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Abstract: This brief contribution aims to complement a study of well-posedness started by the
same authors in 2020, showing—for that same mathematical model—the existence of a domain of
influence of external data. The object of investigation, we recall, is a linear thermoelastic model
with a porous matrix modeled on the basis of the Cowin–Nunziato theory, and for which the heat
exchange phenomena are intended to obey a time-differential heat transfer law with three delay
times. We therefore consider, without reporting it explicitly, the (suitably adapted) initial-boundary
value problem formulated at that time, as well as some analytical techniques employed to handle
it in order to address the uniqueness and continuous dependence questions. Here, a domain of
influence theorem is proven, showing the spatial behavior of the solution in a cylindrical domain, by
activating the hypotheses that make the model thermodynamically consistent. The theorem, in detail,
demonstrates that for a finite time t > 0, the assigned external (thermomechanical) actions generate
no disturbance outside a bounded domain contained within the cylindrical region of interest. The
length of the work is deliberately kept to a minimum, having opted where possible for bibliographic
citations in favor of greater reading fluency.
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1. Introduction

First of all, it is important to underline that this communication represents a natural
extension of the study of well-posedness started in [1]; for this reason, the reading of the
present paper should not ignore, and indeed should be strictly connected to, the contents
of [1] also because—in order to avoid unnecessary duplications—we will not report here the
equations underlying the mathematical model object of investigation, nor will we specify
the conventions used, limiting ourselves to their citation. Furthermore, we immediately
point out that, in the present investigation, the reference time-differential heat conduction
law is assumed as follows:

τ2
q q̈i(x, t)/2 + τq q̇i(x, t) + qi(x, t)

= −τTkij(x)Ṫ,j(x, t)−
[
kij(x) + ταKij(x)

]
T,j(x, t)− Kij(x)α,j(x, t),

(1)

where qi(x, t) are the components of the heat flux vector, depending on space (x) and
time (t), T(x, t) is the temperature variation from the constant reference value T0(>0), and
α(x, t) (see, for instance, Green and Naghdi [2]) is the thermal displacement such that
α̇(x, t) = T(x, t); we remark that superposed dots and subscripts preceded by a comma
denote partial differentiation with respect to time and space variables, respectively. More-
over, kij(x) and Kij(x) are the components of the thermal conductivity and conductivity
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rate tensors, respectively, while τq, τT and τα (all assumed strictly positive) are the heat
flux, temperature gradient, and thermal displacement gradient delay times, respectively.
The restrictions able to guarantee the thermodynamic consistency of models based on this
heat transfer law are derived in [3]. Nevertheless, it is worth specifying that other possible
selections in terms of Taylor series expansion orders are possible, proposing, for example,
the following reference equation:

τq q̇i(x, t) + qi(x, t) = −τTkij(x)Ṫ,j(x, t)−
[
kij(x) + ταKij(x)

]
T,j(x, t)− Kij(x)α,j(x, t), (2)

the thermodynamic (second law) compatibility constraints of which have been recently
analyzed in [4].

For bibliographic completeness, we very briefly recall that in 1995, Tzou [5] proposed
a dual-phase-lag model in order to generalize the classical Fourier law of heat conduction,
involving two delay times τq and τT . Based on Green and Naghdi’s intuition, which
included among the constitutive variables not only the temperature gradient but also
the thermal displacement gradient, in 2007, Roy Choudhuri [6] introduced a three-phase-
lag model, which in turn generalized the previous one by Tzou and involved also a
third relaxation time τα. We must remember that, unlike the original models subject to
some criticism in the literature, for the corresponding time-differential versions (obtained
by resorting to suitable Taylor series expansions), a large number of results have been
published, corroborating their well-posedness. In the context of linear thermoelasticity,
and leaving aside the relevant high-expansion orders and wave propagation issues, we
mention only as examples the following studies of well-posedness questions:

• Two delay times with compact [7] and porous [8] elastic matrices;
• Three delay times with compact [9] and porous [1] elastic matrices.

