
Citation: Mageshwaran, K.; Alessa,

N.; Gopinath, S.; Loganathan, K.

Topological Indices of Graphs from

Vector Spaces. Mathematics 2023, 11,

295. https://doi.org/10.3390/

math11020295

Academic Editor: Manuel Sanchis

Received: 24 November 2022

Revised: 27 December 2022

Accepted: 31 December 2022

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Topological Indices of Graphs from Vector Spaces
Krishnamoorthy Mageshwaran 1 , Nazeek Alessa 2,* , Singaravelu Gopinath 3

and Karuppusamy Loganathan 4,*

1 Department of Mathematics, Rajalakshmi Engineering College, Chennai 602105, Tamil Nadu, India
2 Department of Mathematical Sciences, College of Sciences, Princess Nourah Bint Abdulrahman University,

P.O. Box 84428, Riyadh 11671, Saudi Arabia
3 Department of Mathematics, Sri Sairam Institute of Technology, Chennai 60004, Tamil Nadu, India
4 Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
* Correspondence: nazekaa@yahoo.com (N.A.); loganathankaruppusamy304@gmail.com (K.L.)

Abstract: Topological indices are numbers that are applied to a graph and can be used to describe
specific graph properties through algebraic structures. Algebraic graph theory is a helpful tool in
a range of chemistry domains. Because it helps explain how the different symmetries of molecules
and crystals affect their structure and dynamics, it is a powerful theoretical approach for forecasting
both the common and uncommon characteristics of molecules. A topological index converts the
chemical structure into a number and contributes a lot in chemical graph theory. In this article, we
compute the Wiener index, Zagreb indexes, Wiener polynomial, Hyper-Wiener index, ABC index
and eccentricity-based topological index of a nonzero component union graph from vector space.
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1. Introduction

In this paper, < = (V, E) is a simple and connected graph with a vertex set V and an
edge set E. The order and size of < is established as the amount of elements in V and the
number of elements in E correspondingly. If every different pair of vertices is adjacent in
<, then the graph < is complete, and it is described by Kn. The count of the edges from
E that are incident with the vertex ` ∈ V is the degree of `, and it is represented by d(`).
The maximum (minimum) degree of < is defined as ∆ = max{d(`)}(δ = min{d(`)}) for
all ` ∈ V. The distance between ` and ℘ in V is the distance of the shortest path between
them; it is indicated by d(`,℘). The eccentricity (ecc(`)) of ` is the largest distance between
a vertex ` and each of the vertices of <. The total length from any vertex ` of < is calculated
as D(`) = ∑℘∈V(<) d(`,℘). The maximum distance among all the vertices in < is the
diameter of <, symbolized by diam(<). The amount of unordered vertex pairs in < that
are accurately t distances apart is specified as d(<, t). We consult [1] for any graph theory
keywords that are undefined.

A number, polynomial or matrix can be produced corresponding to a given graph in
several ways. A topological graph index is an integer associated with a graph that fully uses
the graph’s topology and it is invariant under graph isomorphism. In the present years,
plenty of attention has been given to studies about the special properties of a topological
index; one can refer to [2–12].

Das [13–15] introduced the new graphs on vector spaces. From the above initializa-
tion, some more authors studied this in [14,16]. In particular, Das recently defined and
investigated two vector space graphs, namely the nonzero component and the nonzero
component union graphs [13,14].
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Some authors studied the basic graph theoretical properties of nonzero component union
graphs. Further, [16,17] proved the results related to the embedding of the graph defined
in [13,14].

Across this article, Λ is a ϕ dimension vector space (dim(Λ) = ϕ) over the field F of or-
der b (O(F) = b). Let B = {ϑ1, ϑ2, . . . , ϑϕ} as a basis of Λ. Any vector ` ∈ Λ is represented
as ` = a1ϑ1 + a2ϑ2 + . . . + aϕϑϕ, where ai ∈ F (simply denoted ` = (a1, a2, . . . , aϕ)). The
skeleton of any vector in Λ∗ = Λ \ {0} based on B is described by SB(`) = {ϑi : ai 6= 0, 1 ≤
i ≤ ϕ}. Moreover, a vector ` with skeleton  means |SB(`)| = . The nonzero component
union graph of Λ based on the basis B is defined as a simple graph with V = Λ∗ and
different nonzero vectors ` and ℘ in V are adjacent if and only if SB(`) ∪ SB(℘) = B. This
graph is denoted by Γ(ΛB).

