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Abstract: An effective MPPT approach plays a significant role in increasing the efficiency of a PV
system. Solar energy is a rich renewable energy source that is supplied to the earth in surplus by
the sun. Solar PV systems are designed to utilize sunlight in order to meet the energy needs of the
user. Due to unreliable climatic conditions, these PV frames have a non-linear characteristic that
has a significant impact on their yield. Moreover, PSCs also affect the performance of PV systems
in yielding maximum power. A significant progression in solar PV installations has resulted in

heck f rapid growth of MPPT techniques. As a result, a variety of MPPT approaches have been used to
check for
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enhance the power yield of PV systems along with their advantages and disadvantages. Thus, it is
essential for researchers to appraise developed MPPT strategies appropriately on regular basis. This
study is novel because it provides an in-depth assessment of the current state of MPPT strategies
for PV systems. On account of novelty, the authors analyzed the successive growth in MPPT
strategies along with working principles, mathematical modeling, and simplified flow charts for
better understanding by new learners. Moreover, the taxonomy and pro and cons of conventional

Integrated MPPT-PV Systems: A
Comprehensive Study. Mathematics
2023,11,269. https://doi.org/
10.3390/math11020269

and Al-based MPPT techniques are explored comprehensively. In addition, a comparative study
based on key characteristics of PV system of all MPPT algorithms is depicted in a table, which can be
used as a reference by various researchers while designing PV systems.
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1. Introduction

As our civilization advances in technology, it necessitates a greater use of energy in
today’s world. Renewable energy sources have the potential to cater the increasing demand
for energy in various forms. In near future, demand for renewable energy will rise in all
sectors, including heating, power, and transportation, etc. Solar power is more admired
than other renewable energy sources due to its widespread availability and well-established
technology. This is because of recent developments in increasing accuracy and tracking
speed for maximum energy harvesting [1].

Direct current is generated when photons from sunlight strike the solar cells. A series-
parallel combination of these cells gives rise to a PV module, which when further combined
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together forms a PV array. The literature reveals that the characteristics of solar cells are
non-linear [2], which degrades their conversion efficiency. Therefore, it is required to
extract all the power accessible from the PV module. Moreover, a PV module does not
supply power constantly on account of various factors such as temperature, irradiance,
geographical conditions, and so on [3].

The P-V curve of any solar module has an optimal point, i.e., the global maximum
power point (GMPP), that varies depending on temperature and solar irradiance. The PV
module produces the most power at that point [4]. To confirm that the PV module is always
operating at GMPP, MPPT techniques come into picture. MPPT techniques are algorithms
that are implemented via software and power electronics hardware combination in any
solar controller. These algorithms aid in ensuring that the output of solar array is always at
its peak. MPPT techniques perform this task by continuous power tracking methodology
to determine the best operating power point from solar array. Since the maximum power
of a solar array varies in accordance with many environmental conditions, tracking this
power is crucial for utmost utilization of solar energy. The MPPT system’s aim is to sample
the output of the PV array and apply the appropriate resistance to obtain maximum power
for any given environmental conditions. Thus, these techniques function as an impedance-
matching device between the array and load with the help of varying the duty cycle of
the DC-DC converter. The whole process is controlled by software and a micro-controller.
MPPT-equipped controllers have numerous advantages over other controllers, such as
the following:

More efficiency;
Capability of optimizing voltage differences as well as DC load optimization;
Best for larger systems where solar panel output exceeds battery voltage by a signifi-
cant margin;
e Enhances the system’s output and hence its capacity.

There are several approaches to achieving MPPT, which are discussed in this article.

Many researchers have published their findings on MPPT algorithms. Refs. [5-7] compare
various MPPT approaches for uniform irradiance and PSCs for solar PV systems, whereas [8,9]
focus specifically on PSCs. Traditional MPPT techniques such as P&O [10], INC [11], and
HC [12] are proficient for uniform irradiance with a unique peak. They are unsuitable when
the PV system is subjected to PSCs. The researchers attempted to improve on traditional
MPPT algorithms by combining them with advanced strategies [13-15]. Figure 1a,b show a
generalized block diagram of standalone and grid-connected PV systems.

PV Array
DC-DC Converter
Sun o —— L
H T
Ipv N * Load
>
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>
MPPT Control
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Figure 1. Generalized block diagram of (a) standalone PV system and (b) grid-connected PV system.

However, the choice of a specific MPPT approach is still an ambiguity. As a result,
there is strong need to investigate and reassess the developed strategies on regular basis,
as this will help in the selection of a specific technique based on the context. Different
conventional and Al-based meta-heuristic MPPT techniques are reviewed and compared
in this article based on a variety of factors such as tracking time, complexity, oscillations
around GMPP, implementation cost, and so on. BI [16,17], SI[18,19], ANN, FLC, and ECI
are explained and reviewed by authors on various parameters.

The novelty of this work can be summarized as an approach to presenting qualitative
comparative analysis and set-theoretic research, with emphasis on tabular presentation
(technical datasheet presentation) of the chief attributes of conventional and Al-based
MPPT techniques.

This data positioning approach is most appropriate format for reading and under-
standing the data. Quantifying these data helps in comprehensive analysis and comparing
different data sets, thereby bringing out the most important and widely used conventional,
metaheuristic, and other Al-based MPPT techniques, wherein various parameters such as
array size, irradiance levels, techniques considered, % boost in GMPP using best technique,
and tracking time, etc., are considered.

This research work is novel from other aspects as well, such as the following:

e  Ease of representation: In distinct sections, the work summarizes the main characteris-
tics of traditional and Al-based metaheuristic techniques in a simplified style using
simplified flowcharts;

o Ease of analysis: A technical datasheet was created after reviewing all the major
attributes required to design any PV system of recently reported conventional MPPT
techniques, Al-based metaheuristic approaches, and other Al-based MPPT techniques.
This datasheet provides a bare-bones description that facilitates even a new learner to
understand the performances of these metaheuristic MPPT techniques, particularly
PV systems in PSCs;

e Ease of modification: The technical datasheet highlights the pros and cons of all
reviewed works of each category, which enables the user to identify the research
gap as discussed above and helps them to modify a particular algorithm to meet the
requirement of good PV system;

e  Qualitative comparative analysis: The technical datasheet facilitates comparison of all
MPPT approaches based on the key characteristics required while incorporating them
in any PV system, which helps the readers to select the most suitable technique for
any particular application.

Structure of this work is as follows: The modeling of the PV cell is elaborated upon
in Section 2 along with the effects of environmental factors. The partial shading effect is
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discussed in Section 3. MPPT techniques and their classification are elaborated upon in
Section 4. Research gap findings are reported in Section 5. Challenges and further scope of
the conducted effort are pointed out in Section 6, and paper is concluded in Section 7.

2. Modeling of PV Cell

Ideally, a parallel combination of a current source and a diode represents a solar cell.
For practical applications, the model also incorporates shunt and series resistances to take
into account manufacturing defects and contact resistances [20], as illustrated in Figure 2a.

o
ID‘V Ish+

Rse Tpv T

Iph f D Rshg Vpv

| |

(a)
— *’—>I——|—
;1Y Imy Ish Ree v T
Iph g Rsh Vv
DI D2 | i
(b)

Figure 2. Solar cell: (a) single-diode model and (b) double-diode model.
The current generated by the solar cell can be computed by Equation (1).
Ipv = Iph —Ip— Iy (1)

The Shockley equation and Ohm’s law can be used to calculate the current through a
diode and shunt resistor, as shown in Equations (2) and (3), respectively.

q
Ip=1Ip |ex — (Vo + LuR -1 @)
[ p(NCSKT( e se)) ]
v, Iv R
Isp = W—;pv = ®3)
sh

Thus, the distinctive Equation of solar cell output current can be written as

Voo + Iy R
IpV = I1:)h - IO [exp(%(vpv + IpvRse )) - 1i| - PZiRi:USE (4)
S,
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The ideality factor “n” is assumed to be constant in single-diode model, but this factor
is a function of voltage at the device terminals. Its value is close to one at high voltages
and becomes two at low voltages because of recombination in junction. This effect can
be modelled by connecting another diode in parallel with the first diode, giving rise to
the double-diode model, as shown in Figure 2b. The ideality factor is set to “2” for the
double-diode model.

Figure 3 shows the PV module (I-V) and (P-V) characteristic curves. It details the
solar energy conversion capability and efficiency for a particular atmospheric condition.
Since short- and open-circuit circumstances have no effect on power generation, there must
be a point somewhere in the middle where the solar module produces most power and
is located close to the bend in the characteristic curves. Pmayx is generated by a specific
combination of voltage and current, and the combination’s coordinates represent the MPP.

Tsc Vmax, Imax

Pma

Current (A), Power (W)

[e)

Voltage (V) Vo

Figure 3. PV module characteristic curves (I-V) and (P-V).

A slight change in atmospheric temperature and irradiance affects the module’s
performance. Since module Voc decreases as temperature rises [21], the power output yield
of the PV system will decrease. Figure 4a,b show the temperature variation effect on PV
module (I-V) and (P-V) curves.

° Pmax

Isc T

S T: S I

T T:— 5 :

g 2 Ts

3 Ti=Te>Ts e Ti>T2>Ts

0 Vi V2 Voe 0 Vi V2 Voc
Voltage (V) Voltage (V)
(a) (b)

Figure 4. Temperature variations effect on PV module: (a) I-V curve and (b) P-V Similarly, the output

of PV modules is also affected by the change in solar irradiance “W w/m?”

, as the output current
of PV module depends on irradiance. As irradiance increases, the PV module output current also
increases. Thus, the PV module can generate more output power. Figure 5a,b show the effect of

irradiance change on PV module (I-V) and (P-V) curves.
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Figure 5. Irradiance variation effect on PV module: (a) I-V curve and (b) P-V curve.

3. Partial shading Effect

PV systems are extremely susceptible to partial shading. On account of various
environmental conditions such as rain, clouds, and storms, it is not possible to obtain
uniform irradiance at all times. In addition, PV array also suffers shading from nearby
buildings and trees. This shading effect leads the PV module to yield less output power [22].
PSCs can lead to the following;:

e Non-linear PV module (I-V) characteristic curve with multiple LMPP. As a result,
shading causes hot spots and damages the solar cells;

o  Current and voltage mismatch in PV array;

e  Many peaks in the (P-V) characteristic curve with an increase in shading conditions.

Shading one cell results in a drop of current flowing through it when compared to the
unshaded cells of its string. As a result, unshaded cells are forced to carry high current, and
shaded cells will be restricted to the string current. This leads to a drop in the output power
of the PV string. A bypass diode is connected across the shaded cell string to moderate
the effect of shading. Through this, unidirectional flow of current is achieved. Figure 6a,b
shows the effect of partial shading on (I-V) and (P-V) characteristics of PV system.