The present work complements, together with [1], the study of thermoelastic materials
with voids and three delay times, providing a framework superimposable to the one
described in [8] for media with a porous elastic matrix and only two delay times. The
work plan is the following. In Section 2, we cite from [1] (without reporting them) the
partial differential equations underlying the model studied, together with some important
mathematical notations used. Instead, what is made explicit is the choice of external
loads/supplies and initial/boundary conditions, peculiar with respect to the study of the
spatial behavior of the solutions; Section 3 is devoted to the description of the mathematical
process employed, while in Section 4 we give the domain of influence theorem, with a
related proof sketch. In Section 5, we draw the main conclusions of the work.

It is worth remembering that the (joint) objective of the present work together with [1],
which replicates the scheme of [8] for a more general thermoelasticity model, is the inves-
tigation of the well-posedness issue of the model itself, combined with the study of the
spatial behavior of the solution, in the sense that the identification of explicit solutions
for the above-proposed models (i.e., initial-boundary value problems) is not among the
goals of such studies. In a near future, it would be interesting to make advances in this
sense, as for example in [10], where a general solution is presented for the Lord–Shulman
thermoelasticity model in transversely isotropic solids, proving its completeness (such
general solution is also detailed for various combinations of (thermo)elastodynamic and
elastostatic theories for transversely isotropic and isotropic media) or even in [11], and,
very recently, in [12], or [13], in which numerical techniques are also employed.

Nonetheless, we must highlight that the study of the spatial behavior of solutions,
which here in detail translates into the proof of the existence of a domain of influence for
the external data, has always been a topic of great importance. In this regard, we would like
to cite, without any claim to completeness and limiting the field to mathematical models
close to the one investigated here, the contributions by Dhaliwal and Wang [14], where the
Cowin–Nunziato theory [15] is taken into account to describe the mechanical behavior of
elastic solids with small pores, highlighting potential applications for geological materials
like rock and soil, as well as to manufactured porous materials. In [14], it is also clearly



Mathematics 2023, 11, 4195 3 of 10

explained what is meant by the domain of influence: ... in the context of theory considered,
the solution to a mixed initial-boundary value problem(s) vanishes outside a bounded domain Ωt
for a finite time t > 0. Ωt ... is called the domain of influence of the data at time t associated with
the problem.

Proceeding in chronological order, we would like to remember, for instance, the work
of Ciarletta and Ieşan [16], together with the references by Ignaczak [17] and Ignaczak
and coworkers [18] cited therein; also, in [18], we underline the existence of a domain
of influence, which is linked to the presence of a relaxation time; or even the works by
Hetnarski and Ignaczak [19], Quintanilla and Racke [20] (In which one can read: ... the
spatial behavior of solutions is analyzed in a semi-infinite cylinder (framework also applicable
to our analysis, see note at the end of Section 4) and a result on the domain of influence is
obtained); and, more recently, Ostoja–Starzewski and Quintanilla [21], where the spatial
behavior of solutions is investigated, highlighting an interesting parallel with the Moore–
Gibson–Thompson (MGT) equation (see also [4,22]). More generally, as Fernández and
Quintanilla state in [23]: Mathematical studies about the spatial behavior have been proposed for
elliptic, hyperbolic and parabolic equations [...]. The list of contributions in this theory is huge.