The graphs associated to algebra are also a significant contributor in several disciplines,
including chemistry, engineering, medicine and business.

2. Fundamentals

The following definitions and theorems were used to determine the topological indices
for the graphs under discussion. We put up a few current findings that will be discussed in
this section.

Theorem 1 ([13]). diam(Γ(ΛB)) = 2 and Γ(ΛB) are connected.

Theorem 2 ([13]). Let O(F) = b and dim(Λ) = ϕ. Then, Γ(ΛB) is complete if and only if Λ has
either (ϕ = 1) or (ϕ = 2 and b = 2).

Theorem 3 ([13]). Let Γ(ΛB) be weakly perfect because its chromatic and clique number are equal
to ϕ + (b − 1)ϕ.

Theorem 4 ([13]). Let Γ(ΛB) be the nonzero component union graph of Λ based on
B = {ϑ1, ϑ2, . . . , ϑϕ}. Let ` = c1ϑi1 + c2ϑi2 + . . . + cϑi

be a vertex in Γ(ΛB) with ci 6= 0

where 1 ≤ i ≤ . Then, deg(`) =

{
(b − 1)ϕ−b  if 1 ≤  < ϕ;
bϕ − 2 if  = ϕ.

Theorem 5 ([13]). Let O(F) = b and dim(Λ) = ϕ. Then, order and size of Γ(ΛB) is bϕ − 1 and
(b − 1)ϕ[(b + 1)ϕ − 3]

2
, respectively.

Theorem 6 ([13]). If the minimum and maximum degree of Γ(ΛB) is δ = b(b − 1)ϕ−1 and
∆ = bϕ − 2.

Theorem 7 ([13]). I = {ϑ ∈ Γ(ΛB) : S(ϑB) ⊆ {ϑ1, ϑ2, . . . , ϑϕ−1}} ∈ Γ(ΛB) be a maximal
independent set. Moreover, if O(F) = b, |I| = bϕ−1 − 1.

Let us finish this section by listing some topological indexes of any graph < that are
also going to be considered in the current manuscript. One can refer to [2,9–12,18]

• The Wiener index

W(<) = 1
2 ∑

`,℘∈V(<)
d(`,℘).

• The first Zagreb index

M1(<) = ∑
`∈V(<)

(
d(`)

)2.
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• The second Zagreb index
M2(<) = ∑

`℘∈E(<)
d(`)d(℘).

• The Wiener polynomial

W(<; x) = ∑
`,℘∈V(<)

xd(`,℘) =
diam(<)

∑
=1

d(<, )x.

The amount of unordered vertex pairs in < that are accurately  distances apart is
specified as d(<, ).

• The Hyper-Wiener index

WW(<) = 1
2

W(<) + 1
2 ∑
{`,℘}⊆V(<)

d(`,℘)2 =
1
2

diam(<)

∑
=1

( + 1)d(<, ).

• The eccentricity index
ξ(<) = ∑

`∈V(<)
d(`)ecc(`).

• The total eccentricity index
ζ(<) = ∑

`∈V(<)
ecc(`).

• The new version (eccentricity based) of Zagreb index

M∗1(<) = ∑
`℘∈E(<)

(ecc(`) + ecc(℘)).

M∗∗1 (<) = ∑
`∈V(<)

(ecc(`))2

M∗2(<) = ∑
`℘∈E(<)

ecc(`)ecc(℘).

• Average eccentricity index

aveg(<) = 1
n ∑

`∈V(<)
ecc(`).