MPP
400 -0,
5 Im ] Power Loss /
Current Loss ——> \ ML Power GMPP
_ P '"'"_":.'"'":.:Q\ _ 300 “‘.‘ E
< 3 2 o
3 ' 5
& ! £ 200
(3 . ~
2 1
1
! 100 [
1 \4 |
m !
'
0 : : : o 0 ; - ; ] N
0 20 40 60 80 100 0 20 40 60 80 100
Voltage (V) Voltage (V)
(a) (b)

Figure 6. Characteristics of (a) I-V and (b) P-V under PSCs.

4. MPPT Algorithms

Each PV module has a different MPP in different atmospheric conditions. Thus,
to extract maximum power from it, MPPT algorithms are used. These algorithms are
imposed through electronic converters. Though these techniques enhance the performance
of PV system, designers are generally concerned about tracking GMPP under PSCs. These
algorithms are implemented through microcontrollers. The duty ratio of the DC converter
employed is adjusted by these algorithms after frequent sampling of some PV module
parameters. This changes the impedance seen by the PV module, resulting in achieving
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maximum power. These MPPT techniques are classified as shown in Figure 7. The following
sections explain the basics of these techniques comprehensively, while recent advancements
in each are listed in the tables at the end of each classification separately.

Fractional Short
> o Ant Colony
Circuit Current > Optimization
Particle Swarm
Fractional Open > .
> Circuit Voltage Optimization
Artificial Bee
N Incremental B Colony
Conductance
Gray Wolf
Perturb & Optimization
—> Conventional > Ob .
servation + Salp Swarm
Algorithm
MPPT Techniques
< Swarm Intellegence
ﬂ\
N Artificial N Metaheuristic
Intelligence Based g techniques v
Fuzzy Logic — Bio Inspired
> Contrller
— Firefly
Ly Artificial —> Algorithm
Neural Network
N Evolutionary —»|  Cuckoo Search
Algorithms
) Flying Squirrel
Search

Figure 7. MPPT Techniques Classifications.

4.1. Conventional MPPT Technigues
4.1.1. Perturb and Observe

The P&O MPPT technique is widely used due to its simplicity, ease of implementation,
fewer sensor requirements, and low actualized costs [23,24]. It is an iterative method of
tracking MPP. This technique works on the principle of minor change in PV array voltage
and monitors the resulting impact on power. This is achieved by varying the duty cycle
of the DC-DC converter employed in the system. With these perturbations, the change in
power can be determined. If power is increased by increasing the voltage, the operating
point of the PV module is on the left side of the P-V curve. If, on the other hand, power
is reduced with the increase in voltage, the PV module operating point is on the right
side of the P-V curve. As a result, for tracking MPP, the direction of perturbation must be
such that it converges towards a precise end. Thereafter, this iteration process is continued
until MPP is reached. Though the conventional P&O technique works well in stable
environmental conditions, it fails to track MPP in PSCs [25]. To overcome this drawback,
P&O are modified, as reported in [26]. Steps to demonstrate the working of this technique
are shown in Figure 8.
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( Start )
4
Measure PV

Module V(n) & I(n)

Y

P(n)= V(n) X I(n)

Yes @

Y
No @ Yes  No ‘ Yes
f R 4 A

Increase the Duty Cycle Decrease the Duty Cycle

L Update the Parameters

Y

Figure 8. P&O-based MPPT technique [24].

4.1.2. Incremental Conductance

This technique is an improved version of P&O and can track MPP in a rapidly changing
environment [27,28]. The principle fact of this technique is based on computing the slope
of power “p” on the P-V curve. Since instantaneous power is given as the product of
instantaneous voltage and current,

p=0vXi (5)

The P-V curve slope can be computed as

d(v X 1)
op/dv =
p/ov v
oi
i+v ( ay) (6)
The following conditions can be drawn from Equation (6):

If 0i/a0 = —v/i dp/dv =0 At MPP

If 9i/o0 < —v/i dp/dv < 0 At the right side of MPP

If 9i/ov > —v/i op/dv >0 At the left side of MPP

As a result, the INC approach tracks MPP by comparing incremental conductance
with instantaneous one [28]. Although INC can show zero oscillations in steady state, it
acts the same as the P&O technique in transition states. Figure 9 shows the flowchart of the
INC approach for tracking MPP.
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»( Return )<

Figure 9. INC-based MPPT technique [27].

4.1.3. Fractional Open-Circuit Voltage Technique

FOCV MPPT technique is an indirect scheme to track MPP and can be utilized for
low-power functions. This technique utilizes the principle that shows linear relationship

between Vipp and V:
Vinpp 2 b X Ve @)

“b” lies in a range of 0.71 < b < 0.78 [29]. Its value is mainly dependent on module and
environmental conditions. Although the technique is simple, FOCV suffers from power
loss while sampling V.. A flowchart of the FOCV method is shown in Figure 10.
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( Start )
A
Sample Voc
Initialize ‘b’

Y
Evaluate Vmodule =b X Voc |

Vmodule= Voc

Figure 10. FOCV-based MPPT technique [29].

4.1.4. Fractional Short-Circuit Current Technique

This technique is also an indirect method for tracking MPP and is similar to FOCV.
The FSCC technique utilizes the fact that there exists a linear association between Impp
and Ig.:
Ipp =~ d X Isc (8)

The range of “d” lies in 0.78 < d < 0.92 [30]. This technique also suffers from the
drawback of power loss while measuring Is. during MPPT. A flowchart of the FSCC
technique is shown in Figure 11.

( Start )
Y

Sample Isc
Initialize ‘d’

i
<

Y
Evaluate Imodule = d x Isc

Update ‘d’

No

Yes

Figure 11. FSCC-based MPPT technique [30].

These conventional techniques are still used as a baseline for tracking GMPP in PSCs.
Table 1 summarizes recently reported works based on these principles, followed by a
discussion of their pros and cons in Table 2.
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Table 1. Taxonomy on recent reported work on conventional techniques to track GMPP.

Optimization Best optimization . Improved GMPP Irradiance Shading Tracking
Authors [Reference No.] Techniques Techniques PV Module Py, (W) PV System Size GMPP (W) (%) (W/m?) Patterns Time (s)
Numan BA etal. [31] _ P&O Variable-step P&O 71.8 2PV module in 29.22,116.1,106.2 0 200, 700, 800 Uniform 2,48
Variable-step P&O series
. P&O, ACO, 5 PV module in .
Gil-Velasco A et al. [32] ACO-P&O, Proposed Proposed 250 series 4497, 30.49 102.9, 35.15 1000-200 Uniform 1.12
. P&O, Modified P&O 3 PV module in 6037, 5387, 7051, 8.30, 31.19, 61.42, .
Efendi MZ etal. [33] Modified P&O 50 series 7385,6322 31.63, 27.69 946-828 Uniform NA
) Conventional INC 25.1,40.18 0.039, 0.424, . 0.3,0.35,
Shang L et al. [34] Proposed INC Proposed INC 49.8 1 PV module 251.27.61 0.199, 0217 800-300 Uniform 0.16,0.05
INC 98.981, 94.097, .
Zand SJ et al. [35] SP-INC SP-INC 100.17 1X1 81.292 1.811,1.179, 1.615 1000-800 Uniform NA
FOCV
Baimel D et al. [36] PC SPC NA NA 27.11,15.76, 0483 0:2311.01,0.89 1000-200 Uniform NA
SPC 10.98, 0.83, 11.03
Hua C et al. [37] oM Proposed 60 4PV module in 470.95 727 1000-300 Uniform 0.043, 0.049
roposed series
Analytical FOCV 3 PV module in
Nadeem A et al. [38] Offline FOCV, Proposed 245.328 series 438.15 89.67, 0.51 1000-600 Uniform NA
Proposed
Fapi CBN et al. [39] FSCC, Proposed Proposed 145 1PV module 85 13.33 NA NA 0.7
Sarika EP et al. [40] Pmp‘\’fssg'fxzszsyp&o' Proposed 100 1PV module 76.50, 65.27 4.08,2.99 1000-600 Non uniform 0.01
Proposed INC
LiCetal. [41] Fixed-step INC Proposed INC 178.4 NA 175.6 1.738 1000-0 Non uniform 0.38,0.14, 0.165
Variable-step INC
Proposed,
Owusu-Nyarko I et al. [42] Variable-step-size Proposed 60 NA 596.9 0.285 1000-400 Non uniform 0.0126
methods
, PSO, DFO, INC, . )
Sarwar S et al. [43] Hybrid, CS, FA, ACO Hybrid 315.072 4X1 511.4,780.4 57.35,9.6 1000-200 Non uniform 0.48,0.20
" Hybrid, DFO, ACS, . 4 PV module in 1259.9,794.8, 1.933, 0.353,7.32, .
Hafeez M A et al. [44] WCA, PSO, P&O. Hybrid NA series 593.2, 1077.0 0.937 1000-200 Non uniform 0.16,0.25,0.4,0.17
Gonzélez-Castafio C et al. [45] SPF-P&O, P&O SPF-P&O 200 4PV module in 405.63, 331.85 459,30.53 1000-120 Uniform & Non NA

series

uniform
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Table 2. Pros and cons of recent work based on conventional techniques.

Authors [Reference No.]

Pros

Cons

Numan BA et al. [31]

Gil-Velasco A et al. [32]

Efendi MZ et al. [33]

Shang L et al. [34]

Zand SJ et al. [35]

Baimel D et al. [36]

Hua C et al. [37]

Nadeem A et al. [38]

Fapi CBN et al. [39]

Sarika EP et al. [40]

LiCetal. [41]

Owusu-Nyarko I et al. [42]

Sarwar S et al. [43]

Hafeez M A et al. [44]

Gonzalez-Castario C et al. [45]

Less computationally complex

High convergence time
High tracking efficiency

Additional current Voltage sensors are
required

Ability to judge the correct direction of
disturbance
High tracking accuracy

Simple to implement
High tracking efficiency

Improves overall system efficiency

Accurate tracking
Low tracking time

Can continuously measure Voc
without disconnecting PV module
High tracking efficiency

Low ripples in output power
Improved tracking efficiency

Low tracking time
Low ripples in output current

Automatically regulated step size
enhances the tracking performance
Fast dynamic response

Dynamic performance is enhanced by
adjusting scaling factor in accordance
with irradiance.
Low overshoot.

High tracking efficiency
Low settling time.

High tracking efficiency
Ability to handle complex partial
scenarios

Robust and fast tracking response
No oscillations in steady state
under PSCs

Oscillations around GMPP
Power loss while tracking
GMPP

High tracking time

Oscillations around GMPP
Power loss due to oscillations
around GMPP

No record of tracking time is
given

Low oscillations around GMPP
results in power loss
Significant boost in GMPP is
observed

Oscillations are GMPP cannot
be removed
Tracking time is not recorded

Power loss include switching
loss, switches loss, and output
power of semi pilot cell

Additional sensor is required
Low oscillations around MPP

Three sensors are required to
sense Voc

Computationally more complex
No record of tracking time

Two sensors are required for
current and irradiance
measurement

Initial setting of more
parameters are required

Oscillations around GMPP

Oscillations in steady state
Highly intricate in design

Oscillations in steady state

Oscillations around GMPP
Highly intricate in design.