2. Materials & Methods: Definition of the Problem

Since the present investigation, as mentioned, represents an advancement—in terms
of spatial behavior and the existence of a domain of influence of the solution—of the study
proposed in [1], we will not report here the equations that define the thermoelastic model
in question, but rather we just mention them. Specifically, we deal with an anisotropic
inhomogeneous linear thermoelastic material with voids; the presence of pores is modeled
following the classical Cowin–Nunziato theory [15] and, regarding the part related to heat
exchanges, the presence of three distinct relaxation times is taken into account. All the
conventions defined in [1] (including those of summation and differentiation) must be con-
sidered valid and, in addition, we specify that the Greek subscripts will range over the set
{1, 2}. As for the definition of the model, our reference is therefore to Equations (1)–(6) and
(8), Section 2 in [1], as well as to the related meanings and notations. In addition, we specify
also that the preliminary analytical handling of the model does not undergo any changes
with respect to [1], and so we refer here (and consider valid) also to Equations (10)–(15),
again from Section 2. Instead, the selection of external loads/supplies and initial/boundary
conditions deserves a separate discussion, dealing here with a domain of influence problem,
and this is what we describe below.

We need to choose, for the specific purpose, null body forces and an external rate of
heat supply, i.e., fi = l = s = 0, as well as null initial conditions, i.e., u0

i = u̇0
i = ϕ0 = ϕ̇0 =

T0 = q0
i = q̇0

i = 0: this clearly reverberates in the cancellation of the terms Fi(x, t), L(x, t),
S(x, t), and Ωi(x, t).

As far as boundary conditions (BCs) are concerned, and for greater clarity, it may be
useful to refer for instance to Figure 1, p. 110, in [24], considering valid, for the present case,
the following notations: the right cylinder is called C, its lower base (lying in the Ox1x2
plane) is indicated with D0, and its height with H. Exactly as in [8], it is worth mentioning
that the domain of influence theorem that will be proven remains valid regardless of the
shape of the region under investigation; nonetheless, for purely computational needs, we
take into account the above-described right cylinder, the boundary of which is assumed to
be sufficiently regular in order to allow the application of the divergence theorem.

Summarizing, a Cartesian reference system Ox1x2x3 is considered, such that the
coordinate x3 (which varies orthogonally to the bases of the cylinder) ranges between 0 and
H, and the lower base D0 continues to lie in the coordinate plane Ox1x2. We also call Dx3

the plane cross-section at distance x3 from D0 and, correspondingly, Cx3 the portion of C of
height (H − x3) between the cross-sections Dx3 and DH . We set the following:

a. Trivial (side) BCs:
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t∗αi(x1, x2, x3, t)nα = 0 or u∗i (x1, x2, x3, t) = 0,

h∗α(x1, x2, x3, t)nα = 0 or ϕ∗(x1, x2, x3, t) = 0,

q∗α(x1, x2, x3, t)nα = 0 or α∗(x1, x2, x3, t) = 0 if (x1, x2) ∈ ∂Dx3 , x3 ∈ (0, H),

(3)

where nα (α = 1, 2) are the components of the outward unit vector normal to the side
surface of the cylinder.

b. Trivial (upper base) BCs:

t∗3i(x1, x2, H, t) = 0 or u∗i (x1, x2, H, t) = 0,

h∗3(x1, x2, H, t) = 0 or ϕ∗(x1, x2, H, t) = 0,

q∗3(x1, x2, H, t) = 0 or α∗(x1, x2, H, t) = 0 if (x1, x2) ∈ DH .
(4)

c. Non-zero (lower base, D0) BCs, intended as an assigned thermomechanical signal
coming from the outside:

t∗3i(x1, x2, 0, t) = t̂ ∗i (x1, x2, t) or u∗i (x1, x2, 0, t) = û ∗i (x1, x2, t),

h∗3(x1, x2, 0, t) = ĥ ∗(x1, x2, t) or ϕ∗(x1, x2, 0, t) = ϕ̂ ∗(x1, x2, t),

q∗3(x1, x2, 0, t) = q̂ ∗(x1, x2, t) or α∗(x1, x2, 0, t) = α̂ ∗(x1, x2, t) if (x1, x2) ∈ D0,

(5)

for which the depth of propagation in C (i.e., the spatial behavior of the solution varying
the distance x3 from the perturbed base D0) will be evaluated in the following. It is worth
highlighting that the functions t̂ ∗i , ĥ ∗, q̂ ∗ and û ∗i , ϕ̂ ∗, α̂ ∗, assumed sufficiently regular for
our purposes, evidently reverberate their presence in the measure Jδ(x3, t) of the solution
of the initial-boundary value problem, which will be defined later in the work.