Here, n is total count of vertices in <.
• Eccentric distance sum index

ξDS(<) = ∑
`∈V(<)

ecc(`)D(`|<).

where D(`|<) = ∑℘∈V(<) d(`,℘).

• The ABC index

ABC(Γ(ΛB)) = ∑
`℘∈E(<)

√
d(`) + d(℘)− 2

d(`)d(℘)
.

3. Properties of Nonzero Component Union Graph of Vector Space

Let Λ be a vector space with O(F) = b and dim(Λ) = ϕ ≥ 1. By Theorem 2, Γ(ΛB)
is complete if and only if ϕ = 1 or (ϕ = 2 and b = 2). In this specific case, it is simple
to identify the topological index. For the purpose of determining the aforementioned
topological index, we only take into account the non-complete nonzero component union
graphs of vector spaces.
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Remark 1. Let Λ be a vector space with O(F) = b, dim(Λ) = ϕ (ϕ ≥ 1) and ` be an arbitrary
vertex with skeleton . The distance between ` and ℘ ∈ V(Γ(ΛB)) is 1 or 2.

The count of vertices in distance 1 from ` is the degree of the vertex `. By Theorem 4, the count
of vertices at a distance of 2 from ` is

|V(Γ(ΛB))| − d(`)− 1 =

{
bϕ − 2− (b − 1)ϕ−b , if 1 ≤  ≤ ϕ− 1
0, if ϕ = .

Remark 2. Let Λ be a vector space with O(F) = b, dim(Λ) = ϕ (ϕ ≥ 1) and ` be an arbi-
trary vertex with skeleton . If the vertex ` is adjacent to any other vertex ℘ ∈ Γ(ΛB), then
|SB(℘)| ≥ ϕ− . Moreover, ` has Ct+−ϕ

 (b − 1)t neighborhood vertices with skeleton t where
ϕ−  ≤ t ≤ ϕ.

Remark 3. We know that diameter of Γ(ΛB) is 2. Then,

d(Γ(ΛB), 1) = (b − 1)ϕ(bϕ − 2) +
1
2

( ϕ−1

∑
=1

C
ϕ(b − 1)b (b − 1)ϕ−

)

d(Γ(ΛB), 2) =
1
2

ϕ−1

∑
=1

C
ϕ(b − 1)

(
bϕ − 2− (b − 1)ϕ−b 

)
Theorem 8. If Γ(ΛB) is not complete, then the eccentricity of the vertex ` ∈ Γ(ΛB) with skeleton
 is

ecc(`) =

{
2, if 1 ≤  ≤ ϕ− 1
1, if ϕ = .

Proof. Let ` be an arbitrary vector with skeleton . If  = ϕ, then by Theorem 4 ecc(`) = 1.
If 1 ≤  ≤ ϕ− 1, then by Theorem 4, ` has non-adjacent vertices in Γ(ΛB). Because by
Theorem 1, ecc(`) = 2.

Theorem 9. If Γ(ΛB) is not complete, then distance number of the vertex ` with skeleton  is

D(`|<) =
{

2(bϕ − 2)− (b − 1)ϕ−b , if 1 ≤  ≤ ϕ− 1
bϕ − 2, if ϕ = .

Proof. Let ` be an arbitrary vector with skeleton .
If 1 ≤  ≤ ϕ− 1, because by Theorem 4 d(`) is (b − 1)ϕ−b  and by Theorem 1 gives

D(`|<) = (b − 1)ϕ−b  + 2(bϕ − 2− (b − 1)ϕ−b )

= (b − 1)ϕ−b  + 2(bϕ − 2)− 2((b − 1)ϕ−b )

D(`|<) = 2(bϕ − 2)− (b − 1)ϕ−b 

If  = ϕ, by Theorem 4

D(`|<) = bϕ − 2.

Remark 4. Let Λ be a vector space with O(F) = b, dim(Λ) = ϕ (ϕ ≥ 1). By Theorem 5

|E(Γ(ΛB))| =
(b − 1)ϕ[(b + 1)ϕ − 3]

2
. Because ([13], p. 4) collection of an element with skeleton

ϕ in Γ(ΛB) is the complete sub-graph of Γ(ΛB).