Oscillations around GMPP
Computationally more complex

Low tracking factor at the time
of system start up
High settling time

4.2. Swarm Intelligence MPPT Techniques

This section of the paper explains various swarm intelligence MPPT techniques in
detail and reports the recent work done with these techniques to enhance MPPT along with
their pros and cons in Tables 3 and 4 respectively.
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4.2.1. Ant colony Optimization

Ants’ cooperative search behavior for the shortest path between source food and their
colony motivates ACO. Firstly, ants scurry about aimlessly. When any ant finds a food
source, they return to their home along with the food, leaving pheromone trails at their
back. This pheromone is composed of particular artificial compounds that are received by
living organisms to send messages or codes to other members of the same class. If other
colony ants come across such a route, they will follow it to the food source rather than
roaming randomly.

They leave pheromones when they return to their territory, boosting the existing
pheromone strength. The potency of the pheromone is condensed as pheromone dissipates
over time. The ants ultimately regulate and find the shortest path to the food source.

The procedure starts with a single colony of (artificial) ants that has been randomly
positioned in that colony. Suppose ants are represented by N parameters. Each ant in the
colony uses its magnetic power to entice another ant. They travel from the lower potency
zone to the higher potency zone on the basis of attractive force. The attractive power
resolute after each iteration cycle and the ants travel in the direction of the best option
based on the results.

Consider a problem in which “n” artificial ants (parameters) must be tuned so that
A > n. The solution register stores “A”, which represents the primarily created arbitrary
solutions. The result afterwards sited according to their fitness significance, f (si), is shown
in Equation (9):

f(s1) <f(s2) <f(sg) <f(sq) .ovvrevvrern... < f(sn) )

Similarly, fresh arrangements are created to determine the placements of these ants
with the help of Gaussian kernel function sampling for ith dimensions and kth solution
as [46]

2.2
"' _ A N _ A 1 2(&i )2
Gi(x) = Zk:l wi gy (x) = Zkzl Wy \/E'DZ;(E 3 (10)
&L, QL, and wy can be evaluated as
i vA s sk
B=e€) 41 a7 (11)
p= g, b, [ ,pﬁA} = [sg,sg, ....... Siyoeii. siA} (12)
2
1 a ;k—l)z]
= (pA) 1
U= oA ot (13)
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The investigative cycle will be continual depending on the quantity of parameters
that needs to be improved. First, we generate “B” novel solutions that sum up the initial
“A” solutions. Afterwards, A + B solutions must be placed in the search box. Soon after,
A’s most effective arrangements are re-established. The entire cycle is thus re-hashed for
the required amount of iterations [47]. Effective tracking of GMPP, high convergence rate,
and a lesser number of iteration makes ACO more advantageous than traditional MPPT
techniques. A flowchart of ACO is shown in Figure 12.

Initialize ACO
parameters & solutions

Evaluate Voltage, Current &
Power for each artificial ant B

Evaluate Gaussian kernal, Standard
deviation, Mean & weight function
for each artificial ant

Y
N
Re-initialize

Y the solution
Rank (A+B) solution, while A
retain ‘A’ solution
i=i+1, start with first ant
(Ant Num=1)

Is 1> imax
(maximum iteration
number)?

s operating
conditions changes
suddenly ?

| Best solution is found |

Figure 12. ACO-based MPPT technique [47].

4.2.2. Particle Swarm Optimization

PSO is a random search technique. It utilizes the principle of maximizing nonlinear
continuous function. It follows the rules of natural manner of fish schooling and flock
gathering. Several combined birds are used in this technique, each of which represents a
particle. In search space, every particle has a fitness value mapped by a vector of position
and velocity. The direction and steps of every particle are determined by their fitness value.
Following that, all particles present a solution by combining the information gathered
during their own search process to arrive at the optimal solution. This technique starts
with random solution groups based on particles position and velocity in the search area.
With the help of cerebral and social trade-off, the fitness value of particles is adjusted after
each iteration. Because of the trade off, shifts in individual and community best position
are obtained. Individual particles’ best position is also remembered by every particle while
also accumulating the global best position [48].
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After each cycle, the swarm tries to determine the optimum solution by stimulating
the position and velocity. Following that, a global maximum is swiftly achieved by each
particle. For the kth cycle, the nth molecule refreshes the condition with position “Y” and

“u_ 1

velocity “v” as given below

Un (k + 1) = Woy (k) + a1 (pp,best—k — Yy (k)) + a2 (pg Jbest — Yy (k)) (14)

Yu(k+1) = Yy (k) +vn(k+1) (15)

If, with an improvised scenario as in Equation (16), the initialization requirement is
satisfied, the technique update is in line with Equation (17):

ft(Ynfk) > ft (Pp, heshk) (16)
Pp, best—k = Yok 17)
“ft” must be maximized. Figure 13 shows the flowchart of the PSO algorithm to

track GMPP.

In the search space,
randomly initialise particle
position ‘Y’ and velocity ‘v’.

Y

Compute each Set P p,best-(k-1) at P p,best =
particle fitness value current fitness at Yk

Y Y

For every particle set :
Personal best fitness & position
= current fitness & position

A

Set Global best fitness =
minimum of ( local best fitness)

Is ft (Yi) > ft (pp.best -(k-1)) ?

Is current fitness >
global best fitness ?

Set global best fitness

ft ( P g best ) = current
+ fitness ft (Yk)

..................................

--------------- o

Update each particle
‘Y? & ‘V,

Con_lput‘e ﬁtn?SS Output : global best
function ‘ft(Y) for position ( P g.best )

each particle *

Reached the
GMPP?2

A A

Figure 13. PSO-based MPPT technique [48].

4.2.3. Artificial Bee Colony

The ABC approach is based on honey bees’ foraging intelligence. This approach is
a sensible, modern, and speculative global optimization technique. Honey bees reside
inside their hives and use a chemical exchange (pheromones) and the shake dance for
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their communication. If a bee finds a honey source (food), it takes food back to its hive by
performing a shake dance to trade off the food-source site. The potency and duration of the
shake dance show the richness of the food source discovered.

Three classes of artificial bee are formed by ABC algorithm, i.e., employed, scouts, and
spectator bees. The hive is divided equally between employed and spectator bees. The main
aim of whole bees group is to find the best honey source. Employed bees seek out a honey
source (food) initially. They revisit their hive and communicate their findings with other
groups of bees through shake dance movements. By carefully examining the shake dance
of employee bees, spectator bees try to find the food source, while scout bees imprecisely
search for new food sources. Thus, with this communication and coordination amongst
them, artificial honey bees arrive at ideal solutions in the possible shortest time [49,50]. The
ABC algorithm uses five phases to track GMPP as discussed below.

Phase 1: Initialization phase

First, create N food sources at random in the hunt arena. The algorithm’s performance
improves with the increase in size of the group. Each solution Y; is an n-dimensional vector
that dispenses the entire employed bee equivalent to each distinctive source of food as per
Equation (18) with n optimization parameter numbered as

Yi k= Ymin,i + mnd[O, 1] (Ymax,i - Ymin,i) (18)

i=1,23,...... Ns& k=1,2,3,......... n

Phase 2: Employed bee phase

The goal is to chase the food source location in the exploration region with the most
nectar accessible (i.e., GMPP). Every employed bee progresses to its new position (X, k) in
the immediate space by means of the previous position value (Y;) to maintain the previous
position value (Y;) securely in memory according to Equation (19):

Xip = Yix +aix (Yi,k - yj,k) S i=1,23....... N; (19)

Yj is other than Y;, i.e., i #j, and & ranges from [—1, 1].

A gluttonous assortment method is adopted by employed bees after they search a new
food source. The quantity of nectar present at the previous and latest sites is compared in
this technique. As a result, a better option is preserved.

Phase 3: Spectator bee phase

On the basis of the information of the food source obtained by spectator bees from em-
ployed bees with their shake dance, spectator bees use a probabilistic selection mechanism
in order to identify food sources (solutions) with f(x) fitness factor according to Equation
(20).

b = 7{(’”) Si=1,2,3, .......
Enil (xi )

Phase 4: Scout bee phase

Scout bees can locate fresh feasible solutions on the basis of Equation (20) in the vicinity
of the chosen food source. In any event, even after a thorough investigation of the entire
investigated area by employed and spectator bees, the food-source fitness value remains
unaffected for the existing step. The same employed bees turn into scout bees, and the
scout bees use Equation (18) to hunt for new possible solutions in the next step.

Phase 5: Conclusion phase

In case that output power does not show any further improvement, the method comes
to an end. The procedure, on the other hand, will restart when there is a fluctuation in

»Ns (20)
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output power on account of various factors. Irradiance variation is one amongst them, and
such changes can be represented as

Py, — P
S Y A 1)

va old

If Equation (21) is satisfied, ABC again starts searching GMPP. Hence, ABC works
well in PSCs. Figure 14 shows a flowchart of the ABC technique.

( Start )

N
Set the control Parameters &
Initialize Employed bee location
Yik (i.e initial duty cycle)
| Compute initial duty cycle |<———

Initialization phase

Employed bees phase *
Alter Yik (i.e initial duty cycle) &
compute them; Re-initialize the
P Start greedy selection process; duty cycle as per eq
Evaluate each food source (18) & cycle=1
probability of selection Pi

Spectator bees phase +

Is operating
conditions changes
suddenly ?

Select spectator bees &
compute their duty cycle;
Start greedy selection process

Scout bees phase +

} Best solution
is acheied

A

Determine the scout bees' T (Stop )
abandoned duty cycle;
Replace & re-evaluate them Best duty cycle till
according to eq (18) achieved ‘Dbest’

N 4 A

Stores best global duty
cycle till achieved;
cycle =cycle + 1

Y

N Is power Y
unchanged ?

Figure 14. ABC-based MPPT technique [50].

4.2.4. Grey Wolf Optimization

The GWO technique was proposed in 2014. It is motivated by social stratification
and the gray wolf’s behavioral hunting personality [51]. Grey wolves, as a whole, live
in packs with typical size of around 5-12. According to the hierarchical chain shown
in Figure 15, grey wolves are classified into four categories based on their community
supremacy. Alpha («) wolves are the pioneer at the peak and are thus regarded as the best
sources of solutions for a given optimization problem. Beta (3) wolves pursue the (x) and
assist them in fulfilling their tasks. They take («) wolves’ position if the (&) wolves die. The
delta (6) wolves make up the pack’s hunters, keepers, and explorers and are the second
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end-class. As a result, () and (8) wolves represent the second- and third-best solutions,
correspondingly. Omega (w) wolves are the last group, which make up the youngest
members and therefore stand for the residual solution [52].

/a\ Leaders
/ ﬂ Assist the leaders
/ \ Hunters, Keepers
5 & Explorers
(0]

/

Figure 15. Grey wolves hierarchy sequence.