3. Materials & Methods: Mathematical Handling

Under the hypotheses just mentioned, let us multiply Equations (13)1 and (13)2 in [1]
by ∂u∗i /∂t and ∂ϕ∗/∂t, respectively, integrate over the volume Cx3 , apply the divergence
theorem, and sum up the results obtained. We receive

d
dt

1
2

∫
Cx3

[
ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρκ
(

∂ϕ∗

∂t

)2
]

dv

= −
∫

Cx3

(
t∗ji

∂e∗ij
∂t

+ h∗i
∂ϕ∗,i
∂t
− g∗

∂ϕ∗

∂t

)
dv−

∫
Dx3

(
t∗3i

∂u∗i
∂t

+ h∗3
∂ϕ∗

∂t

)
da.

Using then Equations (13)3 and (14)1–(14)4 from [1], once more in connection with
the divergence theorem, and defining, in agreement with Equation (28) in [8], or even
Equation (3.10) in [25], the energy density associated with strain and void volume distortion

W∗(x, t) =
[
Cijrse∗ije

∗
rs + Aij ϕ

∗
,i ϕ
∗
,j + ξ(ϕ∗)2

]
/2 + Bije∗ij ϕ

∗ + Dijke∗ij ϕ
∗
,k + di ϕ

∗ϕ∗,i (≥ 0)

we obtain

d
dt

1
2

∫
Cx3

[
2W∗ + ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρκ
(

∂ϕ∗

∂t

)2
+ a
(

∂α∗

∂t

)2
]

dv

= −
∫

Dx3

(
t∗3i

∂u∗i
∂t

+ h∗3
∂ϕ∗

∂t
+

q∗3
T0

∂α∗

∂t

)
da−

∫
Cx3

q∗i
T0

∂β∗i
∂t

dv.

(6)

We invoke now Equations (10), (11), and (14)5 in [1], multiply our Equation (6) by e−δt,
where δ ∈ R+, and recall the definitions (25) in [1], namely:

γij = kij + ταKij, κij = τTkij − τqγij/2, κij = kij +
(
τα − τq

)
Kij.
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In addition, we set here for convenience

Γij =
(
τT + τq

)
kij + τq

(
τα − 3τq/2

)
Kij

and remember that, in view of [3], p. 228, the requirement of compatibility of the model
in question with thermodynamics implies that the tensors κij, κij (and so Γij) are posi-
tive semi-definite. After very long but straightforward calculations, we are led to the
following equality

1
T0

∫
Cx3

e−δtq∗i
∂β∗i
∂t

dv =
τq

T0

∫
Cx3

e−δt
(

κij +
δ

4
τTτqkij

)
βiβ jdv +

τTτ2
q

4T0

d
dt

∫
Cx3

e−δtkijβiβ jdv

+
1
T0

∫
Cx3

e−δt
(
κij +

δ

2
Γij +

δ2

4
τ2

q γij

)
βiβjdv +

1
2T0

d
dt

∫
Cx3

e−δt
(

Γij + δτ2
q γij

)
βiβjdv

+
τ2

q

4T0

d2

dt2

∫
Cx3

e−δtγijβiβjdv +
δ

2T0

(
1 + τqδ +

τ2
q

2
δ2

)∫
Cx3

e−δtKijβiβjdv

+
1

2T0

(
1 + 2τqδ +

3τ2
q

2
δ2

)
d
dt

∫
Cx3

e−δtKijβiβjdv +
τq

4T0

(
2 + 3τqδ

) d2

dt2

∫
Cx3

e−δtKijβiβjdv

+
τ2

q

4T0

d3

dt3

∫
Cx3

e−δtKijβiβjdv

(7)

which actually represents a generalization of the relation (48), p. 1595, in [8]; we emphasize
that all the terms in (round) brackets in (7) are non-negative under the assumptions of
thermodynamic consistency of the model, see [3].

