. mathematics

Article

Analyzing Non-Markovian Systems by Using a Stochastic
Process Calculus and a Probabilistic Model Checker

Gabriel Ciobanu

check for
updates

Citation: Ciobanu, G. Analyzing
Non-Markovian Systems by Using a
Stochastic Process Calculus and a
Probabilistic Model Checker.
Mathematics 2023, 11, 302. https://
doi.org/10.3390/math11020302

Academic Editor: Alexander Zeifman

Received: 17 November 2022
Revised: 15 December 2022
Accepted: 27 December 2022
Published: 6 January 2023

Copyright: © 2023 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Computer Science, Alexandru Ioan Cuza University, 700506 lasi, Romania; gabriel@info.uaic.ro

Abstract: The non-Markovian systems represent almost all stochastic processes, except of a small
class having the Markov property; it is a real challenge to analyze these systems. In this article, we
present a general method of analyzing non-Markovian systems. The novel viewpoint is given by the
use of a compact stochastic process calculus developed in the formal framework of computer science
for describing concurrent systems. Since phase-type distributions can approximate non-Markovian
systems with arbitrary precision, we approximate a non-Markovian system by describing it easily
in our stochastic process calculus, which employs phase-type distributions. The obtained process
(in our calculus) are then translated into the probabilistic model checker PRISM; by using this free
software tool, we can analyze several quantitative properties of the Markovian approximation of the
initial non-Markovian system.

Keywords: process calculus; phase-type distribution; non-Markovian systems; model checker PRISM

MSC: 60E05; 60J20; 62E17; 62M09; 65C60; 68Q60; 68Q85

1. Introduction

The progress in computing technologies made in the last decades has influenced the
sciences (including mathematics) in fundamental ways, but also offers new opportuni-
ties for deeper mathematical research. Thanks to the significantly computation power,
mathematicians may extend their classical techniques, proofs and solutions by using an
algorithmic approach that enables the consideration of more complex models with wider
applicability. While providing powerful tools to mathematicians, the technologies also
create new challenges and problems.

According to the properties of their states and transitions, the stochastic systems are
separated into non-Markovian and Markovian systems. A non-Markovian system is one that
does not have the Markov property. On the other hand, a Markovian system possess the
Markov property. The Markov property says that the probability of a future state is only
dependent on the current state and independent of any previous state (i.e., the past event
does not affect the future event; this is the reason why Markov property is also known as
the memoryless property).

Although the non-Markovian systems represent almost all of the stochastic processes
(with the exception of a small class having the Markov property), it is not easy to describe
and analyze them. We present in this paper a new approach inspired by the theory of
concurrency [1] and use a stochastic process calculus and a probabilistic model checker.
The task is challenging because the existing probabilistic and stochastic process calculi
are not convenient for describing non-Markovian systems. The drawback of the existing
probabilistic process calculi is that almost all of them were developed for Markovian
systems described in terms of Markov chains. The Markov chains have a well-established
mathematical theory [2]; this theory allows the performance analysis and facilitates the
exact numerical value of passage time, transient and steady-state performance measures.
On the other hand, the theory dealing with non-Markovian systems is much less developed,

Mathematics 2023, 11, 302. https:/ /doi.org/10.3390/math11020302

https://www.mdpi.com/journal /mathematics

https://doi.org/10.3390/math11020302
https://doi.org/10.3390/math11020302
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8166-9456
https://doi.org/10.3390/math11020302
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020302?type=check_update&version=2

Mathematics 2023, 11, 302

20f17

and in general, the performance measures are not derived analytically (only approximated).
These performance measures are generally determined either by using non-Markovian
approaches which require specific (discrete events) simulation techniques, or by using a
Markovian approximation for the behavior of the non-Markovian system (and then analyze
this Markovian approximation). Due to the fact that phase-type distributions are known to
be able to approximate any distribution arbitrarily well [3,4], the non-Markovian systems
can be described in terms of the phase-type distributions. Phase-type distributions are also
adequate for such an approximation because of their strong properties: they are closed
under finite convolutions, minimum, maximum and convex mixtures (contrasting the
exponential distributions that are closed only under minimum).

The main contribution of this article is given by a novel methodology of analyzing non-
Markovian systems via a concise stochastic process calculus using phase-type distributions
and a model checker to verify several properties. As a consequence, we overcome an
important impediment in dealing with non-Markovian systems: the lack of appropriate
software tools. As far as we know, currently, a similar approach does not exist.

To summarize, we tackle the problem of efficiently analyzing non-Markovian systems
by examining three main possibilities currently available:

* using non-Markovian process calculi (poor theory, few tools),

* using phase-type approximations for non-Markovian systems (strong theory, no tools),

* replacing non-Markovian distributions with exponential ones (strong theory, many
tools, inaccurate approximation).

Among these options, the second one appeared to offer us a good balance between
mathematical tractability and accuracy (i.e., the stochastic properties of the system are
captured in a relatively faithful manner). However, it lacks a suitable software tool. To solve
this situation, by using the process calculus employing phase-type distributions for transi-
tion durations, we provide a gradual description of how the processes of this calculus can
be translated into a free advanced software, namely a probabilistic model checker called
PRISM [5]. This approach makes possible the approximation of the non-Markovian systems
up to any desired level of accuracy, and the use of all the automated facilities of PRISM to
analyze (the approximation of) these systems.

The method presented in this article is applicable to a large number of concrete
examples. Just to emphasize the method, we prefer to focus on its general steps and to
illustrate it just by a rather theoretical example. The potential practical applications are
mentioned by some fields in which this general method could be applied.

The structure of the paper is as follows. We briefly recall non-Markovian systems and
phase-type distributions in Section 2. Then, we describe the syntax and semantics of the
stochastic process calculus (named PHASE) designed to describe non-Markovian systems
by using phase-type distributions. This process calculus is then translated faithfully into
the language of the model checker PRISM [5]. This probabilistic model checker is used
as a software tool to analyze various properties of the phase-type approximations of the
non-Markovian system described by our process calculus. In Section 4, it is described how
the process calculus PHASE can be implemented in PRISM, and in Section 5, an overview of
the popular tools fitting phase-type distributions is presented. Finally, the whole approach
is illustrated by considering a non-Markovian system, describing it in PHASE calculus,
and analyzing it using PRISM.

2. Non-Markovian Models and Phase-Type Distributions

In order to present a Markovian system, let us consider the time spent by a person in
(the employment of) a company. We assume that the person evolves through successive
states, spending a period of time in each state. In a (continuous time) Markov chain
model, the time spent in each state has an exponential distribution. When leaving a state,
the person either moves on to the next state or leaves the company (by dismissal or death).
Thus, we have successive labelled states together with a final state expressing that the

Mathematics 2023, 11, 302

30f17

person left the companys; this is an absorbing state (an absorbing state is a state that, once
entered, cannot be left; a state which is not absorbing is called transient).

