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Abstract: In this paper, we provide several Arzelà–Ascoli-type results on the space of all contin-
uous functions from a Tychonoff space X into the fuzzy sets of Rn, (FUSCB(Rn), Hend), which are
upper semi-continuous and have bounded support endowed with the endograph metric. Namely,
we obtain positive results when X is considered to be a kr-space and C(X, (FUSCB(Rn), Hend)) is
endowed with the compact open topology, as well as when we assume that X is pseudocompact and
C(X, (FUSCB(Rn), Hend)) is equipped with the uniform topology.

Keywords: Arzelà–Ascoli theorem; compactness; fuzzy sets; endograph metric

MSC: 03E72; 54A40; 46S40

1. Introduction

Since L.A. Zadeh introduced the notion of a fuzzy set in 1965 [1,2], its applications have
covered a wide spectrum of fields of mathematics: from fuzzy logic [3,4] to fuzzy differential
equations [5,6] through fuzzy control theory [7,8], fuzzy optimization theory [9–12], fuzzy
analysis [13,14] or dynamical systems [15,16].

In the framework of classical analysis, Arzelà–Ascoli -type theorems are a powerful
tool in the applications of function spaces. Thus, these kinds of theorems have potential
applications of interest in the fuzzy context. In essence, given a function space F(X, Y)
endowed with a topology τ, the aim is to characterize compact subsets of F(X, Y). For exam-
ple, the classical Arzelà–Ascoli theorem states that a subset K of the space of all real-valued
continuous functions on the unit interval equipped with the unifom topology is compact if
and only if K is closed, bounded and equicontinuous. Actually, given a uniform space Y,
an Arzelà–Ascoli-type theorem characterizes compactness in the function space C(X, Y)
by means of equicontinuity plus natural conditions. In fuzzy analysis, examples of this
situation are the Arzelà–Ascoli-type theorems presented in [17]: the authors characterize
compact subsets of Cτα(X, (E1, d∞)), the space of all continuous functions from a Tychonoff
space X into the space of real (compact) fuzzy numbers (endowed with the supremum
distance) where τα is the topology of the uniform convergence on the members of a cover α.
The characterization is obtained in terms of equicontinuity plus fuzzy conditions.

Following this pattern, our goal is to obtain a fuzzy Arzelà–Ascoli theorem on space
C(X, (FUSCB(Rn), Hend)) of all continuous functions from Tychonoff space X into the fuzzy
sets u of Rn, which are upper semi-continuous, and the support of u is a bounded set
in Rn endowed with the endograph metric. The function space C(X, (FUSCB(Rn), Hend))
will be equipped with the topology of uniform convergence on the members of some
covers of X. Taking advantage of the fact that En, the set of all fuzzy numbers, endowed
with the endograph metric Hend, is a closed subset of (FUSCB(Rn), Hend), we establish the
corresponding ones for C(X, (En, Hend)).

Mathematics 2023, 11, 260. https://doi.org/10.3390/math11020260 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020260
https://doi.org/10.3390/math11020260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3846-0005
https://orcid.org/0000-0002-3695-3087
https://doi.org/10.3390/math11020260
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020260?type=check_update&version=1


Mathematics 2023, 11, 260 2 of 8

2. Preliminaries

We deal with fuzzy sets on Rn, i.e., functions from Rn into the unit interval [0, 1].
As usual, the symbol F(Rn) stands for the family of all fuzzy sets on Rn.

For each u ∈ F(Rn), let [u]α denote the α-cut of u, i.e.,

[u]α =

{
{x ∈ Rn | u(x) ≥ α}, α ∈ (0, 1],

clRn{x ∈ Rn | u(x) > 0}, α = 0.

where, as usual, the symbol clRn(A) stands for the closure of a subset A of Rn. Notice that
[u]0 is the support of u. We will now consider the subset FUSCB(Rn) of F(Rn) of all fuzzy
sets u, which are upper semi-continuous, and [u]0 is a bounded set in Rn equipped with
the endograph metric Hend. It is worth noting that, if u ∈ FUSCB(Rn), then [u]0 is a closed
bounded subset of Rn. Consequently, it is a compact set. This implies that for all α ∈ [0, 1],
[u]α is compact as well: indeed, since u is upper semi-continuous, [u]α is closed; the result
now follows from the fact that [u]α ⊆ [u]0.