From (6), we multiply by e−δt, and (7) then we obtain

d
dt

∫
Cx3

e−δt

2

[
2W∗ + ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρκ
(

∂ϕ∗

∂t

)2
+ a
(

∂α∗

∂t

)2
]

dv

+
∫

Cx3

δe−δt

2

[
2W∗ + ρ

∂u∗i
∂t

∂u∗i
∂t

+ ρκ
(

∂ϕ∗

∂t

)2
+ a
(

∂α∗

∂t

)2
]

dv

+
τq

T0

∫
Cx3

e−δt
(

κij +
δ

4
τTτqkij

)
βiβ jdv +

τTτ2
q

4T0

d
dt

∫
Cx3

e−δtkijβiβ jdv

+
1
T0

∫
Cx3

e−δt
(
κij +

δ

2
Γij +

δ2

4
τ2

q γij

)
βiβjdv +

1
2T0

d
dt

∫
Cx3

e−δt
(

Γij + δτ2
q γij

)
βiβjdv

+
τ2

q

4T0

d2

dt2

∫
Cx3

e−δtγijβiβjdv +
δ

2T0

(
1 + τqδ +

τ2
q

2
δ2

)∫
Cx3

e−δtKijβiβjdv

+
1

2T0

(
1 + 2τqδ +

3τ2
q

2
δ2

)
d
dt

∫
Cx3

e−δtKijβiβjdv +
τq

4T0

(
2 + 3τqδ

) d2

dt2

∫
Cx3

e−δtKijβiβjdv

+
τ2

q

4T0

d3

dt3

∫
Cx3

e−δtKijβiβjdv = −
∫

Dx3

e−δt
(

t∗3i
∂u∗i
∂t

+ h∗3
∂ϕ∗

∂t
+

q∗3
T0

∂α∗

∂t

)
da.

(8)

We stress that the left-hand side of Equation (8) is non-negative, and, in view of the
null initial conditions, it can be trivially integrated three times in t. For every x3 going from
0 to H, and for every t greater than or equal to 0, the following measure Jδ(x3, t) of the
solution of our initial-boundary value problem can be defined:

0 ≤Jδ(x3, t) = −
∫ t

0

∫ s

0

∫ z

0

∫
Dx3

e−δξ

(
t∗3i

∂u∗i
∂ξ

+ h∗3
∂ϕ∗

∂ξ
+

q∗3
T0

∂α∗

∂ξ

)
dadξdzds. (9)
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An immediate evaluation of the partial derivative ∂Jδ(x3, t)/∂x3 leads to

−∂Jδ(x3, t)
∂x3

=
∫ t

0

∫ s

0

∫
Dx3

e−δz

2

[
2W∗ + ρ

∂u∗i
∂z

∂u∗i
∂z

+ ρκ
(

∂ϕ∗

∂z

)2
+ a
(

∂α∗

∂z

)2
]

dadzds

+
∫ t

0

∫ s

0

∫ z

0

∫
Dx3

δe−δξ

2

[
2W∗ + ρ

∂u∗i
∂ξ

∂u∗i
∂ξ

+ ρκ
(

∂ϕ∗

∂ξ

)2
+ a
(

∂α∗

∂ξ

)2
]

