 1, 2, 3, . . . , K are calculated. Inspired by the Fisher
ratio [75], using these activations, the ratio of the trace (TR) of between-class scatter matrix
Sb to the trace of within-class scatter matrix Sw is calculated TR = Trace(Sb)

Trace(Sw)
and is used

to decide whether to stop or add another CONV block. The new CONV blocks continue
to be added as long as TR continues to increase. This criterion ensures that the features
generated by DeepPCANet have large inter-class variation and small intra-class scatter. To
add a CONV block, the above procedure is repeated with activations aj, j = 1, 2, 3, . . . , K. To
reduce the size of feature maps for computational efficiency, pooling layers are added after
the first and second CONV blocks. As the kernels and their number are determined from
the fundus images, each layer can have a different number of filters. The detail of the design
procedure is elaborated in Algorithm 1. It is to be noted that the PCs (ui), which are used
to specify the kernels of a CONV layer, are orthogonal and capture most of the variability
in input fundus images, without redundancy, in the form of independent features. The PCs
are selected so that the maximum energy is preserved. The energy is measured in terms

of the corresponding eigenvalues, i.e., Energy = ∑L
l=1 λl

∑D
j=1 λj

[23,76] and a threshold value is

used to ensure that a certain percentage of energy (e.g., 99%) is preserved. The threshold
value of 99% preserves the maximum energy with 209 (L) PCs for CONV1 in the EyePACS
dataset, as shown in Figure 2. The depth of the AutoML CNN model and the width of
each layer are important factors determining the model complexity. Step 7 of Algorithm
1 adaptively determines the best number of kernels that ensure the preservation of the
maximum energy of the input image. Step 9 initializes the kernels to be suitable for the
DR domain. The selected kernels extract the features from fundus images (five classes) so
that the variability of the structures in fundus images is maximally preserved. It is also
essential that the features must be discriminative, i.e., have large inter-class variance and
small intra-class scatter as we go deeper in the network; it is ensured using the trace ratio
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TR = Trace(Sb)
Trace(Sw)

, the larger the value of the trace ratio, the larger the inter-class variance,
and the smaller the intra-class scatter [75]. Step 13 in Algorithm 1 allows adding CONV
layers as long as TR increases and determines the data-dependent depth of DeepPCANet.
As shown in Figure 3, the maximum ratio is at layers 4, 5, and 16 for KSU-DR, APTOS2019,
and EyePACS, respectively. It means that the suitable depth of the DeepPCANet model for
the KSU-DR dataset is four layers (Figure 3a), for APTOS2019 it is five layers ((Figure 3b),
and for the EyePACS dataset it is sixteen layers (Figure 3c). The model for EyePACS is
deeper because it contains many poor quality fundus images, and there is the possibility of
label noise because only one expert graded each image in this dataset. Each dataset was
collected from a different region and under different conditions using different cameras, so
the architecture of the DeepPCANet model is different for each dataset.

1 
 

 

Figure 2. Selecting the best threshold. The appropriate threshold is (0.99) and the number of
eigenvectors is 209.
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Algorithm 1. To design the main DeepPCANet Architecture.

Input: Representative fundus images: RIj, j = 1, 2, . . . , K of size W × H and the class labels c = 1,
2, . . . , C; Energy threshold ε

Output: The main architecture of DeepPCANet Architecture
Processing
Step 1: Initialize DeepPCANet with an input layer and set w = 7, h = 7, d = 3, m = 0 (number of
layers)
Step 2: Set aj = RIj, j = 1, 2, 3, . . . , K, and TRP (previous TR) = 0.
Step 3: Divide aj, j = 1, 2, 3, . . . , K, into blocks bij, i = 1, 2, 3, . . . , B, j = 1, 2, 3, . . . , K, of size w × h
× d, where d is the number of channels (feature maps) in aj and B is the number of blocks created
from each aj.
Step 4: Flatten bij into vectors xi ∈ RD, i = 1, 2, . . . M, where M = K × B, and D = w × h × d.
Step 5: Compute zero-center vectors φi, i = 1, 2, . . . M such that φi = xi − x, where x = 1

M ∑M
l=1 xi.

