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Abstract: Traffic loads are the primary external loads on bridges during their service life. However,
an accurate analysis of the long-term effect of the operating traffic load is difficult because of the
diversity of traffic flow in terms of vehicle type and intensity. This study established a traffic load
simulation method for long-span bridges based on high authenticity traffic monitoring data, and an
improved k-means clustering algorithm and Correlated variables Sampling based on Sobol sequence
and Copula function (CSSC) sampling method. The monitoring traffic data collected through a
weigh-in-motion (WIM) system was processed to generate a multi-lane stochastic traffic flow. The
dynamic response of a prototype suspension bridge under a traffic load was analyzed. The results
show that the traffic load can be divided into clusters with identical distribution characteristics using
a clustering algorithm. Combined with CSSC sampling, the generated traffic flow can effectively
represent daily traffic and vehicle characteristics, which improves the accuracy of the assessment
of the loads long-term effect. The dynamic response of the bridge to different traffic flows varied
significantly. The maximum and minimum vertical displacement of the main girder was 0.404 m
and 0.27 m, respectively. The maximum and minimum bending stresses of the short suspender were
50.676 MPa and 28.206 MPa, respectively. The maximum equivalent bending stress and axial stress
were 16.068 MPa and 10.542 MPa, respectively, whereas the minimum values were 9.429 MPa and
8.679 MPa, respectively. These differences directly influence the short and long-term evaluation of
bridge components. For an accurate evaluation of the bridge operation performance, the traffic flow
density must be considered.

Keywords: traffic load; long-span bridge; clustering algorithm; CSSC sampling method; stochastic
traffic flow

MSC: 62H20; 62M10; 76A30

1. Introduction

With the rapid development of highway transportation, long-span bridges have been
constructed across mountains, valleys, and rivers, owing to their mechanical characteristics
and excellent spanning performance. The major external loads a bridge must support
when it is in use are wind and traffic loads [1]. Long-span bridges have large loading
areas and complex load composition, and the reciprocating action of traffic loads may
cause a vibration response. The service life of some vibration-sensitive components was
significantly reduced. The longitudinal vibration displacement of structures caused by an
external load may lead to fatigue of the expansion joints and other ancillary components.
The fluctuation in the stress of the suspender may accelerate fatigue degradation. It has
been demonstrated that the component fatigue life is closely related to the stress amplitude
and cycle numbers of structural vibrations under traffic flow [2,3]. As the intensity of the
traffic load increases, the degradation of bridge components has become a crucial factor
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affecting bridge safety [4]. Thus, an accurate simulation of traffic load is required for
long-term evaluation based on the bridge’s dynamic response.

The analysis under the design load could not accurately reflect the actual operating
condition because of the diversity of the traffic flow in terms of vehicle type and intensity.
Traffic load has an impact on the dynamic characteristics and vibration response of bridges.
The development of weigh-in-motion (WIM) technology has improved the analysis and
evaluation of bridge under traffic loads [5]. For long-span bridges, the analysis using the
traffic load, which is closer to the actual service condition, should consider the impact
of time, region, and other factors. Several studies have been conducted on traffic load
simulation methods. Crespo developed a continuous random traffic flow model for bridges,
simulated and generated the relevant traffic flow based on the statistical characteristic
of measured traffic data, and extrapolated the long-term effect from the short-term re-
sults [6]. Chen pointed out that vehicle load excitation has a spatial correlation that affects
the response spectrum obtained from spatially uncorrelated white noise excitation. The
Poisson distribution can be used to simulate the vehicle flow load [7]. Chen simplified the
random traffic load into a moving load column, and analyzed the impact of loading length
and vehicle type on the load response of long-span bridges based on cellular automata
theory [8]. Jabri considered the randomness of driver selection in the distribution of vehicle
headways, ensuring nonnegative traffic flow density, and further improved the cellular
automata-based random traffic flow simulation method [9]. After extensive development,
the bridge random traffic load was used to simulate the vehicle mass parameters, traffic
load characteristics, and driving behavior.

Traffic flow simulation methods primarily use macro and micro traffic flow simulations.
Macro traffic flow focuses on the simulation of traffic load characteristics, such as traffic
flow parameters, vehicle type, and vehicle weight, which have been proven to follow
a random distribution [10]. Micro-traffic flow focuses on microscopic driving behavior
simulations, such as lane change and acceleration. Macro traffic flow is used in bridge
dynamic analysis when evaluating the long-term load response of long-span bridges.
Wang generated random traffic flow data using the Monte Carlo method (MC) based on
the vehicle type, vehicle weight, and axial distance and used it for fatigue analysis of
bridges [11]. Zong fitted the distribution of vehicle load parameters based on WIM data
and calculated the load effect distribution characteristics of the mixed-state vehicle load
model [12]. Han adopted the Monte Carlo method, considering vehicle load parameters, to
establish a vehicle bridge coupling analysis framework under random vehicle flow [13].
Usually, a bridge in service can be evaluated by adopting measured traffic flow loading
or sampling simulation loading. The measured traffic flow data are authentic but cannot
fully reflect the statistical characteristics of long-term traffic flow. Parameter simulation
integrating the measured data can better reflect the long-term characteristics of traffic
flow [14], wherein the most important aspect of random traffic flow simulation is to
reproduce the characteristics of the actual traffic load. Existing research has established
diverse traffic load simulation methods. However, the integration effects of long-term
traffic flow are constrained because the density of traffic flow varies over the course of
days and years, and traffic flow with different intensities is typically divided according
to the specific limits in the processing of traffic data. Parameters such as the axle load
and wheelbase of vehicles have potential correlation laws because of the connecting shaft.
Because economic activities differ significantly across China [15], the load effect of high
proportion of multi-axle loaded vehicles in heavy industrial zones cannot be ignored. The
generated random traffic flow load effect may deviate from the actual situation if these
factors are neglected. A precise traffic flow simulation that considers the difference in daily
traffic intensity and parameter correlation should be developed to assess accurately the
response and degradation of bridge components.