Hence, the count of edges with both end vertices are having skeleton ϕ is
(b−1)ϕ

(
(b−1)ϕ−1

)
2 .
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In addition, the count of edges with exactly one end vertex having skeleton ϕ is(
(bϕ − 2)− (b − 1)ϕ + 1

)
(b − 1)ϕ =

(
bϕ − (b − 1)ϕ − 1

)
(b − 1)ϕ

Finally, the count of edges on both ends are skeleton less than ϕ is

(b − 1)ϕ[(b + 1)ϕ − 3]
2

−
(
(bϕ − 2)− (b − 1)ϕ − 1

)
(b − 1)ϕ −

(b − 1)ϕ
(
(b − 1)ϕ − 1

)
2

= (b − 1)ϕ
( (b + 1)ϕ + (b − 1)ϕ − 2

2
− bϕ + 1

)
.

4. Topological Index of Nonzero Component Union Graph of Vector Space

In this segment, we found the Wiener index, Wiener polynomial, Hyper-Wiener index
and Zagreb index of Γ(ΛB).

Theorem 10. Let < = Γ(ΛB), then

W(Γ(ΛB)) = (bϕ − 2)
(
bϕ − (b − 1)ϕ − 2

2

)
− (b − 1)ϕ

(
(b + 1)ϕ − bϕ − 1

)
Proof. Remark 1 gives the following result.

W(Γ(ΛB)) =
1
2

[( ϕ−1

∑
=1

C
ϕ(b − 1)(b − 1)ϕ−b 

)

+2
[ ϕ−1

∑
=1

C
ϕ(b − 1)

(
bϕ − 2− (b − 1)ϕ−b 

)]
+(b − 1)ϕ(bϕ − 2)

]
W(Γ(ΛB)) = (bϕ − 2)

(
bϕ − (b − 1)ϕ − 2

2

)
− (b − 1)ϕ

(
(b + 1)ϕ − bϕ − 1

)
.

Now, consider the following Figure 1 to visualize W(Γ(ΛB)) with ϕ dimension over
the field of order b.

Figure 1. Wiener index of Γ(ΛB).
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Theorem 11. Let < = Γ(ΛB), then the first Zagreb index

M1(Γ(ΛB)) = (b − 1)ϕ
(
(b2 + b − 1)ϕ − (b − 1)ϕ − 4(bϕ − 1)

)
Proof. Let ` = c1ϑi1 + c2ϑi2 + . . . + cϑi

be a vertex in Γ(ΛB) with c1, c2, . . . , c 6= 0. Then,

by Theorem 4, the degree of the vertex ` is d(`) =

{
(b − 1)ϕ−b  if 1 ≤  ≤ ϕ;
bϕ − 2 if  = ϕ.

Therefore,

the first Zagreb index

M1(Γ(ΛB)) =
ϕ−1

∑
=1

C
ϕ(b − 1)

(
(b − 1)ϕ−b 

)2
+ (b − 1)ϕ(bϕ − 2)2

= (b − 1)2ϕ
ϕ−1

∑
=1

C
ϕ

( b2

b − 1
)
+ (b − 1)ϕ(bϕ − 2)2

= (b − 1)2ϕ
( b2

b − 1
+ 1
)ϕ −

( b2

b − 1
)ϕ − 1 + (b − 1)ϕ(bϕ − 2)2

M1(Γ(ΛB)) = (b − 1)ϕ
(
(b2 + b − 1)ϕ − (b − 1)ϕ − 4(bϕ − 1)

)
.

Now, consider the following Figure 2 to visualize M1(Γ(ΛB)) with ϕ dimension over
the field of order b.

Figure 2. First Zagreb index of Γ(ΛB).

Because by using Remark 2, we have the following.

