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Abstract: Geostatistics data in regions always have highly spatial heterogeneous, yet the regional
features of the data itself cannot be ignored. In this paper, a novel latent Bayesian spatial model is
proposed, which incorporates the spatial dependence of different subjects and the spatial random
effects to further analysis the influence of spatial effect. The model is verified to be compatible
with the integrated nested Laplace approximation (INLA) framework and is fitted using INLA and
stochastic partial differential equation (SPDE). The posterior marginal distribution of parameters is
estimated with high precision. Additionally, a practical application of the model is presented using
tuberculosis (TB) incidence data in China from 2015 to 2019. The results show that the fitting accuracy
of our model is higher than the general Bayesian spatial model using INLA-SPDE.
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1. Introduction

Since the 1950s, Bayesian inference has been widely applied and can be observed
in almost every field. In the Bayesian framework, the posterior distribution π( θ|y) of
the model given parameters θ and data y is of interest. The Markov Chain Monte Carlo
(MCMC [1]) algorithm is able to compute this posterior distribution effectively, but when
dealing with large sample data or complex models, it encounters problems of long compu-
tation time and slow convergence. To address these problems, Rue et al. (2009) [2] proposed
a new algorithm to combine Laplace approximation with modern numerical integration in
the Bayesian framework, INLA. INLA can significantly conquer the problem of the high
computational cost of the MCMC algorithm while ensuring fitting accuracy. Although
many existing methods can approximate the marginal likelihood [3–6], INLA still has the
advantages of high estimation accuracy, high computational speed, and high computa-
tional power, and its ability of parallel computation is especially important for spatial or
spatio-temporal latent Gaussian models, while smaller models also enjoy good speedup.

In addition, the INLA algorithm assumes that the geostatistics data are contin-
uous hidden Matérn Gaussian fields (GF) of a single realization. The second-order
smooth isotropic Matérn GF is a solution of a SPDE [7] with Matérn covariance function
(Matérn, (1960) [8]). This covariance is affected by the separation distance between spatial
points, so the solution of SPDE can reflect the autocorrelation within spatial points to
some extent. SPDE establishes a connection between the continuous Gaussian random
field (GRF) and the discrete Gaussian Markov random field (GMRF [9]), since the preci-
sion matrix of GMRF is sparse, it allows a fast Bayesian inference. So, the INLA algorithm
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can be combined with SPDE. INLA-SPDE has been widely applied in various fields,
including air pollution (Cameletti et al. (2013) [10]), infectious diseases (Moraga et al.
(2021) [11]), species (Moraga, (2021) [12]), wildfires (Zhang et al. (2023) [13]), earthquakes
(Wilson et al. (2020) [14]), etc. Detailed application of INLA-SPDE in the R-INLA software
can be found in Lindgren et al. (2015) [15], Krainski et al. (2018) [16].

However, most current studies employing INLA-SPDE for spatial effects primarily focus
on spatial heterogeneity or the correlation within spatial points, which is not sufficient. The
spatial dependence between different subjects is also an important aspect to be considered.
Anselin (1988) [17] initially introduced the concept of spatial econometrics, integrating the
effects of region, location and spatially related effects into the model. Subsequently, LeSage and
Pace (2009) [18] provided an overview and the application of spatial econometric models. For
Bayesian inference, they utilized the MCMC algorithm to estimate the posterior distribution
of the model parameters. However, although this technique provides a feasible Bayesian
model-fitting method, it still has the problem of heavy computation. Bivand et al. (2014 [19],
2015 [20]) described how to use the INLA and Bayesian Model Average (BMA [21]) to fit
some spatial econometrics models. Their focus was on the specification of the response and
error terms commonly used in econometric models, but these models could not be directly
implemented in the software at that time. Thus, they fitted several conditional models by
R-INLA and then combined these models with BMA to fit spatial econometric models. In a
later study, G’omez-Rubio et al. (2019) [22] proposed different methods for applying INLA
to fit spatial econometric models and perform multivariate inference on the posterior. In the
literature of G’omez-Rubio et al. (2020) [23], the authors utilized the INLA-BMA algorithm to
fit spatial econometric models. Jiaqi Teng (2021) [24] applied the MCMCINLA method to fit a
spatial lag model in a spatial econometric model. G’omez-Rubio et al. (2021) [25] described
a novel class of latent models in order to fit a diverse array of spatial econometric models
using R-INLA.