In a (more realistic) non-Markovian system, we may assume the same except the
fact that the time spent in each state has an arbitrary distribution. Since we abandon the
assumption of exponentially distributed times in each state, such a system no longer has the
Markov property (and so, it is no longer a Markov chain). Let us consider a continuous-time
Markovian process with a number of states, such that the first states are transient states
and the final state is an absorbing state. The process has an initial probability of starting in
any of the transitions between states.

Two non-Markovian systems are depicted in Figure 1 in terms of states and labelled
transitions; each label indicates an action (a, b, ¢, d) and a distribution (both exponential
and nonexponential distributions could be be used). The distributions involved in these
examples are normal, uniform, log-normal and Weibull distributions (these are some of the
non-Markovian distributions most frequently encountered in practice).

3
(c, Exp(4)) (a, Lnorm(0,0.5))
2 2
(d, Norm(4,1)) (a, Unif(1.5,2.5)) (b, Weibull(1.5,1))
1 1

Figure 1. Examples of non-Markovian systems.

The time associated with each transition is indicated by the following distributions:
Norm(4,1) is a normal distribution with a mean of 4 and a standard deviation of 1, Exp(4)
is an exponential distribution with a rate of 4, Lnorm(0,0.5) is a log-normal distribution
with a mean of 0 and a standard deviation of 0.5 on the log scale, Unif(1.5,2.5) is a uniform
distribution with an upper bound 2.5 and a lower bound 1.5, while Weibull(1.5,1) is a
Weibull distribution with scale 1 and shape of 1.5.

It is known that general distributions can be approximated by phase-type distributions.
A phase-type distribution is defined as the distribution of the absorption time in a Markov
chain, namely the distribution of time from the starting state until the absorption in the
final state. The distribution can be represented by a random variable describing the time
until absorption of a Markovian process with one absorbing state. The name of phase-type
distribution comes from the time taken from the starting state until absorption in the final
state through a number exponentially distributed phases. These phases are equivalent
to the states of the underlying Markov chain (we use the term phase when referring to
distributions, and state when referring to Markov chains).

The method of phases uses an exponential time for the transitions of a continuous
time Markov chain; such a transition corresponds to one phase. This approach provides
algorithmically tractable solutions in closed matrix forms, such as formulas for densities,
Laplace transforms and moments. Thus, phase-type distribution can approximate complex
problems and solve them in an algorithmic and computational way. In this way, phase-type
distributions represent a useful instrument for describing real-world phenomena in an
tractable way.

The phase-type distribution is essentially a probability distribution constructed by a
convolution or mixture of exponential distributions. It is in fact a class of distributions,

Mathematics 2023, 11, 302

40f17

including exponential distribution, Erlang distribution, geometric distribution and Coxian
distributions (among others). The properties of the phase-type distributions provide a good
balance between generality and mathematical tractability. The most important property is
that any (positive) probability distribution can be arbitrarily close approximated through a
phase-type distribution; this is a consequence of the result that the class of phase-type
distributions is dense in the set of non-negative probability distributions [3].

More information about the phase-type distributions can be found in [4].

3. A Stochastic Process Calculus Using Phase-Type Distributions

To integrate properly the phase-type distributions into a stochastic process calculus,
we design a compact process calculus inspired by PEPA [6], PEPA;‘;Z [7] and IMC [8]. For
convenience, we consider the phase-type representations in which the probability of the
starting state is equal to 1 (i.e., there is a single initial state); this means that they can be
specified fully in terms of their infinitesimal generator matrix [9]. We denote by PH(A)
the phase-type distribution whose generator is A; the distribution PH(A) describes the
time until absorption for a continuous-time Markov chains of size ord(A) (the order of A)
denoted by CTMC(A), where state ord(A) is absorbing and all the other states are transient.
The rate of a transition from state i to state j is given by A(i,j), where 1 <i,j < ord(A) and
i # j; the element A(i,i) with 1 <i < ord(A) is the sum of the rates of all the transitions
originating in state i.

The process calculus PHASE uses only the following operators: the sequential operator,
the choice operator, and the parallel operator. The syntax of PHASE is given in Table 1,
where Psq is a sequential process, Py, is a parallel process, « is an action, (0, PH(A)) isa
phase-type transition, {L} is a set of actions and 7 is a natural number with n > 2.

Table 1. Syntax of the process calculus PHASE.

Pseg = (&, PH(A)).Pseg | (a1, PH(A1)).Pigg + ... + (an, PH(An)).Plt,
Ppar = Preg | Py S P2,

The expression («, PH(A)).Psy specifies that action & is performed after a delay dis-
tributed according to PH(A), and then behaves like Ps,;. The expression (a1, PH(A;)).Pslgq—i—
...+ (an, PH(Ay)).Ps, specifies a race among the transitions (a1, PH(A1)) with1 <i <mn;
in this race for execution it is selected the transition with the shortest time delay, and its
corresponding action is performed (the other transitions are discarded).

Considering the non-Markovian systems presented in Figure 1, the PHASE process
corresponding to the system located on the left-hand side of the figure can be described by

P11 = (d, PH(Al)) ((C, PH(Az))P13 + (61, PH(A3))P13
and the PHASE process corresponding to the right-hand side of the figure by

P2, = (a,PH(Ay4)).P2; + (b, PH(A5)).P2,,

where PH(A;,) (with m = 1..5) are some phase-type distributions approximating the
non-Markovian distributions of Figure 1, and P14, P13, P21, P2; represent some PHASE
processes in the corresponding states indicated by subscripts.

Additionally, the parallel expression P}, S P2, indicates that the processes P;a,

par (1) " pa
and Pﬁm must synchronize whenever performing a transition whose action is included

in the cooperation set {L}. More exactly, for each action « € {L}, whenever P;W finishes a

transition (&, PH(A1)), then P]}W is blocked until mer ends the corresponding transition
(0, PH(A3)), and vice-versa. Thus, this operator indicates the cooperation of the involved
processes along some shared transitions. By using our process calculus PHASE, we can
put together the two systems of Figure 1 by synchronizing them using their common
action a. Thus, the new non-Markovian system obtained by synchronizing the two systems
of Figure 1 can be described in PHASE by a process Sys = P1; {%} P2;.

Mathematics 2023, 11, 302

50f17

On the other hand, the transitions with actions not included in {L} can go ahead
unaffected by this cooperation. It is worth to mention that there are not defined associativity
rules for the parallel composition; this means that the order in which the processes are
composed should be explicit (by using parentheses). Both the choice and the parallel
operators are commutative.

For defining the operational semantics of PHASE, we differentiate transition durations
from the occurrence of actions, and describe phase-type distributions in terms of their
associated CTMC. In this way, we distinguish a Markovian transition from an action transition.

The first one (Markovian transitions) are denoted by either (r) or = , indicating a temporal
delay given by an exponential distribution with a rate r. The action transitions are denoted
by either a or =; they indicate the instant occurrence of action a. Using this distinction,

every sequential expression (a, PH (A)).PS{;I;;1 is translated into the following equivalent

form in which 0 = ord(A):

Inti = (A(1,1)).Inty & (A(1,2)).Int, ® ... & (A(1,0)).Int,
Inty = (A(2,1)).Inty ® (A(2,2)).Inty & ... D (A(2,0)).Int,
Inty_y = (A(0—1,1)).Inty & (Ao —1,2)).Int, @...® (Ao —1,0)).Int,
_ fin
Int, = Py .