Step 6: Compute the covariance matrix C = AAT , where A = [φ1 φ2 . . . φM]. Calculate the
eigenvalues λj and eigenvectors uj (j = 1, 2, . . . , D) of the covariance matrix C.
Step 7: Select L eigenvectors ui i = 1, 2, . . . , L (L < D) corresponding to the L largest eigenvalues

such that ∑L
l=1 λl

∑D
j=1 λj

≥ ε, where ε determines the level of energy to be preserved (e.g., ε = 0.99, for 99%

energy preservation).

Step 8: The eigenvectors corresponding to the ∑L
l=1 λl

∑D
j=1 λj

< ε are summed up to form a single

eigenvector, and then stacked at the end of the L eigenvectors.
Step 9: Reshape ui, i = 1, 2, . . . , L + 1 to kernels of size W × H × D and add the CONV block to
DeepPCANet; Update m = m + 1.
Step 10: If m = 1 or 2, add max pool layers with a pooling window of size 2 × 2 and stride 2 to
DeepPCANet.
Step 11: Compute the activations aj, j = 1, 2, 3, . . . , K of representative fundus images RIj, j = 1, 2,
3, . . . , K such that aj = DeepPCANet (RIj).
Step 12: Compute the trace ratio between scatter between matrix (Sb) and within matrix (Sw) as

TR =
Trace(Sb)
Trace(Sw)

where Sw = ∑C
i=1 ∑ni

j=1

(
xj − µi

)(
xj − µi

)T
and Sb = ∑C

i=1 ni (µi − µ) (µi − µ)t.

Step 13: If TRP(previous TR) ≤ TR, set TRP = TR, W = 3, H = 3, D = L, and go to Step 3, stop
otherwise.

4.2.4. Addition of Global Pool and Softmax Layers

The dimension of the activation of the last CONV block is W × H × L. If it is flattened
and passed to a fully connected (FC) layer, the number of learnable weights and biases of
the FC becomes excessively large, which leads to overfitting. To overcome this issue, the
activation of the last CONV block is passed simultaneously to global average pooling (GAP),
and global max-pooling (GMP) layers [77], which extract the mean and largest feature
from each feature map, and these features are fused using a concatenation layer. Both GAP
and GMP help to reduce the number of learnable parameters and extract discriminative
features from the activation. Finally, a softmax layer is introduced as a classification layer,
and the output of the concatenation layer is passed to this layer, as shown in Figure 1c. A
dropout layer is also added after the last CONV layer to overcome the overfitting problem.

4.2.5. Finetuning the DeepPCANet Model

After determining the architecture of AutoML's custom-designed DeepPCANet, it
is fine-tuned using the training and validation sets. Fine-tuning involves various hyper-
parameters: the optimization algorithm, learning rate, batch size, activation function, and
dropout probability. We employed the Optuna optimization algorithm [78] to determine
the best values of the hyper-parameters. We tested three optimizers (Adam, SGD, and
RMSprop), a learning rate between 1e-5 and 1e-1, four batch sizes (5, 10, 15, 20), three
activation functions (ReLU, LReLU, and Sigmoid), and dropout probability between 0.25
and 0.50. After training for ten epochs, the Optuna returned the best hyper-parameters for
each dataset, as shown in Table 2. The number of kernels in each layer of each model is
based on an energy threshold of 0.99. The models for APTOS2019, KSU-DR, and EyePACS
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datasets (five classes each) are DeepPCANet-4, DeepPCANet-5, and DeepPCANet-16,
respectively, and their specifications are shown in Figure 4. Each dataset has different
AutoML architecture because each one is from different ethnicities; the EyePACS dataset
is from the USA, APTOS2019 is from India, and KSU-DR is from KSA, as well as the use
of retinal images captured using different cameras. To confirm the distinct architectures
for the three DR datasets, we combined the extracted K-medoids fundus images into a
single dataset, generated a custom DeepPCANet, and tested it on the three datasets. As
illustrated in Table 3, the outcome is not as good as that obtained using the customized
DeepPCANet for each DR dataset, as illustrated in Tables 4 and 5. Each dataset is from
different ethnicities; the EyePACS dataset is from the USA, APTOS2019 is from India,
and KSU-DR is from KSA; as well as the use of different retinal images captured using
different cameras, so each dataset has a different custom-designed model. After fixing
the hyper-parameters, each model is fine-tuned using training and validation sets for 100
epochs. The fine-tuned model is tested using the testing set.

