
Citation: Wu, W.; Hu, Y.; Xu, K.; Qin,

L.; Yin, Q. Self-Organizing Memory

Based on Adaptive Resonance Theory

for Vision and Language Navigation.

Mathematics 2023, 11, 4192. https://

doi.org/10.3390/math11194192

Academic Editors: Guangwei Gao,

Juncheng Li and Zhi Li

Received: 16 September 2023

Revised: 1 October 2023

Accepted: 6 October 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Self-Organizing Memory Based on Adaptive Resonance Theory
for Vision and Language Navigation
Wansen Wu , Yue Hu *, Kai Xu, Long Qin and Quanjun Yin

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
wuwansen14@nudt.edu.cn (W.W.); xukai09@nudt.edu.cn (K.X.); qldbx2007@sina.com (L.Q.);
yin_quanjun@163.com (Q.Y.)
* Correspondence: huyue11@nudt.edu.cn

Abstract: Vision and Language Navigation (VLN) is a task in which an agent needs to understand
natural language instructions to reach the target location in a real-scene environment. To improve
the model ability of long-horizon planning, emerging research focuses on extending the models
with different types of memory structures, mainly including topological maps or a hidden state
vector. However, the fixed-length hidden state vector is often insufficient to capture long-term
temporal context. In comparison, topological maps have been shown to be beneficial for many
robotic navigation tasks. Therefore, we focus on building a feasible and effective topological map
representation and using it to improve the navigation performance and the generalization across
seen and unseen environments. This paper presents a S elf-organizing Memory based on Adaptive
Resonance Theory (SMART) module for incremental topological mapping and a framework for
utilizing the SMART module to guide navigation. Based on fusion adaptive resonance theory
networks, the SMART module can extract salient scenes from historical observations and build
a topological map of the environmental layout. It provides a compact spatial representation and
supports the discovery of novel shortcuts through inferences while being explainable in terms of
cognitive science. Furthermore, given a language instruction and on top of the topological map, we
propose a vision–language alignment framework for navigational decision-making. Notably, the
framework utilizes three off-the-shelf pre-trained models to perform landmark extraction, node–
landmark matching, and low-level controlling, without any fine-tuning on human-annotated datasets.
We validate our approach using the Habitat simulator on VLN-CE tasks, which provides a photo-
realistic environment for the embodied agent in continuous action space. The experimental results
demonstrate that our approach achieves comparable performance to the supervised baseline.

Keywords: vision and language navigation; adaptive resonance theory; mapping

MSC: 68T05; 68T30; 68T45

1. Introduction

Vision and language navigation plays a crucial role in embodied AI research, which
requires an agent to interpret natural language navigational commands in light of photo-
realistic images generated by a previously unseen scene [1]. For example, the agent is
given an instruction at a start position like “Exit the room then turn hard left, walk forward
down the stairs and stop at the front of the bathroom.” The agent can obtain the surrounding
environment as a visual observation at each step and is expected to make a decision for the
next step until it reaches the target.

Since the agent is supposed to perform tasks over long horizons in previously unseen
environments, it is necessary to take advantage of past experience. Numerous studies
proposed using external memory structure to improve generalization in unseen environ-
ments, such as topological maps [2–4] and a hidden state vector based on recurrent neural
network [5–7], which show remarkable improvements in the VLN problem.

Mathematics 2023, 11, 4192. https://doi.org/10.3390/math11194192 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194192
https://doi.org/10.3390/math11194192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0467-3830
https://orcid.org/0000-0003-1245-6622
https://doi.org/10.3390/math11194192
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194192?type=check_update&version=1

Mathematics 2023, 11, 4192 2 of 19

However, the hidden state vector memory works well in discrete environments (i.e.,
where the agent can teleport between pre-defined discrete navigable points), but struggles
in continuous environments (i.e., where the agent needs to perform low-level actions, such
as moving forward 0.25 meters or turning left 15 degrees) [8]. In continuous environments,
the action and state space of the agent become very large and the action sequence is usually
10 times longer than that in a discrete environment (55.88 compared to 5 on average). A
fixed-length recurrent vector can hardly capture the long-term dependency among states
and actions. As an alternative, many recent works have proposed to build an expanding
topological graph as the spatial memory while the agent traverses the environment [2,4].
Such topological-graph-based models primarily rely on training a neural network to discern
the similarity of dense trajectory nodes to sparsify and build the map. However, this
approach becomes increasingly complex with continuous exploration and is unable to
establish shortcuts between nodes, rendering it highly inefficient.

Extensive psychology and cognitive science research has shown that humans perform
navigation tasks by recalling recognizable places throughout their journey from their
memory instead of from a metric knowledge of space [9,10]. However, some graph-based
works like [3] often have linear complexity that grows with the exploration duration and
learn too many nodes in the topological map due to the indiscriminate treatment of all
observations. Such approaches run contrary to much more compact, scalable, and flexible
spatial memory, wherein salient landmarks rather than trivial observations are encoded [11].
Moreover, a map that is too dense may provide less navigational guidance and cause the
agent to have many scrubbed and therefore irrational behaviors during the navigation
process.

On the contrary, the hippocampus in human brains can encode space-related trajec-
tories from contextual information related to events in episodic memory, which identifies
salient scenes and navigation-related vantage points [12]. Inspired by this observation,
we present Self-organizing Memory based on Adaptive Resonance Theory (SMART) to
address the aforementioned problem. Particularly, SMART constructs spatial memory as
a topological map based on a unified set of fuzzy operations in a class of self-organizing
neural networks known as fusion adaptive resonance theory (ART) networks [13,14]. An
ever-extending trajectory is input into the memory module, wherein an observation is
resonated with an existing memory template or is regarded as a new event representing the
surrounding spatial–temporal context. A sequence of such separate events is extracted as
an episode from streaming observations. A graph of event nodes is gradually constructed
to specify the spatial layout of the traversed environment.

Apart from encoding spatial memory, the other advantage that topological representa-
tions endow a VLN agent with is the cross-modal alignment between vision and language.
Specifically, the given instructions are naturally anchored on discrete locations or objects,
such as “the room” and “the stairs”, instead of being based on continuously changing
observations. With a sparsified topology, this paper proposes a hierarchical navigation
framework to match the landmark descriptions in the instruction and the visual nodes in
the graph so that the agent can more precisely know its next subgoal. To implement this
idea, we leverage three off-the-shelf pre-trained models from previous works to perform
landmark extraction, node–landmark matching and continuous action control. Along
with the memory module, the proposed approach requires no human-labeled data nor
no additional training, meaning it is a zero-shot paradigm. We evaluate the proposed
method on popular a continuous VLN environment named VLN-CE built on the Habitat
simulator [15]. We conduct an empirical comparison between SMART, CMTP [4], a recently
proposed topological graph based method in VLN-CE, and several discrete–continuous
transferred models. The results show that SMART has much better performance than
CMTP and stronger generalization across unseen environments than other baselines. The
main contributions of this paper are as follows:

Mathematics 2023, 11, 4192 3 of 19

• We present the Self-organizing Memory based on the Adaptive Resonance Theory
(SMART) module to address the topological mapping problem in a continuous state
and action space.

• We also present a navigation framework that can utilize SMART to perform vision–
language alignment for improving navigation performance, which incorporates three
independent off-the-shelf pre-trained models without any fine-tuning.

• We conducted extensive experiments to validate the effectiveness of the SMART model.
Experimental results show our approach has promising performance on the val-seen
and test set, even compared against supervised models based on large-scale training,
and show a good generalization performance.