dadξdzds

+
τq

T0

∫ t

0

∫ s

0

∫ z

0

∫
Dx3

e−δξ

(
κij +

δ

4
τTτqkij

)
βiβ jdadξdzds +

τTτ2
q

4T0

∫ t

0

∫ s

0

∫
Dx3

e−δzkijβiβ jdadzds

+
1
T0

∫ t

0

∫ s

0

∫ z

0

∫
Dx3

e−δξ

(
κij +

δ

2
Γij +

δ2

4
τ2

q γij

)
βiβjdadξdzds

+
1

2T0

∫ t

0

∫ s

0

∫
Dx3

e−δz
(

Γij + δτ2
q γij

)
βiβjdadzds +

τ2
q

4T0

∫ t

0

∫
Dx3

e−δsγijβiβjdads

+
δ

2T0

(
1 + τqδ +

τ2
q

2
δ2

)∫ t

0

∫ s

0

∫ z

0

∫
Dx3

e−δξ Kijβiβjdadξdzds

+
1

2T0

(
1 + 2τqδ +

3τ2
q

2
δ2

)∫ t

0

∫ s

0

∫
Dx3

e−δzKijβiβjdadzds

+
τq

4T0

(
2 + 3τqδ

)∫ t

0

∫
Dx3

e−δsKijβiβjdads +
τ2

q

4T0

∫
Dx3

e−δtKijβiβjda

(10)

from which we deduce that Jδ(x3, t) is not increasing with respect to the coordinate x3.
We then estimate also the partial derivative ∂Jδ(x3, t)/∂t, making use of the arithmetic-

geometric mean inequality:∣∣∣∣∂Jδ

∂t
(x3, t)

∣∣∣∣ ≤ ∫ t

0

∫ s

0

∫
Dx3

e−δz

2

[
ε1

ρ
t∗3it
∗
3i +

ε2

ρκ h∗3h∗3 +
ε3

aT2
0

q∗3q∗3

+
ρ

ε1

∂u∗i
∂z

∂u∗i
∂z

+
ρκ
ε2

(
∂ϕ∗

∂z

)2
+

a
ε3

(
∂α∗

∂z

)2
]

dadzds, ∀ε1, ε2, ε3 ∈ R+.

(11)

From now on, we will be even more concise in explaining the procedure followed,
referring for technical details to [8], p. 1597, and the following: the major change to account
for in terms of notations involved is that the tensor βij(x) in [8] becomes Mij(x) here for
the sake of avoiding ambiguity. It is thus possible to arrive at the following estimates:

t∗3it
∗
3i ≤ t∗ijt

∗
ij ≤ 2(1 + ε4)S∗W∗ +

(
1 +

1
ε4

)
max(Mrs Mrs)

(
∂α∗

∂t

)2
, ∀ε4 ∈ R+, (12)

where S∗, along with related defined quantities, is given by Equation (56) in [8];

h∗3h∗3 ≤ h∗i h∗i ≤ 2(1 + ε5)G∗W∗ +
(

1 +
1
ε5

)
max(akak)

(
∂α∗

∂t

)2
, ∀ε5 ∈ R+, (13)

where G∗ is defined this time by Equation (59) in [8]. The estimate of q∗3q∗3 is instead
different from [8], and so we make it explicit. Starting from (14)5 in [1], we employ the
Cauchy–Schwarz inequality and obtain

q∗i q∗i = q∗i
(

Kijβj + γijβj + τTkijβ j

)
≤
[
(KrsKrs)

1/2
(

βkβk

)1/2
+ (γrsγrs)

1/2(βkβk
)1/2

+ τT(krskrs)
1/2(βkβk)

1/2
]2
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and therefore

q∗3q∗3 ≤ q∗i q∗i ≤ 3
[
(KrsKrs)

(
βkβk

)
+ (γrsγrs)

(
βkβk

)
+ τ2

T(krskrs)(βkβk)
]
, (14)

which is Equation (29) in [24], p. 117.
At this stage, in view of our Equations (11)–(14), we obtain∣∣∣∣∂Jδ

∂t
(x3, t)

∣∣∣∣ ≤ 1
2

∫ t

0

∫ s

0

∫
Dx3

e−δz
{

2
[

ε1

ρ
(1 + ε4)S∗ +

ε2

ρκ (1 + ε5)G∗
]