In this equivalent form, @ indicates an internal choice among Markovian transitions;
the behavior of this operator is the same as that of the choice operator for Markovian
transitions in classical process calculi, such as PEPA.

As aresult, Pt = («, PH (A)).Psfgl; becomes Pt = Inty, while
Peq = (a1, PH(A1)).Pigy + ... + (a0, PH(A,)).Pl,; becomes Peoy = Inty + - -« + Int].

The states Inty, ..., Int, are correlated with the CTMC(A) states, while the values
A(i, j) (1 <1i,j < o) are correlated with the transitions rates of CTMC(A).

The operational semantics of PHASE is presented in Table 2. Each rule consists of
some premises and a conclusion; the transition of the conclusion is valid whenever the
transitions of the premises are valid. Because the operators @, + and % are commutative,

the rules from CH1 to PARS remain valid whenever we interchange P1 with P2.

The rule SEQ1 indicates the occurrence of actions (for action transitions), while SEQ2
indicates the time delay (for Markovian transitions). Rule CH1 indicates an internal choice
for Markovian transitions; additionally, rule CH2 describes the race indicated by the choice
operator between two phase-type distributions. Rule CH3 describes the race policy: while
the quickest phase-type transition is executed, the others are discarded. The other rules
deal with the parallel composition. PAR1 describes the situation when the processes do
not interact. PAR2 treats the parallel composition between a Markovian transition and an
action: since the involved action is not in the cooperation set {L}, its corresponding action
transition is immediate (and precedes the Markovian transition). On the other hand, if the
action is in {L}, then the process containing the action transition should wait until the
other process executes a matching action transition; this is described by rule PAR3. Rule
PARA4 says that in a synchronization, the transitions which are not part of the cooperation
set L work independently, while rule PARS5 says that in a synchronization between action
transitions, the matching transitions with actions in {L} work simultaneously.

Since the PHASE semantics uses both action and Markovian transitions, it is possible
to have a nondeterminism produced by the parallel operator (not caused by the choice
operator). To illustrate such a nondeterminism, we use the process P = (P ng) {%} Ps,

where P) = (¢, PH(A1)).Py, P» = (¢, PH(A3)).P> ,and P; = (a, PH(A3)).P5 .

Mathematics 2023, 11, 302

60of 17

Table 2. Rules of the operational semantics for PHASE.

P2 Q
(SEQ1) — SEQ2) — (CHl) —
) aP 5P () rn.pPLp) PeP =0
P2 Q P2 Q) P Q P2 Q
(CH2) (CH3)

P1+P2r—-1>Q1+P2 P1+P2£1—>Q1

P2 Qy P2 Q,

(PAR1) e
P 3 P= Q13D
(PAR2) P P2 Q oy ¢ {L])
a1
PSP 08P
(L} Ly
(PAR3) P Q P2 Q ()
K €
§p, 2 §
P 3 P=P 3 Q
P P
(paRg) AP 2O (o g (1)
P 3 P= Q13 P
Jg J
(PAR5) 1L Q1 22 Q1)

Py § P S Q 3 Q

Whenever the duration of transitions try = (¢, PH(A1)) and trp = (¢, PH(A;)) are
shorter than the duration of transition tr3 = («, PH(A3)), the transition tr3 can synchronize
with only one of the transitions tr; or trp, namely with the one which is available for
cooperation. We should resolve all the instances of action nondeterminism in order to
derive the performance measures for PHASE processes. For this, the competing transitions
are assumed to be equally probable to be chosen, namely the winning action transition is
obtained from a uniform distribution of all competitors. In the case of our P, the assumption
that the competing transitions are equally probable to be chosen means that both tr; and tr;
are selected for synchronization with probability 0.5. Note that there exist alternative
solutions for dealing with such a non-determinism: for instance, employing priority levels
and weights [10], or using schedulers.

When comparing our process calculus PHASE to the process calculus PEPA employing
exponential distributions [6], a possible link is provided by the intermediate states and
transitions used when defining the PHASE transitions and operators. On the other hand,
when reasoning about the behavior of PHASE processes, these internal states and transitions
could be ignored (viewed as technical details). Thus, when referring to the transitions
and states of a sequential PHASE process P, we have in mind only transitions of the form
(o, PH(A)) and the states to which these transitions are connected (in P). The states reached
by P are given by the set ds(P), and the transitions appearing between the states of ds(P)
are given by the multiset trm(P).

Examining the probabilistic model checker PRISM [5], a process P specified in PHASE
can be translated into (the language of) PRISM by following the next steps:

1. Describe P in a form compatible with the language of PRISM;

2. Generate the states and transitions of P (ignoring the time of transitions and internal
parallelism);

3. Implement the sequential and choice operators;

4. Implement the parallel operator.

The detailed presentation for each step is given below.

Mathematics 2023, 11, 302

7 of 17

3.1. Step 1: Expressing PHASE Processes in a Form Closer to PRISM

PRISM is limited to sequential processes composed in parallel. This requires to de-
scribe a process P of PHASE in a form denoted by Pg consisting of sequential processes,
parallel operators and parentheses only. This form is obtained by decomposing the subcom-
ponents of a PHASE parallel process Py,r; such a decomposition is realized recursively up
to the moment when the sub-components are sequential. As a result, we get the multiset
SP = {Py,..., Py} of sequential PHASE processes defining Pg, as well as the multiset of

transitions TR(Pg) = |4 trm(P;) executed by these sequential processes.
1<i<m

3.2. Step 2: Generating the States and Transitions in PRISM

This step is dealing with the states reached by the sequential processes of Pp and
with the transitions between these states. Looking at PRISM, the states of a process are
described by using additional local variables assigned to the process; in this way, each
state is mapped to a valuation over these variables. The local variables should be part of a
module, indicating also that they belong to a specific process. Therefore, we provide a
PRISM name to each process P; € SP by using an injective function f : SP — IDprrsm,
where IDpgrysp is the set of valid PRISM names. We represent each P; by using a single
variable; this fact (having only a variable for each process) simplifies the behaviour of P; by
identifying ‘module” with ‘variable’. Consequently, the function f provides the name of
both the variable corresponding to P; and that of the module in which this variable is used.
In this way, the possible states of P; can be presented as numerical values for these variable
by defining an injective function g; : ds(P;) — N. Thus, it is obtained the following module
whose initial state is exactly P;:

module f(P;)

P;): [0.. max (g;(S init ¢;(P;);

£(P): 0. max (3(5))] inigi(P)

endmodule .