Table 2. The best hyper parameters found using Optuna algorithm (SC1).

Dataset Activation
Function

Learning
Rate Patch’s Size Optimizer Dropout

KSU-DR LReLU 0.0001 10 RMSprop 0.50

EyePACS LReLU 0.0055 10 RMSprop 0.38

APTOS2019 LReLU 0.0007 5 RMSprop 0.40
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Table 3. Customize the DeepPCANet by combining the extracted K-medoids fundus images to
confirm the distinct architectures for the three DR datasets.

Performance (%)
Dataset Model

ACC SE SP Kappa

EyePACS (SC1) 73 28 83 8

APTOS2019 (SC1) PCANet model (mixed dataset) 88 36 91 51

KSU-DR (SC2) 80 81 81 59
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Table 4. Comparison between DeepPCANet models and the pretrained models for SC1 scenario, M
and K stand for millions and thousands.

Dataset Model #FLOPs # Parameters ACC % SE % SP % Kappa %

ResNet152 5.6 M 60.19 M 95.25 88.22 96.97 88.15

DenseNet121 1.44 M 7.98 M 96.58 91.55 97.82 89.22

ResNeSt50 5.39 M 27.5 M 97.11 92.29 98.2 90.82

A
PT

O
S2019

DeepPCANet-4 1.36 M 63.7 K 98.21 95.29 98.9 94.32

ResNet152 5.6 M 60.19 M 92.25 80.74 94.9 75.16

DenseNet121 1.44 M 7.98 M 91.14 80.07 95 74.84

ResNeSt50 5.39 M 27.5 M 93.12 82.33 95.21 78

EyePA
C

S

DeepPCANet-16 2.11 M 557.68 K 94.22 86.56 96.30 81.64

Table 5. Comparison between DeepPCANet model and the pretrained models for SC2 scenario.

Dataset Model #FLOPs # Parameters ACC % SE % SP % Kappa %

ResNet152 5.6 M 60.19 M 97.98 97.83 97.83 95.75

DenseNet121 1.44 M 7.98 M 98.51 96.06 98.86 96.4

ResNeSt50 5.39 M 27.5 M 99.47 99.46 99.46 98.93

K
SU

-D
R

dataset

DeepPCANet-5 1.375 M 73.66 K 99.5 99.5 99.5 98.99

ResNet152 5.6 M 60.19 M 95 94.44 94.44 89.80

DenseNet121 1.44 M 7.98 M 99.32 98.8 98.8 98.73

ResNeSt50 5.39 M 27.5 M 98.33 96.54 96.53 94.22

A
PT

O
S2019

DeepPCANet-4 1.36 M 63.7 K 99.7 99.44 99.44 99.3

ResNet152 5.6 M 60.19 M 91.36 90.94 92.25 82.53

DenseNet121 1.44 M 7.98 M 91.51 91.75 91.75 82.72

ResNeSt50 5.39 M 27.5 M 90.53 90.92 90.92 79.04

EyePA
C

S

DeepPCANet-16 2.11 M 557.68 K 94.44 94.28 94.28 88.71

5. Experiments and Results

This section first describes the evaluation protocol and the experiments performed to
evaluate the proposed method and then presents the results.