Young Members

The supremacy of wolves is reduced as the position of the wolves lowers in the
hierarchical order from top to bottom. Aside from the community order of wolves, the grey
wolf’s social behavior is also heavily influenced by aggregation hunting. On the basis of
this, the GWO algorithm’s mathematical model analyzes the following measure [52]:

Step-1: Social Hierarchy

The GWO technique presumes () as the fittest solution, followed by (f3) and (6) as
the second- and third-finest solutions, to simulate the hierarchical system of wolves. (w) is
thought to represent the left-over contender solutions. Thus «, 3 and 6 wolves guide the
hunting process with w wolves trailing behind.

Step-2: Tracking and Encircling the Prey

Grey wolves frequently encircle prey all through the hunting phase, expressed mathe-
matically by Equations (22) and (23) (with iteration “i”). Equation (22) calculates a wolf’s

—

distance vector d from prey with current iteration.

— - = -
d = |B Xp., (i) — Xp (i) (22)
- - - =
Xp(l+1) = XPGW(Z) —A.d (23)
—
A=2ar—ad (24)
—
B =2r, (25)

r_l) &r_2> ranges between [0, 1], and a= linearly decreases from 2 to 0 during each iteration.

Step-3: Hunting

Using arbitrary vectors H and 13, any place in between the points can be reached by a
wolf. The first three best solutions (i.e., «, 3, and & wolves’ locations) are initially saved.
Other probing wolves alter their locations based on the top solution knowledge. As a result,
a grey wolf can use this technique to improve its position in any arbitrary direction.

Step-4: Attack the Prey

Since in each cycle, the a drops linearly from 2 to 0, therefore, when |A| < 1 is
achieved, the prey comes to a standstill in an unchanging position, and the grey wolves
attack it.

Step-5: Searches for Prey

If condition [A| > 1 is achieved, grey wolves are compelled to look for the prey. The
exploration approach is depicted in this procedure where the wolves wander away from
each other in search of prey, then return to attack the prey.

In addition to this, a flowchart to explain the operation of the GWO-based MPPT
technique is depicted in Figure 16.
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| Initialize GWO technique |

Arbitrary develop duty
cycle ‘D’ for each wolf

A4

| Measure solar array Vpv & Ipv

4

| Evaluate solar array Ppv |

&
<

Y
@ Update Phest i = P(i) |

N
| Update Poest.i = P(i-1) [€———
Y

Update Gbest

n=ntl 1]
Next Wolf

i.e All wolves fitness
alue computed ?

s convergence
criterion met?

Figure 16. GWO-based MPPT technique [52].

4.2.5. Salp Swarm Algorithm (SSA)

SSA was proposed in 2017 and mimics the salps’ swarm behavior. Salps are barrel-
shaped, jellylike zooplankton with jellylike bodies, and they live in the deep, warm waters
of the ocean. It moves by swimming with its gelatinous body, which pumps water all the
way through it. It moves by constructing a chain formation of one leader, and rest follow in
the chain [53]. Figure 17 shows its flowchart.

At first, a candidate solution for the leader is updated and then for the followers with
the solutions found for the leaders. Let the entire chain’s primary solution be given by
Xmn, Wherem =1,2,3,....... ,Mandn =1,2,3,...... , N represent salp chain size and
verdict variable numbers, respectively. The leader’s candidate solutions are rationalized by

Xi = Put an{ (X = X, )ax + X, )as > 05 20

X = o~ { (X — X; )ag + X, )az < 05 @7
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Random numbers a; and a3 are distributed evenly between [0, 1], as per the following
Equation:

a) = 267(41'/1)2 (28)

where i= current iteration, and I= iterations maximum count.
This solution aids in updating the followers’ candidate solutions:

X Xn—
X = S L S (29)

If, after modifying the candidate solutions as recommended in Equations (26), (27),
and (29), the entire chain candidate solutions still breach the minimum and maximum stan-
dards of verdict variables, the candidate solutions must be reinitialized at the appropriate
minimum and maximum values of verdict variables.

Initialize Salp Population |«

4

»1 Compute each Salp initial fitness value

Y

Rectify best fitness value particle ;
Set best particle as leader

Y

Upgrade weight constriants

Y

Set Food fitness & position =
best Salp fitness & position

Y

Upgrade iteration parameters

Y v

Upgrade leader Salp position
+ Is initial operating
A~ conditions changed?
Upgrade follower Salp position

N

Adjust Salp swarm within space wound

Is convergence
criterion achieved?

Best solution is produced

Figure 17. SSA-based MPPT technique [46].
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Table 3. Taxonomy on recent reported work on swarm intelligence techniques to track GMPP.

Optimization Best Optimization . GMPP Improved GMPP . 2 . Tracking
Authors [Reference No.] Techniques Techniques PV Module Py, (W) PV System Size W) (%) Irradiance (W/m?) Shading Patterns Time (s)
Krishnan SG et al. [54] Pmposei‘lﬁjco' PSO, Proposed ACO 20 ‘31 9 ‘é 63, 48.75 1.00,32.29 NA Non uniform 1.5,1.56
Sridhar R et al. [55] ACO, P&O ACO NA 3 varggjsule in 614 261.1 NA Non uniform 0.076
Alshareef M et al. [56] APSO, PSO, P&O APSO NA NA 40.56, 73.33, 76.51 13.07,4.29, 73.49 NA NA 1.9-24
Panda KP et al. [57] Mgéiglelgl&PgO Modified PSO 60 4x1 116.4 105.3 1000-400 Non uniform 0.9
Gopalakrishnan SG et al. Proposed PSO 4x4 .
56] PSO, PEO Proposed PSO 20 o 56.25, 48.75 18.42,32.29 NA Non uniform 19,17
Mao M et al. [59] Pr‘},ps‘ged' Proposed 83.2824 3x1 24531,60.8,14838  —0.28,32.83,1.54 1000-300 Non uniform 0.012-0.016
LIPSO, P&O 60.64, 48.76, 36.58, 4.98,12.79, 8.80, .
Koad RBA et al. [60] INC, PSO LIPSO NA 4x1 2429, 11.67 16.23 1000200 Uniform NA
P50 148.46, 122.81
Belghith OB et al. [61] Fuzzy_TS PSO 150 1 PV module : 55’ 67 o 1.48,2.36,5.69 1000-400 Non uniform 0.003-0.043
P&O :
3 PV module in
series, 4 PV
Obukhov S et al. [62] VCPSO, VCPSO 320.4 module in series, 8 9602, 478.8, 477.8, 0.376,0.041, 0.378, 1000-100 Non uniform 0.48-0.66
CFPSO ¢ 3123 0.192
PV module in
series
) OD-PSO 3 PV module in )
LiH etal. [63] Firefly, P&O-PSO OD-PSO 101.3 oo 112.85,110.85 —10.48, 4.00 1000-300 Non uniform 1.64,2.08
Suhardi D et al. [64] GH‘\’I"CO GWO 200 NA 203.2,142.2,35.9 112'}?& 276 1000400 Non uniform 0.55
EGWO .
4 PV module in 522.629, 401.044, 0.938,2.707, —0.05, )
Kumar CS [65] GP‘éVOO EGWO 200 series, 2 X 2 522,763, 401.027 791 1000-400 Non uniform 3.6-4.8
P&O, PSO
ShiJY etal. [66] GWO, GWO-P&O GWO-GSO 60 4x1 100.72 100.95 1000-300 Non uniform 0.64
GWO-GSO
Tlyas M [67] Modified GWO Modified GWO 100 4PV module in 444.65,435.76 0.234, 0.045 NA Non uniform 0.189,0.21
GWO series, 2 X 2
Kraiem H et al. [68] PSO, GWO PSO 249 4r V;:figgﬂe M 6456,6339,359.1  0.077,0.939,0.447 1000-200 Non uniform 0.0561-0.071
SSA
PSO
Jamaludin MNI et al. [69] g‘%‘g SSA 59.85 4x1 136.3,114.3,176.9 23.5,107.7,58.93 1000-500 Non uniform 0.22,2.3,42
BOA
HC
Hybrid SSPSO
P&O 4PV module in
Dagal I et al. [70] FA SSPSO 60 odule 124.09 6.55 1000-400 Non uniform 0.29
DE series

ISSA
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Table 3. Cont.
Optimization Best Optimization . GMPP Improved GMPP . 2 . Tracking
Authors [Reference No.] Techniques Techniques PV Module Py, (W) PV System Size W) (%) Irradiance (W/m?*) Shading Patterns Time (s)
SSO 3 PV module in
. . 294.8,41.8,525.4, 5.58,10.04, 39.92, .
Krishnan S et al. [71] \éVVO\Ig SSO 220.5 sg;‘(lgs 38.5, 4452, 02.7 14.67,14.97, 28.43 750-500 Non uniform 0.0245-0.0749
P&O, FFA, 4 PV module in
Farzaneh J et al. [72] PSO, DE, ISSA 60 i 115.59 6.53 1000400 Non uniform 1.22
SSA, ISSA series
Ali MHM [73] P&O, SSO SSO NA NA 843.5 2.55 200 Uniform 0.72
. , Hybrid SSPO . 4 PV module in 50.3,85.1,78.2, 27.66,0.09, 24.32, .
Balaji V et al. [74] SS, PO Hybrid SSPO 50 series 9.1 51.10 1000-200 Non uniform 0.52-0.57
Restrepo C et al. [75] Gﬁ,cpﬁfgo ABCP&O 200.143 4rv ;232:16 in 597.95 5419 900-120 Non uniform NA
Sawant PT et al. [76] ABC, PSO ABC 75 NA 74, 61 2.77,3.38 1000-800 Non uniform NA
. P&O, PSO . 2 PV module in .

LiNetal. [77] ABC. MABC Modified MABC NA series 850 70.68 1000-800 Non uniform 0.39

Wan Y et al. [78] SSA'GW%}:&O' Pso, SSA-GWO 35 3P V;Zr"igg‘le N 048844556932 0.788,28.60, 1.612 1000-300 Non uniform 0.46, 0.53, 0.47

IPSO, PSO-P&O, 119.9720, 69.9888, .

Hayder W et al. [79] ANN-PSO IPSO 120 NA 94.9073, 45.3924 NA 1000400 Non uniform 1.5

Almutairi A et al. [80] OGWO, P&O OGWO 60 NA 60, 47.8,23 32.77 NA Non uniform 0.5, <1,
TSA-PSO, FPA, GWO, 3 PV module in 103.36, 122.88, 22.20,5.97, . 0.38, 0.54,
Sharma A et al. [81] TSA, PSO, P&O TSA-PSO 85 series 156.84 1311 1000-300 Non uniform 0.40
246.6
I-ABC, PSO, P&O, ’ 0.08, 2.00, 0.881, . 0.38, 0.63, 0.89, 1.48,

Chao K-H et al. [82] 'ABC I-ABC 20 4x3 198.6, 1;178.18, 107.1, 17.43, 66.88 NA Non uniform 114

Alaraj M et al. [83] HGWO, PSO, INC HGWO 450 5x5 8256, g‘é‘é;' 6347, 1323, gg% 20.50, 1000400 Non uniform 0.08,0.07
. y Proposed, 3 PV module in .