Based on the latent model proposed by G’omez-Rubio et al. (2021) [25], this paper
proposes a new latent Bayesian spatial model under INLA-SPDE, which incorporates
the spatial dependence of different subjects and the spatial random effects, thus more
comprehensively accounting for the influence of spatial effects on the geostatistics data.
In order to analyze the application scenarios and limitations of our proposed model, we
simulate the model under the conditions of large samples, small samples and different
spatial autocorrelation parameters. It is found that our proposed model has more accurate
parameter estimation with large samples and strong spatial autocorrelation effects. Then,
the tuberculosis (TB) incidence data in China are used as empirical data to further illustrate
the effectiveness of this model. The results show that the estimation of the fixed-effects
parameters remains highly accurate, and the significance of some of the fixed effects
changed after accounting for spatial dependence. Therefore, this latent model can provide
some references for the application of some problems in geostatistics in the future.

The structure of this paper is as follows. Section 2 presents the background of our
proposed model and its construction; Section 3 offers a proof of principle demonstrating
that our model can be applied under the INLA framework; Section 4 conducts numerical
simulations of the proposed model to verify its correctness, giving the applicability and
limitations of the proposed model; Section 5 presents the source of the TB incidence data in
China and the pre-processing process of the data, giving the process of implementation
and empirical analysis of INLA-SPDE based on this data; finally, Section 6 summarizes and
discusses the entire paper.

2. Model Description
2.1. Background

In this section, we summarize the background and rationale for the construction of
the model proposed in this paper. On the one side, in order to consider the effect of the
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correlation within spatial points on the response variable, there is a Bayesian spatial model
with the addition of spatial random effects [7]:

y = Xβ + S(l) + e, (1)

where y = (y1, y2, . . . , yn) denotes a response variable of n regions, X is the design matrix,
β is the vector of covariate coefficients, S(l) at location l = (u, v) is the exact and stable
solution of the SPDE, obeying a Gaussian process with zero mean, (u, v) denotes the
latitude and longitude coordinates of the location, e is a vector of zero mean measurement
error with variance σ2

e .
On the other side, in order to consider the spatial dependence of different subjects, the

spatial lag model (SLM) is gaining attention from many scholars. The main model [25] is
as follows:

y = ρlagWy + Xβ + e, e ∼ MVN(0, σ2
e In), (2)

where ρlag is the spatial autocorrelation, W is n× n spatial adjacency matrix. The error
term e obeys the independent Gaussian distribution with mean 0, precision matrix τ In,
τ = 1/σ2

e is the precision parameter. The SLM model can be rewritten as:

y = (In − ρlagW)−1(Xβ + e), e ∼ MVN(0, σ2
e In). (3)

In the INLA framework, SLM cannot be fitted directly, so we need to construct a latent
class to refine SLM and express it as a GMRF with a sparse precision matrix to confirm the
INLA framework. The latent class is:

x = (In − ρW)−1(Xβ + e), (4)

where x denotes a vector of n random effects.
For a Gaussian response, using the latent class (4), we then have the SLM latent model

y = x + ε, (5)

where x is included as a random effect in the linear predictor and ε is a small error used to
fit the model. The error term is only present in a Gaussian distribution and will not appear
in others.

2.2. Model Construction

Considering that there is not only spatial heterogeneity but also spatial dependence in
a region, this paper proposes a new latent Bayesian spatial model to analyze the influence of
the spatial dependence between different subjects and the spatial heterogeneity on response
variables in more detail.

In contrast with Basile et al. (2014) [26], in order to apply the model under INLA-
SPDE, we add the spatial random effects to the latent model (5), which are considered to be
independent of the covariates and are only used to capture the spatial heterogeneity of the
spillover. The model is as follows:

y = x + S(l) + ε = (In − ρW)−1(Xβ + e) + S(l) + ε, (6)

where y denotes a response variable of length n, x is the latent spatial dependence effect,
S(l) denotes the spatial random effects, and ε is a tiny error obeying a Gaussian white noise
process. The Matérn covariance function for S(l) [27] is:

cov(S(li), S(lj)) =
σ2

Γ(λ)2λ−1 (κ
∥∥li − lj

∥∥)λKλ(κ
∥∥li − lj

∥∥), (7)

where
∥∥li − lj

∥∥ denotes the Euclidean distance between different locations, σ2 is the
marginal variance of the Gaussian process, Kλ is a type II Bessel function, and the or-
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der λ > 0 is used to measure the smoothness of the process and generally held constant.
The scale parameter κ is related to the distance range r, i.e., r =

√
8λ/κ (corresponding to

λ > 1/2 and a distance that spatial points autocorrelation is close to 0.1).

3. Proof of GMRF Structure

In order to use INLA-SPDE to fit model (6), it is essential that the model conforms to
the INLA framework, particularly to exhibit the GMRF structure with a sparse precision
matrix. Therefore, this section provides a demonstration of the GMRF structure within our
proposed model.

Before the proof, we split the main model (6) into two pieces, x = (In− ρW)−1(Xβ+ e)
and S(l), respectively, to simplify the subsequent proof process. For the first block, assume
that β has a Gaussian prior with precision matrix Q and zero mean, i.e., prec(β) = Q and
E(β) = 0. According to Bayes’ theorem, the joint distribution of x and β for the INLA
demand can be obtained as follows:

π(x, β) = π(x
∣∣β)π(β).