W∗

+
ρ

ε1

∂u∗i
∂z

∂u∗i
∂z

+
ρκ
ε2

(
∂ϕ∗

∂z

)2

+

[
ε1

ρ

(
1 +

1
ε4

)
max(Mrs Mrs) +

ε2

ρκ

(
1 +

1
ε5

)
max(akak) +

a
ε3

](
∂α∗

∂z

)2

+
3ε3

aT2
0

[
(KrsKrs)

(
βkβk

)
+ (γrsγrs)

(
βkβk

)
+ τ2

T(krskrs)(βkβk)
]}

dadzds,

∀εi ∈ R+, i = 1, 2, ..., 5.

(15)

Moreover, from (10), we deduce

∂Jδ

∂x3
(x3, t) ≤ −

∫ t

0

∫ s

0

∫
Dx3

e−δz

2

[
2W∗ + ρ

∂u∗i
∂z

∂u∗i
∂z

+ ρκ
(

∂ϕ∗

∂z

)2
+ a
(

∂α∗

∂z

)2
]

dadzds

− 1
2T0

∫ t

0

∫ s

0

∫
Dx3

e−δz
(

1 + 2τqδ +
3
2

τ2
q δ2
)

Kijβiβjdadzds

− 1
2T0

∫ t

0

∫ s

0

∫
Dx3

e−δz
{[

τT +
(
1 + τqδ

)
τq
]
kij + τq

[(
1 + τqδ

)
τα −

3
2

τq

]
Kij

}
βiβjdadzds

−
τTτ2

q

4T0

∫ t

0

∫ s

0

∫
Dx3

e−δzkijβiβ jdadzds

(16)

which actually represents, setting δ = 0, the extension to the porous case of Equation (34)
in [24], p. 118. Identifying the smallest (positive) eigenvalues of the tensors kij and Kij with
km and Km, respectively (see again p. 117 in [24]), and by a direct comparison between
Equations (15) and (16), through straightforward calculations, we are led to define

Ψ = max

{
2

2 + 4τqδ + 3τ2
q δ2 supDx3

(
KrsKrs

aKm

)
,

1
τq
[
2
(
1 + τqδ

)
τα − 3τq

] supDx3

(
γrsγrs

aKm

)
,

1
2
[
τT +

(
1 + τqδ

)
τq
] supDx3

(
γrsγrs

akm

)
,

2τT

τ2
q

supDx3

(
krskrs

akm

)}
.

4. Spatial Behavior Result: Domain of Influence Theorem

From a comparison between spatial and temporal partial derivatives of the measure
Jδ(x3, t), it is appropriate to proceed by equating the following coefficients:

ε1

ρ
(1 + ε4)S∗ +

ε2

ρκ (1 + ε5)G∗ =
1
ε1

=
1
ε2

=
ε1

aρ

(
1 +

1
ε4

)
max(Mrs Mrs) +

ε2

aρκ

(
1 +

1
ε5

)
max(akak) +

1
ε3

=
3ε3

T0
Ψ = σ.

(17)

Necessarily, it has to be ε1 = ε2(= ε), while, as in [8], p. 1599, it is convenient to set
ε4 = ε5 = ε̃. Through such assumptions, Equation (17) is simplified in
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σ =
ε

ρκ (1 + ε̃)(κS∗ + G∗) =
1
ε

=
ε

aρκ

(
1 +

1
ε̃

)
[κ max(Mrs Mrs) + max(akak)] +

1
ε3

=
3ε3

T0
Ψ.

(18)

Using, again, a standard procedure, we receive an ε as in Equation (66) in [8], while
for ε3 we obtain

ε3 =
T0

3Ψ

√
(1 + ε̃)(κS∗ + G∗)

ρκ (19)

and set ∆ = κ max(Mrs Mrs) +max(akak) in such a way as to arrive at the following second
degree polynomial equation in the single variable ε̃:

ε̃2 +

[
1− T0∆ + 3aρκΨ

aT0(κS∗ + G∗)

]
ε̃− ∆

a(κS∗ + G∗)
= 0 (20)

admitting only one acceptable real, strictly positive solution, which represents the value of
ε4 = ε5 = ε̃.