Windarko N A et al. [84] DE, FE, PSO, GWO Proposed 100 series 172.9,170.9, 80.9 5.81, 65.60, 226.2 1000-100 Non uniform 0.45,0.41, 0.52
ICPSO, P&O, INC,
Chawda G S et al. [85] I?S’gia;see‘illﬁ% ICPSO NA NA 97.3, 60, 94.2 7.955,11.77 1000-300 Non uniform 01

PSO-GA-FLC
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Table 4. Pros and cons of recent work based on swarm intelligence techniques.

Authors [Reference No.]

Pros

Cons

Krishnan SG et al. [54]

Sridhar R et al. [55]

Alshareef M et al. [56]

Pandal KP et al. [57]

Gopalakrishnan SK et al. [58]

Mao M et al. [59]

Koad RBA et al. [60]

Belghith OB et al. [61]

Obukhov S et al. [62]

LiHetal. [63]

High tracking efficiency
Less iterations are required to achieve GMPP
Less ripples in output power

Ability to achieve high GMPP in PSCs

Can distinguish between LMPP and GMPP
Fast dynamic response

No oscillations in steady state
Both good and worst position of particle is considered

Ability to achieve true GMPP in PSCs

With adaptive inertia factor, tracking time is improved
Low MPP tracking error in PSCs

High tracking efficiency
Less iterations are required to reach at GMPP

Takes less time to reach at MPP
High accuracy

Optimal parameters of PSO is conveniently selected

Required less number of iterations
Low power fluctuations

Convergence time can further be reduced
Computationally complex

Tracking time is high when compared with conventional technique
Required more numbers of iterations

Tracking time can further be improved
Oscillations around GMPP

High computational complexity
Required more number of iterations

Oscillations in steady state
High tracking time

Computationally more complex
Oscillations around GMPP
Require more number of iterations

Algorithm estimates three sets of duty cycle making it more intricate in
design

Cannot track GMPP in some changing irradiance condition

Time to track GMPP can be further improved

High tracking time
Trapped in LMPP is some cases when tested on hardware
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Table 4. Cont.

Authors [Reference No.]

Pros

Cons

Suhardi D et al. [64]

Kumar CS et al. [65]

ShiJY etal. [66]

Ilyas M et al. [67]

Kraiem H et al. [68]

Jamaludin MNI et al. [69]

Dagal I et al. [70]

Krishnan S et al. [71]

Farzaneh J et al. [72]

Ali MHM [73]

Low power loss while tracking GMPP

Low standard deviation

Highly accurate
Hunting process is accelerated by varying decision weight

High tracking efficiency
Algorithm modified the surrounding and hunting behavior that finds the
optimum solution correctly

Low tracking time
Low oscillations around GMPP

High accuracy
Zero steady state oscillations
High convergence speed

High tracking efficiency

No periodic tuning is required
Low computational complexity in comparison to other metaheuristic
approaches

No oscillations around GMPP
High tracking efficiency

High tracking efficiency

Cannot achieve GMPP is some shading conditions
Tracking time can further be improved

Very high tracking time
Trapped in local GMPP

Comparatively more iterations are required results in power loss
Intricate to design

Oscillations around GMPP
Computationally more complex

High computational complexity

Inability to deal with rapidly changing environment conditions
Information regarding change in landscape fitness is not considered while
tracking GMPP

Required periodic tuning

Not tested on hardware setup

Oscillations around GMPP
Requires large number of iterations

High tracking time
Computationally more complex to design

Oscillations around GMPP
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Table 4. Cont.

Authors [Reference No.]

Pros

Cons

Balaji V et al. [74]

Restrepo C et al. [75]

Sawant PT et al. [76]

LiNetal. [77]

Wan Y et al. [78]

Hayder W et al. [79]

Almutairi A et al. [80]

Sharma A et al. [81]

Chao K-H et al. [82]

Alaraj M et al. [83]

Windarko N A et al. [84]

Chawda G S et al. [85]

fewer initializations of parameters
reduced oscillations in initial stage of tracking

Rapid control loops
Quick response

Highly accurate

High tracking efficiency

Accurate GMPP tracking
Low power fluctuations

High accuracy

Low fluctuation of power in steady state around MPP

Fast tracking capability
Less number of iteration is required

Low power losses during power-generation process

Low convergence factor
Low rise and settling time

High energy tracking capability
Random calculations are avoided which minimize unnecessary duty cycle

Low tracking time
INC is utilized to update particle position and velocity, resulting in high
dynamic response

Hardware validation is not done

High computational constraint

Intricate to design
Hardware validation is not done

Computationally more complex to design

Parameter initialization is required
Low oscillations in steady state

Temperature effect is neglected in testing

High tracking time
More number of iterations are required

High computational complexity

High tracking time in complex PSCs

Highly intricate to design

High cost of implementation

Computationally more complex
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4.3. Bio Inspired Techniques

This part of the paper elaborates various MPPT techniques inspired by biological
behavior of different organism. Additionally, various recent works done to track MPP
incorporating these techniques are tabulated in Tables 5 and 6.

4.3.1. Firefly MPPT Algorithm

Fireflies are beetles emitting light in the night and communicate amongst themselves
using a special light pattern. The light color formed by each species is unique. The FFA’s
hunting tactic is governed by firefly attraction, which is equivalent to brightness. A dimmer
firefly approaches a brighter one, and if their brightness level is the same as that of a certain
firefly, it will shift at random [86]. The key purpose of flashing in the FFA tactic is to allure
other fireflies and attract their target. The charm of fireflies is governed by the intensity of

“u_on

the firefly along with the objective function value. The value of attraction “i” is resolute by
the evaluation of other fireflies and is diverge on the basis of “i” and “j” fireflies” distance
“Dj”. Both can be evaluated as per Equations (30) and (31), with “D” as the distance
between two fireflies, “3” as an arbitrary constant that lies between 0.1 and 10, and “n” as
the dimension number.

U= Ho e‘ﬁD2 (30)

Dij =[x = xj| = 3/}, (xiy — xj4)? (31)

D = 1 is taken in MPPT problems because it is a one-dimensional case. A flowchart of
FFA is shown in Figure 18.

| Set firefly population I{*
Y

Evaluate the fitness value & set
the best value for each firefly
Y
By attraction, update the
fireflies light intensity

Select fireflies movement direction
as per attractive parameters

Formulate fireflies location &
fetch fittest firefly

Is convergence
riterion achieved 2

: Output the
L best solution

Is initial operating
ondition changed 2

Figure 18. FFA-based MPPT technique [46].
4.3.2. Cuckoo Search

This bio-inspired technique was reported in 2009 and is inspired by the cuckoo species
parasitic imitation tactic (brood-parasitism) [87]. Certain birds, such as cuckoos (Tapera),
engage in social parasitism. The Tapera is a knowledgeable winged creature that fits in
with the host fowls, and with this tactic, next-generation endurance is encouraged. Rather
than building its own nest, the cuckoo places its eggs in the nests of other flying species.
Primarily, the cuckoo bird (female) flies erratically in search of a nest with similar egg
characteristics to their own. After finding the best nest, cuckoo eggs have the utmost
opportunity of hatching, ensuring the new generation. The cuckoo makes a few attempts

7
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by assisting the incubating bird in laying their eggs in a suitable location and hence gives
itself a better chance. The cuckoo may occasionally throw the eggs of the host species from
the nest because host birds could be readily duped into recognizing the strange eggs. If
the host bird comes to know about the foreign eggs, the eggs will definitely be dumped
outside the nest. The host bird may even demolish the nest.

For optimization objectives, the CS approach is an effective meta-heuristic method.
Three idealized principles used to accomplish this strategy are as follows:

Every cuckoo bird merely lays one egg at a time in a hastily chosen host nest;
The cuckoos’ subsequent generation will be carried on by the superior eggs’ nest (i.e.,
the best solutions);

e In the hunt area, the entire number of reachable host nests is fixed.

Cuckoo birds represent the particles relegated to find the solution in the CS strategy
implementation, and their eggs indicate the current iteration’s solution to an optimization
problem. Searching for a nest is comparable to searching for food, and in CS, it is described
by Levy flight. A Levy flight “y” is an arbitrary stride where Levy distribution is used to
evaluate sizes of steps by using a power law [38]:

y=L77; (1<vy<3) (32)

Thus, “y” has an infinite variance. The new cuckoo solution (xI*1) for ith iteration

754 “"_ 1

cycle “i” and the nth particle “n” can be generated as

X, = xy +2( lewy (7)) (33)

"o

z” is a mathematical operator that represents the multidimensional problem’s entry-
wise multiplication.

In each iteration cycle, all particles transmit Levy flights until they find GMPP. Fig-
ure 19 shows the flowchart of the CS algorithm to track GMPP.

| Initiate nest ‘n” particles |

Evaluate each particle fitness
function (i.e initial power)

Generate new nest
randomly & replace
worst nest by it

v

Calculate fitness
function for generated

| Update global best nest (i.e Pg best) |

Find worst nest (i.e Pg,worst)
> : .
corresponding to Vimin
nest & update global

Y
Is destroy =1? Y
best nest

Use levy flight for generating

cuckoos new generation

| Evaluate each new nest fitness value |

Y

| Update the global best nest |

Is convergence
riterion achieved 2

Figure 19. CS-based MPPT technique [87].
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4.3.3. Flying Squirrel Search Optimization

This bio-inspired optimization approach to track GMPP was introduced in 2020 and
mimics the highly effective hunting tactic used by southern flying squirrels [89]. This
approach also mimics the squirrels” manner of buoyant headways in the air. The posture of
FS is referenced to as the feasible outcome vector and the comparable wellness is typical
food source, respectively.

The posture is divided into three districts addressing sets based on wellness value:

BS (hickory nut tree);
CBS (acorn nut tree);
US (ordinary tree).

Following assumptions are made while incorporating FSSO [89] in tracing GMPP:

The food supply point is similar to the power yield from PV;

DC converter duty ratio (d) in the MPPT approach is regarded as option variable,
i.e., the posture;

To reduce the tracking time, the FSSO approach is custom-fitted by eliminating the
occurrence of hunters.

The following steps are taken into account while implementing the FSSO technique.

Starting: Initially, FSs “N” numbers are placed at various locations. In the solution
area, the duty ratio of the DC converter can be estimated for “i” iteration count by these
points as follows:

ai = amin +

;i=1,23,...... N (34)

Wellness evaluation: The DC converter employed is gradually running with each
duty ratio in this progression (i.e., with each FS posture). Each food source feature shows
instantaneous power yield PV (9) for each “9”. This sequence is repeated for all “9”,
whereas MPPT goal wellness function “f(9d)” can be determined as

£(3) = max (PV(3)) (35)

e  Declaration and categorization: The duty cycle at which the system yields maximum
power is considered as hickory tree, while acorn trees are considered as the most
excellent FS positions;

e  Posture update: After the examination of occasional observing situation, the duty
cycle is updated, and wellness is assessed from that point.