Theorem 12. Let < = Γ(ΛB), then the second Zagreb index

M2(Γ(ΛB)) =
1
2

[ ϕ−1

∑
=1

C
ϕ(b − 1)ϕb 

( ϕ−1

∑
t=ϕ−

C|t+−ϕ|
ϕ (b − 1)ϕbt + (b − 1)ϕ(bϕ − 2)

)

+(b − 1)ϕ(bϕ − 2)
( ϕ−1

∑
=1

C
ϕ(b − 1)ϕb  +

(
(b − 1)ϕ − 1

)
(bϕ − 2)

)]
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Theorem 13. Let < = Γ(ΛB), then the Wiener polynomial

W(Γ(ΛB); x) =
1
2
(b − 1)ϕ

(
(b + 1)ϕ − 3

)
x +

1
2
(
(bϕ − 2)bϕ − (b − 1)ϕ(b + 1)ϕ

)
x2

Proof. By Remark 3, we have the following result:

W(Γ(ΛB); x) =
diam(Γ(ΛB))

∑
=1

d(Γ(ΛB), )x

= d(Γ(ΛB), 1)x + d(Γ(ΛB), 2)x2

=
x
2

[( ϕ−1

∑
=1

C
ϕ(b − 1)(b − 1)ϕ−b 

)
+ (b − 1)ϕ(bϕ − 2)

]

+
x2

2

( ϕ−1

∑
=1

C
ϕ(b − 1)

(
bϕ − 2− (b − 1)ϕ−b 

))
=

1
2

[
(b − 1)ϕ

(
(b + 1)ϕ − 3

)
x +

(
(bϕ − 2)bϕ − (b − 1)ϕ(b + 1)ϕ

)
x2
]

Theorem 14. Let < = Γ(ΛB), then the Hyper-Wiener index

WW(Γ(ΛB) = 3(bϕ − 2)
(
bϕ − 2(b − 1)ϕ

3
− 1
)
− 2(b − 1)ϕ((b + 1)ϕ − bϕ − 1)

Proof. By Remark 3, we have the following result:

WW(Γ(ΛB) =
1
2

diam(Γ(ΛB))

∑
=1

( + 1)d(Γ(ΛB), )

=
1
2
(
2d(Γ(ΛB), 1) + 6d(Γ(ΛB), 2)

)
=

1
2

[
2
( ϕ−1

∑
=1

C
ϕ(b − 1)(b − 1)ϕ−b 

)
+ 2(b − 1)ϕ(bϕ − 2)

+6
( ϕ−1

∑
=1

C
ϕ(b − 1)

(
(bϕ − 2)− (b − 1)ϕ−b 

))]
= 3(bϕ − 2)(bϕ − (b − 1)ϕ − 1)− 2(b − 1)ϕ((b + 1)ϕ − 1− bϕ)

+(b − 1)ϕ(bϕ − 2)

= 3(bϕ − 2)(bϕ − (b − 1)ϕ − 1 +
(b − 1)ϕ

3
)

−2(b − 1)ϕ((b + 1)ϕ − 1− bϕ).

Now, consider the following Figure 3 to visualize WW(Γ(ΛB) with ϕ dimension over
the field of order b.



Mathematics 2023, 11, 295 8 of 13

Figure 3. Hyper-Wiener index of Γ(ΛB).

5. Eccentricity Topological Indices

This section contains the vector space’s eccentricity-based topological index of the
nonzero component union graph with dim(Λ) = ϕ and O(F) = b.

Theorem 15. Let < = Γ(ΛB), then the eccentricity index.

ξ(Γ(ΛB)) = (b − 1)ϕ
[
2(b + 1)ϕ − bϕ − 4

]
Proof. By Theorem 8, we obtain the following relation:

ξ(Γ(ΛB)) = ∑
`∈V(Γ(ΛB))

d(`)ecc(`)

= 2
ϕ−1

∑
=1

(b − 1)ϕ−C
ϕb

(b − 1) + (b − 1)ϕ(bϕ − 2)

= 2(b − 1)ϕ
ϕ−1

∑
=1

C
ϕb

 + (b − 1)ϕ(bϕ − 2)

ξ(Γ(ΛB)) = (b − 1)ϕ
[
2(b + 1)ϕ − bϕ − 4

]
.