In this study, a traffic load simulation method for long-span bridges based on high-
authenticity WIM data was proposed. The k-means clustering algorithm is improved by
introducing Critical Importance Through Intercritical Correlation (CRITIC) weight and
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sample weight and is used to process the WIM traffic data for the acquisition and simulation
of traffic flow intensity characteristics. Subsequently, the correlated variables sampling
method based on Sobol sequence and Copula theory (CSSC) was established to conduct
the sampling simulation of the parameter correlation of vehicle samples. Finally, a refined
stochastic traffic flow was used to analyze the long-span bridge response under the traffic
flow of different clusters. This study can provide a reference for the evaluation of long-span
suspension bridges under traffic loads.

2. Method

The traffic load involves the vehicle mass characteristics, vehicle flow speed, traffic vol-
ume, and other parameters, particularly for long-span bridges with long loading intervals.
Based on the requirement of evaluating long-span bridges under traffic flow load, a traffic
flow simulation method was developed in this study by fusing a clustering algorithm with
the improved k-means method. The measured traffic data were used to extract the charac-
teristic parameters that are sensitive to the load effect of long-span bridges. The clustering
algorithm is used to intelligently divide the traffic flow and assure the applicability of the
classification of complex and high-dimensional traffic flow features.

2.1. Improved k-Means Clustering Algorithm

The basic concept of the clustering algorithm is to divide the data into multiple heaps,
each of which has the same clustering center. k-means clustering is arguably the most popu-
lar clustering algorithm, and its principle is to initialize the k cluster centers. Then, the class
of samples under each cluster is summed in accordance with the computational distance
between the sample and cluster center, as the Euclidean distance shown in Equation (1).

dis(xi, µk) =

√
m

∑
t=1

(xit − µkt)
2 (1)

where xit and µkt denote the coordinates of two points in space.
For each sample i, the cluster belongs to what calculate by Equation (2).

c(i) = argmin‖ x(i) − µk ‖2 (2)

where x(i) and µk denote the coordinates of the sample point i and cluster center k.
The cluster center point is updated by the ratio of the sample features to the number

of samples, as shown in Equation (3).

µj =
∑Xi∈Cl

Xi

|Cl |
(3)

where |Cl | denotes the number of elements in cluster l, 1 < l < k, and Xi denotes the ith
element in cluster l.

The entire clustering process iterates until the distortion function converges, that
is, the sum of squares of the Euclidean distances from all samples to the center of their
clusters satisfies the requirements. The minimum value of objective function is set as
the convergence condition, that is, the minimum sum of the squared errors, as shown
in Equation (4).

SSE =
K

∑
k=1

∑
x(i)∈Ck

‖ x(i) − µk ‖
2
2 (4)

where xi is the ith sample point, and µk is the central point of kth cluster.
In multi-dimensional sample clustering, there are differences in the characteristics of

each dimension. For samples with high dimensions, there may be potential correlation
laws between certain dimensions [16,17]. Using the traffic flow sample as an example, the
traffic volume, traffic flow speed, and traffic flow density conform to classical traffic flow,



Mathematics 2023, 11, 274 4 of 19

and there is an apparent correlation between them. Discrete sample points, such as special
traffic flow conditions caused by accidents and other emergencies, also interfere with
clustering results. The traditional k-means algorithm ignores sample point characteristics
and dimensional correlation, resulting in the unsatisfactory clustering effect. Therefore, to
improve k-means algorithm, dimensional importance through CRITIC weight and sample
weight are introduced.

To eliminate the influence of the order of magnitude and dimension in the data on
clustering, the data are first standardized such that each feature parameter has the same
scale. Average normalization is used, as expressed in Equation (5) [18]:

zij =
xij −mean

(
xj
)

max
(
xj
)
−mean

(
xj
) (5)

where Zij is ith normalized value of the jth sample vector, and xij is ith sample of the
jth vector.

The CRITIC weight method determines the weight of indicators through the vari-
ability and correlation of sample indicators, and uses correlation coefficients to express
the correlation between indicators [19]. For the indicator to be evaluated, the stronger
the correlation with other indicators, the less the conflict between the indicator and
other indicators, and the more the same information is reflected, such that the weight
assigned to this indicator should be reduced. The weight of each dimension is determined
using Equation (6). 

Cj =

√
∑n

i=1(zij−zj)
2

n−1

m
∑

i=1
(1− rij)

wj =
Cj

∑m
j=1 Cj

(6)

where zij is the normalized sample, rij is the correlation coefficient between evaluation
indexes i and j, and m is the dimension of the sample.

To weaken the influence of sample discreteness on the clustering effect, relatively
small weights are assigned to discrete sample points. The specific process calculates the
distance between each sample point and the surrounding points to reflect the weight of
the sample in the entire sample set. The weight of each sample point was calculated
using Equation (7).

pj =
n

∑
i=1

exp(−δ‖ xj − xi ‖2
2) (7)

where δ is an assumed determination coefficient, which can be determined from refer-
ence [20]. xj is the sample point and xi is the sample point around xj.

Then, the dimension and sample point weight are introduced when calculating the
distance between the sample points, as shown in Equation (8).

dij =
M

∑
m=1

wm pj‖ xmj − µi ‖2 (8)

where µi is the center of the cluster, wm is the weight of mth dimension, pj is the weight of
the sample point j.

The objective minimum square error of the k-means algorithm improved by the
information entropy weight and sample weight is modified as follows:

Ewp =
M

∑
m=1

wm

n

∑
j=1
‖ xmj − µi ‖2

2 (9)

where µi is the center of the cluster, wm is the weight of mth dimension, pj is the weight of
the sample point j.

The detailed process of cluster center establishment is:
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(1) For N sample points, calculate the total distance between each point and other
points, and select the point with the largest result as the first cluster center µ1;

(2) Calculate the distance from other samples to µ1 and select the point farthest from
the cluster center µ1 as the second cluster center µ2;

(3) Select the center point of the third initial cluster at the point with the largest distance
from the first two points, and repeat this step until k initial cluster centers are selected.

2.2. Correlated Variables Sampling Based on Sobol Sequence and Copula Function

Multi-axle vehicles typically adopt coupling design of axles, of which the distribution
of wheelbase and axle load may be relevant. Typically, the sampling simulation is conducted
separately based on the statistical characteristics of each axle, which causes a deviation
between the generated sample and the actual vehicle model. In addition, the load effect
was not sufficiently precise. Therefore, a simulation method of parameter correlation was
established to simulate the traffic load accurately.