Important conditions followed in FSSA are as follows:

Occasional observing conditions: These conditions help FSSA to avoid being stuck in
LMPP. The cyclic constant (Oc) and its base value (Opin) for a single-dimensional space
with “i and im” as the count of the present and maximum number of cycles allowed are

O =

o = (36)

Omin = 10e=% /3657 (37)

For investigating the superior search area, Levy distribution is employed. As a result,
the OTFS duty cycle is relocated.

e  Groove contemporized: Squirrels of hickory tree maintain their position. The squirrels
on acorn tree, on the other hand, find a way to access the hickory tree. The arbitrarily
chosen squirrel (ATFS) from normal trees chooses the hickory tree, while the leftover
(NTFS-ATES) is pressed to the acorn tree. The duty cycle is changed:

afthrl =0 + Hchd( ;u - Zt) (38)
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aéJtrl = + Hchd( Zt - aét) (39)
95" = 0y + Hehg (3, — 3l (40)

e  Convergence Resolution: If the utmost number of iterations has been reached, the
algorithm is terminated and gives the duty cycle at the point where the converter
follows GMPP.

e  Re-initialization: In rapidly changing environmental conditions, the duty ratio (FSs
posture) is reinitialized to hunt new GMPP in accordance with Equation (41).

Pi+l _ Pi
% > AP (%) (41)
po

The complete steps of FSSO algorithm in tracking GMPP are depicted in Figure 20.

| ¢

| Initiate FSSA parameters <€

Seti=1 [«

i

*‘

Arbitrary generate duty cycle
for each flying squirrel

+

Observe Vpv, Ipv & compute Ppv |

Y
G

Y
Observe Vpv, Ipv N Categorize FSs in Hickory,
& compute Ppv Acorn & ordinary tree FSs

X

s convergence
criterion met ?

s occasiona
observing condition
satisfied ?

Update OTFS Y
according to posture
update section

Make DC converter
to operate at duty
cycle corresponding
to hickory tree FSs

Update FSs on acorn, closer to
hickory tree & than duty cycle as
per ‘groove contemporized’

Choose ATFS from NTFS |

[s condition in
(41) is true ?

Is solution
belongs to ATES 2

A
Upgrade (NTFSs-ATFSs) Upgrade ATES closer to
closer to acorn tree FSs hickory tree FSs position &
position & than Duty cycle than Duty cycle

Figure 20. FSSO-based MPPT technique [89].
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Table 5. Taxonomy on recent reported work on bio-inspired techniques to track GMPP.

P . Best Optimization PV Module Py, . GMPP Improved GMPP . 2 Shading . .
Authors [Reference No.] Optimization Techniques Techniques W) PV System Size W) (%) Irradiance (W/m?) Patterns Tracking Time (s)
Saad W et al. [90] Proposed Proposed 200 1PV module 201.7 2.40, 8.02 1000 and 200 Non uniform NA
: FA, P&O P 37.7 Ao
Farzaneh J et al. [91] N{.)FS% I;&/;O MFA 200.143 4 PV module in series 397.52 941 1000—400 Non uniform 222
. MFA, P&O 1264, 1206, 1582, 1.77,31.08, 17.70, .
Nusaif Al et al. [92] PSO, FA MFA 265.737 3x3 834 2791 1000-100 Non uniform 0.085-0.124
Abo-Khalil AG et al. [93] OIEZOFA OFA NA NA 48, 36.5,29 0.418,2.24, 34.88 NA Non uniform 0.2-0.33
Shi J-Y [94] INICI;%'FIL&O INC-FA 60 ax1 814 76.19 1000-100 Non uniform 0.98
- Proposed FA . . 100,150,200, 25.00, 2.04, 108.33, .
Omar FA et al. [95] P&O Proposed FA NA 3 PV module in series 300,400,500 100, 110.52, 170.27 NA Non uniform 1.3
Chitra A et al. [96] INC, FA, MFA MFA 200.143 2 PV module in series 330, 255 6.24,3.23 1000-600 Non uniform 0.0018-0.0064
Mosaad Ml et al. [97] CS, NN, INC CS 59.9 1PV module 60.47,48.24 2.68,3.36 1000-800 uniform NA
Shi J-Y et al. [98] Pé%S’PC &SO 1CS 60 4 PV module in series 87.547 74.97 1000-200 Non uniform 0.88
97,107.92,107.63, 45.86,70.75, 63.99,
Hidayat T et al. [99] CSA, P&O CSA 72 2 PV module in series 114.94, 124.56, 77.89, 81.52, 5.40, 944-495 Non uniform NA
74.53,72.58 0.276
Bilgin N et al. [100] FFO, PSO, CSO, BOA FFO NA 3 PV module in series 531.46, 377.63 5.73,4.26 1000-278 Non uniform NA
Ibrahim A-W et al. [101] CSA, MPSO, MP&O, ANN CSA 250 4 PV module in series 699.6, 23257’ 5347, 67.93, 3192‘;?3’ 1325, 1000-400 Non uniform 0.5-0.7
2x2,
4 PV module in series, 989.29, 482.06, 0.00, 13.31, 6.40, .
Bentata K et al. [102] DCSA, CSA DCSA 249 3% 2, 797.3, 656.45 16.09 1000-200 Non uniform 0.046- 0.085
6 PV module in series
. 4 PV module in series, 61.66, 48.65, 79.75, 107.53, 85.68, .
Singh N et al. [103] FSSO, P&O, PSO, GWO FSSO 40 5 %2 3537 6173.3.23 900-100 Non uniform 0.3-1.8
Fares D et al. [104] ISSA, SSA, PSO, GA 1SSA 135 3PVmoduleinseries 2o 10282 0.065,0,098,0.050 900-100 Non uniform 02
Al'Shamﬁ‘S;‘]A Acetal. CS, PSO CS NA 4 PV module in series 293'§;é‘;165'38' 0.00, 0.67, 0.52 1000-200 Non uniform 1.32,1.29,1.28
Watanabe R B et al. [106] FF, P&O FF 213.15 3 PV module in series 638.7,553.1,316.9 0.251, 31.87, 58.05 1000-300 Non uniform 0.18,0.22,0.21
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Table 6. Pros and cons of recent work based on bio-inspired techniques.

Authors [Reference No.]

Pros

Cons

Saad W et al. [90]

Farzaneh J et al. [91]

Nusaif Al et al. [92]

Abo-Khalil AG et al. [93]

ShiTY [94]

Omar FA et al. [95]

Chitra A et al. [96]

Mosaad MI et al. [97]

Shi J-Y et al. [98]

Hidayat T et al. [99]

Bilgin N et al. [100]

Ibrahim A-W et al. [101]

Bentata K et al. [102]

Singh N et al. [103]

Fares D et al. [104]

Al-Shammaa A A et al. [105]

Watanabe R B et al. [106]

Zero oscillations around GMPP
High tracking efficiency

Requires no periodic tuning
High accuracy

Varying population size is adapted in each

iteration, resulting in improved tracking time and

efficiency

High tracking efficiency
Able to process examine MPP

High switching speed during shaded to
unshaded conditions
No oscillations in steady state

High tracking efficiency
Less complex to implement

Very low tracking time

Randomization process makes the algorithm
more effective

Tracking ability is enhanced by introducing
adaptive step concept
Random steps of CS are eliminated

Track MPP efficiently in different PSCs

High tracking efficiency

Not dependent on initial location

Initial particles are independent
Requires smaller number of iterations which
saves power

Predators are eliminated for modifying squirrel
positions

High tracking efficiency

Only two control parameters are required
No initial situations are assumed for working

Low tracking time

Algorithm is not validated on hardware
Highly intricate to design

Very high tracking time

Oscillations around GMPP

Power oscillations around GMPP

High tracking time
Computationally complex compared to other
MPPT approaches

High convergence time
Required sensors for its operation

Low tracking efficiency
Many parameters initializations are required

Required tuning of parameters

High computational complexity

Levy flight affects the convergence level
Oscillations around GMPP

No record of tracking time in different PSCs
Large no of iterations are required

Low oscillations around GMPP

Requires higher number of particles
Highly intricate to design

High tracking time
High computational cost

High execution intricacy
Oscillations around GMPP

High tracking time
Oscillations in steady state.

Power variations in steady state.




Mathematics 2023, 11, 269

32 of 48

4.4. Other AI-Based MIPPT

This section of the paper explains other artificial intelligence methods applied in the
field of tracking maximum power from the PV array along with a report of the various
latest research performed concerning it in Tables 7 and 8 respectively.

4.4.1. Fuzzy Logic Control

FLC converts its analog input to digital values. This technique examines the output
power of PV array for every sample. If the change fraction is greater than zero, voltage is
enhanced by FLC by adjusting the duty cycle and vice versa. As a result, the maximum

power ratio is zero. FLC inputs error “e”, and its change “de” with samples in time “k;”

can be computed as
Pyy(k) — Ppo(k—1)
e= 42
VoK) — Vpolk— 1) @)

de=e(k) —e(k—1) (43)

Figure 21 shows a block diagram of FLC control. The input variables are changed
to linguistic variables by using different distinct membership functions. Thereafter, they
are manipulated on the basis of the “if-then” rule by applying the required conduct of the
scheme. Finally, they are converted to their numerical equivalent [107]. This approach
shows fewer oscillations, fast response [108], and high tracking efficiency in contrast to
conventional MPPT approaches. However, it suffers from high computational complexity.

Crisp Crisp
Input Output
—»( Fuzzification (Defuzziﬁcation)—}

Inference

Fuzzy Fuzzy
Input Output

Figure 21. Block representation of FLC-based MPPT.

4.4.2. Artificial Neural Network

An ANN is a set of static learning models. For anticipating a precise output for each
input, this approach simulates a biological neural system. Figure 22 shows the three-
layered structure of ANN in which the neuron quantity in each layer varies depending on
the situation.
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Irradiance

Duty

Temperature Cycle
________________ e
Bias ;
',/"Wyz
Bias @
........ » 4
Input Layer Hidden Layer Output Layer

Figure 22. Three-layer structure of ANN [109].

These networks are used as an MPP system to predict the best possible values of power
or voltage that can be produced at a given time. These values act as base values in deciding
the converter’s duty cycle. The PV module parameters and atmospheric parameters are
included in the input variables and then processed by hidden layers in the network. The
procreation algorithm is retroactive and grades in a mishap. Thereafter, utilizing neurons
of center layer, it feeds back the output through the input neurons. The following Equation
is used to calculate the presence of hidden neurons:

(ni +mno) + /ne (44)

N —

ny =

A complete experimental setup assists in data collection. The dataset is then obtained
by feeding atmospheric conditions and array parameters into the ANN to find output
Vm and Pp,. This set is then transformed into an instructional one, which moves into
the premeditated ANN, where it is taught how to perform. Moreover, the functions of
input data serve as instruction data for the ANN model that was created. Then, the model
learns how to execute on its own. The assessment datasets examine the performance of the
constructed ANN after the instruction phase, and the errors are sent back to the ANN until
all of the neurons’ weights are changed correctly. MPPT using ANN is more accurate and
shows less oscillation around MPP [109]. These algorithms suffer from the drawback of
high computational complexity.
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4.4.3. Evolutionary Computational Techniques

Evolutionary computation is an area of artificial intelligence and soft computing that
studies a family of algorithms for global optimization inspired by biological evolution. GA
and DE are ones amongst them used to track MPP.