Now, consider the following Figure 4 to visualize the eccentric-connectivity index of
Γ(ΛB).
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Figure 4. Eccentricity index of Γ(ΛB).

Theorem 16. Let < = Γ(ΛB), then the total eccentricity index.

ζ(Γ(ΛB)) = 2(bϕ − 1)− (b − 1)ϕ

Proof. By Theorem 8, we obtain the following relation:

ζ(Γ(ΛB)) = ∑
`∈V(Γ(ΛB))

ecc(`)

= 2
[
(bϕ − 1)− (b − 1)ϕ

]
+ (b − 1)ϕ

ζ(Γ(ΛB)) = 2(bϕ − 1)− (b − 1)ϕ.

Now, consider the following Figure 5 to visualize the total eccentricity index of Γ(ΛB).

Figure 5. Total eccentricity index of Γ(ΛB).
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Theorem 17. If dim(Λ) = ϕ and O(F) = b, then

M∗1(Γ(ΛB)) = (b − 1)ϕ
(

2(b + 1)ϕ − (b − 1)ϕ − bϕ − 2
)

Proof. By Theorem 8 and Remark 4, we obtain

M∗1(Γ(ΛB)) = (b − 1)ϕ
(
(b − 1)ϕ − 1

)
+ 3
((

(bϕ − 2)− (b − 1)ϕ + 1
)
(b − 1)ϕ

)
+4
(
(b − 1)ϕ

( (b + 1)ϕ + (b − 1)ϕ − 2
2

− bϕ + 1
))

M∗1(Γ(ΛB)) = (b − 1)ϕ
(

2(b + 1)ϕ − (b − 1)ϕ − bϕ − 2
)

.

Theorem 18. If dim(Λ) = ϕ and O(F) = b, then

M∗∗1 (Γ(ΛB)) = 4bϕ − 3(b − 1)ϕ − 4

Proof. By Theorem 8, we obtain the number of vertices having eccentricity 1 is (b − 1)ϕ

and the number of vertices having eccentricity 2 is bϕ − (b − 1)ϕ − 1.

M∗∗1 (Γ(ΛB)) = 4
(
bϕ − (b − 1)ϕ − 1

)
+ (b − 1)ϕ

M∗∗1 (Γ(ΛB)) = 4bϕ − 3(b − 1)ϕ − 4.

Theorem 19. Let < = Γ(ΛB), then

M∗2(Γ(ΛB)) = (b − 1)ϕ
(

2(b + 1)ϕ − 2bϕ − 1
)

Proof. By Theorem 8 and Remark 4, we obtain

M∗2(Γ(ΛB)) = (b − 1)ϕ
(
(b − 1)ϕ − 1

)
+ 2
((

(bϕ − 2)− (b − 1)ϕ + 1
)
(b − 1)ϕ

)
+4
(
(b − 1)ϕ

( (b + 1)ϕ + (b − 1)ϕ − 2
2

− bϕ + 1
))

M∗2(Γ(ΛB)) = (b − 1)ϕ
(

2(b + 1)ϕ − 2bϕ − 1
)

Theorem 20. Let < = Γ(ΛB), then average eccentricity index

aveg(Γ(ΛB)) = 2− (b − 1)ϕ

bϕ − 1

Proof. By Theorem 8, we obtain the number of vertices having eccentricity 1 is (b − 1)ϕ

and the number of vertices having eccentricity 2 is bϕ − (b − 1)ϕ − 1.

aveg(Γ(ΛB)) =
1

bϕ − 1 ∑
`∈V(Γ(ΛB))

ecc(`)

=
2
(
(bϕ − 1)− (b − 1)ϕ

)
+ (b − 1)ϕ

bϕ − 1

aveg(Γ(ΛB)) = 2− (b − 1)ϕ

bϕ − 1
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By Theorems 8 and 9, we obtain

Theorem 21. Let < = Γ(ΛB), then eccentric distance sum index

ξDS(Γ(ΛB)) = 4(bϕ − 2)
(
bϕ − 3

4
− (b − 1)ϕ

)
− 2(b − 1)ϕ

(
(b + 1)ϕ − 1− bϕ

)
Proof.