Various types of correlation coefficients can reflect the correlation between the pa-
rameters [21]. The Pearson and Spearman correlation coefficients are used to determine
the correlation of the random variables. The scope of application of the two methods is
different. The Pearson correlation coefficient was calculated using Equation (10).

ρ =
∑n

i=1(xi − x)(yi − y)

[∑n
i=1 (xi − x)2 ∑n

i=1 (yi − y)2]
1/2 (10)

where xi and yi are the elements of variables X and Y, n is the number of variables.
The Pearson correlation coefficient ρ can accurately reflect the linear correlation be-

tween the random variables. Assuming that ρL is the Pearson correlation coefficient matrix
of the normal random vector L with mean µL and standard deviation σL, according to
the theory of probability statistics, L can be obtained by linear transformation from the
standard normal distribution vector LS as shown in Equation (11). If the standard normal
distribution vector LS which has a correlation coefficient matrix ρL can be obtained, the
vector L can also be obtained.

L = σT
L LS + µL (11)

where LS is standard normal distribution random vector with correlation coefficient
matrix ρL.

The correlation coefficient matrix ρL is a symmetric positive definite matrix with
diagonal element 1. A lower triangular matrix C and its transposition matrix can be
obtained by Cholesky decomposition, and LS can be obtained by multiplying a group of
mutually independent standard normal distribution vector ZS and matrix C, as shown
in Equation (12):

LS =

 LS1
...

LSM

 = C× ZS =

 c11
...

. . .
cM1 · · · cMM


 Z1

...
ZM

 (12)

where C is a lower triangular matrix obtained by the Cholesky decomposition of ρL, ZS is
an independent standard normal distribution vector.

Based on the above principles, a sampling simulation of the relevant data can be per-
formed. Each axle load or wheelbase of the vehicle has its own distribution characteristics;
therefore, a Copula function is introduced to connect the edge distribution of the axle
load [22,23]. According to Sklar theory, if the joint probability distribution function F whose
edge distribution satisfies F1(u1), F2(u2), · · · , FM(uM), there must be a Copula function
that satisfies Equation (13).

F(u1, u2, · · · , uM) = C(F1(u1), F2(u2), · · · , FM(uM)) (13)
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where C is Copula function, FM is the edge distribution of F.
The Copula function C is expressed as Equation (14)

C(u1, u2, · · · , uM) = F
(

F−1
1 (u1), F−1

2 (u2), · · · , F−1
M (uM)

)
(14)

The Copula function usually includes five functions with different characteristics.
Based on the existing research [24], the characteristics of symmetric distribution can be
considered by normal Copula function. Combined with the correlation coefficient of the
edge distribution, the joint distribution function is expressed by Equation (15).

C(u1, u2, · · · , uM; R) = ΦR(Φ−1(u1), Φ−1(u2), · · · , Φ−1(uM)) (15)

where R is the Pearson correlation coefficient matrix of the edge distributions, ΦR is the
normal Copula function whose correlation coefficient matrix is R, and Φ−1 is the inverse
function of the standard normal distribution.

Based on probability integral transformation, the data of a random variable with any
given continuous distribution can be converted into a random variable with a standard
uniform distribution (see Equation (16)). If X1 and X2 are random variables, U1 and U2 are
their cumulative probability distribution functions, and thus, U1 and U2 are subject to a
uniform distribution.

Fu(u) = P(U ≤ u) = P(F(x) ≤ u) = P(x ≤ F−1(u) = F
(

F−1(u)
)
= u (16)

Therefore, if the mean, variance, and the Pearson correlation coefficient matrix are
known, any set of related normal distribution random variables can be obtained by
converting a set of unrelated standard normal distribution random variables. Subse-
quently, the random number is converted to a random number with uniform distribution
on [0, 1], and the correlation coefficient matrix remains unchanged. Finally, through the in-
verse function of the cumulative distribution function, it can be transformed into a random
number sample satisfying the marginal distribution of the original random variable.

The use of the Pearson correlation coefficient has the necessary condition that random
variables conform to a continuous normal distribution. However, it is difficult to idealize
the actual samples to follow a normal distribution; therefore, the Spearman rank correlation
coefficient should be introduced to describe the correlation of samples. The Spearman rank
correlation coefficient was calculated using Equation (17).

ρs = 1− 6 ∑ di
2

n(n2 − 1)
(17)

where di is the rank difference between variable X and Y, n is the number of variables.
Because the Spearman rank correlation coefficient always exists and differs from the

Pearson correlation coefficient, when applied to the joint normal distribution random vector
(X,Y), the Pearson correlation coefficient can be transformed using Equation (18):

ρ(X, Y) = 2sin(
π

6
ρS(X, Y)) (18)

Because the random traffic flow simulation process should be sampled based on the
characteristics of the parameter distribution, the crucial sampling process is the generation
of random numbers. Modern computer-based random number generation algorithms
are quasi-random and restricted to a specific cycle. Therefore, when number of cycles
is exceeded, it produces repetition and aggregation, resulting in invalid samples. Sobol
sequence sampling is a sequence with a uniform distribution than a pseudo-random
sequence in a given space, which is characterized by favorable stability [25]. A Sobol
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sequence with a low difference is a set of sequences formed based on direction number vi.
Each direction number is expressed as a decimal value.

vi =
mi

2i (19)

where mi is positive and odd numbers less than 2i.
The generation of vi is based on polynomial Equation (20)

f = xd + a1xn−1 + · · ·+ an−1x + an (20)

where a1, a2, · · · , an−1 are the given coefficients.
For i > n, there is a recursive formula Equation (21)

vi = a1vi−1 ⊕ a2vi−2 ⊕ · · · ⊕ anvi−n ⊕ bvi−n/2nc (21)

where b c indicates rounding down, ⊕ is binary bitwise XOR.
The equivalent recursive formula for m is

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ · · · ⊕ 2nanmi−n ⊕mi−n (22)

Sobol sequence sampling can be expressed as

Xi = b1v1 ⊕ b2v2 ⊕ b3v3 ⊕ · · · (23)

where · · · b1b2b3 is the binary representation of i.
The parameters n, mi, a can be obtained from the generation matrix C = (d, n, a, mi),

where d represents the dimension of C. Each dimension of the Sobol sequence has a
different generation matrix C. Existing research has found that the generation matrix C has
the highest dimension of 21,201 [26].