GA is a computer model that is inspired by evolution and consists of chromosomes.
These chromosomes include information on a potential solution to a problem. Each chro-
mosome has its own set of characteristics. This algorithm is used in wide applications. In
contrast to tracking MPD, it is able to boost the PV voltage, which represents the chromo-
somes and their fitness value that corresponds to PV power. The main idea is to make
genetic changes to a population of people and discover the ideal ones corresponding to the
fitness function. Figure 23 shows the flowchart of GA.

Initiate starting population

A4

Insertion »-| Evaluate individuals fitness values

Initiate new population L
A
Selection, Crossover, Is convergence
Mutation criterion met?

Gives the finest individuals

Y

Figure 23. Flowchart of GA [110].

DE is another evolutionary computational algorithm applied to problems based on
global optimization. It is applicable to track GMPP in PSCs due to its simpler execution
and wide search freedom. The DC converter duty cycle is used as a target vector “dn” by
this approach. Initially, the target vector with two dimensions is initialized as “9,"” for
each iteration and generation as the population. It chooses three random particles after
one generation in order to reduce the execution time. Following that, the selected duty
cycles are used to calculate the PV array’s associated powers “Pn”. “Ppeqt” is picked as
the maximum power in the set of “Pn”, and “dpes” is chosen as the corresponding “dn”.
The weight difference between any two target vectors is then used by a mutation factor
(M) and forms the mutated particle by adding this difference to the remaining target vector.
The mutated particle is also called the donor vector “DV,”. The mutation’s way should be
towards “Ppest”. Following mutation, donor and target vectors are combined by a crossover
procedure to create trial vector “TV,” and estimate the PV array’s power.
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Table 7. Taxonomy on recent reported work on other artificial intelligence techniques to track GMPP.
R . Best Optimization . GMPP Improved GMPP . 2 . Tracking
Authors [Reference No.] Optimization Techniques Techniques PV Module P, (W) PV System Size W) (%) Irradiance (W/m?) Shading Patterns Time (s)
Verma P et al. [111] AFlL,z'g LC AFLC 360 3 Pvgﬁgsule m 521.5, 250.6, 198.1 7.30, 0.642, 4.26 900-100 Non uniform 0.1-0.19
Rahman MM et al. [112] PS%;%NN PSO-ANN 60.53 4 vargggsule in 135.9,202.1 0.00, —0.04 900-400 Non uniform 0.22,0.21
Farzaneh ] [113] lf gg’f’;gg Proposed 60 3P V;Zr"igg‘le in 87.12,116.74 46.00,94.17 1000-300 Non uniform 0.15,0.1
Manikandan PV [114] Prglzged Proposed 320 1 PV module 36.88,37.2, 37.66 53.73,50.12, 51.36 1200-400 Non uniform NA
.1 ANFIS 5PV module in .
Al-Majidi SDet al. [115] FLC. P&O ANFIS 185 s 924 0.2168 1000 Uniform 0.07
Neuro fuzs 50.262, 45.736, 0.001, —0.004,
Aymen J et al. [116] Fuzz y Neuro fuzzy 60 1PV module 40.856, 35.633, 0.0171, 0.0533, 1000-600 Non uniform NA
y 30.156 0.0763
AF-FA
Farajdadian S [117] AF-PSO AF-FA 220.7 NA 220.5,175.1,124.3 1.37,20.26, 72.87 1000-600 Non uniform NA
SF, PSO, P&O
GWO-FLC .
Eltamalya AM et al. [118] P3O GWO-FLC 185.22 NA 54.6,92.8 40.00, 20.51 1000-200 Non uniform NA
Proposed fixed-step INC
Chen Y-Tetal. [119] FLC-HC Proposed 60 NA 157.3,46.83 5.92,2.51 1000 and 300 Non uniform 0.42,0.52
ASVSS
Raj A et al. [120] ‘IA‘I\II\ICN;&I:IS ANN-INC NA NA 450 6.13 NA Non uniform NA
Abdellatif WSE et al. [121] FB, P&O, INC FB 305.226 NA 100.38, 80.17, 59.87 3.14,3.13,3.11 1000-600 Non uniform NA
GA fuzzy
Mohammed SS et al. [122] Fuzzy GA fuzzy 60 1PV module 4417,3611,4168, 0546, 5.64,0.506, 791-481.1 Non uniform NA
ANFICS 41.70, 24.07 0.870,11.22
Tandel BG et al. [123] GA, P&O GA 200.143 16 vag;f;ule in 1319.12 81.16 1000-250 Non uniform NA
Karthika S et al. [124] GA't‘Il}I‘ed PI GA-tuned PI 200 7x7 7020 56.69 1000 and 200 Non uniform 0.001
PSO-GA
Dehghani M et al. [125] PSO, GA PSO-GA 1S NA 98.85, 78.69, 58.64 9.67,9.30,9.23 1000-600 Non uniform <03
INC, P&O
ANFIS-GA )
Bendary FM et al. [126] ANFIS, NN FLC ANFIS-GA 40.9081 NA 40.90, 27.78,19.28 15.24, 0.908, 1.10 1000-500 Non uniform <03
. Proposed DE 2 PV module in 170.5,87.9, 152, 1.66, —0.34, 0.462, .
Firmanza AP et al. [127] PSO Proposed DE 100 series 130.9 0383 1000—400 Non uniform 0.233- 0.371
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Table 7. Cont.
C e . Best Optimization . GMPP Improved GMPP . 2 . Tracking
Authors [Reference No.] Optimization Techniques Techniques PV Module P, (W) PV System Size W) (%) Irradiance (W/m?) Shading Patterns Time (s)
Neethu M. et al. [128] ooy DE 215 4PV module in 663.8 81.41 900-600 Non uniform 366
Kamaruddina NI et al. [129] DE, P&O DE 125 3x3 489.3,497.2 39.87, 56.40 1000-250 Non uniform NA
Joisher M et al. [130] Proposed, Proposed 95 2PV module in 11,20.33,13.88 120.0, 18.40, 16.5 NA Non uniform 1.0
PSO, DE series
Algarin C R et al. [131] S FLC 65 1PV module 11?’12‘%‘?@7'7' 0.00 1000-200 Non uniform NA
Asymmetrical FLC,
Cheng P-C et AL. [132] Symmetrical FLC, Asymmetrical FLC 220 NA 44.12,222.18 6.134,04.53 1000 and 200 Non uniform 0.7,5.6
P&O
Asymmetrical FLC,
Liu C-L et al. [133] Symmetrical FLC, Asymmetrical FLC 220 NA 222.69 7.63 1000 Uniform 091
P&O
K . Proposed, .
ececioglu O F et al. [134] AIC Proposed 250 1 PV module 249.4,244.2 0.605, 0.825, 1000-600 Non uniform 0.008
90.2943,
Hayder W et al. [135] Nll\llgggo NN-P&O 120 1 PV Module 55.2495, 0.00 1100-600 Uniform gé%gg' %gggg'
73.076, 98.6604 ’ T
Proposed .
! 3 PV module in 42.90, 37.38, 32.56, 2.21,0.402,0.618, .
Hua C-C et al. [136] P&OGfSO, Proposed 21.31 series 26.73, 22.06 0.074, 5.499 1000-300 Non uniform 12,15, 16
Zhang P et al. [137] Improved DE, DE, PSO Improved DE NA 4X3 644.57, 857.56 0.041, 0.282 800-350 Non uniform 0.019, 0.02
Bakkar M et al. [138] DSM-based FLC, FLC DSM-based FLC 80 1 PV module 80 122.2 700 Non uniform NA
Batainesh K et al. [139] Hybrid, FLC+P&O, FLC Hybrid FLC+P&O 270 1PV module 1279,579,1262, 440,505 1816 1000100 Non uniform NA
Guerra M IS et al. [140] ANIFS, P&O, ANN, Fuzzy ANN 245 NA 956.6, 112;;1 » 2190, 0.525, (())g(())g’ 0.274, 548-303 Non uniform NA
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Table 8. Pros and cons of recent work based on other artificial intelligence techniques.

Authors [Reference No.] Pros Cons
. Low shading losses . :
Verma P et al. [111] . Low settling time Complicate to design
. Improvement in tracking time GMPP is not improved

Rahman MM et al. [112]

Farzaneh J [113]

Manikandan PV [114]

Al-Majidi SD et al. [115]

Aymen J et al. [116]

Farajdadian S [117]

Eltamalya AM et al. [118]

Chen Y-T et al. [119]

Raj A et al. [120]

Abdellatif WSE et al. [121]

Mohammed SS et al. [122]

Tandel BG et al. [123]

Karthika S et al. [124]

Dehghani M et al. [125]

Bendary FM et al. [126]

Firmanza AP et al. [127]

Neethu M. et al. [128]

Kamaruddina NI et al. [129]

Joisher M et al. [130]

Algarin CR et al. [131]

High tracking efficiency

Highly accurate
Requires fewer numbers of training data, which
eliminates tracking error

Enhanced optimal solution

Drift problem is avoided
Low converging time

High reliability
Combines advantages of FLC flexibility and ANN
learning capacity

High accuracy in tracking GMPP
Lower percentage MPP error

Re-initializing process enables searching agents to
follow new GMPP

High tracking capability
Low tracking time

Low ripples in output power

Oscillations in steady state is reduced

High tracking efficiency
Highly accurate

Highly accurate in detecting GMPP
Ability to track GMPP in vary short duration of time

Quick response time
High accuracy

High tracking efficiency

High convergence speed due to mutation factor

Low oscillations around GMPP

Able to track true GMPP
Required minimum control parameters

Able to track true GMPP

Fewer oscillations in steady state
No power loss

Not tested on hardware setup

Highly intricate to design

Low tracking efficiency
Oscillations around GMPP

Oscillations in steady state
High cost of implementation

Computationally more complex
High cost of implementation

Power fluctuations
Highly complex to intricate

Array size is not specified
No record of tracking time
Oscillations in output power

Array size is not specified
High cost of implementation

Low tracking efficiency

Size of PV array is not specified
Highly intricate to design

Computationally more complex

Requires large numbers of iterations
Tested in only single change in irradiance

Not tested on hardware
Highly intricate to design

High cost of implementation

Algorithm loses GMPP tracking in some cases
Oscillations around GMPP

High tuning time
High computational cost

More values of iterations required
Intricate to design

Power oscillations at output
Computationally more complex

Computationally more complex
Generates error in measuring low powers
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Table 8. Cont.

Authors [Reference No.]