Next, from the definition, assuming that the joint distribution is Gaussian and therefore
the conditional distribution is also Gaussian, with

E(x
∣∣β) = (In − ρW)−1Xβ,

Var(x | β) = Var
[
(In − ρW)−1Xβ + (In − ρW)−1e | β

]
= (In − ρW)−1Var(e | β)

(
(In − ρW)−1

)′
= (In − ρW)−1(1/prec(e | β))

(
(In − ρW)−1

)′
= (In − ρW)−1 1

τ

(
(In − ρW)−1

)′
,

prec(x | β) = 1/Var(x | β) =
(

In − ρW ′
)
τ(In − ρW).

The precision matrix prec(x | β) is symmetric and sparse. Thus, the joint distribution
of x and β is

π(x, β) = π(x|β)π(β)

∝ exp
{
−1

2
(x− E(x

∣∣β))′ prec(x | β)(x− E(x
∣∣β))} exp

{
−1

2
β
′
Qβ

}
= exp

{
−1

2
(x, β)

′
prec(x, β)(x, β)

}
,

where prec(x, β) is the precision matrix of (x, β) given the hyperparameters τ and ρ,

E(x, β) = 0

prec(x, β) =

(
τ(In − ρW

′
)(In − ρW) −τ(In − ρW

′
)X

−X
′
τ(In − ρW) Q + τX

′
X

)
.

This shows that (x, β) obeys a normal distribution with zero mean and precision matrix
prec(x, β), so the first block has a GMRF structure. Then, due to the strongly sparse and
symmetric structure of prec(x, β), this block is allowed to use INLA for fast computation
on GMRF. Details can be found in Rue et al. (2005) [9].

For the spatial random effect S(l), it is the exact and stable solution of linear fractional SPDE(
κ2 − ∆

)α/2
(ωS(l)) = W(l), (8)



Mathematics 2023, 11, 4193 5 of 15

where ∆ is the Laplace operator, α controls the smoothness, ω controls the variance, and
κ > 0 is the scaling parameter. S(l) can also be expressed using the finite element method
by means of a basis function on a triangular profile defined over a domain

S(l) =
G

∑
g=1

ϕg(l)S̃g. (9)

Here G is the number of vertices of the triangular profile and ϕg is a set of deterministic
basis functions that are locally supported and segmentally linear in the triangular profile.
S̃g obeys a normal distribution with mean 0, whose value is 1 at vertex g and 0 at the other
vertices. By using Neumann boundary conditions, the precision matrix Q of the normal
weight vector S̃ = S̃1 . . . S̃G is obtained when α = 2.

Q = ω2(κ4C + 2κ2G + GC−1G). (10)

The element of the diagonal matrix C and the sparse matrix G is Cii =
∫

ϕi(l)dl and
Gij =

∫
∇ϕi(l)∇ϕj(l)dl (∇ denotes the gradient). Since the elements of the precision

matrix Q depend on ω and κ, it is a sparse matrix and S(l) is a GMRF with distribution
N(0, Q−1), which meets the requirements of the INLA algorithm. Details can be found in
Lindgren et al. (2011) [7].

In summary, all these components of the main model exhibit a GMRF structure with a
sparse precision matrix and satisfy the criteria of the INLA algorithm.

4. Simulation Study
4.1. Data Generation

Assuming that (In − ρW) is reversible, we consider the general Bayesian spatial model
and the Bayesian spatial model with spatial dependence and spatial random effect under
INLA-SPDE in the Gaussian distribution numerically as follows:

y1 = x1β1 + x2β2 + e + S(l), (11)

y2 = (In − ρW)−1(x1β1 + x2β2 + e) + S(l) + ε, (12)

where yi, i = 1, 2 is the response variable, x1 and x2 are covariates, and β1 and β2 are the
coefficients corresponding to the covariates. In is the n × n unit matrix, W is the n ∗ n
spatial weight matrix, e is the error term with e ∼ N(0, σ2

e ), and ε is a Gaussian white
noise process.

The specific simulation data are taken as follows:
First, for the spatial locations coordinates (u, v), we simulate it within a square domain,

bounced by points (0, 0) in the lower left corner and (1, 1) in the upper right corners. Subse-
quently, n = 300 locations within this domain are generated using the code sample(1 : n/n).
Then, we can define the mesh in the given domain.