In order to introduce the endograph metric, we first need to define the Hausdorff metric
H on the set K(Rn) of all nonempty compact subsets of Rn. To do this, given A, B ∈ K(Rn),
consider

D(A, B) = supa∈Ad(a, B) = supa∈A infb∈Bd(a, b),

where d stands for the Euclidean metric on Rn. Now, the Hausdorff metric H is defined as

H(K1, K2) = max{D(K1, K2), D(K2, K1)}

for all K1, K2 ∈ K(Rn).
Given u ∈ F(Rn), the endograph of u is defined as

end u = {(x, t) ∈ Rn × [0, 1] | u(x) ≥ t}.

and the endograph metric Hend is defined by using the Hausdorff metric H:

Hend(u, v) = H(end u, end v).

The endograph metric was introduced by Kloeden in the family of all semi-continuous
fuzzy sets by means of the so-called extended Hausdorff distance (See [18] for details. See
also [19].).

Given a Tychonoff space, X, we will present Arzelà–Ascoli-type theorems on the function
space Cτα(X, (FUSCB(Rn), Hend)) where τα is the topology of uniform convergence on mem-
bers of special covers α of X. It is worth remarking that the space Cτα(X, (FUSCB(Rn), Hend))
is a Tychonoff space: indeed, the family of all subsets U(A, ε) of C(X, (FUSCB(Rn), Hend))×
C(X, (FUSCB(Rn), Hend)) of the form

{( f , g) ∈ C(X, (FUSCB(Rn), Hend))× C(X, (FUSCB(Rn), Hend)) | supa∈A Hend( f (a), g(a)) < ε},

for all A ∈ α and all ε > 0, is a subbase for a (Hausdorff) uniformity Uα on the function
space C(X, (FUSCB(Rn), Hend)), which induces the topology τα. The closure of a subset S in
the τα topology will be denoted by clτα A.

Recall that space X is a kr-space if every real-valued continuous function that is contin-
uous on the compact sets is continuous on the whole X. It is a well-known fact that it is pos-
sible to replace real-valued by into any Tychonoff space. In particular, we can replace real-valued
by into (FUSCB(Rn), Hend). Wpace X is pseudocompact if every real-valued continuous
function on X is bounded. Equivalently, any locally finite sequence of pairwise disjoint
open sets in X is finite. Our main results establish that our fuzzy version of Arzelà–Ascoli
theorem is satisfied when: (1) X is a kr-space and C(X, (FUSCB(Rn), Hend)) is endowed with
the compact open topology, and (2) X is pseudocompact and C(X, (FUSCB(Rn), Hend)) is
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equipped with the uniform topology. Moreover, the converse of (2) is also valid. The results
also apply in the case of fuzzy numbers.

Our terminology and notation are standard. For instance, N stands for the set of
natural numbers and f |A means the restriction of a function f to a subset A. We denote
by Rm the product space of m copies of the reals. The symbol C(X, (FUSCB(Rn), Hend))
(respectively, C(X, (En, Hend)) stands for the set of all continuous functions from X into
(FUSCB(Rn), Hend) (respectively, into (En, Hend)). Notice that we obtain τp, the topology of
the pointwise convergence, by taking α the cover of X consisting of its points or, equiv-
alently, of all its finite subsets. If α = {X}, then we obtain the topology, τu, of uniform
convergence on X. The cover k of all compact subsets of a topological space X induces the
so-called compact-open topology on C(X, (FUSCB(Rn), Hend)) denoted by τco. It is worth
noting that the pointwise convergence topology on the set of all functions from X into
FUSCB(Rn) coincides with the product topology on (FUSCB(Rn)X. This is equivalent to
considering τp on C(X, FUSCB(Rn), Hend)) when X is endowed with the discrete topology.
Throughout the whole paper, space means a Tychonoff space. For notions that are not
explicitly defined here, the reader might consult [20].

3. Results

Given subset B ⊆ FUSCB(Rn) and α ∈ (0, 1], we define

B(α) =
⋃

u∈B
[u]α.