Pros

Cons

Cheng P-C et al. [132]

Liu C-L et al. [133]

Kececioglu O F et al. [134]

Hayder W et al. [135]

Hua C-C et al. [136]

Zhang P et al. [137]

Bakkar M et al. [138]

Batainesh K et al. [139]

Guerra M IS et al. [140]

Increased tracking performance without increase in
calculation burden

Improved tracking accuracy
Asymmetrical membership function improved the
MPPT performance

Oscillations in steady-state output are eliminated

Low transient time

No oscillations in steady state

Mutation factor is modified to limit the random search
Low tracking time

Highly accurate

Highly accurate
No trapping in LMPP

Negligible oscillations around GMPP
Fast tracking response

High tracking time
Low accuracy

Oscillations around GMPP
High transient time
Computationally more complex

Computationally more complex

If irradiance remains constant for long, algorithm does
not show better performance
Computationally more complex in design

High tracking time
High computational cost

Comparatively requires large numbers of iterations
Computationally complex

Issues in determining safe operating region
High cost of computation

Oscillations around GMPP
High cost of implementation

High cost of implementation
Computationally more complex

After having the deep analysis of all these MPPT techniques, a concluded comparative
study has been depicted in Table 9 for better understanding as

Table 9. Comparative analysis of various MPPT.

Execution Cost Accuracy Tracking Speed Oscillations Around MPP Computational Complexity Analog/Digital
Categorization Tech
L H L M H L M H L H ~Z L M H D A/D
P&O ® ® ® ® ®
INC (] (] (] (] (]
Conventional
FOCV [ ] [ ] [ ] [ ] [ ] [ ]
FSCC [ ] [ ] [ ] [ ] [ ]
ACO L L L L L L
PSO [ J [ J [ J [ J
ABC (] (] (] (] (] (]
Al-Based GWO [ J [ J ® ® ®
Metaheuristic
techni
echmiques SSA ° ° ° ° °
FFA L L L L L
s (] (] (] (] (] (]
FSSO L L L L L L
FLC [ ] [ ] [ ] [ ] [ ]
ANN (] (] (] (] (] (]
Other AT
GA L L L L L L
DE [ ] [ ] [ ] [ ] [ ]

L, low; M, medium; H, high; ~Z, nearly zero; D, digital; A/D, analog/digital.
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5. Research Gap and Findings

There are total 16 techniques reported in this paper. In 23 papers conventional MPPT
techniques, 42 papers swarm intelligence MPPT techniques, 21 papers bio-inspired, and in
35 papers other Al-based techniques are discussed. Therefore, a total of 121 papers were
mainly studied, which are focused on these MPPT techniques. The remaining 23 out of
144 papers were used in other important sections. The classification of papers focusing on
different techniques can be seen in Figure 24.

24.31%

14.58%

15.97%

29.17%
E Conventional MPPT techniques 15.97%
Swarm intelligence MPPT techniques
Il Bio-inspired MPPT
T Al-based MPPT techniques
ﬁ Others

Figure 24. Papers focused on different MPPT techniques.

The authors are mainly classified concerning conventional MPPT techniques, meta-
heuristic Al techniques, and other Al-based techniques. Further, conventional MPPT
techniques are classified as perturb and observe, incremental conductance, fractional open-
circuit voltage, and fractional short-circuit current; particle swarm optimization, artificial
bee colony, grey wolf optimization, and salp swarm algorithm fall under swarm intelli-
gence MPPT techniques; and firefly MPPT algorithm, cuckoo search, and flying squirrel
search optimization techniques are classified as bio-inspired techniques [141-144]. While
swarm intelligence and bio-inspired techniques are metaheuristic Al techniques, other Al-
based MPPT techniques are fuzzy logic control, artificial neural network, and evolutionary
computational techniques (genetic algorithm and differential evolution).

After conducting a thorough analysis of metaheuristic MPPT approaches based on
conventional and Al techniques in this paper, one can easily find the following gaps in
this area:

e  Despite the fact that conventional techniques are simpler and work better in unshaded
spaces, they have the downside of slow response. In their findings, oscillations around
GMPP are observed;

e  Even though these methods are frequently modified, power loss still occurs while
monitoring open-circuit voltage or short-circuit current. Additionally, these methods
need a large number of sensors to function, but those numbers can be decreased;

e In PSCs, Al approaches are effective, but they have the disadvantage of having high
computational complexity;

e  These methods require a great deal of time to track GMPP because of the large number
of iterations. Despite the fact that many of these are only tested on virtual platforms,
real-world validation is still crucial;

e  Most of the reported work ignores the effect of load variation, which is crucial for
building any PV system.
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6. Challenges and Future Work

This paper comprehensively elaborates many recently reported works to track GMPP
in PSCs in detail along with their pros and cons. Presently, over eighty MPPT optimization
techniques have been published, and more than four new techniques are published each
year. This article covers the recent findings in each MPPT technique in a tabular form.
Because there are so many optimization strategies in the literature, picking one becomes
quite challenging. Avoiding local MPP and local hotspots of PV array is critical for any
optimization strategy. Moreover, when these algorithms are built, there is a requirement to
manage energy. Research on efficient MPPT techniques can be rationalized in the future by
considering many other critical factors such as local hotspots, array reconfigurations, and
cell materials, which contribute to producing maximum power during PSCs. With the aid
of smartphones, an MPPT application can also be set to work at any time via the Internet.

7. Conclusions

Solar PV systems are regarded as the most capable energy source in renewable power-
generation systems due to the copious availability of sunlight. However, unpredictable
weather makes their working efficiency low. Thus, MPPT techniques are used to yield
maximum power from these systems in any weather conditions. Much research has been
done till now in this field, but selecting an appropriate technique for specific circumstances
has always been difficult. For the mentioned reason, this study reassesses the art of various
MPPT optimization strategies developed by various researchers so far in a different manner.
Conventional and Al-based MPPT techniques are elaborated separately with simplified
flowcharts in respective sections with the aim to understand their basic principles in
detail for new learners. Following the appropriate evaluation of each study, a tabular
summary was created on important attributes of PV systems under PSCs, such as array
size, % improvement in GMPP, level of irradiance, and tracking time, forming novel
datasheets. In this paper, the reported taxonomy of MPPT techniques can help new
learners, researchers, amd professional engineers to interpret the performance of each MPPT
approach under different climatic scenarios. After careful analysis, it is easy to conclude
that traditional techniques are less complex and work well in unshaded environmental
conditions. However, they have the disadvantage of slow response. Al techniques perform
well in PSCs with negligible oscillations in a steady state, with high accuracy and high
tracking efficiency, but they suffer from high computational complexity. With the tabulated
pros and cons of each reviewed article, new learners can easily find the research gaps
that still exist in this field. With the help of the comparison table based on important
parameters, while incorporating any MPPT in PV system, one can select most appropriate
MPPT approach in a specific application. Furthermore, this analysis reveals that Al-based
MPP controllers are the best option to deal with PSCs. As a result, a large research area has
opened up for new researchers. To summarize, this review paper will be a useful resource
for researchers or industrialists to utilize in choosing the most appropriate MPPT method
for a certain objective.
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Abbreviations
Maximum power point tracking 14Y% Photovoltaic
Partial shading conditions RES Renewable energy sources
Power-voltage GMPP Global maximum power point
Perturb and observe INC Incremental conductance
Hill climbing BI Bio-inspired
Swarm intelligence Al Artificial intelligence
Artificial neural networks FLC Fuzzy logic control
Evolutionary computational intelligence ~ I-V Current—voltage
Maximum power point LMPP Local maximum power points
Direct current CS Cuckoo search
Fractional open-circuit voltage FSCC Fractional short-circuit current
Ant colony optimization ACO-P&0O  Ant colony optimization—perturb and observe
Self-predictive incremental conductance ~ SPC Semi pilot cell
Pilot cell CSAM Current Sensorless Method with Auto-modulation
Variable step size PSO Particle swarm optimization
Artificial Bee Colony GWO Grey wolf optimization
Salp swarm algorithm APSO Accelerated PSO
Lagrange interpolation PSO TS Takagi-Sugeno
Variable coefficients PSO CFPSO Constriction factor-based PSO
Overall distribution PSO P&O-PSO  Perturb and observe-PSO
Enhanced GWO GWO-GSO GWO-golden-section optimization
GWO-Perturb and observe GOA Grasshopper optimization algorithm
Bat algorithm SSPSO Series salp PSO
Firefly elgorithm ISSA Improved salp swarm algorithm
Differential Evolution WOA Whale optimization algorithm
Salp swarm optimization ISSA Improved salp swarm algorithm
Hybrid salp swarm—perturb and observe =~ ABC-P&O  Artificial bee colony—perturb and observe
Global maximum power point tracking MABC Modified artificial bee colony
Angle of incremental conductance IPSO Improved particle swarm optimization
Opposition-based learning GWO DFO Dragonfly optimization
Tunicate swarm algorithm with PSO IABC Improved artificial bee colony
Surface-sased polynomial fitting P&O HGWO Hybrid grey wolf optimization
Dynamic safty margin ICPSO Incremental conductance-based PSO
Flying squirrel search optimization BS Best solution
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Nomenclature
Ipo PV output current
Ipn Photocurrent
Ly, Shunt current
Ip Diode current
Iy Diode reverses saturation current
q Electron charge
Nes Number of cells in series
K Boltzmann constant
T Temperature
Vo PV output voltage
Rse Series resistance
Rg Shunt resistance
Priax Maximum power
Voe Open-circuit voltage
Isc Short-circuit current
AP Change in power
AV Change in voltage
Ai Change in current
Vinpp Voltage at maximum power point
b Proportionality constant
Lnpp Current at maximum power point
d Constant current factor
Py, Maximum power
Gi(x) Gaussian kernel solution
g}( Sub-Gaussian function
;4;( Mean value
a}; Standard deviation
Wy Weight factor
¢ Best optimal operating solution
€ Convergence rate
Pp,best Individual best position
Pg,best Swarm optimum position
Y, nth particle position
(2 nth particle velocity
w Inertia burden
nq &np Social and cognitive acceleration coefficients
Hi&pn
in terms of their assessments
ft Target function
Yiax,i&Ymin;  Nth-dimension maximum and minimum values.
Y; Arbitrarily selected food source
&k Arbitrary number between
Xt: Prey vector
X;GW Position vector of grey wolf
Z&E Coefficient vectors
71 &72 Random variables
X X,y n-rationalized candidate solution

Py

Arbitrary variables that are uniformly distributed between zero and one

Position of food source
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X &X,, Decemberision variables maximum and minimum value
Uo Initial call
Xy &xjy i and j™ fireflies spatial coordinate “y” components
Step length
0% Variance
Omax&0pin  Maximum and minimum duty cycle
Xar& Xy Squirrels” posture address at hickory and acorn trees
Hc Hovering constant (~1.90)
hy Hovering distance
Py PV output power
Vin Maximum voltage
ny, Hidden neuron numbers
n; Injected input neurons numbers
Mo Output neurons numbers
1y Instruction samples numbers
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