Figure 1 displays the distribution of the two-dimensional sampling results of Monte
Carlo sampling and Sobol sequence sampling. The results illustrate that samples of the
Sobol sequence are more evenly distributed in the sample space than those of Monte
Carlo sampling.
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Therefore, in this study, Sobol sequence sampling is used to generate samples Xi
subject to uniform distribution in [0, 1] space and then transformed to a standard normal
distribution vector through its inverse function using Equation (24).

S = Φ−1(Xi) (24)
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where Φ−1 is the inverse function of standard normal distribution.
Through the function ΦR of Pearson correlation coefficients, R, samples subjected

to the multivariate standard normal distribution function can be obtained. According to
Equation (16), they can be converted into random numbers that obey a uniform distribu-
tion on [0, 1], without a change in R. The samples obeying the edge distribution of the
original random variables are then obtained using the inverse function of the cumulative
distribution. The detailed steps are shown in Figure 2.
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2.3. Multi-Lane Traffic Load Clustering Model

Vehicle parameters, such as vehicle weight, axle weight, and axle base, and their
parameter distribution conform to certain statistical regularities [27]. Based on the estab-
lished clustering and sampling method, random traffic flow can be simulated according
to the macro distribution characteristics obtained by the traffic monitoring system. The
sampling process for traffic flow is shown in Figure 3. The traffic parameters were clustered
using the improved k-means method to achieve traffic volume, traffic speed, and vehicle
type proportion. Then, the axle distance and axle weight of each vehicle are generated
by the CSSC method, where the proportion of the hourly traffic volume and vehicle type
in each lane obtains the number of each vehicle type. Finally, each vehicle is combined
with randomly generated parameter samples based on the statistical characteristics, and
the sequence of vehicle samples is randomly sorted. Accurate analysis and evaluation of
the traffic flow load effect can be achieved based on the proportion of each cluster in the
operation period.
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3. Prototype Bridge and Traffic Load
3.1. Bridge Information

A long-span suspension bridge was selected as the research subject to analyze the
dynamic response under simulated traffic flow. The bridge was a single-span steel-concrete
composite girder suspension bridge. The section layout is shown in Figure 4. The span
of the main cable was arranged as (250 + 838 + 215) m, and the sagittal span ratio of the
midspan main cable was 1/10. The central transverse spacing of the two main cables
in midspan is 26.0 m. Two flexible central buckles are set near both sides of the middle
span of each main cable to form a cable–beam connection. The stiffening girder adopted
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a steel-concrete composite structure wherein the steel beam was attached to the concrete
deck using shear nails, as shown in Figure 5. The full width of the stiffening girder is
33.2 m, the center height is 2.8 m, and the center spacing of the longitudinal beam webs on
both sides is 26.0 m. The reinforced concrete bridge deck was 25.0 m wide and 0.22 m thick.
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Figure 5. Section of stiffening girder section.

A three-girder bridge model was established using ANSYS 18.0 software to simulate
the structural characteristics. The BEAM4 element was used to simulate the main stringer,
small stringer, and the pylon. The LINK10 element was used to simulate the cable compo-
nents. The girder, pylon, and cable components have 1836 BEAM4 elements, 82 BEAM4
elements, and 279 LINK10 elements, respectively. Only the mass of bridge deck pavement
was considered as it contributed minimally to the stiffness of the stiffening girder. The
stress stiffening of the suspenders was conducted in accordance with the measured force.

3.2. Traffic Monitoring Data

Traffic flow on bridges is a complicated and changeable load with different traffic
densities, volumes, and speeds. These parameters directly influence the response of bridges.
In this study, traffic flow data collected using the WIM system was used to analyze the
bridge’s dynamic response under vehicle load. The monitoring data included vehicle data
for 31 days. Vehicles were divided into five types according to the number of axles, that is,
T-1 to T-6. Figures 6 and 7 show the hourly traffic volume and its distribution in each lane,
respectively. Lane 3 is the passing lane occupied by two-axle vehicles, whereas multi-axle
vehicles mostly drive in lane 1; the hourly traffic volume in each lane exhibits considerable
differences for different traffic speeds. Researchers typically consider traffic density as
an indicator to simulate based on long-term overall statistical results [28,29]. Figure 8
displays the distribution of traffic volume, traffic speed, and proportion of V6 in lane 1, all
of which obey a multimodal distribution and have different distribution characteristics.
Based on long-term statistical features, the load effect of the traffic flow may be simulated
in a limited manner because the complex time-varying characteristics of each parameter are
concisely considered.
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Figure 6. Hourly traffic volume of WIM data.
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Figure 7. Proportion of each vehicle type.
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Figure 8. Distribution of traffic parameters of WIM data: (a) traffic volume; (b) traffic speed;
(c) proportion of T-6.

Figure 9 shows the scatter distribution of axle weight and distance for six-axle vehicles.
It is observed that the axle weight and axle distance of the two rear axles have a noticeable
correlation, whereas the correlation between the front axle and the rear axle is weak.
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Figure 9. Distribution of vehicle axle weight and axle distance: (a) axle weight; (b) axle distance.

4. Results and Discussion
4.1. Simulated Traffic Flow

Based on the clustering algorithm, six parameters in the traffic flow data of the three
lanes, including traffic volume Q and traffic flow speed V, were selected as cluster analysis
parameters. Table 1 lists the correlation coefficient for each parameter, the closer it is
to 1, the stronger the correlation is. The weight of each dimension is calculated using
Equation (6). The quality of the clustering results was measured using the Davies-Bouldin
index [30], which tended to be stable when k reached 5. Figure 10 shows the distribution of
the clustering results. Figure 11 displays the distribution of the traffic volume, traffic speed,
and vehicle proportion in cluster 1. Although the proportion of vehicle types is not clustered,
the distribution of vehicle types affects traffic volume and speed. The distribution of traffic
parameters in the cluster showed a unimodal distribution after clustering, indicating the
same distribution characteristics.