Our starting point is the following theorem by H. Huang:

Theorem 1 ([21], Theorem 8.6). Subset B ⊂ (FUSCB(Rn), Hend) is relatively compact if and
only if the following hold:

(i) For each α ∈ (0, 1], B(α) is a bounded subset in Rn;
(ii) Given sequence {un}∞

n=1 ⊂ B, there exists r ∈ (0, 1] and a subsequence, {unk}∞
k=1 of

{un}∞
n=1 ⊂ B, such that limk→∞[unk ]r = 0.

A fuzzy set u ∈ FUSCB(Rn) is called a fuzzy number if it is normal; that is, there
exists x ∈ Rn such that u(x) = 1, and u is fuzzy convex, that is, u(λx + (1 − λ)y) ≥
min{u(x), u(y)} for all x, y ∈ Rn and λ ∈ [0, 1]. The set of all fuzzy numbers is denoted by
En. It is worth noting that Rn is a closed subset of (En, Hend): indeed, for each x ∈ Rn, it
suffices to consider the fuzzy set defined by the characteristic function of {x}. Moreover, it is
well known that (En, Hend) is a closed subspace of (FUSCB(Rn), Hend) (see, for example, [21],
p. 79). Thus, the following result is a straightforward consequence of Theorem 1.

Theorem 2. Subset B ⊂ (En, Hend) is relatively compact if and only if the following hold:

(i) For each α ∈ (0, 1], B(α) is a bounded subset in Rn;
(ii) Given sequence {un}∞

n=1 ⊂ B, there exists r ∈ (0, 1] and a subsequence, {unk}∞
k=1 of

{un}∞
n=1 ⊂ B, such that limk→∞[unk ]r = 0.

With Theorem 1 in mind, we prove a version of Arzelà–Ascoli theorem when working
with the endograph metric on FUSCB(Rn). First, some definitions:

Definition 1. SubsetM⊂ C(X, (FUSCB(Rn), Hend)) is said to be pointwise level bounded if
{ f (x)(α) | f ∈ M} is bounded in Rn for all x ∈ X and all α ∈ (0, 1].

Definition 2. SubsetM ⊂ C(X, (FUSCB(Rn), Hend)) is said to be pointwise-approached to
zero if { f (x) | f ∈ M} satisfies condition (ii) of Theorem 1 for all x ∈ X.



Mathematics 2023, 11, 260 4 of 8

Recall thatM⊂ C(X, (FUSCB(Rn), Hend)) is equicontinuous if for each x ∈ X and each
ε > 0, there is a neighborhood V of x such that Hend( fi(y), fi(x)) < ε for all y ∈ V and all
f ∈ M.

The function space Cτ(X, (FUSCB(Rn), Hend)) is said to satisfy the weak fuzzy Arzelà–
Ascoli theorem if each τ-closed, pointwise-level-bounded, equicontinuous, and pointwise-
approached-to-zero subset of Cτ(X, (FUSCB(Rn), Hend)) is τ-compact. If the converse is also
valid, then we say that Cτ(X, (FUSCB(Rn), Hend)) satisfies the fuzzy Arzelà-Ascoli theorem.

We need the following:

Theorem 3. For any space X, a subsetM of (FUSCB(Rn), Hend)
X is τp-relatively compact if and

only if the following two conditions are satisfied:

(i) M is pointwise-level-bounded.
(ii) M is pointwise-approached to zero.

Proof. To prove necessity, consider the τp-compact subsetM of (FUSCB(Rn), Hend)
X. The pro-

jection map πx : M→ (FUSCB(Rn), Hend) defined for all x ∈ X, as πx( f ) = f (x) is continu-
ous so that { f (x) : f ∈ M} is a compact subset of (FUSCB(Rn), Hend). It suffices now to ap-
ply Theorem 1. For sufficiency, assume thatM satisfies conditions (i)–(ii). Using Theorem 1,
for each x ∈ X, the set { f (x) | f ∈ M} is relatively compact in (FUSCB(Rn), Hend). Thus,
C = clτp(∏x∈X{ f (x) | f ∈ M}) is τp-compact. The result now follows from the fact that
the τp-closure ofM is included in C.