Second, in order to simulate the value of the spatial random effect S(l), we set the
marginal variance σ2

0 = 1, the separation distance r0 = 0.3 with prior log(σ) = log(σ0) + θ1
and log(r) = log(r0) + θ2. Then, the prior of parameter κ and ω can be calculated with
log(κ) = log(κ0) − θ2 and log(ω) = log(ω0) − θ1 + θ2. Here, log(σ0), log(r0), log(κ0),
and log(ω0) are the baseline values. For the prior of θ1 and θ2, they are set to follow the
zero-mean vague-normal independent distribution with a precision of 0.1. Using these
parameters, the precision matrix Q of SPDE can be calculated, and a sample of spatial
random effects S(l) is generated from GMRF using the inla.qsample function.

Finally, the remaining data in the main model are simulated as follows: covariates x1 ∼
N(0, 1), x2 ∼ N(0, 1), parameters β1 = 3, β2 = 5 and σ2

e = 0.1. According to the coordinate
points set the minimum nearest neighbor number k = 10 by the K-Nearest Neighbor
algorithm [28] to generate the weight matrix W. The model is simulated separately with
ρ = ±0.1,±0.5,±0.9 and sample sizes of 30 and 300, respectively, under the same data seed.
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4.2. Simulation Result

Using INLA-SPDE to fit model (11) and (12) under different arithmetic cases separately,
the results of the simulations are shown in Tables 1–3.

Table 1. Parameter estimation results in model (11)’s simulation.

n β̂1 β̂2 r σ2

30 3.2183 (2.9396, 3.4864) 5.0233 (4.8207, 5.2440) 0.4674 (0.2174, 0.7750) 1.5645 (0.5607, 2.8764)

300 3.0095 (2.9851, 3.0326) 5.0157 (4.9936, 5.0373) 0.2430 (0.1812, 0.3116) 0.7739 (0.4879, 1.1050)

Table 2. The fixed parameter estimation results in model (12)’s simulation.

n ρ ρ̂ r σ2

30

−0.9 −0.8972 (−1.1348,
−0.6604) 0.5180 (0.2153, 0.9279) 1.6117 (0.5110, 3.1908)

−0.5 −0.4866 (−0.7331,
−0.2472) 0.5275 (0.1578, 1.0433) 1.5465 (0.4604, 3.0258)

−0.1 −0.0898 (−0.3238,
0.1326) 0.4904 (0.2254, 0.8168) 1.5305 (0.5246, 2.8692)

0.1 0.1041 (−0.1156, 0.3052) 0.5035 (0.2324, 0.8561) 1.5775 (0.5622, 2.9340)
0.5 0.5695 (0.2080, 1.0405) 0.5524 (0.1977, 0.9976) 1.5628 (0.3258, 3.4612)
0.9 0.9009 (0.8906, 0.9116) 0.5692 (0.2339, 0.9661) 1.6231 (0.5154, 3.1612)

300

−0.9 −0.9012 (−0.9320,
−0.8700) 0.2412 (0.1699, 0.3288) 0.7366 (0.4445, 1.1038)

−0.5 −0.5013 (−0.5372,
−0.4661) 0.2200 (0.1745, 0.2687) 0.6624 (0.4725, 0.8729)

−0.1 −0.1011 (−0.1386,
−0.0641) 0.2509 (0.1872, 0.3231) 0.7952 (0.4979, 1.1445)

0.1 0.1004 (0.0638, 0.1369) 0.2508 (0.1868, 0.3230) 0.7987 (0.4999, 1.1492)
0.5 0.5087 (0.4788, 0.5372) 0.2486 (0.1820, 0.3232) 0.7869 (0.4697, 1.1598)
0.9 0.9021 (0.8975, 0.9065) 0.2573 (0.1938, 0.3281) 0.8233 (0.5124, 1.1841)

Table 3. The covariate effects coefficient estimation results in model (12)’s simulation.

n ρ β̂1 β̂2

30

−0.9 3.1819 (2.9021, 3.4626) 5.0792 (4.8317, 5.3333)
−0.5 3.1970 (2.9155, 3.4783) 5.0607 (4.8181, 5.3127)
−0.1 3.2031 (2.9185, 3.4852) 5.0454 (4.8073, 5.2903)
0.1 3.1963 (2.8958, 3.4909) 5.0657 (4.8071, 5.3361)
0.5 3.1805 (2.8550, 3.4989) 5.1152 (4.8340, 5.4198)
0.9 3.1595 (2.8432, 3.4702) 5.1337 (4.8548, 5.4265)

300

−0.9 3.0031 (2.9762, 3.0296) 5.0096 (4.9759, 5.0436)
−0.5 3.0049 (2.9784, 3.0307) 5.0109 (4.9791, 5.0427)
−0.1 3.0057 (2.9786, 3.0319) 5.0128 (4.9799, 5.0458)
0.1 3.0068 (2.9800, 3.0325) 5.0147 (4.9829, 5.0465)
0.5 3.0084 (2.9819, 3.0339) 5.0205 (4.9919, 5.0486)
0.9 3.0071 (2.9810, 3.0317) 5.0176 (4.9936, 5.0410)