2. Related Work
2.1. Vision and Language Navigation

VLN tasks require an embodied agent to follow natural language instructions to
navigate in previously unseen photo-realistic environments using visual observations [16].
Most of the systems for solving VLN tasks use an end-to-end based method [1]. In addition,
other works focus on utilizing pre-trained models [6,7], global exploration strategies [2,17],
auxiliary losses [18,19], and effective language grounding methods [20] to improve the
model’s performance. However, the task setting of VLN allows the agent to teleport
between navigable points, which is far away from the robot navigation in real-world
environments. In [8], they propose VLN-CE, where the agent can move freely in the
continuous environment through several low-level actions. This is a more challenging
task with notably longer action steps for each navigation episode compared with VLN.
Moreover, the free-moving environment requires the agent to have the ability to bypass
obstacles and avoid collisions, which are issues that have not been considered in discrete
environments. To address this problem, we propose a two-stage navigation framework,
where the agent builds the topological graph of the environment in the exploration stage
and then performs navigation with the topological graph in the navigation stage. The agent
can use a topological graph for long-horizon reasoning while using a navigation model for
short-horizon controlling.

Another challenge in the VLN task is that a large amount of labeled data is desired for
training the supervised model. This kind of model learns navigational policy directly from
the vision and language, which performs well in the seen scenes but degrades significantly
in the previously unseen scenes. As a result of recent developments in large-scale natural
language and image models trained on diverse datasets, applications in a wide range of
textual [21], visual [22], and embodied areas [7] have become feasible. The pre-trained
models have shown great few-shot generalization capabilities and make it possible to solve
many downstream tasks without fine-tuning. Inspired by this, we try to use the pre-trained
model to directly solve the VLN task, in order to avoid the problem of insufficient training
data and to improve generalization performance.

2.2. Spatial Memory

Spatial memory is an important concept in biological research and has received ex-
tensive attention since Tolman et al. [23] proposed the concept of the cognitive map.
Specifically, humans extract perceptually salient landmarks from traversed routes and
build a sketch of the environment with those landmarks and the reachability between pairs
of them. Moreover, the hippocampus is also an important part of building episodic mem-
ory [24], and the spatiotemporal contexts of episodic memory can be further transferred
and consolidated. Inspired by this, many works on spatial cognition discuss the importance
of landmarks on spatial representation using the cognitive map in navigation tasks [25–28].
In the field of VLN, Hong et al. [29] demonstrate that modeling the relationships between
the scene and salient landmarks can improve the performance of the navigation agent. In
our work, we implicitly integrate the perceptual and cognitive salience into the learning
process by the clustering and generalization ability of ART.

Mathematics 2023, 11, 4192 4 of 19

2.3. Existing Memory Architectures in VLN

Memory is an important capability that can improve the performance of different
domains in artificial intelligence, such as natural language processing, computer vision,
and robot navigation [30,31]. Specifically, in the field of robot navigation, memory architec-
tures are usually divided into two categories, i.e., unstructured and structured memory.
Unstructured memory representations are the fixed-length latent states of RNN or LSTM
and have been widely used in many works in VLN [1,19]. However, unstructured memory
suffers from the problem of long-term dependencies in large or complex environments. In
comparison, structured memory can represent the environmental layout in an explicit way,
such as metric and topological graphs. For example, [32] use the metric semantic spatial
map to record the geometry of the environment, and [33] build a multi-scale metric map
by an end-to-end system in a visual navigation task. However, in a continuous environ-
ment, building and maintaining a precise metric map from the original sensory signals is
inefficient. In addition, as discussed above, spatial models that generate a global metric
map are unreliable because of their lack of biological interpretation and weak robustness to
noisy data. In this paper, we use a topological graph as memory to aid navigation because
it has been proven to be effective in many navigation tasks [26,34]. Moreover, topological
graphs are more convenient to build and update due to their sparse representation in a
continuous space.

3. Method

VLN-CE is a navigation task in a continuous 3D environment where agents follow
natural language navigation directions by performing low-level actions. Specifically, the
environment is continuous and the agent must execute a series of low-level actions to find
the goal instead of teleporting among the discrete navigable points; therefore, VLN-CE is
a more realistic setting [8]. At the beginning of each episode, the agent receives a natural
language instruction denoted as L. During navigation, at step t, the agent observes the
RGB-D image of the environment and makes action an at chosen from the set of action A
(i.e., move forward by 0.25 m, turn left by 15◦, turn right by 15◦, and stop). At any time
during navigation, if the agent decides to stop and is within 3 meters of the final target, the
episode is regarded as successful.

3.1. Overview of Our Approach

In this paper, we use a two-stage framework to solve the VLN-CE task, i.e., the
exploration stage and navigation stage, which is similar to the previous work in [4], as the
main baseline in this paper. This two-stage setting is more in line with real life in which the
agent can build an understanding of the environment through exploration. However, it is
natural for this framework to be extended to an online mapping setting. The overview of our
proposed framework is shown in Figure 1. In the exploration stage, our agent is allowed
to explore the environment to collect the contextual information along the exploration
trajectories and build a spatial memory as topological graph G. Then in the navigation
stage, given the topological graph G and a language instruction L, the agent is expected
to navigate to the goal step-by-step with visual observations. In a two-stage setting, we
must consider how and which previously acquired knowledge can be reused in the current
environment (i.e., relocation and aggregation problem) and deal with the noise in the
knowledge due to the accumulation of the error in the exploration stage. By elaborately
designing the structure of ART for this task, we propose the SMART module to effectively
acquire and reuse the knowledge. Specifically, the SMART module consists of EM-ART
and SM-ART that are modified from fusion ART and will be introduced in Section 3.2. In
the navigation stage, our agent uses Landmark Extractor and Node–Landmark Matcher to
obtain a waypoint sequence on the topological graph (yellow nodes in Figure 1) in high-
level planning (Section 3.3) and executes low-level controlling (Section 3.4) by a navigation
model to reach the waypoints sequentially. This kind of modular approach has been proven

Mathematics 2023, 11, 4192 5 of 19

to work well in navigation tasks and has significant advantages such as interpretability,
robustness, and flexibility [35].

Low-level Controlling

Exploration Stage

Topological Graph

Current Observation

Action

Exploration
Trajectories

EM-ART SM-ART

SMART module

……

High-level Planning

Episodic Memory

Instruction

Navigation
Model

Node-Landmark
Matcher

Landmark
Extractor

1
2 3

4

Waypoint Sequence

Landmark #1
Landmark #2

…

Node-Landmark
Similarity Matrix

Navigation Stage

Figure 1. The architecture of our proposed framework. The Self-organizing Memory based on the
Adaptive Resonance Theory (SMART) module is employed in exploration stage to build topological
graph. During the navigation stage, we decompose the navigation task into two sub-tasks, i.e., the
high-level planning and low-level controlling.

3.2. Topological Mapping with Self-Organizing Memory

This section will describe how we build the topological graph using the SMART
module in the exploration stage, including fundamentals of the fusion ART theory, episodic
memory extraction from exploration trajectories, and spatial memory construction.

ART imitates the information processing of pattern recognition in brains as inter-
actions between subjective expectations and objective sensory inputs [36]. Inspired by
this perspective, we use ART as a memory module to explicitly store history information
like the environmental layout and visual features in the VLN task, aiming to improve
the long-horizon navigational ability of the agent. Before we start to analyze algorithmic
details, we introduce multichannel self-organizing fusion ART neural networks which are
the foundation blocks. Figure 2 shows the fusion ART model equipped with multiple input
fields [13].