In this way, the sequential processes in PHASE are expressed as PRISM modules by
using their states: if a process P is in state S, then module f(P;) (using the variable f(P;))
is in state g;(S). Regarding the transitions performed by P; during its evolution, we give a
PRISM name to the transitions in TR(Pg) in a similar way (as for states) by using an injective
function i : TR(Pg) — IDprrsm- Thus, every transition tr is presented as (¢, PH(A)) from
state S to state Sq of P; as follows:

[a] (f(P;) = &i(S0)) & (h(tr)_won=true) —> 1: (f(P;)" = gi(S1)) -

This means that whenever P; is in a state Sy (i.e., f(P;) = £;(So)) and the race for exe-
cution is won by the transition tr (namely h(tr)_won=true), this transition is activated and
action « is executed. Thus, P; is moving to state $; (i.e., f(P;) = ¢i(S1)), and transition tr is
included in module f(P;).

As a result of this step, the states and the transitions of the sequential processes P; in
PHASE are translated into PRISM. However, the PHASE transition tr = (¢, PH(A)) whose
delay time is phase-type distributed (according to PH(A)) is translated into PRISM as a
transition fr' = («,1) whose delay time is exponentially distributed. A solution to this
problem is presented in the next step. Moreover, the phase-type distributions determining
the transitions duration and the interactions between the sequential processes in Py are
treated in Steps 3 and 4. Thus, these steps complete the description of Pp.

3.3. Step 3: Implementing the Choice and Sequential Operators

It is required to split phase-type transitions into Markovian and action transitions (as
indicated by the semantics of PHASE) to be able to tackle the behaviour of the sequential
and choice operators. In order to implement this in PRISM, a module is created for
any PHASE transition tr. Such a module becomes active whenever P; enters in state Sy,

Mathematics 2023, 11, 302

8 of 17

and its stochastic behaviour matches the Markov chain CTMC(A) (transition by transition).
However, since PRISM does not admit a dynamic creation of new modules (namely, all
the modules should be specified for the initial system), it is not possible to create new
modules when a transition tr is activated (and discard it after performing). Alternatively, a
single module for tr is defined, reusing it whenever it is required. On the other hand, we
should be sure that P; performs the action & after (the module corresponding to) tr reaches
the absorbing state (i.e., after the delay time associated with tr has expired). Considering
o = ord(A), the obtained module is:

module h(tr)
h(tr) : [0..0] init 1;
h(tr)_won : bool init false;

Y =1)+...4+
"=+ 1)+ +
t

endmodule .

In this module, we have 1 < j < 0 — 1, and + describes a choice between exponen-
tially distributed transitions (in PRISM) representing the precise equivalent of the PHASE
operator @ (as mentioned, PRISM handles only exponentially distributed transitions). The
values taken by the variable /i (tr) provide the states of module k(tr); these values (except-
ing 0) correspond exactly to the states of CTMC(A). To be accurate, we omit the self loops
from CTMC(A); however, since self loops have no stochastic effect, they can be ignored.
Additionally, the variable h(tr)_won is considered in order to manage properly the status
of transition tr: if h(tr)_won=false, the process P; is not in state Sy, and so module h(tr)
is inactive; if h(tr)_won=true, the delay time has elapsed and process P; should perform
action «.

However, this translation is not complete because it does not treat the following points:

e The module h(tr) becomes inactive after the process P; leaves state Sy (inactive means
that no transition is enabled). This module can reactivate itself later if the guard of at
least one of its transitions is satisfied; if not, the module keeps its current state (given
by the values of the local variables). However, when process P; re-enters state Sy
(later), the module h(tr) is not reset to its initial state, leading to an incorrect behavior.

* The phase-type transitions of a sequential process occurs usually in choice expressions;
accordingly, the module k(tr) should consider the context of transition ¢r.

In order to get a correct PRISM implementation of the sequential and choice operators,
it is worth noting that a choice applied to a single transition is equivalent to the sequential
operator; this means that we may analyze only the choice operator (avoiding the sequential
operator). To implement properly the choice operator to ensure that (phase-type) transitions
are reset correctly, there are required some changes of the modules capturing the duration
of these transitions. First, we define the state Sy of P; by using the choice operator: Sy =
(a1, PH(A71)).S51 + ...+ (an, PH(A;)).Su. Then, let us assume that try = (ay, PH(Ag))
and o = ord(Ay) for 1 < k < n. In these circumstances, we impose the rule that a
module & (try) is active only when none of the phase-type transitions from Sy won the race
for execution (according to the race condition for choice). For this, we define a Boolean
property f(P;)_gi(Sp)_race_on described in PRISM by:

formula f(P;)_g;i(Sp)_race_on = (h(tr1)_won=false) & ... & (h(tr,)_won=false) .

This property is true when the race between the PHASE transitions try (1 < k < n) is
still going on (and false otherwise). This property is added to the guards for all transitions
of the module h(try); the old PRISM guard

(f(P;) = 8i(S0)) & (h(trx) = j)

Mathematics 2023, 11, 302

90f17

is replaced by the new guard

(f(P;) = gi(S0)) & (h(try) = j) & f(P;)_gi(So)_race_on.

Thus, the modules for transitions involved in such a choice operation are inactivated
immediately the choice outcome is decided. The reset of these modules after the race
for execution is completed can be performed at any moment after the end of the race
until P; returns to state Syp. The reset is applied as soon as the choice is settled. This
seems to be a natural approach, also easy to implement: in module k(try), we replace the
updates (h(try)" = o) with the update h(tr;) = 1) & ... & (h(tr,)" = 1). Note that both
expressions h(try) = op and h(try)_won’'=true accomplish the same objective: to indicate
that transition fr; won the race.

Since in PRISM local variables are read globally but modified locally, the modules can
use but not change the values of the local variables defined in other modules. This means
that the above update does not work properly (as desired). It is necessary to turn the local
variable h(try) into a global one, such that the competitors of try can updated it whenever
they win the race. For this, we remove the declaration

h(try) : [0..0¢] init 1;
from the module k(try), and declare as global the variable hi(try) in any other module by
global h(try) : [0..0] init 1.

Unlike the (defined locally) functions g, ..., gm, the function h is defined globally
(note that naming conflicts could appear whenever local functions hy, ..., hy, would be
used instead of /). In this way, whenever the transition tr; wins the race for execution,
the modules corresponding to the losing transitions are blocked and reset (as desired).
Moreover, whenever the process P; (re)enters the state Sy, the modules h(try),..., h(try)
remain inactive due to the fact that f(P;)_g;(So)_race_on is false and because h(tr)_won
is true. To avoid such a faulty behavior, we reset the variable h(try)_won to false at any
time when the transition try is performed; this makes sure that f(P;)_g;(So)_race_on is true.
To implement this, we include in module h(try) the following transition:

[ax] (f(P;) = gi(S0)) & (h(try)_won=true)—> 1 : (h(try)_won’=false) .

Thus, h(tr)_won becomes false once P; finishes transition try; this is obtained by
synchronizing module h(try) with module f(P;) over their common action «j (as presented
in Step 4).

3.4. Step 4: Implementing the Parallel Operator

This final step translates the interactions between the sequential (PHASE) processes
from SP such that the action transitions to be indeed immediate; now the action transitions
are represented by exponentially distributed (PRISM) transitions with rates equal to 1.
However, PRISM does not support immediate transitions; then, we introduce a module
named inst_sync such that for any action « which can be performed by one of the processes
P; (1 <i < m), the module inst_sync contains a transition of the form [«] true —> infty :
true; where infty is a large number (e.g., a value at least a few orders of magnitude larger
than any value associated with the transitions from TR(Pg)).