According to the parameter estimation results in these tables, we can find that the
models (11) and (12) fit better in the large sample case and fit with a slight error in the
small sample case. In the small samples of model (12), where spatial autocorrelation is
weak, the estimates of the spatial autocorrelation parameter even appear to be insignificant,
this is not a positive result. These results may be because the INLA-SPDE algorithm was
designed to solve the ‘big n’ problem, so we think the proposed model is more suitable
for solving the large sample problem. By comparing the simulation results of these two
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models with large samples, it can be found that, as the spatial autocorrelation increases,
more information can be captured, and the estimation of the separation distance r and
marginal variance σ2 between observations in the spatial random effect by model (12) is
also closer to the set value compared with model (11). In summary, our model has accurate
parameter estimates for autoregressive effects of varying strengths in the large sample case,
with higher precision especially when spatial correlation is strong.

The fit of model (12) to the autocorrelation parameter ρ, separation distance r, and
marginal variance σ2 for a large sample with different positive spatial autocorrelation
parameters is presented as a demonstration in Figure 1. The black solid curve is the fitted
value of the parameter and the black solid line perpendicular to the x-axis is the setting
value of the parameter.
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Figure 1. The fitted plots of ρ, r, σ2 for n = 300 with different positive autocorrelations.

4.3. Fitting Effect Evaluation

In this section, we test and compare different models for the model (11) with a large
sample of n = 300 and model (12) with different autocorrelation parameters. The Mean
Square Error (MSE) [29], the Deviant Information Criterion (DIC) [30,31], the Widely
Applicable Information Xriterion (WAIC) [32,33] and the sum of the log of Conditional
Predictive Ordinates (CPO) [34] values are used as model evaluation indicators to test the
effect of model parameter estimation and model fitting accuracy. Here, we use CPOm to
represent the sum of the log of CPO. MSE can reflect the difference between the estimation
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of parameters and its true value; the smaller the value of MSE, the higher the accuracy of
the estimation of parameters. The DIC, WAIC and the summary of CPO values can indicate
the accuracy of model fitting; the smaller the value of DIC and WAIC, and the higher the
value of CPOm, the better the model fit. However, it should be noted that when fitting
model (12), we set the variance of Gaussian likelihood to a fixed tiny value by setting the
log accuracy to 15, because this error term will not appear in the fitting of SLM, but this
setting will cause the value of DIC, WAIC and CPO to remain unchanged no matter how
the spatial autocorrelation effect changes. The results are shown in Table 4.

Table 4. Comparison of model (11)’s and (12)’s simulation effect.

Model ρ MSEyi MSEβ1 MSEβ2 MSEρ MSEr MSEσ2 DIC WAIC CPOm

Model (11) \ 6.92×
10−3

9.23×
10−5

2.50×
10−4 \ 4.35×

10−3
7.60×
10−2 −461.15 −521.87 −11.67

Model (12)

−0.9 1.32×
10−12

9.92×
10−6

9.36×
10−5

2.52×
10−4

5.31×
10−3

1.02×
10−1

−3348.64 −3440.69 1450.59

−0.5 1.58×
10−12

2.49×
10−5

1.18×
10−4

3.31×
10−4

6.99×
10−3

1.25×
10−1

−0.1 1.76×
10−12

3.29×
10−5

1.66×
10−4

3.64×
10−4

3.67×
10−3

7.08×
10−2

0.1 1.87×
10−12

4.67×
10−5

2.18×
10−4

3.48×
10−4

3.69×
10−3

7.05×
10−2

0.5 1.98×
10−12

7.15×
10−5

4.21×
10−4

2.98×
10−4

4.01×
10−3

7.95×
10−2

0.9 2.29×
10−12

5.05×
10−5

3.11×
10−4

9.90×
10−6

3.06×
10−3

6.31×
10−2

It can be visually seen that the MSE values of the response variable yi, i = 1, 2 and the
other parameters in the new latent model are very small for different settings, and the same
findings are true for DIC and WAIC. Similarly, model (12) has a higher value of CPOm than
model (11). According to these results, we can conclude that the model proposed in this
paper fits well under the INLA-SPDE algorithm. The conclusion further strengthens the
restrictive conditions for model adaptation given in Section 4.2.

5. Empirical Analysis of Tuberculosis Incidence Data
5.1. Data Sources and Pre-Processing

Tuberculosis (TB) is an infectious disease that threatens the safety of human beings and
places a great burden on people’s lives. Mainland China is a region with a high incidence
of TB, and even now, with advances in medical care, there is still a need to strengthen the
prevention and control of the incidence and spread of tuberculosis.