...

1y 2y 3y py

...
1x 2x x n

1I 2I
nI

1

1F 2

1F 1

nF

Input fields

Category field

1F

2F

2w j wn

j

1w j

Figure 2. The architecture of fusion ART [13].

3.2.1. Fundamentals of Fusion ART

Here are important terms in fusion ART theory.

Mathematics 2023, 11, 4192 6 of 19

1. Input Vectors: The input vector and the concatenation of input vectors of all channels
can be denoted as Ik = (Ik

1 , Ik
2 , ..., Ik

nk) and I = (I1, I2, ..., In), respectively, where
Ik
i ∈ [0, 1].

2. Input Fields: Fk
1 is the k-th input field and xk = (xk

1, xk
2, ..., xk

nk) is the activity vector
after receiving Ik.

3. Category Fields: Fi (i > 1) means one category field. y =
(
y1, y2, ..., yp

)
is the activity

vector of F2 where p is the number of current learned categories.
4. Weight Vectors: wk

j is denoted as the weight vector associated with the j-th node in F2

for learning the input patterns of Fk
1 .

5. Parameters: The parameters can affect the dynamics of each field, including choice
parameters αk ≥ 0, learning rate parameters βk ∈ [0, 1], contribution parameters
γk ∈ [0, 1], and vigilance parameters ρk ∈ [0, 1].

Then we introduce five crucial steps in fusion ART.

1. The code activation process on the j-th node in F2 is controlled by the choice:

Tj =
n

∑
k=1

γk

∣∣∣xk ∧wk
j

∣∣∣
αk +

∣∣∣wk
j

∣∣∣ . (1)

where the fuzzy AND operation ∧ is defined by (p∧ q)i ≡ min(pi, qi), and the norm
|.| is defined by |p| ≡ ∑i pi for vector p and q [13].

2. A code competition process selects an F2 node with the highest Tj indexed at J and sets
yj = 1 and yj = 0 for all j 6= J.

3. A template matching process checks if resonance occurs:

mk
J =

∣∣∣xk ∧wk
J

∣∣∣∣∣xk
∣∣ ≥ ρk, 1 ≤ k ≤ n. (2)

This selection process will be repeated until a category with resonance is found. If no
selected node in F2 meets the vigilance, an uncommitted node is recruited in F2 as a
new category node.

4. A template learning process is applied to the connection weights once resonance occurs

wk(new)
J = (1− βk)wk(old)

J + βk(xk ∧wk(old)). (3)

5. Activity Readout: A chosen F2 node J may perform a readout of its weight vectors to
the input field F1 such that xk(new) = wk

J .

For more details of ART theory, please see this paper [37].

3.2.2. Episodic Memory Extraction from Exploration Trajectories

In the exploration stage, our agent is allowed to move freely in the environment to
collect contextual information. Note that autonomous exploration in unknown environ-
ments is another challenging problem and has been investigated in prior research [38]. For
simplicity, we randomly sample navigable points from the environments and let the agent
navigate between each of them. During the exploration process, the EM-ART is activated
to extract episodic memory from trajectories. The EM-ART architecture was designed to
encode episodic memory from streaming inputs [39] and has been successfully applied in
the field of visual navigation [40]. In the following, we will introduce the architecture of
EM-ART and the process of episodic memory modeling.

The Architecture of EM-ART. Episodic Memory-ART (EM-ART) is a neural model
consisting of two stacked fusion ART networks, providing a method of encoding episodic
trajectories in the form of streaming sensory inputs and possible feedback received from
the environment [39]. The structure of EM-ART as shown in Figure 3 includes three layers

Mathematics 2023, 11, 4192 7 of 19

of memory fields where the lower two layers (F1 and F2) and the upper two layers (F2 and
F3) are two different ART modules, respectively. The F1 layer is the attribute layer used
to receive from the input patterns and pass to the upper layers the situational attributes.
Recognition of an event is triggered by the pattern of activations in F1 in which a cognitive
node in F2 is activated as a response to the event. After that, the connection weights
between this node on F2 and all F1 fields can be adjusted to determine the activation
pattern of the incoming event.

1F

2F

:

Attribute Layer

:

Event Layer

3F :

Episode Layer

...
1x 2x x n

...

...

Figure 3. The architecture of EM-ART [39].

The F2 layer is the event layer and serves as a medium-term memory buffer for event
activations. The F2 nodes are activated in response to a sequence of events. As activation
values in F2 decay over time, a graded pattern of activations represents the sequence’s
order. For more details on the gradient encoding principle, please see [39].

The F3 layer is the episode layer. Even partial or imprecise clues can recall an existing
category by generalization. Using a top-down readout from F3 to F2, the complete episode
can be reproduced once a selected node in F3 is recognized. Activations from F2 to F1 can
also be used to reproduce events in an episode.

The process of episodic memory modeling. During the process of exploration,
our agent collects contextual information alone on the trajectories while learning the
data pattern using the EM-ART and generates related episodic memory. Such episodic
memory should represent the temporal exploration experience of the agent and implicitly
encode the environmental layout by discovering the key locations to enable agents to
succeed in navigation. Previous work used the reachability estimator to sparsify the
dense exploration trajectories into a topological map [4], but the limitation is that the
reachability estimator needs to be trained in the large-scale labeled dataset while EM-ART
is a self-organizing method without training. EM-ART takes the list of exploration trajectory
T = {T1, T2, . . . , Tm} as input to build each of them into an episode consisting of individual
events, where m is the number of exploration trajectories. Ti = {O1, O2, . . . , On}, where n
is the total steps of each trajectory and the elements O are the visual embeddings from all
observations along the trajectory encoded by the pre-trained Contrastive Language–Image
Pre-training (CLIP) [22] image encoder.

Algorithm 1 is the process of episodic modeling. In general, the recognition and
learning processes in EM-ART involve bottom-up activation, parallel search in the category
layer, top-down template matching, and generalization of connection weights. Not only
are these operations invoked when learning events, but also when encoding episodes. To
learn the temporal order of events, EM-ART applies gradient encoding when it recognizes
an event different from the last sample. The sequential learning method mimics human
working memory’s invariance principle. By multiplying and decaying their activation
values, activated items can retain their temporal order. The learned event nodes are marked
as yellow dots in the Episodic Memory rounded rectangle of Figure 1, while the arrows
denote the temporal sequence of events within an episode. In the experimental section, we
will discuss how to construct the input vectors for the memory module.

Mathematics 2023, 11, 4192 8 of 19

Algorithm 1 Episodic memory modeling algorithm
Input: Exploration Trajectories {T1, T2, ..., Tm}
Output: Episodic memory

1: for all Ti do
2: for all points in each trajectory do
3: Get the input vectors Ot
4: Normalize the input vectors
5: Code activation and competition for F2 nodes
6: if Template matched successful then
7: Learn weights of an existing event node
8: else
9: Recruit an uncommitted node

10: end if
11: end for
12: Form an activation vector for selected F2 nodes
13: Learn the connection weights from y to an F3 node
14: end for

3.2.3. Spatial Memory Construction

After using the EM-ART to sparsify the exploration trajectories in the environments,
we use a three-channel fusion ART, i.e., Spatial Memory-ART (SM-ART) [40] designed
to merge the different episodic memory into a consolidated spatial memory. This spatial
memory manifests itself as a topological map, including nodes with visual embedding and
position information and connectivity relationships between nodes.