5.1. Evaluation Protocol

We determined the architecture of the DeepPCANet for each DR dataset and fine-
tuned it using the training set of the corresponding DR database; the detail is given in
Section 3. After that, the performance of each model was evaluated using the test set of
the related database. To validate the usefulness and the superiority of the model design
technique, we compared custom-designed models with the widely used state-of-the-art
pre-trained CNN models such as ResNet [17], DenseNet [18], and ResNeSt [39], which have
shown outstanding performance for various computer vision applications. Additionally,
we compared it with AutoML models (Google Cloud AutoML) and Auto-Keras. We fine-
tuned the competing models using the same procedure employed for DeepPCANet on
each dataset.

For evaluation, we adopted three scenarios SC1 [62,63], SC2 [61,62], and SC3, as
described in Section 5.1. We evaluated the AutoML custom-designed models using SC1
and SC2 on APTOS2019 and EyePACS and SC3 in EyePACS. However, the evaluation
of the KSU-DR dataset was performed using SC2 because the number of images for five
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classes is not enough. In addition, we used four commonly used metrics in medical
application and deep learning models: accuracy (ACC), sensitivity (SE), specificity (SP),
and Kappa [13,79–82].

5.1.1. Five Class Problem (SC1)

Using the APTOS2019 and EyePACS datasets, we built DeepPCANet-4 and
DeepPCANet-16 models, respectively, for SC1 using the respective training sets and fined-
tuned them using the corresponding training and validation sets (see detail in Section 3).
After fine-tuning, the models were evaluated on test datasets of EyePACS and APTOS2019;
the results are shown in Table 4. The results of the ResNet152, DenseNet121, and ResNeSt50
models, fine-tuned using the same training set and evaluated using the same testing set
as for from EyePACS and APTOS2019, are also shown in Table 4. The results show that
DeepPCANet-4 and DeepPCANet-16 outperform ResNet152, DenseNet121, and ResNeSt50
on both datasets in terms of all metrics; in particular, in both cases, the sensitivity and
Cohen’s Kappa are higher than those of ResNet152, DenseNet12, and ResNeSt50, Co-
hen’s Kappa is considered a more robust statistical measure than accuracy [83,84]. The
DeepPCANet-4 has the lowest number of FLOPs (1.36 M) and learnable parameters (63.7 K)
among all competing models, as shown in Table 4.

DeepPCANet-16 has fewer learnable parameters than the pertained ResNet152,
DenseNet121, and ResNeSt50 and has fewer FLOPs than ResNet152 and ResNeSt50 models,
but slightly greater than DenseNet121. In contrast, it has the best performance in terms
of metrics on the EyePACS dataset. ResNeSt50 has better performance than ResNet152
and DenseNet121. To compare the AutoML DeepPCANet to the state-of-the-art AutoML
methods, we use the most DR-intensive dataset available, the EyePACS, based on scenario
SC1. According to the NAS method [24], we test two AutoML methods; the Google Cloud
(vision) AutoML [43] and Auto-Keras [23]. We set up and generated the AutoML using
Auto-Keras methods locally using the same device and based on the representative set,
fine-tuned the generated CNN model using a training and validation set; then, it was
evaluated using the test set as with DeepPCANet-16. For Google Cloud AutoML, we
upload the representative, training, validation, and test sets to the Google cloud storage
and follow the same evaluation procedure. DeepPCANet-16 outperformed the Google
Cloud AutoML, and Auto-Keras has fewer number FLOPs, as shown in Table 6, but its
performance is lower than both models. The FLOPs and number of parameters of Google
Cloud AutoML are hidden, showing only the precision (PR) and recall (SE) metrics. NAS
algorithms are time-consuming and resource-intensive; they typically look for the cell
structure, including the topology of the connections and the operation (transformation)
that connects each cell. After that, the resulting cell is replicated to construct the neural
network [85]. We used a basic simple cell structure throughout our AutoML DeepPCANet
(LReLU, batch normalization layer, and CONV layer). The filters in the CONV layers
are derived automatically from fundus’ lesions and require less time. They optimized
both the search architecture and hyper-parameters in NAS algorithms. In contrast, we
first derived the optimal DeepPCANet architecture and then used Optuna to optimize the
hyper-parameters, as shown in Table 2.