We now address the weak fuzzy Arzelà–Ascoli theorem. Let ρ denote the cover of X
whose members are the pseudocompact subsets of X. We have:

Theorem 4. If α ⊆ ρ is a cover of a space X, then Cτα(X, (FUSCB(Rn), Hend)) satisfies the weak
fuzzy Arzelà–Ascoli theorem.

Proof. LetK be a τp-closed, pointwise-level-bounded, equicontinuous, pointwise-approached-
to-zero subset of Cτα(X, FUSCB(Rn, Hend)). The previous theorem tells us that clτpK is
compact. Consider now the pseudocompact subset P ∈ α. Using Theorem 7.14 and
Theorem 7.15 in [22], the evaluation mapping

e : clτpK× P → (FUSCB(Rn), Hend)

( f , x) → f (x)

is a continuous function. Let { fi}i∈I be a net in Cτα(X, (FUSCB(Rn), Hend)) converging to
the function f0. Since α is a cover of X, we have τα ≥ τp. Therefore, { fi}i∈I τp-converges to
f0. Define now the following real-valued continuous function:

φ : clτpK× P → (FUSCB(Rn), Hend) → R

( f , x) → f (x) → Hend( f (x), f0(x))

clτpK being compact, the product space clτpK× P is pseudocompact ([20], Theorem 3.10.26).
Therefore, by a lemma of Frolík ([23], Lemma 1.3), the function G from clτpK into the reals
defined as

G( f ) = supx∈Pφ( f , x) = supx∈PHend( f (x), f0(x)),

for all f ∈ clτpK, is continuous. Thus, G( fi) converges to G( f0). In other words, we have
just proved that supx∈PHend( fi(x), f0(x)) converges to supx∈PHend( f0(x), f0(x)) = 0. This
means that { fi}i∈I converges uniformly to f0 on P. Since P is an arbitrary member of
the cover α, we have just proved that { fi}i∈I τα-converges to f0. This fact implies that
the inclusion map from clτpK into Cτα(X, (FUSCB(Rn), Hend)) is continuous so that clτpK is
τα-compact. The result now follows from the fact that the τα-closure of K is included in its
τp-closure.
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Throughout what follows, we shall freely use without explicit mention the elementary
fact that, being (E1, Hend) closed in (FUSCB(Rn), Hend), the function space C(X, (E1, Hend))
is closed in Cτα(X, (FUSCB(Rn), Hend)). Thus, we have

Corollary 1. Let X be a space. If α is a cover of X with α ⊆ ρ, then Cτα(X, (E1, Hend)) satisfies
the weak fuzzy Arzelà–Ascoli theorem.

Next, we will present an example of a function space that satisfies the weak fuzzy
Arzelà–Ascoli theorem but fails to satisfy the fuzzy Arzelà–Ascoli theorem. Given a product
space X×Y, let φX denote the natural injection

φX : (R)X1×X2 → (RX2)X1 .

The map φX is a homeomorphism. We denote by β(Z) the Stone–Čech compactifica-
tion of a space Z.

Example 1. Let X, Y be two pseudocompact spaces such that X×Y is not pseudocompact.
According to Proposition 1.12 in [24], there exists a continuous function f on X×Y that ad-
mits a separately continuous extension to β(X)× β(Y). According to Proposition 1 in [25],
the closure, say K, of φX1( f ) in Cp(X2) is compact. Suppose now that K is equicontinuous
for a compatible metric on R. As in Theorem 4, the evaluation map e from K× X2 into R is
continuous. Since f = e ◦ (φX1( f )× idX), f is a continuous function. This contradiction
shows that the compact set K is not equicontinuous.

As a straightforward consequence of the previous example, we obtain

Theorem 5. If a metric space (X, d) contains a closed copy of the reals, then there exists a pseudo-
compact space Y such that Cp(Y, (X, d)) contains a compact subset that is not equicontinuous.

Corollary 2. There exists a pseudocompact space X such that Cτp(X, (FUSCB(Rn), Hend)) (respec-
tively, Cp(X, (E1, Hend))) does not satisy the fuzzy Arzelà–Ascoli theorem.

Remark 1. It is clear that we can replace metric space by uniform space in Theorem 5.