ξDS(Γ(ΛB)) = ∑
`∈V(Γ(ΛB))

ecc(`)D(℘|V(Γ(ΛB)))

=
ϕ−1

∑
=1

2C
ϕ(b − 1)

(
2(bϕ − 2)− (b − 1)ϕ−b 

)
+ bϕ − 2

= 4(bϕ − 2)
( ϕ−1

∑
=1

2C
ϕ(b − 1)

)
−
(
2

ϕ−1

∑
=1

2C
ϕ(b − 1)ϕb 

)
+ bϕ − 2

ξDS(Γ(ΛB)) = 4(bϕ − 2)
(
bϕ − 3

4
− (b − 1)ϕ

)
− 2(b − 1)ϕ

(
(b + 1)ϕ − 1− bϕ

)
.

Because by the Remark 2, we have the following result.

Theorem 22. Let < = Γ(ΛB), then ABC index

ABC(Γ(ΛB)) =
1
2

{[ ϕ−1

∑
=1

( ϕ−1

∑
t=ϕ−

C|t+−ϕ|
 (b − 1)t

√
(b − 1)ϕ−

b  + (b − 1)ϕ−t
bt − 2

(b − 1)ϕ−
b (b − 1)ϕ−t

bt

+(b − 1)ϕ

√
(b − 1)ϕ−b  + (bϕ − 2)− 2

(b − 1)ϕ−
b (bϕ − 2)

)]
+
( ϕ−1

∑
=1

(b − 1)

√
(b − 1)ϕ−

b  + (bϕ − 2)− 2
(b − 1)ϕ−

b bϕ − 2

)
+

(b − 1)ϕ((b − 1)ϕ − 1
)√2(bϕ − 2)− 2

(bϕ − 2)2

}
Example 1. Let us consider the following Figure 6 illustrating the Γ(ΛB) of the dimension ϕ = 4
over the field of order b = 2.

Now, the following Table 1 gives the information about some topological index of nonzero
component union graph of vector space.
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(1,1,1,1)

(1,1,0,0)

(0,1,0,1)

(1,0,1,0)
(0,1,1,1)

(1,0,0,1)

(1,1,1,0)

(0,0,1,1)

(1,0,1,1)

(0,1,1,0)

(1,1,0,1)

(0,0,0,1)

(0,0,1,0)

(0,1,0,0)

(1,0,0,0)

Figure 6. Γ(ΛB) with ϕ = 4 and b = 2.

Table 1. Topological index of Γ(ΛB).

b Index ϕ = 2 ϕ = 3 ϕ = 4

2 W(Γ(ΛB)) 2 27 153

WW(Γ(ΛB)) 6 78 747

ξ(Γ(ΛB)) 10 42 142

ζ(Γ(ΛB)) 5 13 29

aveg(Γ(ΛB)) 1.666 1.857 1.933

ξDS(Γ(ΛB)) 10 114 670

3 W(Γ(ΛB)) 32 312 3030
WW(Γ(ΛB)) 64 974 10,864

ξ(Γ(ΛB)) 76 776 6832

ζ(Γ(ΛB)) 12 44 144

aveg(Γ(ΛB)) 1.5 1.692 1.8

ξDS(Γ(ΛB)) 71 1249 14,735

6. Conclusions

In this paper, we found the topological indices of nonzero component union graphs
from vector spaces Λ with order n over the field F with order b, and we give the general
formula and a comparison table for finding a different topological index to the number
of graphs constructed from the vector space. Depending on the respective quantitative
data, these resulting indices are graphically contrasted. Future scholars can build on our
research of the indices for these structures to find and investigate other algebraic structures
and their features.
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