Table 6. Comparison between DeepPCANeT-16 and AutoML methods.

Dataset Model #FLOPs # Parameters ACC % SE % PR %

Auto-Keras 0.31 M 15 M 73 73 53

Google-AutoML Hidden Hidden – 71.43 79.1

EyePA
C

S DeepPCANet-16 2.11 M 557.68 K 94.44 94.28 96.12

5.1.2. Two Class Problem (SC2)

We validated the DeepPCANet models’ performance using the three datasets for
SC2. The custom-designed models DeepPCANet-5, DeepPCANet-4, and DeepPCANet-16
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for KSU-DR, APTOS2019, and EyePACS, respectively, which were designed and fine-
tuned using only fundus images, outperform the highly complex CNN models such as
ResnNet152, DenseNet121, and ResNeSt50, which were trained using ImageNet dataset
and fine-tuned using fundus images, in terms of all metrics, as shown in Table 5. Though
DenseNet121 outperforms ResNet152 and ResNeSt50 on the three datasets, its performance
is not better than the custom-designed models. DeepPCANet-5 involves 1.375 M FLOPs,
which is smaller than the number of FLOPs of ResNet152, DenseNet121, and ResNeSt50.
The number of learnable parameters of DeepPCANet-5 is 73.66K which is much smaller
than those of the pre-trained models ResNet152 (60.19 M), DenseNet121 (7.98 M), and
ResNeSt50 (27.5 M). In Figure 5, we provide illustrations of the ROC curves on the three
datasets using the four models (customized DeepPCANet, ResNet152, DenseNet121, and
ResNeSt50). It indicates that the DeepPCANet models’ performance is better than the three
pre-trained models on the three datasets.
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5.2. Visualization

To understand the decision-making mechanism of the custom-designed CNN models,
we created the visual feature maps using the gradient-weighted class activation mapping
(GradCam) visualization method [86]. The visual feature maps of two random fundus
images generated by the DeepPCANet-5 model customized for the local KSU-DR dataset
are shown in Figure 6d,h. The same fundus images were given blindly to two expert
ophthalmologists at King Khalid Hospital of KSU, and they independently specified the
lesion regions manually. Though there is a slight difference in the annotations of both
experts, they agreed on most of the lesions, as shown in Figure 6b,c for the fundus image
Figure 6a from class moderate and Figure 6f,g for the fundus image Figure 6e from class
PDR. The visual features maps of the DeepPCANet-5 model highlight the lesions annotated
by both experts, as shown in Figure 6d,h. The yellow and orange splatter in Figure 6d,h
indicates that the DeepPCANet-5 model makes decisions based on the features learned
from the lesion regions.
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6. Discussions