Due to the multiplicative law for computing synchronization rates in PRISM, synchro-
nization of module inst_sync with other modules pushes the immediacy of actions. More
precisely, all the transitions of form [a] ... —> ... executed by either any module f(P;) or
any interaction between the modules of SP have arateof 1-...-1 -infty = infty—this
means that their duration is equal to 1/infty ~ 0.

The parallel operator is translated into PRISM in a rather simple way, as a consequence
of the separation between transition durations and occurrence of actions, and that actions
are performed instantaneously. Considering together all the modules, in order to obtain
fully the translation of P in PRISM, we use the parallel operators available in PRISM (having

Mathematics 2023, 11, 302

10 of 17

the same waiting condition like the parallel operator in PHASE). Consequently, we replace
each process P; from Pp with the following parallel composition of modules:

f(E)II(Il h(tr))

tretrm(P;)

For indicating that modules h(tr) interact by means of shared variables (not actions),
we use the operator ||| expressing a parallel composition without any synchronization
over actions. On the other hand, the operator || denotes a parallel composition over the
common actions of the involved participants; this operator is involved in both assuring
the proper reset of the modules /(tr) and separating the duration of transitions from the
actions occurrence. Furthermore, all the instances of the E} operator are replaced by its

counterpart |[L]| in PRISM, denoting the resulting PRISM expression by Pg. Similar to
the PHASE parallel operator using {%} , the parallel operator using |[L]| describes the

synchronization over the actions in {L}. Therefore, the PRISM expression P}, is connected
to the module inst_sync, resulting P’ = Py || inst_sync. The module inst_sync ensures that
the actions in P’ are immediate. It is worth noting that immediate actions are not permitted
in PRISM,; therefore, the duration of a PHASE transition {r = (a, PH(A)) is distributed
according not to PH(A), but to the convolution of PH(A) (namely the delay associated
with tr) and Exp(infty) for producing action a as ‘immediate” action (the error introduced
by Exp(infty) can be reduced to an imperceptible level by selecting an appropriate large
value for infty).

Finally, we notify the PRISM model checker about the completion of this translation by
using the construct system P’ endsystem. To indicate that this construct describes a CTMC,
the keyword ctmc is placed at the beginning of P’. In this way, the PRISM implementation
of the PHASE process P is finished.

4. Software Tools for Phase-Type Distributions

Distribution fitting is the procedure of selecting a certain distribution that best fits
to a set of data generated by some random process. Distribution fitting also checks
if the distribution of a sample of data differs notably from a theoretical distribution.
Once the distribution type is identified and the parameters to be estimated are fixed, a
best-fit distribution is usually defined as one with the maximum likelihood parameters.
In this section, we review four fitting tools for phase-type distributions, namely EMpht,
jPhase, HyperStar and PhFit.

The tool EMpht [11] is one of the oldest software program for fitting PH distributions.
It consists of a C program which implements the parameter estimation algorithm [12], and a
MATLAB program which plots the resulting PH approximations. EMpht accepts as input
both discrete samples and continuous distributions; the distributions are either prespecified
(i.e., uniform, normal, log-normal, Weibull, Wald, or PH) or user-defined. The fitting
procedure is based on expectation-maximization (EM), and the user must choose the type of
PH distribution fitting the input data (namely hyperexponential, general hypoexponential,
Coxian, general Coxian, etc), or user-defined. The last feature is particularly powerful, as it
allows the user to place constraints on the structure of the underlying CTMC in terms of
the initial probability vector (e.g., the only two possible initial states are 1 and 3), and the
infinitesimal generator matrix (e.g., there is no direct transition between states 2 and 5).
An interesting additional option provided by this tool is its support for right-censored and
interval-censored sample data (censoring is a condition in which the value of an observation
is only partially known; in right censoring, a data point is above a certain value but it is
unknown by how much, while in interval censoring, a data point is somewhere on an
interval between two values).

The tool jPhase [13] contains three Java packages for operating with PH distributions,
namely jPhase (for representing the distributions), jPhaseGenerator (for drawing random
variates from the distributions), and jPhaseFit (for fitting distributions). The fitting module
offers several algorithms, some of them relying on expectation—-maximization, while the

Mathematics 2023, 11, 302

11 of 17

other employing moment matching (MM) techniques. The expectation—-maximization
procedures accept sets of samples as input, and output PH distributions which are ei-
ther general [12], hyperexponential [14], or hyper-Erlang [15]. In contrast, the moment
matching procedures require only the first three moments of the distribution to be fitted,
and return PH distributions whose first moments (approximately) match those given as
input. Furthermore, as output the user can choose between 2-phase [16] and n-phase
representations [17], depending on the desired goodness of fit for the moments. In addition
to fitting and simulation capabilities, jPhase also supports basic operations (convolution,
minimum, maximum, convex mixture) over PH representations, and can compute both
the probability density functions (PDF) and cumulative distribution functions (CDF) of PH
distributions (technically, a probability density function is the derivative of a cumulative
distribution function).

The tool HyperStar [18] is a recent Java application for PH fitting focusing on being
user-friendly. Unlike EMpht and jPhase, Hyperstar follows a cluster-based approach to
generating PH distributions [19]: after supplying sample data as input, the user selects the
regions of the empirical PDF that must be fit particularly well, and the algorithm produces a
hyper-Erlang distribution according to the instructions of the user. More specifically, this
procedure divides the sample into clusters, centred around the points indicated by the
user, and then fits each cluster with an Erlang distribution. Besides its accessibility, another
attractive feature of HyperStar is that it has an Expert mode in which the user can customize
the main elements of the fitting algorithm (e.g., whether the detection of the important
regions of the empirical PDF should be done manually or automatically). The tool also
comes with an optional Mathematica interface which allows the user to develop her/his
own fitting procedures, while benefiting from HyperStar’s intuitive and informative visual
user interface.

The tool PhFit [20] is a Java application for fitting PH distributions which distinguishes
itself in terms of flexibility. Firstly, the input provided by the user can be either a sample, a
prespecified distribution (Weibull, log-normal, uniform, Pareto-like), or a user-defined
distribution. Second, the tool employs a segmentation-based approach for building PH
representations which involves splitting the distribution to be fit into a body section
and a tail section. The body and the tail fit then by using an acyclic PH (ACPH) and a
hyperexponential distribution, respectively. Thirdly, the user has the possibility of selecting
the error measure to be minimized during the fitting process (it can be either the CDF/PDF
area difference between the input and the output distribution, or the cross entropy between
the aforementioned distributions).

To summarize, the main characteristics of the tools are in Table 3 below:

Table 3. Characteristics of the fitting tools for phase-type distributions.