Table 1. Pearson correlation coefficient of each parameter.

Lane1 Q Lane2 Q Lane3 Q Lane1 V Lane2 V Lane3 V

Lane1 Q 1 0.851 0.838 0.697 0.566 0.393
Lane2 Q 0.851 1 0.984 0.882 0.817 0.488
Lane3 Q 0.838 0.984 1 0.879 0.835 0.506
Lane1 V 0.697 0.882 0.879 1 0.888 0.636
Lane2 V 0.566 0.817 0.835 0.888 1 0.706
Lane3 V 0.393 0.488 0.506 0.636 0.706 1
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Figure 10. Cluster processing results: (a) three-dimensional distribution of traffic speed; (b) two-
dimensional distribution of traffic volume.
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Figure 11. Distribution of traffic parameters of cluster 1: (a) traffic volume; (b) traffic speed;
(c) proportion of T-6.

Following the clustering analysis, distribution fitting was performed for the character-
istics of the vehicle flow parameters in each cluster (Table 2). Table 2 lists the characteristic
parameters of each cluster, which obey the normal, log-normal, and Weibull distributions.
Significant differences were observed in the values of the parameters of each cluster, prov-
ing the effectiveness of clustering analysis in dealing with the distribution characteristics
of traffic flow. The traffic volume of Cluster 5 was the largest, and that of Cluster 2 was
the smallest. The parameter distributions of the clusters differ from each other, especially
in terms of traffic volume. It is determined by the composition of vehicle types, wherein
the proportion of multi-axle vehicles play a decisive role. In Lane 3, which is the pass-
ing lane, the share of two-axle vehicles accounts for more than 99%, and the difference
in the proportion of vehicle types is neglected. According to the distribution parame-
ters of each cluster, the multi-lane traffic flow can be simulated and used to analyze the
bridge’s response.

Table 2. Distribution parameters of each cluster.

Cluster Proportion
Lane 1 Lane 2 Lane 3

Distribution
Pattern

Distribution
Parameter

Distribution
Pattern

Distribution
Parameter

Distribution
Pattern

Distribution
Parameter

1 0.33

Q Normal µ = 112,
σ = 25 Normal µ = 105,

σ = 27
Log-

normal
µ = 42.68,
σ = 1.80

V Normal µ = 54.38,
σ =2.98 Normal µ = 69.27,

σ = 6.19 Weibull a = 91.06,
b = 33.49

T-2 Normal µ = 0.391,
σ = 0.06 Normal µ = 0.642,

σ = 0.12 / /

T-3 Normal µ = 0.171,
σ = 0.05 Normal µ = 0.142,

σ = 0.06 / /

T-4 Normal µ = 0.104,
σ = 0.03 Normal µ = 0.69,

σ = 0.03 / /

T-5 Normal µ = 0.06,
σ = 0.03 Exponential µ = 53.986 / /

2 0.15

Q Normal µ = 148,
σ = 19 Normal µ = 280,

σ = 31 Normal µ = 307,
σ = 38

V Normal µ = 62.82,
σ = 4.23 Weibull a = 86.117,

b = 27.088 Weibull a = 93.425,
b = 48.567

T-2 Normal µ = 0.553,
σ = 0.08 Weibull a = 0.917,

b = 24.04 / /

T-3 Normal µ = 0.099,
σ = 0.03 Log-normal µ = 0.032,

σ = 1.60 / /

T-4 Log-normal µ = 0.084,
σ = 1.38 Normal µ = 0.02,

σ = 0.01 / /
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Table 2. Cont.

Cluster Proportion
Lane 1 Lane 2 Lane 3

Distribution
Pattern

Distribution
Parameter

Distribution
Pattern

Distribution
Parameter

Distribution
Pattern

Distribution
Parameter

T-5 Normal µ = 0.069,
σ = 0.02 Log-normal µ = 0.008,

σ = 1.90 / /

3 0.16

Q Log-normal µ = 132,
σ = 1.01 Normal µ = 186,

σ = 27 Normal µ = 175,
σ = 39

V Log-normal µ = 58.56,
σ = 1.06 Weibull a = 81.802,

b = 19.158 Normal µ = 92.12,
σ = 2.33

T-2 Normal µ = 0.449,
σ = 0.06 Weibull a = 0.846,

b = 12.02 / /

T-3 Log-normal µ = 0.119,
σ = 1.35 Log-normal µ = 0.051,

σ = 1.68 / /

T-4 Log-normal µ = 0.106,
σ = 1.40 Normal µ = 0.041,

σ = 0.02 / /

T-5 Normal µ = 0.084,
σ = 0.03 Log-normal µ = 0.015,

σ = 2.13 / /

4 0.24

Q Normal µ = 184,
σ = 17 Normal µ = 378,

σ = 28 Normal µ = 451,
σ = 38

V Normal µ = 67.98,
σ = 2.99 Normal µ = 87.48,

σ = 2 Weibull a = 94.117,
b = 90.013

T-2 Normal µ = 0.636,
σ = 0.05 Weibull a = 0.936,

b = 48.322 / /

T-3 Normal µ = 0.086,
σ = 0.03 Log-normal µ = −3.686,

σ = 0.40 / /

T-4 Log-normal µ = 0.068,
σ = 1.33 Normal µ = 0.014,

σ = 0.01 / /

T-5 Log-normal µ = 0.058,
σ = 1.39 Log-normal µ = 0.006,

σ = 1.90 / /

5 0.11

Q Normal µ = 209,
σ = 30.8 Normal µ = 474,

σ = 48
Log-

normal
µ = 572,
σ = 1

V Normal µ = 70.76,
σ = 4.15 Normal µ = 88.4,

σ = 2.4 Normal µ = 93.36,
σ = 1.05

T-2 Weibull a = 0.694,
b = 15.287 Normal µ = 0.936,

σ = 0.03 / /

T-3 Log-normal µ = −2.588,
σ = 0.28 Normal µ = 0.023,

σ = 0.01 / /

T-4 Log-normal µ = −2.795,
σ = 0.35 Log-normal µ = −4.63,

σ = 0.61 / /

T-5 Log-normal µ = −2.938,
σ = 0.31 Normal µ = 0.006,

σ = 0.01 / /

A clustering algorithm is used to separate the traffic composition into different clusters
based on the state parameters to consider the characteristics of the traffic flow. The samples
in each cluster have consistent parameter characteristics. Based on the distribution charac-
teristics of traffic flow obtained by cluster analysis, the total number of vehicles, speed of
traffic flow, and proportion of vehicle types in each cluster are sampled by the Monte Carlo
method, and the distance between vehicles can be obtained by classical traffic flow theory,
as shown in Equation (25).