This study proposed a technique to auto-custom-design a DeepPCANet model for a
target DR dataset. The depth of the model and the width of each layer is not specified ran-
domly or by exhaustive experiments. The custom-designed DeepPCANet models for DR
screening have small depths and varying widths of CONV layers and involve a small num-
ber of learnable parameters. The results of the AutoML DeepPCANet models customized
for the KSU-DR, APTOS2019, and EyePACS datasets (presented in Tables 4–6) demon-
strate that it outperforms the well-known highly complex pre-trained models ResNet152,
DenseNet121, and ResNeSt50, as well as AutoML from Google and Auto-Keras that was
fine-tuned using the same DR datasets. Generally, the DeepPCANet got competitive
performance with a small number of layers and parameters. As shown in Table 4, the
custom-designed DeepPCANet models for the three datasets have a small number of
parameters in thousands against that number in millions of ResNet152, DenseNet121, and
ResNeSt50. DeepPCANet-4 and DeepPCANet-5 have fewer FLOPs than all pre-trained
models and have better performance. The DeepPCANet-16 has fewer FLOPs than that
of ResNet152 and ResNeSt50 and also has better performance. Though DenseNet121 has
fewer FLOPs than DeepPCANet-16, it has the least performance and a large number of
parameters. The reason for the lightweight structures and superior performance of custom-
designed DeepPCANet models is that their architectures have been directly drawn from
the fundus images, unlike the state-of-the-art CNN models, which are mainly designed for
object detection. In addition to comparing the custom-designed DeepPCANet models with
famous pre-trained models, it is essential to validate their effectiveness in DR screening by
comparing them to the state-of-the-art methods on two challenging datasets (APOTS2019
and EyePACS). DeepPCANet-4 generated for SC1 on the APTOS2019 dataset outperforms
the state-of-the-art methods on the same dataset in terms of accuracy, sensitivity, specificity,
and Kappa, as shown in Table 7. The DeepPCANet-4 based on the five-class problem (SC1)
and APTOS2019 dataset outperforms the method presented in Sikder et al. (2021), which
used handcrafted features and needs a long processing time for fundus image preprocess-
ing and extracting features. Though the method by Tymchenko et al., 2020 [64] outperforms
the DeepPCANet-4 in the Kappa score for the five-class problem (SC1), it has less accuracy,
sensitivity, and specificity, and it is based on a highly complex ensemble of 20 CNN models.
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For the same scenario, the DeepPCANet-16 designed for EyePACS outperforms the existing
methods in accuracy and specificity. The method by Islam et al., 2018 [61] obtained higher
sensitivity, but their model is more complex, and it was tested on 4% of the dataset, as
shown in Table 7. For the SC2 (normal vs. DR levels), DeepPCANet-4 outperforms the
method by Tymchenko et al. [64] in all metrics on APTOS2019. In this scenario, on the
EyePACS dataset, as shown in Table 7, the DeepPCANet-16 is better than other methods
in accuracy, sensitivity, and specificity; the method by Islam et al., 2018 [61] is slightly
better than DeepPCANet-16 in sensitivity, but it was tested only on 4% of the EyePACS
dataset. The method of Chetoui et al., 2020 [87] is better than DeepPCANet-16, whereas
they used transfer learning based on Inception-Resnet-v2, which has high complexity and
a large number of parameters. It consists of five convolutional layers, each followed by
batch normalization, two pooling layers, forty-three inception modules, three residual
connections, the pooling of global averages, and the use of two fully connected layers in
conjunction with the rectified linear unit (ReLU); whereas, DeepPCANet-16 is a 16-layer
structure that employs the basic CONV setup. The DeepPCANet-16, based on the EyePACS
dataset for the SC3 (0 and 1 vs. DR levels), obtained less accuracy than Colas et al. [67] and
Islam et al. [61] but obtained higher sensitivity and specificity, which are more important
and robust than accuracy in the medical applications [88].

Table 7. Comparison between DeepPCANet models and state-of-the-art methods.

Performance (%)
Paper Method Dataset

ACC SE SP Kappa

Five classes (SC1)

Sikder et al., 2019 [65] Colored features extraction
using ensemble APTOS2019 91 89.54 - -

Tymchenko et al., 2020 [64]

An ensembled models with 3
CNN architectures
fficientNet-B4, EfficientNet-B5,
and SE-ResNeXt50

APTOS2019 91.9 84 98 96.9

Shorfuzzaman et al., 2021 [89] CNN-based transfer learning
ensemble aptos2019 96.2 94.00 - -

Sikder et al. (2021)
Histogram and GLCM features
tuning using XGBoostand
genetic algorithm.

aptos2019 94.20 - - -

DeepPCANet-4
DeepPCANet model
customized for
APTOS2019 dataset

APTOS2019 (test: 40% of
public dataset) 98.21 95.28 98.85 94.32

Lahmar et al., 2021 [90] Transfer learning
(MobileNet V2) APTOS2019 (SC1) 93.09 89.27 92.69 -

Islam et al., 2018 [61]
A CNN model consisting of 18
layers with 3 × 3 and 4 ×
4 kernels

EyePACS (test: 4%
of dataset) 94.5 90.2

Li et al., 2019 [62] Deep learning model based
on DCNN

EyePACS (test: 10%
of dataset) 86.17 - - -

DeepPCANet-16
DeepPCANet model
customized for
EyePACS dataset

EyePACS (test: 10% of
public dataset) 94.22 89.56 96.30 81.64
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Table 7. Cont.