A number of studies have demonstrated that TB is affected by a variety of factors [35,36].
In this paper, temperature, precipitation as an indicator of meteorological factors, particulate
matter concentration as an indicator of environmental factors, and thirteen indicators of
socio-economic factors such as per capita disposable income as socio-economic factors are
selected to analyze the incidence of TB in mainland China from 2015 to 2019. By collecting
meteorological data from the ERA5-Land dataset released by the European Center for
Medium-Range Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-land-monthly-means?tab=overview, accessed on 31 December
2022) and based on the original month-by-month raster data and the raster data of thirty-
one provinces in China, the year-by-year average meteorological data of each province
can be calculated. The TB incidence data are from the Public Health Science Data Center
(http://www.phsciencedata.cn, accessed on 31 December 2019), and the environmental
and socio-economic data are from the China Statistical Yearbook (http://www.stats.gov.cn,
accessed on 31 December 2021). The data selected in this paper are the average of the data
from 31 regions, and the provincial capital cities are selected as grid points, which can be

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
http://www.phsciencedata.cn
http://www.stats.gov.cn
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regarded as point data. The interpretation of the specific indicators and the corresponding
variables for each indicator are shown in Table 5.

Table 5. Interpretation of socio-economic indicators and corresponding variables.

Variables Indicators Description

Economy

Per capita disposable income by
region

Refers to the sum of final consumption expenditure and other
expenditures and savings available per capita

Gross regional product Refers to the final results of productive activities of all resident units in the
area over a certain period of time

Per capita consumption
expenditure by region Refers to all expenditures to meet the household’s daily consumption

Medical care

Number of healthcare institutions
by region

Refers to the number of legally established health institutions engaged in
disease diagnosis and treatment activities in each region

Number of beds in healthcare
institutions by region

Refers to the number of beds in legally established health institutions in
each region

Number of consultations by
region

Refers to the total number of persons treated in healthcare institutions in
each reigon

Transportation

Public transportation passenger
volume

Refers to passenger traffic on all modes of transport that are open to the
public and provide transportation services

Passenger turnover Refers to the number of passengers actually transported in a given period
of time

Railroad mileage Refers to the total length of the railroad line for passenger and freight
transportation within a certain period of time.

Highway mileage
Refers to a certain period of time to actually achieve the “highway

engineering [WTBZ] technical standards JTJ01-88” the provisions of the
grade of highway

Modernization

Percentage of urban population Refers to the population living permanently within the city limits and
closely associated with urban activities.

Urban area Refers to a dense combination of people and housing covering a certain
area in an easily accessible environment.

International tourism income
Refers to tourism expenditures incurred by inbound foreigners, overseas

Chinese, Hong Kong, Macao and Taiwan people in the course of their
travels in mainland China

Because of the large number of indicators of socio-economic factors and the large
difference in the magnitude and correlation of each indicator, this paper first de-quantifies
and standardizes the data before the formal analysis and extracts the principal component
eigenvectors of the four socio-economic indicators, namely, economy, medical care, trans-
portation, and modernization, using the principal component analysis method, so as to
avoid the problems that may be encountered with the dimensionality of the data when
analyzing the model.

Then, the location coordinates are transformed by projection in order to reduce the
model fitting time and ensure computational accuracy. The key code of the projection is
as follows:

ssd < − f unction(x){minVal = min(x); maxVal = max(x);
x = (x−minVal)/(maxVal −minVal)}

coords[, 1] = ssd(coords[, 1])
coords[, 2] = ssd(coords[, 2]).

Finally, we conduct the Moran’s I [37] on the prevalence of TB in China and obtain the
result of 0.5445, which demonstrates that spatial autocorrelation is positive and strong.
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5.2. Model Building

It is known from Rue et al. (2009) [2] that for the latent Gaussian Model, it is enough
that the distribution of the response belongs to the exponential family. Still, the distribution
of the latent variable, which includes random effects, must be Gaussian. So we assume the
number of TB-positive patients yi follows the binomial distribution giving the population
Ni of different provinces at the end of the year:

yi | P(li) ∼ Binomial(Ni, P(li)), (13)

where li is the data points and P(li) represents the prevalence of TB on each li. In order to
better characterize the model proposed in this paper, we build the following two models:

logit(P(li)) = Xβ + S(l), (14)

logit(P(li)) = (In − ρW)−1(Xβ + e) + S(l). (15)

Here X = (x1, x2, x3, x4, x5, x6, x7) is the design matrix, β is a vector of covariate coefficients
corresponding to X, covariates xj, j = 1, 2, . . . , 7 denote precipitation, temperature, econ-
omy, medical care, transportation, modernization and particulate matter, respectively, and
(In − ρW)−1(Xβ + e) is the latent class. Model (14) is a Bayesian spatial model that only
considers spatial random effects; on this basis, the spatial dependence is further considered
in model (15).