The architecture of SM-ART. Firstly, we define the spatial memory as a set of semantic
fragments S = {S1, S2, . . . , Sη}, where η is the number of all learned events in EM-ART. In
order to identify connections from one node to all other directly reachable nodes, we treat
each fragment as a one-to-many relationship. The semantic fragment is defined as a set

Si = {eij = (ni, nj, hij)} (4)

where each element eij denotes an edge from ni to nj; ni and nj are the learned events in
EM-ART, and hij ∈ (0, 1) is the normalized distance.

SM-ART consists of three input channels as shown in Figure 4 and the input pattern
of SM-ART is I = (I1, I2, I3), where I1 is the source node, I2 is the target node and I3 is the
weight of the edge from source node to target node. The dimensions of the input vectors
are η. We use one-hot encoding in I1, i.e., when the i-th event node is the source node of
this edge, I1

i = 1. For other event nodes j 6= i, I1
j = 0. The learning process of SM-ART

needs to integrate the input patterns of all edges sent from a certain source node into on
category node in the F2 connectivity layer. We use one-cold encoding in I2 and I3 since the
fuzzy AND operation ∧ retains the smaller values from the generalized vectors. In I2, we
have I2

j = 0 where the indicated target node has an event id j. Correspondingly, I3
k = 1 for

all k 6= j and I3
j = hij.

Edge weight

vector

Target event node

ID vector

...

1F

2F

:

Attribute Layer

:
Connectivity Layer

Source event node

ID vector

Figure 4. The architecture of SM-ART [40].

The process of spatial memory consolidating. Algorithm 2 describes the process of
spatial memory consolidation. When recalling the previously generated episodic memory,
each learned episode node in F3 of EM-ART readouts its connection weights from top to

Mathematics 2023, 11, 4192 9 of 19

bottom so that the activity vector at the time of episodic formation reappears in the F2
layer. The algorithm can recall the temporal order in which landmarks were ever visited
by decoding the gradients. With every update to F1, SM-ART input fields are gradually
integrated into a fully qualitative representation of the underlying space through interaction
operations between the two layers.

It is possible to discover common contexts between episodes and connect correspond-
ing trajectories by building edges from or to those shared contexts during episodic memory
playback. Consequently, events that occur at different times but are actually nearby in space
are connected by a few edges through their shared neighboring events, i.e., the discovery
of shortcuts. The final output of the SMART module is a directed graph with vertices as
visual features and edges encoding traversability and proximity, which will be used as a
topological graph by the agent for performing the navigation task.

Algorithm 2 Spatial memory consolidating algorithm
Input: Episodic Memory generated from EM-ART
Output: Learned spatial memory

1: for all Episode node of EM-ART do
2: Readout the activation vector to F2
3: Recall the related event sequence
4: for all Event node of the event sequence do
5: Extract the connectivity and build the input pattern
6: Update the input field of SM-ART
7: Learn by interactions between F1 and F2
8: end for
9: end for

3.3. High-Level Planning

After the exploration stage, the agent has constructed the spatial memory of the
environment. This kind of spatial memory can be represented as a topological map where
the nodes save the visual embedding and edges save the connectivity and weights between
nodes. We present a hierarchical VLN framework using a high-level planner for predicting
waypoints and a low-level controller for fine-grained actions. In the navigation stage, prior
to taking any action steps in the environment, the agent utilizes the topological map and
natural language instructions as inputs to execute high-level planning to get a waypoint
sequence on the map.

To materialize such an elegant idea, we implement the high-level planning based on
two different modalities using two off-the-shelf modules, called Landmark Extractor and
Node–Landmark Matcher, respectively. As shown in Figure 5, if the topological map is
not discretized enough, the original observation sequence contains a lot of redundancy
and noise, which will reduce the efficiency and accuracy of matching. Conversely, if the
topological map is too sparse, it will be impossible to distinguish different landmarks in
the instruction. We will illustrate this with our experiments in Section 5.1.

3.3.1. Landmark Extractor

Given the natural language instruction L, the Landmark Extractor is expected to
extract the sequence of landmark descriptions L =< l1, l2, . . . , ln >. Recently, transformer
architecture models pre-trained on large amounts of Internet text have achieved significant
improvements in many NLP tasks and these large-scale pre-trained models can be used
directly for downstream tasks without any fine-tuning. Therefore, we chose GPT-3 [41]
proposed by OpenAI as the Landmark Extractor since it has shown remarkable zero-shot
ability and generalization performance. GPT-3 is a large-scale language model with 175 B
parameters trained on 400 B tokens from CommonCrawl data. In zero-shot and few-shot
scenarios, the model yields surprisingly effective results. In the experimental section,

Mathematics 2023, 11, 4192 10 of 19

we will discuss the effects of using other popular pre-trained models as our Landmark
Extractor.

High-level Planning

Go pass a bed with a gray comforter,
walk straight past the sofa, turn left and
stop near a wall with a clock hanging

Node-Landmark
Matcher

Landmark
Extractor 1 2

3

#1 a bed with a gray comforter
#2 sofa
#3 a wall with a clock hanging

#1 #2 #3

Choose highest
similarity

Node-Landmark
Similarity Matrix

Planning
Algorithm

Figure 5. Overview of High-Level Planning.

With only a prompt or conditioning on a few examples, i.e., prompt learning, GPT-3
shows strong performance on a wide variety of tasks without any fine-tuning. Therefore,
we need to design the form of input according to the downstream task requirements. For
the task of landmark extraction, we encode the task as a part of the text input and design
a simple prompt as shown in as following. This prompt contains an example of how to
extract landmarks from instructions. When the agent receives the language instruction L, it
will be placed in brackets of the prompt, and the whole is passed to the GPT-3 model to
obtain landmarks.

Walk past bottom of stairs. Walk past fireplace. Wait at kitchen desk.
Landmarks: stairs, fireplace, kitchen desk.
{Input Instruction is placed here}
Landmarks: ____

3.3.2. Node–Landmark Matcher

The role of the Node–Landmark Matcher is to calculate a cross-modal similarity ma-
trix between the nodes and landmarks as shown in Figure 1, where the nodes V are from
the topological graph G and the landmarks L are the output of the Landmark Extractor.
Through the similarity matrix, we can find the probability P(vi|lj) that node vi refers to
landmark description lj and chooses the node with the highest probability as the matched
node. This task can be regarded as an image–text retrieval task because landmark descrip-
tions are in text and the features of nodes are image embeddings. CLIP is a pre-trained
model that jointly encodes images and texts into a common embedding space, which
enables a more effective comparison of the similarity between two modalities. We use
CLIP as the Node–Landmark Matcher since it has a robust zero-shot ability for image-text
retrieval tasks.

In our framework, we encode the landmarks L through the CLIP text encoder to obtain
language embeddings. During the exploration stage, the agent encodes the visual observa-
tion along with the exploration trajectory using the CLIP image encoder and constructs
spatial memory about the scene using the SMART module. When performing high-level
planning, it can extract stored image embeddings and input them into the Node–Landmark
Matcher. For improving the matching performance, we use a simple prompt added to the
landmark, in the form of “A photo of [landmark]”, where the landmark in brackets will be
replaced by the extracted landmarks L. Through the output matrix of the Node–Landmark
Matcher, we can find a node sequence V = < v1, v2, . . . , vn > corresponding to landmarks

Mathematics 2023, 11, 4192 11 of 19

L. Then we use a planning algorithm to find a path in the topological graph that contains
all nodes in V and denote the path as P = < w1, w2, . . . , wε >, where ε is the number of
path nodes. In general, the number of path nodes ε is greater than or equal to the length
of matched node sequences V since the traversal may also cover other nodes in between
those matched ones. The planned path P consists of the image features and positions of all
nodes and will be executed in low-level controlling.