Q = K·V (25)

where Q denotes the traffic volume, K denotes the traffic density, and V denotes the
traffic speed.

Figure 12 shows 3000 axle weight and distance samples of six-axle vehicles generated
by the CSSC method, which is similar to Figure 9. This demonstrates that the CSSC
sampling method can adequately represent the correlation of the original samples.
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Figure 12. Samples by CSSC method: (a) samples of axle weight; (b) samples of axle distance.

4.2. Response under Traffic Load

To analyze the vehicle–bridge interaction, the traffic loads of different clusters were
generated based on the proposed method. The process is as follows: (1) collect traffic load
characteristics using the WIM system and then cluster them; (2) fit the characteristics of
traffic flow parameters based on cluster analysis and generate random traffic flow samples
using CSSC sampling; and (3) feed traffic flow into the traffic flow bridge coupling analysis
system to determine the dynamic response of the bridge. Based on the proposed traffic
simulation method, the traffic volumes of different clusters were generated according to
their hourly characteristics, and the axle load and wheelbase of vehicles were simulated
accordingly. The generated traffic volumes for each cluster were 211, 705, 535, 1071,
and 1240. The opposite lane generates a traffic flow to achieve two-way loading. The
bridge response under each cluster of traffic flow can be determined by the established
vehicle–bridge coupling analysis system, wherein the principle and vehicle parameter
dynamic model parameters can be observed in the published literature [31]. Road surface
roughness is described by a power spectral density function, that can be generated through
Fourier inversion [32].

Figures 13 and 14 show the response of the girder bending moment and vertical
displacement at the midspan. To demonstrate the response difference under different
cluster traffic flows more intuitively, responses under Clusters 1, 2, and 5 were selected
from low to high traffic volumes. The differences in the responses under different clusters
can be observed; the girder bending moment under Cluster 2 is the greatest and reaches
28,937.6 kN ·m. The maximum vertical displacement of the main beam reached 0.404 m,
in Cluster 3. Figure 15 shows the longitudinal displacement response of the girder end.
As the amplitude of the longitudinal reciprocating motion of the main beam is small, the
difference in the time-history curve is not apparent, and the cumulative displacement is
shown in Figure 15b. The growth rate of the cumulative displacement in Cluster 5 was
significantly higher than that of the other clusters. This difference may directly influence
the fatigue life of bridge components, such as expansion joints.

Figures 16 and 17 show the time history response of axial and bending stress vari-
ation of a short suspender at midspan. As the bending stress cannot be extracted by the Link
10 element, it was calculated according to the Wyatt formula and experimental
results [33,34]. The stress has differences such that peak values appear in different clusters.
The maximum bending stress reached 50.676 MPa in Cluster 5, whereas the minimum
value of 28.206 MPa appears in Cluster 4. The maximum axial stress reached 67.115 MPa
in Cluster 1, which has the smallest traffic volume. It is primarily due to the large dead
weight of long-span suspension bridges and the small spacing of suspenders. The axial
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force on a suspender is primarily affected by the weight of a single vehicle. The bending
stress is affected by the traffic load effect.
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Figure 13. Girder bending moment under different clusters: (a) time history response; (b) extreme value.
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Figure 14. Vertical girder displacement under different clusters: (a) time history response; (b) extreme value.
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Figure 15. Longitudinal girder displacement under different clusters: (a) time history response; (b)
cumulative displacement.
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Figure 16. Suspender bending stress under different clusters: (a) time history response; (b) extreme value.
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Figure 17. Suspender axial stress under different clusters: (a) time history response; (b) extreme value.

These results show an extreme response under different traffic flows. To explain the
difference in long-term effects under different traffic flows, the variable-amplitude stress
was transformed into an equivalent stress. Figure 18 shows the suspender stress under
Cluster 1, processed using the rain-flow counting method. When the stress ranges and
number of cycles is obtained, the equivalent stress range can be calculated based on the
Paris criterion, as in Equation (26).

∆σeq =

[
∑ (nij · ∆σm

j )

∑ nij

]1/m

(26)

where ∆σj and nij· are the stress range and the corresponding number of cycles, m is the
coefficient of Paris law, and has the value 3.

The equivalent stresses of suspender bending and axial stresses are listed in Table 3.
The maximum equivalent bending stress and axial stress were 16.068 MPa and 10.542 MPa,
whereas the minimum values were 9.429 MPa and 8.679 MPa, respectively. The maximum
equivalent stress appears in Cluster 3, and is not consistent with the peak values. Because
the stress response is closely related to the fatigue life of suspenders, the response under
different traffic flows must be considered in the fatigue analysis of suspenders because
of the noticeable difference. The established traffic flow simulation method can consider
traffic flow effects at different intensities, which is beneficial for achieving an accurate
evaluation in the long-term evaluation of bridge component performance.
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Figure 18. Stress distribution of rain flow counting: (a) time history response; (b) extreme value.

Table 3. Equivalent stress ∆σeq and maximum value σm of suspender (MPa).