Software Tool EMpht [11] jPhase [13] HyperStar [18] PhFit [20]

Tool type C application Java library Java application Java application
Input format sample, PDF sample, moments sample sample, CDF
Fitting method EM EM, MM cluster-based nonlinear optimization
PH distributions any any hyper-Erlang ACPH-hyper mixture
Visual interface no yes yes yes

It is difficult to declare a winner when it comes to pick the best tool for obtaining phase-
type approximations. Each of the tools has its own unique advantages and weaknesses.
EMpht is very easy to use and offers many options that are valuable for advanced modeling,
but it lacks a proper visual interface. jPhase is remarkably comprehensive (it implements
six different fitting techniques), yet it does not support user-defined constraints over the
structure of the resulting PH representations. HyperStar provides a delicate balance be-
tween accessibility and the degree of user control over the fitting procedure; however, its
focus on hyper-Erlang distributions is somewhat restrictive and can lead to large represen-
tations. Finally, PhFit may not be as complex as its competitors, but its segmentation-based
mechanism is especially suitable for handling ill-behaved, heavy-tailed distributions.

Mathematics 2023, 11, 302

12 of 17

5. An Example of Analyzing a Non-Markovian Approximation

An example is presented to illustrate our approach of approximating and analyzing a
non-Markovian system by means of process calculus PHASE and model checker PRISM.

We consider the non-Markovian systems presented in Figure 1. Using our process
calculus PHASE, we can put these two systems together by synchronizing them using
their common action a. We denote by P1, the PHASE process corresponding to the non-
Markovian system located on the left-hand side of Figure 1 in state n (n could be either 1, 2
or 3); similarly, by P2; and P2, are denoted the right-hand side non-Markovian system in
state 1 and 2, respectively. Thus, by approximating the distributions of the five transitions
with some phase-type distributions denoted by PH(A,,), the new non-Markovian system
obtained by synchronizing the initial systems of Figure 1 can be described in PHASE by a
process Sys = P1y {g} P2,, with

Pl = (d,PH(A1)).P1y
Pl = (c,PH(A;)).P13+ (a, PH(A3)).P13
P2; = (a,PH(A4)).P2, + (b, PH(A5)).P2;,
where PH(A;) ~ Norm(4,1), PH(A;) ~ Exp(4), PH(A3) ~ Lnorm(0,0.5), PH(As) =~
(1.5

Unif(1.5,2.5), and PH(As) ~ Weibull(1.5,1).

As discussed in Section 4, there exist various software tools able to generate the
involved distributions PH(A;) ... PH(As). Based on the tools review presented in the
previous section, our option is for EMpht [12]. This option is motivated by the fact that
EMpht allows to have structural constraints over the PH representations (namely, to have
only one initial state) and because it provides the fitting algorithm for the distributions
appearing in our example. Reasonably large PH representations are used in order to get
accurate approximations: 1 phase (PH(A3)), 10 phases (PH(A3) and PH(As)), 15 phases
(PH(A1)), and 20 phases (PH(A4)). Only for PH(A;), since it models an exponential
distribution, we simply build the matrix A, by hand instead of relying on EMpht. The match
produced by EMpht between these PH distributions and the initial distributions is good. It
is worth noting the special case of uniform distribution, approximated by a (normal-like)
Erlang distribution.

We have now all the necessary ingredients to implement our PHASE process Sys in
PRISM. Essentially, the PHASE process is translated into a PRISM one by following the
steps previously presented.

Since the model Sys is expressed in a form compatible with PRISM (as required by
Step 1), we can move to Step 2. Thus, we define the functions f, g1, g2 and h in Table 4.

Table 4. The definition for functions f, g1, g2 and h.

Function f $1 0

Argument P1 P2 P1y P1, P13 P2, P2,

Value P1 P2 1 2 3 1 2

Function h

Argument (d,PH(A7)) (¢, PH(A2)) (a,PH(A3)) (a,PH(Ay)) (b, PH(A5))
Value trl tr2 tr3 trd tr5

Based on these functions, we present the modules corresponding to P1 and P2:

module P1

P1 : [1..3] init 1;

[d] (P1=1)&(trl_won=true) -> 1 : (P1’=2);
[c] (P1=2)&(tr2_won=true) -> 1 : (P1’=3);
[a] (P1=2)&(tr3_won=true) -> 1 : (P1’=3);
endmodule

Mathematics 2023, 11, 302

13 of 17

module P2

P2 : [1..2] init 1;

[a] (P2=1)&(tr4_won=true) -> 1 : (P2’=2);
[b] (P2=1)&(tr5_won=true) -> 1 : (P2°=2);
endmodule .

We proceed to Step 3 and create a separate module for each phase-type transition in P1
and P2, together with the global variables and formulae associated with each module:

global trl : [0..15] init 1;
global tr2 : [0..1] init 1;
global tr3 : [0..10] init 1;
global tr4 : [0..20] init 1;
global tr5 : [0..10] init 1;

formula P1_1_race_on = (trl_won=false);
formula P1_2_race_on = (tr2_won=false)&(tr3_won=false);
formula P2_1_race_on = (tr4_won=false)&(tr5_won=false);

module tri
trl_won : bool init false;

[1 (P1=1)&(tr1=1)&P1_1_race_on -> ...;
[1 (P1=1)&(tr1=15)&P1_1_race_on -> ...;

[d] (P1=1)&(trl_won=true) -> 1 : (trl_won’=false);
endmodule

module trb

tr5_won : bool init false;

[1 (P2=1)&(tr5=1)&P2_1_race_on -> ...;

[1 (P2=1)&(tr5=10)&P2_1_race_on -> ...;

[b] (P2=1)&(tr5_won=true) -> 1 : (tr5_won’=false);
endmodule .

Having the modules that implement the structure and the transitions of P1 and P2, we
go now to Step 4. We begin by building the module inst_sync, which is essential in forcing
the immediacy of actions:

module inst_sync

[a] true -> 10000 : true;
[b] true -> 10000 : true;
[c] true -> 10000 : true;
[d] true -> 10000 : true;
endmodule .

Combining all the modules defined so far, we get the following PRISM expression
for Sys:

system
(L Il CGerdl I tr2 [1] tr3)) [[all (P2 || (tr4 ||l tr5))) || inst_sync
endsystem .

Mathematics 2023, 11, 302

14 of 17

The keyword ctmc is inserted at the beginning of the PRISM model, and so the PRISM
implementation of the PHASE description of Sys is ready to be executed in PRISM.

In the following paragraphs, we denote by Sysys the initial non-Markovian system
presented in Figure 1. To analyze the behavior of the PRISM implementation of Sys, and see
how this behavior matches that of Sysyp1, we compare the results produced by PRISM for
Sys with those of a simulation for Sysyy obtained by using an implementation of Sysy
in R. The simulation is based on the generation of 1 million traces for Sysys, recording for
each trace the moments at which the events took place.

Figure 2 presents the distribution of the time (the unit of time is arbitrary) elapsed
until the systems terminate. Regarding Sys, this means the time taken by processes P1
and P2 to reach their final states (when no deadlock appears as a consequence of a failed
synchronization over a). We can conclude that the distributions for Sysyy and Sys match
well, being close each other (without being identical).