3.4. Low-Level Controlling

After generating a path in high-level planning, this path will be translated into robot
actions in low-level controlling. Previous work [4] uses a very simple low-level controller to
orient the agent towards the waypoint and then move in a straight line. If there are obstacles
on the path, this method is difficult to control the agent to reach the goal successfully.
Instead, we use an off-the-shelf deep reinforcement learning model, named decentralized
distributed proximal policy optimization (DD-PPO) [42] to navigate the nodes on the path.
Since spatial memory is preserved during the exploration stage, the agent can recall the
image features and position information of all nodes in P . Therefore, the execution process
of this plan can be decomposed into a series of point goal navigation tasks. Using the
current RGB-D observation Ot and the planned path P , the DD-PPO model can output
the low-level actions for the agent and reach the target position finally. Please refer [42] to
more detail of the DD-PPO method.

4. Experiments
4.1. Dataset and Evaluation Metrics

The experiments were conducted in the VLN-CE [8] dataset based on the Habitat
Simulator [15], which contains 16,844 path-instruction pairs over 90 scenes. We used
the standard metrics to evaluate our agents as described in paper [1]: Success Rate (SR),
Success weighted by Path Length (SPL), Oracle Success Rate (OSR), Trajectory Length
(TL), Navigation Error (NE), and normalized Dynamic Time Warping (nDTW). Please
see [1,43] for details of the metrics. We implemented our agent using PyTorch and the
Habitat simulator v0.1.7. We built our code on top of the VLN-CE codebase (https://
github.com/jacobkrantz/VLN-CE, accessed on 1 September 2023) and use the same set of
hyperparameters.

4.2. Model Summary

The six strong baseline models for the VLN-CE task are compared with our proposed
approach. According to whether topological graphs are used in these models, we categorize
them as topology-based models and non-topology-based models.

Non -topology-based models:

• Seq2Seq [8]: Proposes an end-to-end model that uses the LSTM network to predict
actions directly from a language instruction and images.

• CMA+PM+DA+Aug [8]: Proposes a cross-modal attention model to grounding the lan-
guage instruction to visual observation, combined with Progress Monitor techniques,
imitation policy DAgger, and the Speaker–Follower data augmentation method.

• SARSA [44]: Proposes a hybrid transformer-recurrence model that focuses on combin-
ing classical semantic mapping techniques with a learning-based method.

• LAW [45]: Proposes a new supervision signal, which utilizes the nearest waypoint on
the path as the supervision signal instead of the target position.

• Waypoint Model [46]: Proposes an end-to-end model that predicts relative waypoints
directly from natural language instructions and panoramic RGB-D inputs.

Topology-based models:

• CMTP [4]: Applies the most similar framework to ours among the baselines, which pre-
builds a topological graph of the spatial layout. However, it uses a more complicated

https://github.com/jacobkrantz/VLN-CE
https://github.com/jacobkrantz/VLN-CE

Mathematics 2023, 11, 4192 12 of 19

architecture for navigation planning, i.e,. a cross-modal transformer, which requires
large-scale training. The authors have not released their source code, so we directly
report the results shown in the paper.

4.3. Research Questions

We focus on answering the following research questions to guide our experiments:
RQ1: What are the effects of different ART parameters on the composition of the topologi-
cal map?
RQ2: What is the effect of using different pre-trained models in the SMART framework on
navigation performance?
RQ3: Does SMART improve overall navigation performance compared to the baselines for
the VLN-CE task?

5. Results and Discussion
5.1. Results of Graph Construction

To answer RQ1, we investigate the results of graph construction from two aspects:
different input patterns in EM-ART and different vigilance parameters ρ, which are two
main factors that affect the recognition and generalization ability of EM-ART. Different
input patterns also lead to significant differences in what EM-ART learns. The higher the
value of ρ, the higher the threshold of similarity between nodes, and the denser the whole
topological graph will be. In Section 5.1.1 we design two different EM-ART input patterns
and conduct some comparative experiments to find out the most suitable pattern under the
VLN-CE environment. In Section 5.1.2 we will discuss the effect of the vigilance parameter
on building topological graphs.

5.1.1. Effect of Different Input Patterns

Two different input patterns for EM-ART are designed. One pattern is introduced
in Section 3.2.2 using partial visual observation embeddings Opartial (with a horizontal
field-of-view of 90◦) and the agent orientations d as input vector, i.e., Ipartial = [Opartial , d].
This pattern can use orientation information to distinguish similar observations at different
locations, thereby alleviating the problem of perceptual aliasing. Considering that the
panoramic image contains enough information about the surrounding environment, We
design another pattern Ipano = [Opano] that uses the panoramic observation embeddings
Opano as only the input vector. The demonstration of two patterns is shown in Figure 6. We
evaluate the graph construction results of these two different input patterns to find out
which pattern is more suitable for the VLN-CE environment.

360∘

Panoramic View Partial View + Orientation

(a)

360∘

Panoramic View Partial View + Orientation

(b)

Figure 6. Comparison of two input patterns. (a) Partial view + orientation, (b) panoramic view.

These two different patterns are employed to build topological graphs for 90 VLN-CE
scenarios respectively. Table 1 provides the statistics of topological graphs based on the
two pattern designs and two previous works [1,47], where the numbers of nodes and
edges, and edge lengths are compared. It can be found that the total number of nodes
in the topological graph of MP3D is the smallest, and the graphs constructed by Ipartial
contain the largest number of nodes and edges. In contrast, the graphs constructed by
Ipano are relatively sparse, with fewer nodes, and the length of each edge is the longest

Mathematics 2023, 11, 4192 13 of 19

among all the graphs, indicating a better sparsity effect. The MP3D graph is directly
migrated from the discrete environment, and there is no corresponding adaptation to the
continuous environment. Consequently, there are some problems, such as the position
of some nodes in the unnavigable area, and the connection relationship of some edges is
also blocked by obstacles. The graphs constructed by Hong2022 [47] are adapted from
the MP3D graphs for the continuous environment by utilizing some handcrafted rules.
However, this approach does not form an understanding of the environment, nor does the
location of nodes necessarily lie in critical locations. It only has the connectivity relationship
between nodes, so it is very limited in helping navigation tasks.

Table 1. A comparison of different topological graph statistics.

Overall
Nodes

Number of
Edges per Scene

Number of
Nodes per Scene

Average
Edge Length

Average Edges
of Each Node

MP3D [1] 10,559 218.7 117.3 1.87 4.07
Hong2022 [47] 13,358 245.9 148.4 2.26 3.31

Ipano 12,150 226.5 135.0 2.35 3.15
Ipartial 14,287 258.4 158.7 1.75 4.22

In order to compare and analyze the effect between the two EM-ART input patterns,
we select results of topological graphs constructed by two different patterns in a specific
scene, as demonstrated in Figure 7. Obviously, both patterns do a good job of extracting the
structure of the environment, but Ipartial has more nodes, resulting in some redundancy. In
comparison, the graphs constructed by Ipano can generate nodes at each key node position.
Based on this observation, we finally use Ipano as the input pattern of EM-ART to generate
spatial memory.