Subject
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

σm ∆σeq σm ∆σeq σm ∆σeq σm ∆σeq σm ∆σeq

Bending stress 42.728 11.288 40.133 12.344 38.047 16.068 28.206 9.429 50.676 11.024
Axial stress 67.115 8.679 48.956 7.2409 41.673 10.542 35.901 9.064 43.516 9.243

5. Conclusions

In this study, a random traffic load simulation method for long-span bridges is es-
tablished based on monitoring traffic data. To analyze the load level composition during
service, an improved k-means clustering algorithm was established to process traffic char-
acteristics. Consequently, a CSSC sampling method that considers parameter correlation
was established based on Sobol sequence sampling. Finally, the generated stochastic traffic
flow was used to analyze the dynamic response of a long-span suspension bridge under
the traffic flow of different clusters. The following conclusions were drawn:

1. An improved k-means clustering algorithm was constructed by introducing the
CRITIC weight and sample weight to reduce the correlation between sample dimensions
and the interference of discrete points. Based on the clustering algorithm, the traffic flow
can be separated into clusters with different traffic volumes and speeds. The key param-
eters of traffic flow and the proportion of vehicle types in each cluster subject to specific
distribution characteristics, which are optimized from the multi-peak distribution to the
single-peak distribution.

2. The CSSC sampling method was established based on the Sobol sequence and
Copula joint function theory. Based on the correlation coefficient matrix of the original
sample, the simulation of the vehicle axle load and axle distance considering parameter
correlation can be achieved by CSSC. Combined with the clustering results, a refined
stochastic traffic flow simulation method is established and used to reconstruct the traffic
load. The loading traffic flow can effectively avoid the simple division of traffic intensity
and consider the daily traffic characteristics.

3. There are evident differences in the bridge responses under different clusters of
traffic flow. Typical indicators, such as the girder bending moment, girder displacement,
and suspender stress, show noticeable differences in extreme values under different clus-
ters. The equivalent stresses exhibit clear differences, and the maximum equivalent stress
appears in different clusters from that of the peak values. These differences directly in-
fluenced the long-term evaluation of these components. The traffic flow density must
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be considered to achieve an accurate evaluation in the long-term evaluation of bridge
component performance.

The multi-lane traffic load model has the capability to model long-term traffic vari-
ation trends and characteristic parameters. However, if the bridge is extremely long,
aerodynamic forces should be considered. The interaction between traffic loading and
aerodynamic loading could further compromise the safety of a bridge; further research and
relevant investigations are required in the analysis and evaluation of bridge responses under
external loads.

Author Contributions: Conceptualization, Y.Z. (Yue Zhao) and Y.Z. (Yiyun Zhu); methodology, Y.Z.
(Yiyun Zhu); software, X.G.; validation, X.G. and B.S.; formal analysis, X.G.; investigation, Y.S.;
resources, Y.Z. (Yue Zhao); data curation, X.G.; writing—original draft preparation, Y.Z. (Yue Zhao);
writing—review and editing, X.G.; visualization, B.S.; supervision, Y.Z. (Yiyun Zhu); project adminis-
tration, Y.Z. (Yue Zhao); funding acquisition, Y.Z. (Yue Zhao). All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Natural Science Basic Research Program of Shaanxi
(Program No. 2022JQ-336); the open fund of Shaanxi Provincial Key Laboratory (Chang’an University)
of Highway Bridges and Tunnels (Program No. 300102212509); the Foundation of Xi’an University of
Technology (Grant no. 256082109).

Data Availability Statement: Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, R.; Ge, Y.J.; Yang, Y.X.; Du, Y.L.; Zhang, L.H. Wind-induced nonlinear behaviors of twin-box girder bridges with various

aerodynamic shapes. Nonlinear Dyn. 2018, 94, 1095–1115. [CrossRef]
2. Guo, T.; Liu, J.; Zhang, Y.; Pan, S. Displacement monitoring and analysis of expansion joints of long-span steel bridges with

viscous dampers. J. Bridge Eng. 2015, 20, 4014099. [CrossRef]
3. Liu, Z.X.; Guo, T.; Huang, L.Y.; Pan, Z.H. Fatigue life evaluation on short suspenders of long-span suspension bridge with central

clamps. ASCE’s J. Bridge Eng. 2017, 22, 04017074. [CrossRef]
4. Yuan, A.M.; Yang, T.; Xia, Y.F.; Qian, L.F. Replacement Technology of Long Suspenders of Runyang Suspension Bridge. China J.

Highw. Transp. 2021, 34, 289–297.
5. Kafle, B.; Zhang, L.; Mendis, P.; Herath, N.; Maizuar, M.; Duffield, C.; Thompson, R. Monitoring the dynamic behavior of the

merlynston creek bridge using interferometric radar sensors and finite element modeling. Int. J. Appl. Mech. 2017, 9, 1750003.
[CrossRef]

6. César, C.M.; Juan, R.C. A Comprehensive Traffic Load Model for Bridge Safety Checking. Struct. Saf. 1997, 19, 339–359.
7. Chen, Y.B.; Feng, M.Q.; Tan, C.A. Modeling of Traffic Excitation for System Identification of Bridge Structures. Comput.-Aided Civ.

Infrastruct. Eng. 2010, 21, 57–66. [CrossRef]
8. Chen, S.R.; Wu, J. Modeling Stochastic Live Load for Long-span Bridge Based on Microscopic Traffic Flow Simulation. Comput.

Struct. 2011, 89, 813–824. [CrossRef]
9. Jabari, S.E.; Liu, H.X. A Stochastic Model of Traffic Flow: Theoretical Foundations. Transp. Res. Part B 2012, 46, 156–174. [CrossRef]
10. Han, W.; Liu, X.; Gao, G.; Xie, Q.; Yuan, Y. Site-specific extra-heavy truck load characteristics and bridge safety assessment. J.

Aerosp. Eng. 2018, 31, 04018098. [CrossRef]
11. Wang, C.S.; Chen, H.Z.; Chen, A.R.; Lei, X. 3D finite-element model simulation and remaining fatigue life assessment of existing

steel bridges. J. Chang‘an Univ. (Nat. Sci. Ed.) 2004, 24, 43–47.
12. Zong, Z.H.; Li, F.F.; Xia, Y.F.; Yuan, W.W. Study of vehicle load models for Xinyi River Bridge Based on WIM data. Bridge Constr.

2013, 43, 29–36.
13. Han, W.S.; Chen, A.R. Three-dimensional coupling vibration of wind-vehicle-bridge systems under random traffic flow. China

Civ. Eng. J. 2008, 9, 97–102+2.
14. Bernard, E.; O’Brien, E. Monte carlo simulation of extreme traffic loading on short and medium span bridges. Struct. Infrastruct.