5.3. Implementation of INLA-SPDE

Using INLA-SPDE to fit the model (15), we first need to triangulate mainland China.
The function inla.mesh.2d() is used for triangulation, where the initial mesh vertex value is
the location coordinates after the projection (red dots in the figure), the meshing effect is
shown in Figure 2. Then, we use the function inla.spde2.matern() to construct the SPDE
model and function inla.spde.make.index() to create the index set, in order to link the
random effects to the observations. Now, we need to use the inla.spde.make.A() function to
construct a projection matrix A for projecting spatially continuous Gaussian random fields
from observations to grid nodes.

After doing these preparations, we can use the function inla.stack() to build a stack
for uniting the data, effects and projection matrix. The key code is as follows:

stack.est < −inla.stack(tag = ”est”, data = . . . , A = . . . ,
e f f ects = . . . , indexs, ID.slm = . . .).

It is important to note that data in the code is the response variable, A is the list of the
projection matrix. The list of data in e f f ect includes fixed and other random effects, ID.slm
is the index of spatial adjacency matrix W.

In order to build the model fitting formulation, we first apply the equation f 1 con-
sisting of patients with TB and covariate data to construct the spatial lag matrix mmatrix.
Then, in equation f 2, only the random effect term is retained, and the matrix parameter X
in the slm model is set to the mmatrix established above. The key code for this process is
as follows:

f 1 < −y − 1 + x1 + . . . + x7
mmatrix < −model.matrix( f 1, data)

f 2 < −y ∼ −1 + f (s, model = spde)+
f (ID.slm, model = ‘slm’, args.slm = list(X = mmatrix, . . .), hyper = . . .).

Finally, the model is fitted by calling the function inla() and using the default prior
in R-INLA.
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Constrained refined Delaunay triangulation

Figure 2. Map of mainland China triangulated grid schematic.

5.4. Model Selection

The comparison results of the obtained DIC and WAIC values are shown in Table 6.

Table 6. Comparison of model evaluation metrics for models (14) and (15).

Model DIC WAIC

Model (14) 13,522.22 30,495.35

Model (15) 2117.16 2070.45

It can be found out that the DIC value (2117.16) as well as the WAIC value (2070.45) of
model (15) is smaller than model (14), indicating that model (15) has better model fitting
effect and can fully capture the spatial effects on response variables.

5.5. Model Fitting Results

Using INLA-SPDE to fit model (14) and model (15), the posterior estimations of the
fixed effect coefficients are presented in Table 7.

From Table 7, in the results of model (14), it can be found that the posterior 95%
credible intervals for the fixed effects do not contain 0, indicating that they all have a
significant effect on the prevalence of TB of different regions. The posterior mean of
precipitation, economy, modernization and particulate matter are 0.0320, 0.0840, 0.0420
and 0.0120, respectively, indicating that these factors have significant positive effects on
the prevalence of TB. The posterior mean of temperature, medical care and transportation
are −0.0820, −0.0810 and −0.1340, respectively, indicating that these three factors have
significant negative effects on the prevalence of TB.

However, as model (15) estimated by INLA-SPDE, the spatial autocorrelation param-
eter of it is ρ = 0.9808 (95%CI:0.9674 0.9897), which indicates that there is a significant
spatial dependence between the prevalence of TB of neighboring provinces. The fitting
results for model (15) show that the 95% credible intervals of economy, transportation and
modernization contain 0, indicating that the effect of these factors is not significant. This
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may be due to the fact that under the influence of the prevalence of TB in the surrounding
areas, the prevalence of TB should have declined significantly as a result of continuous
socio-economic and social modernization development and better access to transportation,
leading to the improvement of medical standards. However, in reality, the deterioration of
the urban environment and the increasing concentration of particulate matter in the air will
lead to a further increase in the prevalence of TB. Therefore, we believe that the economy,
modernization and transportation should have a differentiated rather than a linear effect
on the prevalence of TB.

Table 7. Posterior estimates of the fixed effects coefficients.

Model Covariates Mean SD 0.025 Quantile 0.975 Quantile

Model 14

Precipitation 0.0320 0.0020 0.0280 0.0360
Temperature −0.0820 0.0020 −0.0860 −0.0780

Economy 0.0840 0.0130 0.0600 0.1090
Medical care −0.0810 0.0160 −0.1130 −0.0500

Transportation −0.1340 0.0090 −0.1510 −0.1180
Modernization 0.0420 0.0010 0.0400 0.0430

Particulate Matter 0.0120 0.0030 0.0060 0.0180

Model 15

Precipitation 0.0778 0.0217 0.0351 0.1202
Temperature −0.0137 0.0019 −0.0180 −0.0088

Economy −0.0191 0.0871 −0.1881 0.1542
Medical care −0.1319 0.0539 −0.2398 −0.0273

Transportation −0.0366 0.0386 −0.1134 0.0383
Modernization −0.0595 0.0375 −0.1330 0.0142

Particulate Matter 0.0396 0.0113 0.0174 0.0618

Fitting curves for parameter ρ, r and σ2, the latent effect for the latent class and the
projection of spatial random effect mean and standard deviation are shown in Figures 3–5.
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Figure 3. The fitted plots of ρ, r and σ2 in estimation. (a) Posterior marginal of the spatial autocorrela-
tion parameter ρ. (b) Posterior marginal of the separation distance r. (c) Posterior marginal of the
marginal variance σ2.