(a) (b)

Figure 7. Examples of graph construction results. (a) Graph constructed by Ipartial , (b) Graph
constructed by Ipano.

5.1.2. Effect of Different Vigilance Parameters

In order to investigate the effect of different vigilance parameters on the results of
graph construction, we select 10 scenes, each with 3 navigation episodes, to perform the
VLN-CE task using the constructed topological graphs. The setting in this part of the
experiments includes the total steps in the exploration stage in each scene of about 500, the
contribution parameters γ = 0.0001, and learning rate parameters β = 0.4.

Figure 8 shows the effect of ρ from 0.7–1 on the number of event nodes and the
corresponding navigation success rate. The results in the figure are the average of 10 scenes.
It can be seen that when ρ is in the range of 0.7–0.9, the number of event nodes is smaller than
10. The vigilance parameter represents the similarity threshold between the embeddings of
different visual observations, but most visual observations in indoor scenes are relatively

Mathematics 2023, 11, 4192 14 of 19

similar. The smaller threshold will cause more nodes to be considered similar and very
limited nodes to be saved. However, it is difficult to represent a scene structure with very
limited event nodes. When ρ = 1.0, all existing event nodes cannot satisfy top-down
matching with a novel input unless the input is exactly the same as one of the existing event
nodes. In this situation, all observations of the exploration path are basically preserved, so
the final number of event nodes is close to the number of exploration steps.

Figure 8. Effect of vigilance parameter on event clustering and the performance of navigation task.

Using the topological graph constructed under different vigilance parameters, we use
our full system to perform 30 navigation episodes in 10 scenes. The Success Rate is used
as an evaluation metric to measure the performance of the system. Figure 8 demonstrates
that when the ρ is between 0.7–0.9, the navigation task fails most of the time. In this case,
too few nodes have made it difficult for the agent to match the landmark accurately. Even
if the match is successful, it is not guaranteed that the node must be within 3 m of the
target location. When the ρ is between 0.9–0.1, the success rate of navigation is improved
significantly and peaks at ρ = 0.98. However, the success rate does not increase linearly
with the increase of ρ because the success rate decreases to a certain extent when ρ = 0.98.
The main reason for this is that the very large ρ reduces the scene generalization ability
of the SMART module. Additionally, too many nodes might affect the matching result
between the nodes and landmarks, which leads to a reduction in the success rate. In
conclusion, we set ρ = 0.98 as the default value for the following experiments.

5.2. Results of Landmark Extraction

The Landmark Extractor is an important part of our framework. The quality of
extracted landmarks directly affects the alignment between visual scenes and instructions,
and the final navigation effect. A reliable Landmark Extractor should be able to extract
landmarks from natural language instructions in order. For the landmark extraction
experiment, we use different pre-trained large language models as the Landmark Extractor
to find the performance difference. Specifically, we compare the fairseq-125M [48], fairseq-
13B [48], GPT-J-6B [49], GPT-NeoX-20B [50], and GPT-3 [41] and the non-learning method.
This non-learning method uses the spaCy [51] NLP library to extract the base noun phrases
and then removes some manually pre-defined words. For parsing simple queries, we
designed a simple prompt to improve the in-context learning ability of the pre-trained
models. We manually annotated 50 pairs of data (instruction, landmark sequence) as
human supervision for model performance evaluation. For a comprehensive evaluation,
we designed the Extraction Success Rate (ESR) metric as a score for extraction results:

ESR =
|φ(L, L̂)|
|L̂|

, (5)

Mathematics 2023, 11, 4192 15 of 19

where the L is the list of extracted landmarks by the model and L̂ is the list of ground-
truth landmarks while φ(·) is a function to calculate the longest common subsequence
and |·| means to calculate the length of the list. By using this metric, we are able to
determine not only whether the landmark sequences are extracted correctly, but also
whether they correspond to the ground truth sequence. As shown in Table 2, GPT-3
significantly outperforms other models, owing to its superior representation capabilities
and in-context learning.

Table 2. Landmark Extractor performance.

Model Name Extraction Success Rate

fairseq-125M 0.105
GPT-NeoX-20B 0.271

fairseq-13B 0.323
GPT-J-6B 0.474

spaCy 0.704
GPT-3 (text-davinci-002) 0.837

5.3. Evaluation on VLN-CE

To answer RQ3, we investigate the performance of our full system and other baseline
models, as presented in Table 3.

Table 3. Comparison on agent performance in VLN-CE val-seen and test dataset. Note that all
these baseline models are trained on large-scale supervised datasets, whereas our framework uses
off-the-shelf models without fine-tuning. The top two results are in bold and underlined, respectively.

Models
Val-Unseen Test

TL↓ NE↓ nDTW↑ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑
Non-topology-based Methods
Seq2Seq [8] 9.32 7.77 – 37 25 22 8.13 7.85 27 20 18
CMA+PM+DA+Aug [8] 8.64 7.37 51 40 32 30 8.85 7.91 36 28 25
SASRA [44] 7.89 8.32 47 – 24 22 – – – – –
Waypoint Model [46] 7.62 6.31 – 40 36 34 8.02 6.65 37 32 30
LAW [45] 8.89 6.83 54 44 35 31 – – – – –
Topology-based Methods
CMTP [46] – 7.90 – 39 23 19 – – – – –
Ours (SMART) 10.90 6.35 52 42 31 27 9.85 6.62 40 32 28

Table 3 shows our final results on VLN-CE, where the test result is from the Leader-
board website: https://eval.ai/web/challenges/challenge-page/719/leaderboard/1966,
accessed on 1 September 2023. It is worth noting that the SMART model proposed in
this paper does not need any annotated data for training, namely zero-shot. In contrast,
previous works required training on the training data and then testing on the test dataset.
This kind of supervised learning decreases the performance a great deal when tested in the
previous unseen scenes. Comparatively, the method proposed in this paper shows consis-
tent performance on both val-unseen and test datasets, which illustrates the effectiveness of
this method. The CMTP method, similarly to this work, also explores the environment first
to build topological graphs and then uses the graphs in the navigation stage for planning
and navigation. According to the results, the performance of our model on SR and SPL
surpassed the CMTP method by a large margin, i.e., 31% versus 23% in SR and 27% versus
19% in SPL, respectively. In terms of test set, our approach even surpassed some supervised
methods, such as Seq2Seq and CMA models, and is comparable with the Waypoint Model
(32% in SR).

Figure 9 shows the qualitative results of our full system. The top of the figure is the
instruction while the underlined text is the extracted landmark and the number in the upper
right corner of the landmark represents the sequence order. The panoramic observation
with the number on the right side of the figure is the visual observation of the nodes

https://eval.ai/web/challenges/challenge-page/719/leaderboard/1966

Mathematics 2023, 11, 4192 16 of 19

matched by the corresponding landmarks. We mark the corresponding landmarks with
red boxes in the panoramic observations. The figure also contains the planned waypoint
sequence, the ground-truth path, and the path actually traveled by the agent. It can be seen
from the figure that our model can extract key landmarks, e.g., the couches and the bed,
and make correct matches, followed by planning a reasonable path to visit these nodes
in turn and finally reach the target position. This modular framework makes it easy to
interpret the agent’s purpose and evaluate related abilities.

Ground-truth Path

Agent Path

Planned Nodes

Start Position

Target Position

Instruction: Go straight and slightly right in the direction of the white
chairs. Continue straight pass the couches and go straight ahead. Wait
by the bed.