Eng. 2013, 9, 1267–1282.
15. Cheng, J.; Xie, Y.; Zhang, J. Industry structure optimization via the complex network of industry space: A case study of Jiangxi

Province in China. J. Clean. Prod. 2022, 338, 1306024. [CrossRef]
16. Cheng, J. Analysis of the factors influencing industrial land leasing in Beijing of China based on the district-level data. Land Use

Policy 2022, 122, 106389. [CrossRef]
17. Cheng, J.; Luo, X.W. Analyzing the land leasing behavior of the government of Beijing, China, via the multinomial logit model.

Land 2022, 11, 376. [CrossRef]

http://doi.org/10.1007/s11071-018-4411-y
http://doi.org/10.1061/(ASCE)BE.1943-5592.0000701
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001097
http://doi.org/10.1142/S175882511750003X
http://doi.org/10.1111/j.1467-8667.2005.00416.x
http://doi.org/10.1016/j.compstruc.2010.12.017
http://doi.org/10.1016/j.trb.2011.09.006
http://doi.org/10.1061/(ASCE)AS.1943-5525.0000917
http://doi.org/10.1016/j.jclepro.2022.130602
http://doi.org/10.1016/j.landusepol.2022.106389
http://doi.org/10.3390/land11030376


Mathematics 2023, 11, 274 19 of 19

18. Lantz, B. Machine Learning with R; Packt Publishing: Birmingham, UK, 2013.
19. Yang, Z.T.; Huang, X.F.; Fang, G.H.; Ye, J.; Lu, C.X. Benefit evaluation of East Route Project of South to North Water Transfer

based on trapezoid cloud model. Agric. Water Manag. 2021, 254, 106960. [CrossRef]
20. Chiu, S.; Cheng, J.J. Automatic Generation of Fuzzy Rulebase for Robot Arm Posture Selection. In Proceedings of the First

International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, San Antonio,
TX, USA, 18–21 December 1994; pp. 436–440.

21. Cheng, J.; Yin, P. Analysis of the complex network of the urban function under the lockdown of COVID-19: Evidence from
Shenzhen in China. Mathematics 2022, 10, 2412. [CrossRef]

22. Tan, G.; Kong, Q.; Wang, L.; Wang, X.; Liu, H. Reliability evaluation of hinged slab bridge considering hinge joints damage and
member failure credibility. Appl. Sci. 2020, 10, 4824. [CrossRef]

23. Papaefthymiou, G.; Kurowicka, D. Using Copula for modeling stochastic dependence in power system uncertainly analysis. IEEE
Trans Power Syst. 2009, 24, 40–49. [CrossRef]

24. Li, M.; Liu, Y.; Yang, X.S. Random Vehicle Flow Load Effect Considering Axle Load. J. Zhejiang University. Eng. Sci. 2019, 53,
78–88.

25. Dimov, I.; Georgieva, R.; Ostromsky, T.; Zlatev, Z. Advanced algorithms for multidimensional sensitivity studies of large-scale air
pollution models based on sobol sequences. Comput. Math. Appl. 2013, 65, 338–351. [CrossRef]

26. Joe, S.; Kuo, F.Y. Constructing Sobol’ sequences with better two-dimensional projections. SIAM J. Sci. Comput. 2008, 30, 2635–2654.
[CrossRef]

27. Han, W.S.; Li, Y.W.; Qiao, L. Moving Load Identification Based on Vehicle-bridge Coupling Vibration Theory. China J. Highw.
Transp. 2013, 26, 74–86.

28. Wang, F.Y.; Xu, Y.L. Traffic Load Simulation for Long-Span Suspension Bridges. J. Bridge Eng. 2019, 24, 05019005. [CrossRef]
29. Liang, Y.Z.; Xiong, F. Multi-parameter Dynamic Traffic Flow Simulation and Vehicle Load Effect Analysis based on Probability

and Random Theory. KSCE J. Civ. Eng. 2019, 23, 3581–3591. [CrossRef]
30. Wang, C.; Gao, Y.H. Dynamic Reconfiguration of Distribution Network Based on Optimal Fuzzy C-means Clustering and

Improved Chemical Reaction Optimization. Proc. CSEE 2014, 34, 1682–1691.
31. Zhao, Y.; Huang, P.M.; Long, G.X.; Yuan, Y.G.; Sun, Y. Influence of Fluid Viscous Damper on the Dynamic Response of Suspension

Bridge under Random Traffic Load. Adv. Civ. Eng. 2020, 2020, 1857378. [CrossRef]
32. ISO-8608; KS Association. Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data. International Organization

for Standardization (ISO): Geneva, Switzerland, 1995.
33. Wyatt, T.A. Secondary Stress in Parallel Wire Suspension Cables. J. Struct. Div. 1960, 86, 37–59. [CrossRef]
34. Kondoh, M.; Okuda, M.; Kawaguchi, K.; Yamazaki, T. Design Method of A Hanger System for Long-Span Suspension Bridge. J.

Bridge Eng. 2001, 6, 176–182. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.agwat.2021.106960
http://doi.org/10.3390/math10142412
http://doi.org/10.3390/app10144824
http://doi.org/10.1109/TPWRS.2008.2004728
http://doi.org/10.1016/j.camwa.2012.07.005
http://doi.org/10.1137/070709359
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001381
http://doi.org/10.1007/s12205-019-2121-8
http://doi.org/10.1155/2020/1857378
http://doi.org/10.1061/JSDEAG.0000545
http://doi.org/10.1061/(ASCE)1084-0702(2001)6:3(176)

	Introduction 
	Method 
	Improved k-Means Clustering Algorithm 
	Correlated Variables Sampling Based on Sobol Sequence and Copula Function 
	Multi-Lane Traffic Load Clustering Model 

	Prototype Bridge and Traffic Load 
	Bridge Information 
	Traffic Monitoring Data 

	Results and Discussion 
	Simulated Traffic Flow 
	Response under Traffic Load 

	Conclusions 
	References