Regarding the differences between the distributions for Sysyp and Sys, our opinion
is that they are caused by a deficient approximation of the duration for transition tr4
rather than some deficiencies in translating the PHASE process into PRISM. Regarding
the deadlocks caused by the synchronization over a of P1 and P2 (namely the situations
when tr4 became enabled and {3 did not, or vice-versa), the percentage of these deadlocks
is given by a value of 0.105986 for Sysyp and a value of 0.118744 for Sys. Moreover,
the probability of successful synchronization over a is calculated; it was indicated a value
of 0.003007 for Sysypm and a value of 0.003618 for Sys. The accuracy of such an analysis
differs in general between a simple approximation (involving only PRISM) and a more
elaborate one (involving PHASE and PRISM).

Non-Markovian System versus PRISM Approximation
0.45 T T T T T T T T
Non-Markovian System
04} + PRISM Approximation

0.35F

0.25F

o
N
T

Probability

0.15F

0.1

0.05r

Time

Figure 2. The matching of the distributions of Sysya and Sys.

Considering all these aspects, the performance measures for Sysyy and Sys demon-
strate the accuracy and precision of our approximation for non-Markovian systems by
using a stochastic process calculus employing phase-type distributions and its faithful
implementation in the probabilistic model checker PRISM.

In terms of system modeling, the results support the validity of the translation of a
PHASE model to a PRISM model, with the goal of using advanced software tools for
analyzing non-Markovian systems in a satisfactory way.

Mathematics 2023, 11, 302

15 of 17

6. Conclusions

Stochastic approaches are widespread and popular in science these days; they develop
various methods to describe the behavior and evolution of complex systems in many fields
of engineering and science. In particular, in electromagnetics, viscoelasticity, fluid me-
chanics, electrochemistry, biological population models, optics and signal processing [21].
Most of these applications involve non-Markovian systems. For instance, fractional Brown-
ian motion is a non-Markovian process generalizing the standard Brownian motion [22];
functionals of such a process are important in practical applications of non-equilibrium
dynamics, and plays an important role in stochastic dynamical systems exhibiting a long
range dependence between states of the system. Stochastic processes can be used to model
the behavior of non-Markovian systems from a pure statistical point of view (in statistical
physics, for instance). Stochastic approaches enhanced already the existing models to inter-
pret better some physical phenomena [23]. For instance, spread of an infectious disease
is highly connected with non-Markovian dynamics; the non-Markovian systems play an
important role in the complex dynamics of the infectious diseases. The simulations and
analysis of the epidemiological models related to the diseases transmission dynamics are
important to control the transmission rate in order to either eradicate them or to increase
the treatment rate.

Additionally, the stochastic approach can be used for the direct computation of quan-
titative observables in models of the dynamics for complex molecular systems used for
the prediction of thermodynamic and kinetic properties of experimental interest [24]. Re-
garding protein-folding kinetics, non-Markovian models not only simulate the molecular
dynamics accurately but also emphasize the anomalies in accelerated protein kinetics [25].

The non-Markovian quantum dynamics of open systems reveal quantum properties
related to quantum coherence, correlations and entanglement [26]. Quantum correlations,
quantum coherences and other non-Markovian quantum processes are important for im-
proving several protocols within communication, teleportation, cryptography, metrology,
and so providing the future progress in quantum technology. The open quantum systems
dynamics reflect features of the environment which allows a new perspective for appli-
cations. A general approach to the construction of non-Markovian quantum theory is
proposed in [27], and a class of solvable models of non-Markovian quantum dynamics is
suggested (these models describe open quantum systems with general form of nonlocality
in time).

Currently, analyzing the behaviors of non-Markovian systems represents a real chal-
lenge; a possible impediment is related to the almost complete lack of software tools.
The approach presented in this article is to use a process calculus involving phase-type
distributions, followed by a translation of this process calculus into a probabilistic model
checker offering automated simulations and verification of several properties. The ap-
proach is based on the fact that phase-type distributions are appropriate for approximating
(to an arbitrary degree of accuracy) the transition durations of non-Markovian systems [4].
There already exist some Markovian process calculi using phase-type distributions for
transition durations (e.g., [7,28]); however, they face the lack of tool support. Few of these
calculi (for instance, [7]) are compatible with only some subclasses of non-Markovian
systems. Others (see [28]) do not use some patterns of interaction between processes (for
instance, synchronizing over used-defined sets of shared actions).

Argued as a reasonable solution, we come up with a stochastic process calculus for
describing easily non-Markovian systems by means of phase-type distributions, and then
translating this process calculus into an existing model checker that allow us to analyze the
translated system by using a rather complex and freely available software tool.

Stochastic process calculi have numerous features making them suitable for modeling
complex systems. Their syntax is easy to use, and the number of operators is small.
The intuitive nature of the operators facilitates the understanding of their semantics; it is
not difficult to be translated into a visual graphlike representation in which the vertices are
the states of the system, while the directed edges between the vertices are the transitions

Mathematics 2023, 11, 302

16 of 17

References

between states. Moreover, since the process calculi were initially created for examining
the behaviour of concurrent systems, they are compositional by design. More specifically,
the parallel operator offers the user a straightforward manner of expressing the dynamics
of a system in terms of both its components and the interactions that take place between
them; this greatly reduces the complexity and duration of the modeling activity. Finally,
they are equally effective in capturing complex behaviours, thus eliminating any need for
employing different approaches (i.e., having one approach for the human element, another
for the computational system, and yet another for the interplay between the previous
two). Additionally, stochastic process calculi come equipped with a variety of powerful
(quantitative) logics for investigating the temporal and probabilistic properties of model
behaviour. There exist some complex software tools (freely available) which implement
these logics, making the verification of quantitative properties feasible even for large models
(i-e., having up to 10'2 states and transitions).

Based on our achievements presented in [29,30], this article offers a general method of
analyzing non-Markovian systems by using a stochastic process calculus employing phase-
type distributions and a probabilistic model checker as a software tool. The whole approach
is rather practical, intended to solve a challenging problem. It is not a theoretical one as
those developed in [8,28], but rather a practical one proposing a way to easily analyze
non-Markovian systems by using an advanced software tool (model checker PRISM). The
choice of PRISM for translating the PHASE processes is based on its expressive power and
the fact that PRISM can implement properly the PHASE calculus; moreover, PRISM is one
of the most powerful and well-supported model checkers freely available. With respect
to performance measures, PRISM allows the specification and verification of steady-state
measures (i.e., the probability that the system is in state S in the long run), transient
measures (i.e., the probability that the system is in state S at time t), and passage-time
measures (i.e., the probability that the system reaches state S before time t), by using an
extended version of Continuous Stochastic Logic (CSL) [31]. Moreover, PRISM includes
features such as statistical model checking (i.e., a discrete event simulation in which a
number of model executions are generated to perform an approximate verification of some
CSL formulas) and interactive simulation (i.e., a user-guided simulation).

As an open problem related to our work, it would be useful to derive analytically the
error bounds for performance measures computed over Markovian (i.e., phase-type and
exponential) approximations of non-Markovian systems, as is done in statistical model
checking (e.g., [32]). Such a theoretical contribution would be helpful in applying an
incremental modeling approach, allowing the user to start with a basic PHASE model and
then gradually refine the model (mainly the phase-type representations by increasing the
number of phases in each representation), until the modeling user is finally satisfied with
the error bounds for each performance measure of interest.