1 2
3

1

2

3

1
23

Figure 9. Qualitative example of the navigation episode.

5.4. Failure Analysis

By delving into more experiments, we find that the main reasons why the agent cannot
complete the navigation task in some cases are as follows:

• There are no obvious landmarks in some language instructions. For example, “Turn
around, move forward 4 steps, stop” is an instruction from the training dataset. In this
situation, the Landmark Extractor cannot extract any landmarks, so the episode fails
directly.

• From the perspective of image-text matching, it may be walls or doors that occupy
most of the area on the indoor panoramic image, but some salient landmarks may only
occupy a small area on the image, which will greatly affect matching performance.

• The characteristics of the indoor environment might be one of the reasons for naviga-
tion failure. There could be many similar landmarks in the indoor scene, e.g., several
beds or tables in the same house. During the node–landmark matching process, the
agent struggles to distinguish which table or bed it corresponds to.

6. Conclusions

Inspired by psychological findings, we proposed the SMART module based on ART to
address topological mapping and a simple and modular framework incorporating three off-
the-shelf pre-trained models to execute the VLN-CE task. The topological graphs are formed
by aggregating the spatial–temporal contexts around landmarks. By decomposing VLN-CE
tasks, each pre-trained large model can be used directly in our framework without training
for extracting landmark descriptions from instructions, matching them with visual scenes
and controlling low-level actions. These modules work in a hierarchical manner including
high-level planning for waypoints and low-level movement between waypoints. The
empirical results show that the proposed model can construct topological maps effectively
and can perform competitively on the VLN-CE tasks, outperforming some supervised
models and showing excellent generalization ability.

For future direction, improving the performance of pre-trained models is the most
direct way to improve the success rate. The framework cannot handle the situation where
the instruction does not have a salient landmark, so we need to think about how to modify
this framework. In addition, adding scene graphs with more semantic information to the
features of nodes to make nodes more discriminative is also a promising direction in the
future.

Mathematics 2023, 11, 4192 17 of 19

Author Contributions: Conceptualization, W.W.; Methodology, W.W. and Y.H.; Software, K.X.;
Validation, W.W.; Formal analysis, L.Q.; Resources, K.X.; Data curation, K.X.; Writing—original draft,
W.W.; Writing—review & editing, Y.H.; Visualization, L.Q.; Supervision, Q.Y.; Funding acquisition,
Q.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China: 62103420,
62103425, 62103428, 62306329 and Natural Science Fund of Hunan Province: 2023JJ40676, 2021JJ40697,
2021JJ40702.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anderson, P.; Wu, Q.; Teney, D.; Bruce, J.; Johnson, M.; Sünderhauf, N.; Reid, I.; Gould, S.; Van Den Hengel, A. Vision-and-

language navigation: Interpreting visually-grounded navigation instructions in real environments. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3674–3683.

2. Deng, Z.; Narasimhan, K.; Russakovsky, O. Evolving graphical planner: Contextual global planning for vision-and-language
navigation. arXiv 2020, arXiv:2007.05655.

3. Zhu, F.; Liang, X.; Zhu, Y.; Yu, Q.; Chang, X.; Liang, X. SOON: Scenario Oriented Object Navigation with Graph-based
Exploration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtually, 19–25 June
2021; pp. 12689–12699.

4. Chen, K.; Chen, J.K.; Chuang, J.; Vázquez, M.; Savarese, S. Topological Planning with Transformers for Vision-and-Language
Navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 11276–11286.

5. Chen, S.; Guhur, P.L.; Schmid, C.; Laptev, I. History Aware Multimodal Transformer for Vision-and-Language Navigation. Adv.
Neural Inf. Process. Syst. 2021, 34, 5834–5847.

6. Hong, Y.; Wu, Q.; Qi, Y.; Opazo, C.R.; Gould, S. Vln bert: A recurrent vision-and-language bert for navigation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1643–1653.

7. Hao, W.; Li, C.; Li, X.; Carin, L.; Gao, J. Towards learning a generic agent for vision-and-language navigation via pre-training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 13137–13146.

8. Krantz, J.; Wijmans, E.; Majumdar, A.; Batra, D.; Lee, S. Beyond the nav-graph: Vision-and-language navigation in continuous
environments. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 104–120.

9. Gillner, S.; Mallot, H.A. Navigation and acquisition of spatial knowledge in a virtual maze. J. Cogn. Neurosci. 1998, 10, 445–463.
[CrossRef]

10. Foo, P.; Warren, W.H.; Duchon, A.; Tarr, M.J. Do humans integrate routes into a cognitive map? Map-versus landmark-based
navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 2005, 31, 195. [CrossRef] [PubMed]

11. Lin, C.; Jiang, Y.; Cai, J.; Qu, L.; Haffari, G.; Yuan, Z. Multimodal Transformer with Variable-length Memory for Vision-and-
Language Navigation. arXiv 2021, arXiv:2111.05759.

12. Janzen, G.; Van Turennout, M. Selective neural representation of objects relevant for navigation. Nat. Neurosci. 2004, 7, 673–677.
[CrossRef]

13. Tan, A.H.; Carpenter, G.A.; Grossberg, S. Intelligence through interaction: Towards a unified theory for learning. In Proceedings
of the International Symposium on Neural Networks, Nanjing, China, 3–7 June 2007; pp. 1094–1103.

14. Tan, A.H.; Subagdja, B.; Wang, D.; Meng, L. Self-organizing neural networks for universal learning and multimodal memory
encoding. Neural Netw. 2019, 120, 58–73. [CrossRef]

15. Savva, M.; Kadian, A.; Maksymets, O.; Zhao, Y.; Wijmans, E.; Jain, B.; Straub, J.; Liu, J.; Koltun, V.; Malik, J.; et al. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Republic of Korea, 27 October–2 November 2019.

16. Wu, W.; Chang, T.; Li, X. Vision-and-language navigation: A survey and taxonomy. arXiv 2021, arXiv:2108.11544.
17. Wang, H.; Wang, W.; Liang, W.; Xiong, C.; Shen, J. Structured Scene Memory for Vision-Language Navigation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8455–8464.
18. Zhu, F.; Zhu, Y.; Chang, X.; Liang, X. Vision-Language Navigation With Self-Supervised Auxiliary Reasoning Tasks. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.
19. Ma, C.Y.; Wu, Z.; AlRegib, G.; Xiong, C.; Kira, Z. The regretful agent: Heuristic-aided navigation through progress estimation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 6732–6740.

http://doi.org/10.1162/089892998562861
http://dx.doi.org/10.1037/0278-7393.31.2.195
http://www.ncbi.nlm.nih.gov/pubmed/15755239
http://dx.doi.org/10.1038/nn1257
http://dx.doi.org/10.1016/j.neunet.2019.08.020

Mathematics 2023, 11, 4192 18 of 19

20. Wang, X.; Huang, Q.; Celikyilmaz, A.; Gao, J.; Shen, D.; Wang, Y.F.; Wang, W.Y.; Zhang, L. Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6629–6638.

21. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Huggingface’s
transformers: State-of-the-art natural language processing. arXiv 2019, arXiv:1910.03771.

22. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning
transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine
Learning, PMLR, Virtual, 18–24 July 2021; pp. 8748–8763.

23. Tolman, E.C. Cognitive maps in rats and men. Psychol. Rev. 1948, 55, 189. [CrossRef] [PubMed]
24. Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641.