Performance (%)
Paper Method Dataset

ACC SE SP Kappa

Normal vs. DR (all DR levels) (two classes) (SC2)

Tymchenko et al., 2020 [64]

Ensembled models with 3 CNN
architectures EfficientNet-B4,
EfficientNet-B5, and
SE-ResNeXt50

APTOS2019 99.3 99.3 99.3 98.6

DeepPCANet-4
DeepPCANet model
customized for
APTOS2019 dataset

APTOS2019 (test: 10% of
public dataset) 99.7 99.44 99.44 99.3

Islam et al., 2018 [61]
A CNN model consisting of 18
layers with 3 × 3 and 4 ×
4 kernels

EyePACS (test: 4% of
public dataset) 94.5 90.2 -

Li et al., 2019 [62]
Features extraction using deep
learning model based on DCNN
and SVM classification

EyePACS 91.05 89.30 90.89 -

Chetoui et al., 2020 [87] Pretrained
Inception-Resnet-v2 DCNN EyePACS (SC2) 97.9 95.8 97.1 98.6

DeepPCANet-16 DeepPCANet model customized
for EyePACS dataset

EyePACS (test: 10% of
public dataset) 94.44 94.28 94.28 88.71

Non-referral (Normal and DR grad 1) vs. referral (DR grade 2 to highest grade) (two classes) (SC3)

Colas et al., 2016 [67] A CNN model. End to
end training.

EyePACS (train: 89%, test:
11%) 96.2 66.6 94.6

Islam et al., 2018 [61] A CNN model EyePACS (train: 96%, test:
4%) 98 94

DeepPCANet-16 DeepPCANet model derived
from EyePACS dataset

EyePACS (test: 10% of
public dataset) 94.59 94.86 94.87 89.02

7. Conclusions

We introduced an approach to building an AutoML data-dependent CNN model
(DeepPCANet) customized for DR screening automatically. This approach tackles the
limitations of the available annotated DR datasets and the problem of a vast search space
and a huge number of parameters in a deep CNN model. It bauto-lightweightghtweight
CNN model customized for a target DR dataset using k-medoid clustering, principal
component analysis (PCA), and inter-class and intra-class variations. The DeepPCANet
model is data-dependent, and each DR dataset has its appropriate AutoML architecture.
The customized models, DeepPCANet-5 for the local KSU-DR dataset, DeepPCANet-4 for
APTOS2019, and DeepPCANet-16 for the EyePACS dataset outperform the pre-trained
very deep and highly complex ResNet152, DenseNet121, and ResNeSt50 models fine-tuned
using the same datasets and procedure. The performance, complexity, and number of
parameters of the customized DeepPCANet models are significantly less than ResNet152
and ResNeSt50. Though DenseNet121 has fewer FLOPs than DeepPCANet-16, it has the
least performance and a large number of parameters. On the EyePACS dataset, compared
to the Google Cloud AutoML and Auto-Keras, DeepPCANet-16 based on SC1 obtained
better performance with fewer parameters. Using the EyePACS dataset, DeepPCANet-16
also compared to the state-of-the-art methods (for SC2 and SC3), the DeepPCANet-16 has
less complexity and parameters and has competitive performance. The DeepPCANet fails
to predict DR grade from fundus images, which have poor quality. It could not correctly
grade some poor quality fundus images from the EyePACS dataset; each image in this
dataset was graded by only one expert from the geographic region of California, which
can potentially lead to annotation bias. How the DeepPCANet can reliably predict the DR
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grade from poor quality fundus images is a subject of future work. Additionally, how the
DeepPCANet can be generalized with different fundus datasets is a subject of future work.
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