Funding: This research received no external funding.

Acknowledgments: Many thanks to Armand Rotaru for his notable contributions during our past
collaboration.

1. Milner, R. Communicating and Mobile Systems: The Pi-Calculus; Cambridge University Press: Cambridge, UK, 1999.
2. Norris, J.R. Markov Chains; Cambridge University Press: Cambridge, UK, 1998.
3. Cox, D.R. A use of complex probabilities in the theory of stochastic processes. Math. Proc. Camb. Philos. Soc. 2008, 51 313-319.

[CrossRef]

4. Nelson, R. Probability, Stochastic Processes, and Queueing Theory; Springer: New York, NY, USA, 1995.
5. Kwiatkowska, M.; Norman, G.; Parker, D. PRISM 4.0: Verification of probabilistic real-time systems. Lect. Notes Comput. Sci. 2011,

6806, 585-591.

6. Hillston, J. A Compositional Approach to Performance Modelling; Cambridge University Press: Cambridge, UK, 1996.
7. El-Rayes, A.; Kwiatkowska, M.; Norman, G. Solving infinite stochastic process algebra models through matrix-geometric methods.
In Proceedings of the PAPM’99, Zaragoza, Spain, 6—-10 September 1999; Prensas Universitarias de Zaragoza: Zaragoza, Spain,

1999; pp. 41-62.

http://doi.org/10.1017/S0305004100030231

Mathematics 2023, 11, 302 17 of 17

10.
11.

12.
13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Hermanns, H. Interactive Markov Chains—The Quest for Quantified Quality; Springer: Berlin, Germany, 2002.

Neuts, M.E. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach; Dover Publications: Mineola, NY, USA, 1995.
Bernardo, M.; Gorrieri, R. Extended Markovian process algebra. Lect. Notes Comput. Sci. 1996, 1119, 315-330.

Olsson, M. The EMpht-Programme. Technical Report. Chalmers University of Technology. 1998. Available online: http:
//home.imf.au.dk/asmus/dl/EMusersguide.ps (accessed on 16 November 2022).

Asmussen, S.; Nerman, O.; Olsson, M. Fitting phase-type distributions via the EM algorithm. Scand. |. Stat. 1996, 23, 419-441.
Riafio, G.; Pérez,].F. jPhase: An object-oriented tool for modeling phase-type distributions. In Proceedings of SMCTools 2006,
Pisa, Italy, 10 October 2006; ACM: New York, NY, USA, 2006; Article Number 5.

Khayari, R.; Sadre, R.; Haverkort, B. Fitting world-wide web request traces with the EM-algorithm. Perform. Eval. 2003, 52,
175-191. [CrossRef]

Thiimmler, A.; Buchholz, P; Telek, M. A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Dependable
Secur. Comput. 2006, 3, 245-258. [CrossRef]

Telek, M.; Heindl, A. Matching moments for acyclic discrete and continuous phase-type distributions of second order. Int. J.
Simul. 2002, 3,47-57.

Bobbio, A.; Horvath A.; Telek M. Matching three moments with minimal acyclic phase type distributions. Stoch. Model. 2005, 21,
303-326. [CrossRef]

Reinecke, P; Krauss, T.; Wolter, K. Phase-type fitting using HyperStar. Lect. Notes Comput. Sci. 2013, 8168, 164-175.

Reinecke, P; Krauss, T.; Wolter, K. Cluster-based fitting of phase-type distributions to empirical data. Comput. Math. Appl. 2012,
64, 3840-3851. [CrossRef]

Horvath, A.; Telek, M. PhFit: A general phase-type fitting tool. Lect. Notes Comput. Sci. 2002, 2324, 82-91.

Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York,
NY, USA, 2011.

Mandelbrot, B.B.; Van Ness,].W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422-437.
[CrossRef]

Ruiz-Castro, J.E.; Acal, C.; Aguilera, A.M.; Roldén, J.B. A complex model via phase-type distributions to study random telegraph
noise in resistive memories. Mathematics 2021, 9, 390. [CrossRef]

Vroylandt, H.; Goudenege, L.; Monmarche, P.; Pietrucci, F.; Rotenberg, B. Likelihood-based non-Markovian models from
molecular dynamics. Proc. Natl. Acad. Sci. USA 2022, 119, 13. [CrossRef]

Ayaz, C.; Tepper, L.; Brunig, F.; Kappler, J.; Daldrop,].O.; Netz, R. Non-Markovian modeling of protein folding. Proc. Natl. Acad.
Sci. USA 2021, 118, 31. [CrossRef]

Burgarth, D.; Facchi, P; Ligabo, M.; Lonigro, D. Hidden non-Markovianity in open quantum systems. Phys. Rev. A 2021, 103,
012203. [CrossRef]

Tarasov, V.E. General Non-Markovian Quantum Dynamics. Entropy 2021, 23, 1006. [CrossRef]

Wolf, V. Equivalences on Phase Type Processes. Ph.D. Thesis, University of Mannheim, Mannheim, Germany, 2008.

Ciobanu, G.; Rotaru, A. PHASE: A stochastic formalism for phase-type distributions. Lect. Notes Comput. Sci. 2014, 8829, 91-106.
Ciobanu, G.; Rotaru, A. Phase-type approximations for non-Markovian systems: A case study. Lect. Notes Comput. Sci. 2014,
8938, 323-334.

Baier, C.; Katoen, J.-P.; Hermanns, H. Approximate symbolic model checking of continuous-time Markov chains. Lect. Notes
Comput. Sci. 1999, 1664, 146-161.

Younes, H.; Simmons, R. Probabilistic verification of discrete event systems using acceptance sampling. Lect. Notes Comput. Sci.
2002, 2404, 223-235.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://home.imf.au.dk/asmus/dl/EMusersguide.ps
http://home.imf.au.dk/asmus/dl/EMusersguide.ps
http://dx.doi.org/10.1016/S0166-5316(02)00179-7
http://dx.doi.org/10.1109/TDSC.2006.27
http://dx.doi.org/10.1081/STM-200056210
http://dx.doi.org/10.1016/j.camwa.2012.03.016
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.3390/math9040390
http://dx.doi.org/10.1073/pnas.2117586119
http://dx.doi.org/10.1073/pnas.2023856118
http://dx.doi.org/10.1103/PhysRevA.103.012203
http://dx.doi.org/10.3390/e23081006

	Introduction
	Non-Markovian Models and Phase-Type Distributions
	A Stochastic Process Calculus Using Phase-Type Distributions
	Step 1: Expressing PHASE Processes in a Form Closer to PRISM
	Step 2: Generating the States and Transitions in PRISM
	Step 3: Implementing the Choice and Sequential Operators
	Step 4: Implementing the Parallel Operator

	Software Tools for Phase-Type Distributions
	An Example of Analyzing a Non-Markovian Approximation
	Conclusions
	References