For the spatial random effects, the left panel in Figure 5 shows that there is a spatial
random effect on the prevalence of TB in China, but it is uneven, which indicates that
the covariates in model (15) do not fully account for the spatial effects of TB prevalence;
therefore, we may need to add more influences to it for further analysis. The right panel
shows the spatial random effects standard deviation; the values of it are related to the
distance between different locations, and for locations with large standard deviation values,
we can use more data for accurate analysis.
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Latent effects
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Figure 4. Posterior means of the latent effect for the latent class.
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Figure 5. The projection of spatial random effect mean and standard deviation.

6. Disscussion

When processing and analyzing geostatistic data or other spatial problems, the effects
of spatial dependence and spatial heterogeneity cannot be ignored. In this paper, a new
latent Bayesian spatial model is proposed to better take into account the spatial dependence
of subjects and spatial random effects. We simulate the proposed model under different
arithmetic cases separately and have the applicability and limitation that our proposed
model is fitted with high precision parameter estimatimation in large samples and signif-
icant spatial autocorrelation problems. Then, we applied our model to the TB incidence
data in China under INLA-SPDE, and found that the prevalence of TB has strong spatial
dependence and non-uniform spatial random effects in mainland China.

Since this paper focuses on the effects of spatial dependence of subjects and hetero-
geneity of space itself on the response terms, the non-significant covariate effects in the
results are not further investigated, while the spatial lag of the covariates themselves
and the spatial autocorrelation of the error terms are not extensively considered in more
detail. In the future, researchers can continue to build on this study by exploring how
INLA-SPDE can be used to incorporate smoothing covariate effects in the latent classes
within a Bayesian framework to further analyze the non-significant effects in the results
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that are already available, as well as investigating the model’s relationship with any other
autocorrelation effects.

Finally, one limitation of our study is that the model used in our analysis only includes
the spatial structure of the data and does not consider the temporal structure of the data.
Data with a spatio-temporal structure would allow the application of INLA-SPDE to spatio-
temporal modeling, which would include covariates that may vary in space and time, as
well as modeling the random effects of spatio-temporal variation residuals random effects.
This would allow us to obtain the effects of spatio-temporal mixed effects on diseases such
as TB. However, it is also important to note that spatio-temporal econometric modeling is
also a complex problem that requires further investigation.

Author Contributions: Conceptualization, Z.X., B.T. and X.H.; methodology, Z.X., B.T. and L.Q.; data
curation, Z.X.; resources, X.H.; software, Z.X.; validation, B.T., L.Q., H.Z. and X.H.; formal analysis,
Z.X., H.Z. and X.H.; investigation, Z.X.; writing—original draft preparation, Z.X.; writing—review
and editing, Z.X., B.T., L.Q., H.Z. and X.H.; visualization, Z.X., B.T. and X.H.; supervision, L.Q., H.Z.
and X.H.; project administration, L.Q., H.Z. and X.H.; funding acquisition, X.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This study is supported by the National Natural Science Foundation of China, grant
number 11961065, the Ministry of Education of Humanities and Social Science project, grant Number
19YJA910007, and the Natural Science Foundation of Xinjiang, grant Number 2023D01C01.

Data Availability Statement: All the data used in this paper can be obtained from the China Statistical
Yearbook (http://www.stats.gov.cn, accessed on 31 December 2021), the Public Health Science
Data Center (http://www.phsciencedata.cn, accessed on 31 December 2019) and the ERA5-Land
dataset released by the European Center for Medium-Range Weather Forecasts (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview, accessed on
31 December 2022).

Acknowledgments: We are grateful to the editor, associated editor, and two referees for their valuable
suggestions and comments that greatly improved the article. Thanks for the support of the National
Natural Science Foundation of China (No. 11961065).

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Gilks, W.R.; Richardson, S.; Spiegelhalter, D. Markov Chain Monte Carlo in Practice; CRC Press: Boca Raton, FL, USA, 1995.
2. Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace

approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 319–392. [CrossRef]
3. Congdon, P. Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Comput. Stat. Data Anal.

2006, 50, 346–357. [CrossRef]
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