[CrossRef] [PubMed]
25. Götze, J.; Boye, J. Learning landmark salience models from users’ route instructions. J. Locat. Based Serv. 2016, 10, 47–63.

[CrossRef]
26. Savinov, N.; Dosovitskiy, A.; Koltun, V. Semi-parametric topological memory for navigation. arXiv 2018, arXiv:1803.00653.
27. Caduff, D.; Timpf, S. On the assessment of landmark salience for human navigation. Cogn. Process. 2008, 9, 249–267. [CrossRef]

[PubMed]
28. Gupta, S.; Fouhey, D.; Levine, S.; Malik, J. Unifying map and landmark based representations for visual navigation. arXiv 2017,

arXiv:1712.08125.
29. Hong, Y.; Rodriguez, C.; Qi, Y.; Wu, Q.; Gould, S. Language and visual entity relationship graph for agent navigation. Adv. Neural

Inf. Process. Syst. 2020, 33, 7685–7696.
30. Merity, S.; Keskar, N.S.; Socher, R. Regularizing and optimizing LSTM language models. arXiv 2017, arXiv:1708.02182.
31. Mirowski, P.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard, A.; Banino, A.; Denil, M.; Goroshin, R.; Sifre, L.; Kavukcuoglu, K.; et al.

Learning to Navigate in Complex Environments. In Proceedings of the 5th International Conference on Learning Representations,
ICLR, Toulon, France, 24–26 April 2017.

32. Anderson, P.; Shrivastava, A.; Parikh, D.; Batra, D.; Lee, S. Chasing ghosts: Instruction following as bayesian state tracking. Adv.
Neural Inf. Process. Syst. 2019, 32, 369–379.

33. Gupta, S.; Davidson, J.; Levine, S.; Sukthankar, R.; Malik, J. Cognitive mapping and planning for visual navigation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2616–2625.

34. Chaplot, D.S.; Salakhutdinov, R.; Gupta, A.; Gupta, S. Neural topological slam for visual navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12875–12884.

35. Karkus, P.; Ma, X.; Hsu, D.; Kaelbling, L.P.; Lee, W.S.; Lozano-Pérez, T. Differentiable algorithm networks for composable robot
learning. arXiv 2019, arXiv:1905.11602.

36. Carpenter, G.A.; Grossberg, S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput.
Vision Graph. Image Process. 1987, 37, 54–115. [CrossRef]

37. Wang, W.; Tan, A.H.; Teow, L.N. Semantic memory modeling and memory interaction in learning agents. IEEE Trans. Syst. Man
Cybern. Syst. 2016, 47, 2882–2895. [CrossRef]

38. Chaplot, D.S.; Gandhi, D.; Gupta, S.; Gupta, A.; Salakhutdinov, R. Learning To Explore Using Active Neural SLAM. In Proceedings
of the 8th International Conference on Learning Representations, ICLR, Addis Ababa, Ethiopia, 26–30 April 2020.

39. Wang, W.; Subagdja, B.; Tan, A.H.; Starzyk, J.A. Neural modeling of episodic memory: Encoding, retrieval, and forgetting.
IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1574–1586. [CrossRef]

40. Hu, Y.; Subagdja, B.; Tan, A.H.; Yin, Q. Vision-Based Topological Mapping and Navigation with Self-Organizing Neural Networks.
IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7101–7113. [CrossRef]

41. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

42. Wijmans, E.; Kadian, A.; Morcos, A.; Lee, S.; Essa, I.; Parikh, D.; Savva, M.; Batra, D. Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames. arXiv 2019, arXiv:1911.00357.

43. Anderson, P.; Chang, A.; Chaplot, D.S.; Dosovitskiy, A.; Gupta, S.; Koltun, V.; Kosecka, J.; Malik, J.; Mottaghi, R.; Savva, M.; et al.
On evaluation of embodied navigation agents. arXiv 2018, arXiv:1807.06757.

44. Irshad, M.Z.; Mithun, N.C.; Seymour, Z.; Chiu, H.P.; Samarasekera, S.; Kumar, R. Sasra: Semantically-aware spatio-temporal
reasoning agent for vision-and-language navigation in continuous environments. arXiv 2021, arXiv:2108.11945.

45. Raychaudhuri, S.; Wani, S.; Patel, S.; Jain, U.; Chang, A.X. Language-aligned waypoint (law) supervision for vision-and-language
navigation in continuous environments. arXiv 2021, arXiv:2109.15207.

46. Krantz, J.; Gokaslan, A.; Batra, D.; Lee, S.; Maksymets, O. Waypoint models for instruction-guided navigation in continu-
ous environments. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada,
11–17 October 2021; pp. 15162–15171.

47. Hong, Y.; Wang, Z.; Wu, Q.; Gould, S. Bridging the Gap Between Learning in Discrete and Continuous Environments for
Vision-and-Language Navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18–24 June 2022; pp. 15439–15449.

http://dx.doi.org/10.1037/h0061626
http://www.ncbi.nlm.nih.gov/pubmed/18870876
http://dx.doi.org/10.1016/S0896-6273(02)00830-9
http://www.ncbi.nlm.nih.gov/pubmed/12194864
http://dx.doi.org/10.1080/17489725.2016.1172739
http://dx.doi.org/10.1007/s10339-007-0199-2
http://www.ncbi.nlm.nih.gov/pubmed/17999102
http://dx.doi.org/10.1016/S0734-189X(87)80014-2
http://dx.doi.org/10.1109/TSMC.2016.2531683
http://dx.doi.org/10.1109/TNNLS.2012.2208477
http://dx.doi.org/10.1109/TNNLS.2021.3084212

Mathematics 2023, 11, 4192 19 of 19

48. Artetxe, M.; Bhosale, S.; Goyal, N.; Mihaylov, T.; Ott, M.; Shleifer, S.; Lin, X.V.; Du, J.; Iyer, S.; Pasunuru, R.; et al. Efficient large
scale language modeling with mixtures of experts. arXiv 2021, arXiv:2112.10684.

49. Wang, B.; Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. May 2021. Available online:
https://github.com/kingoflolz/mesh-transformer-jax (accessed on 1 September 2023).

50. Black, S.; Biderman, S.; Hallahan, E.; Anthony, Q.; Gao, L.; Golding, L.; He, H.; Leahy, C.; McDonell, K.; Phang, J.; et al.
Gpt-neox-20b: An open-source autoregressive language model. arXiv 2022, arXiv:2204.06745.

51. Honnibal, M.; Montani, I.; Van Landeghem, S.; Boyd, A. spaCy: Industrial-Strength Natural Language Processing in Python.
2020. Available online: https://zenodo.org/record/8409320 (accessed on 1 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/kingoflolz/mesh-transformer-jax
https://zenodo.org/record/8409320

	Introduction
	Related Work
	Vision and Language Navigation
	Spatial Memory
	Existing Memory Architectures in VLN

	Method
	Overview of Our Approach
	Topological Mapping with Self-Organizing Memory
	Fundamentals of Fusion ART
	Episodic Memory Extraction from Exploration Trajectories
	Spatial Memory Construction

	High-Level Planning
	Landmark Extractor
	Node–Landmark Matcher

	Low-Level Controlling

	Experiments
	Dataset and Evaluation Metrics
	Model Summary
	Research Questions

	Results and Discussion
	Results of Graph Construction
	Effect of Different Input Patterns
	Effect of Different Vigilance Parameters

	Results of Landmark Extraction
	Evaluation on VLN-CE
	Failure Analysis

	Conclusions
	References