We now turn our attention to the fuzzy Arzelà–Ascoli theorem. We say that a space X
is a ρr-space if a real-valued function (equivalently, a function into a Tychonoff space) is
continuous whenever its restriction to any pseudocompact subset of X is continuous.

Theorem 6. If X is a ρr-space, then Cτρ(X, (FUSCB(Rn), Hend)) satisfies the fuzzy Arzelà–Ascoli
theorem.

Proof. According to Theorem 4, we only need to prove that a compact subset K of
Cτρ(X, (FUSCB(Rn), Hend)) is τρ-closed, pointwise-level-bounded, pointwise-approached to
zero and equicontinuous. To do this, consider P ∈ ρ and the evaluation map

eP : K× P → (FUSCB(Rn), Hend)

( f , x) → f (x)

Since τρ induces the topology of uniform convergence on P, a standard argument
by using triangle inequality shows that eP is continuous. Now, since the product of a
compact space and a ρr-space is a ρr-space ([26]), the evaluation map from K × X into
(FUSCB(Rn), Hend)) is continuous. Thus, K is equicontinuous ([22], Theorem 7.19, Theo-
rem 7.20). Since τα ≥ τp, the results now follows from Theorem 3.

Corollary 3. If X is a ρr-space, then Cτρ(X, (En, Hend)) satisfies the fuzzy Arzelà–Ascoli theorem.
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Recall that space S is said to be locally pseudocompact (respectively, locally compact)
if every x ∈ X has a pseudocompact (respectively, compact) neighborhood.

Corollary 4. If X is a locally pseudocompact space, then Cτρ(X, (FUSCB(Rn), Hend)) (respectively,
Cτρ(X, (En, Hend))) satisfies the fuzzy Arzelà–Ascoli theorem.

Corollary 5. If X is a locally compact space, then Cτco (X, (FUSCB(Rn), Hend)) (respectively,
Cτco (X, (En, Hend))) satisfies the fuzzy Arzelà–Ascoli theorem.

An argument similar to the one used in Theorem 6 yields

Theorem 7. If X is a kr-space, then Cτco (X, (FUSCB(Rn), Hend)) (respectively, Cτco (X, (En, Hend)))
satisfies the fuzzy Arzelà–Ascoli theorem.

Corollary 6. If X is a locally compact space, then Cτco (X, (FUSCB(Rn), Hend)) (respectively,
Cτρ(X, (En, Hend))) satisfies the fuzzy Arzelà–Ascoli theorem.

Corollary 7. If X is a compact space, then Cτu(X, (FUSCB(Rn), Hend)) (respectively, Cτu(X, (En,
Hend))) satisfies the fuzzy Arzelà–Ascoli theorem.

This last result can be improved by characterizing spaces X such that the topology of
uniform convergence τu on C(X, (FUSCB(Rn), Hend)) satisfies the fuzzy Arzelà–Ascoli theo-
rem. If X is a pseudocompact space, we will use the notion that Cτu(X, (FUSCB(Rn), Hend))
is metrizable. Indeed, the set of the form{
( f , g)∈C(X, (FUSCB(Rn), Hend))×C(X, (FUSCB(Rn), Hend)) |supa∈PHend( f (a), g(a))< 1

n

}
,

is a subbase for a uniformity U on C(X, (FUSCB(Rn), Hend)) inducing the uniform conver-
gence topology τu. Thus, the uniformity U has a countable base, and, consequently, it is
metrizable (see, e.g., [20], Theorem 8.1.12).

Theorem 8. For a space X, the following conditions are equivalent:

(i) X is pseudocompact.
(ii) Cτu(X, (FUSCB(Rn), Hend)) satisfies fuzzy Arzelà–Ascoli theorem.
(iii) Cτu(X, (FUSCB(Rn), Hend)) satisfies the weak fuzzy Arzelà–Ascoli theorem.