Finally, we can proceed for instance as in [24] (or even [8]) through the integration
of a suitable differential inequality (shown below) exhibiting the existence of a domain of
influence of the assigned data.

Theorem 1. (Domain of influence of the assigned data) Let S =
{

ui, ϕ, α, eij, βi, tij, hi, g, η, qi
}

be the (unique, see [1]) solution of the initial-boundary value problem P defined in [1], p. 4.
Assume ρ,κ, a ∈ R+, W∗(x, t) a positive definite quadratic form and, moreover, the requirements
of compatibility with thermodynamics of the time differential three-phase-lag model [3], p. 228, be
valid. Also, assume that the right cylinder C is loaded from the outside (through its lower base D0)
by external thermomechanical actions (5). Then, there exists a constant σ ∈ R+ (a speed, from the
point of view of dimensions), such that S = 0 for every x ∈ C such that x3 ≥ σt; i.e., the effects
in the cylinder C due to the external data insisting on the lower base D0 vanish at distances from
D0 greater than or equal to σt.

Proof. Taking into account Equation (15) and the related following estimates, it is suffi-
cient to consider the right-hand side coefficients equal to σ (see Equations (17)–(20)) in
order to obtain∣∣∣∣∂Jδ

∂t
(x3, t)

∣∣∣∣ ≤ σ

2

∫ t

0

∫ s

0

∫
Dx3

e−δz

{
2W∗ + ρ

∂u∗i
∂z

∂u∗i
∂z

+ ρκ
(

∂ϕ∗

∂z

)2
+ a
(

∂α∗

∂z

)2

+
1
T0

(
1 + 2τqδ +

3
2

τ2
q δ2
)

Kijβiβj +
τq

T0

[(
1 + τqδ

)
τα −

3
2

τq

]
Kijβiβj

+
1
T0

[
τT +

(
1 + τqδ

)
τq
]
kijβiβj +

τTτ2
q

2T0
kijβiβ j

}
dadzds.

From Equation (16), we are led to the following differential inequality, valid for each
couple (x3, t) ∈ (0, H)× (0, ∞) ∣∣∣∣∂Jδ

∂t

∣∣∣∣+ σ
∂Jδ

∂x3
≤ 0 (21)

that can be easily integrated in a standard way (repeating the whole procedure is considered
not particularly meaningful, see [8] or [24] for more details). The conclusion is that, for
each instant t, Jδ(x3, t) = 0, ∀x3 ≥ σt, i.e., the effects of the external signal are not felt at
distances from D0 greater than or equal to σt. The existence of a domain of influence of the
assigned external actions remains then proven.
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We also specify (refer to Appendix, p. 119 in [24]) that such an influence domain is
preserved, also taking into account a semi-infinite cylindrical region C, i.e., letting H tend
to infinity.

5. Conclusions

The main purpose of this brief work is to contribute to the completeness of the
analysis started with the study of the well-posedness question in [1] for a model of linear
thermoelasticity in which the porous skeleton is described through the Cowin–Nunziato
theory, while the heat transfer phenomena obey a time-differential law with three relaxation
times. We were able to highlight how the presence of a domain of influence of the solution
remains even when the effects of a thermoelastic porous matrix (taken into account in [8],
but dealing with only two delay times) are combined with those of a time-differential model
with three relaxation times (taken into account in [24], but dealing with a compact elastic
matrix). A theorem synthetically proven shows that for a finite time t > 0, the assigned
data generate no disturbance outside a bounded domain within the cylindrical region C.

Aware that the proposed issue is based on a strongly mathematical theorization of
heat exchange mechanisms, we believe anyway that this completion was due in order to
provide an exhaustive framework for the model under consideration.
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