Proof. (1)=⇒(2) follows from Theorem 6 and (2)=⇒(3) is obvious. We show (3)=⇒(1).
We take advantage of the fact that (E1, Hend) and, a posteriori, (FUSCB(Rn), Hend) contains
a (closed) copy of the reals. Suppose that X is not pseudocompact. Then, we can find
an infinite sequence {Un}∞

n=1 of pairwise disjoint open sets that is locally finite. For each
n ∈ N, pick xn ∈ Un. X being a Tychonoff space, there exists a continuous function fn from
X into the reals such that fn|X\Un ≡ 0 and fn(xn) = n. It is clear that the sequence { fn}∞

n=1
pointwise-converges to the zero function. Thus, { fn}∞

n=1 is relatively τp- compact. Since
the τu-closure of our sequence is contained in its τp-closure, Theorem 3 tells us that the
τu-closure of { fn}∞

n=1 is pointwise-level-bounded and pointwise-approached to zero. We
shall prove that the τu-closure of { fn}∞

n=1 is equicontinuous. Notice that, since τu ≥ τp,
it suffices to prove that the sequence { fn}∞

n=1 is equicontinuous (see [20], Theorem 7.14).
Let x ∈ X. Since all the functions fn vanish outside

⋃∞
n=1 Un and the sequence {Un}∞

n=1
is locally finite, it is an easy matter to prove that { fn}∞

n=1 is equicontinuous at x. Assume
now that there is n ∈ N with x ∈ Un. Given ε > 0, there exists a neighborhood W ⊆ Un
such that Hend( f (y), f (x)) < ε for all y ∈ W. The results now follows from the fact that
fm|X\Un ≡ 0 for all m 6= n. We conclude the proof by showing that the τu-closure of { fn}∞

n=1
is not τu-compact. Taking into account that the topology τu is metrizable and our sequence
pointwise-converges to zero, it suffices to prove that any subsequence of { fn}∞

n=1 does not
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converge to zero. But this fact is a straightforward consequence of the definition of fn for
each n ∈ N. The proof is complete.

Corollary 8. For a space X, the following conditions are equivalent:

(i) X is pseudocompact.
(ii) Cτu(X, (E1, Hend)) satisfies fuzzy Arzelà–Ascoli theorem.
(iii) Cτu(X, (E1, Hend)) satisfies the weak fuzzy Arzelà–Ascoli theorem.

With each compact space being pseudocompact, the implication (1)=⇒(2) of the
previous theorem implies Corollary 7.

We close the paper with some applications of the previous results. In the outstanding
paper [23], Frolík introduced the class B of all pseudocompact spaces X such that the
product space X×Y is also pseudocompact for every pseudocompact space Y. Noble [27],
later, showed that B is closed by taking arbitrary products. Moreover, by a result of
Tkachenko [28], every pseudocompact topological group belongs to B (see also [29]). Thus,
we have

Corollary 9. If X = ∏i∈I Xi is an arbitrary product of pseudocompact spaces in class B (in
particular, if X is an arbitray product of pseudocompact groups), then X satisfies Theorem 8 and
Corollary 8.

kr-spaces play an important role in funcional analysis. A special class of this kind of
spaces comprises kr-pseudocompact spaces. Noble showed [30] that an arbitrary product
of kr-pseudocompact spaces is a kr-pseudocompact space as well. Therefore, we have

Corollary 10. If X = ∏i∈I Xi is an arbitrary product of kr-pseudocompact spaces, then the
following conditions hold:

(i) X satisfies Theorem 8 and Corollary 8.
(ii) Cτco (X, (FUSCB(Rn), Hend)) and Cτco (X, (E1, Hend)) satisfy fuzzy Arzelà–Ascoli theorem.

4. Conclusions

In classical analysis, Arzelà–Ascoli-type theorem characterizes compactness in func-
tion spaces. The aim of this manuscript is to investigate a fuzzy-type Arzelà–Ascoli theorem.
The authors introduce weak fuzzy Arzelà-Ascoli theorem and fuzzy Arzelà–Ascoli theo-
rem, and provide several sufficient conditions for a function space to satisfy (weak) fuzzy
Arzelà–Ascoli theorem. Using a counterexample, it is shown that weak fuzzy Arzelà–Ascoli
theorem is not equivalent to fuzzy Arzelà–Ascoli theorem, and it is proved that the function
space in question satisfies (weak) fuzzy Arzelà–Ascoli theorem if and only if X is pseudo-
compact. Some applications of these results are also given. Our results are expected to be
applied in future research in fields such as fuzzy differential equations and optimization
theory.
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