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Abstract: Maritime emergency materials distribution is a key aspect of maritime emergency re-
sponses. To effectively deal with the challenges brought by the uncertainty of the maritime transport
environment, the multi-agent joint decision-making location-routing problem of maritime emergency
materials distribution (MEMD-LRP) under an uncertain decision-making environment is studied.
First, two robust bi-level optimization models of MEMD-LRP are constructed based on the effect
of the uncertainty of the ship’s sailing time and demand of emergency materials at the accident
point, respectively, on the premise of considering the rescue time window and priority of emergency
materials distribution. Secondly, with the help of robust optimization theory and duality theory, the
robust optimization models are transformed into robust equivalent models that are easy to solve.
Finally, a hybrid algorithm based on the ant colony and tabu search (ACO-TS) algorithm solves
multiple sets of numerical cases based on the case design of the Bohai Sea area, and analyzes the
influence of uncertain parameters on the decision making of MEMD-LRP. The study of MEMD-LRP
under uncertain decision-making environments using bi-level programming and robust optimization
methods can help decision makers at different levels of the maritime emergency logistics system
formulate emergency material reserve locations and emergency material distribution schemes that
can effectively deal with the uncertainty in maritime emergencies.

Keywords: emergency logistics; location-routing problem; bi-level programming; uncertain
decision-making environment; robust optimization

MSC: 90B06

1. Introduction

As trade activity between countries gradually resumes in the post-epidemic era, mar-
itime transportation, which is responsible for more than 80% of world trade, has rebounded
in 2021 with an estimated growth of 3.2% [1]. The increase in maritime transportation
activities has also led to a high incidence of maritime accidents, thus posing significant
safety risks [2–4]. When an accident occurs at sea, a rapid and efficient emergency response
becomes a crucial part of the process, and in this process, the distribution of maritime emer-
gency materials plays a key role. In the actual distribution process of maritime emergency
materials, due to the suddenness and unpredictability of maritime accidents, and because
maritime transportation is affected by complex meteorological and sea conditions and other
factors, the emergency materials demand at the accident point and the ship’s sailing time
are usually highly uncertain. Research on emergency materials distribution in traditional
deterministic decision-making environments is usually difficult to cope with the challenges
brought by complex environmental changes, so it is urgent and important to investigate
the maritime emergency materials distribution location-routing problem (MEMD-LRP) in
uncertain decision-making environments.
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Emergency responses to maritime emergencies is a multi-sectoral endeavor that re-
quires different levels of decision-making bodies to participate in decision making. As
a joint decision-making problem, MEMD-LRP involves locating shore-based emergency
materials reserves and planning routes for emergency materials distribution. The location
problem is solved at the strategic decision-making level, and the distribution route planning
of emergency materials is determined at the tactical level or operation level. Bi-level pro-
gramming can be used to solve the problem of joint decision making by different levels of
decision makers, which can ensure that a global perspective is taken first, and the interests
of the whole situation and each decision-making subject are considered at the same time.

For a long time, society has generally considered emergency rescue to be a matter of the
country, thus neglecting the development of commercially operated rescue organizations.
In the actual operation of emergency rescues, in addition to government departments,
there are also public welfare rescue units and commercial rescue units. The emergence of
public welfare rescue units and commercial rescue units not only improves the speed and
efficiency of emergency rescues, but also helps to promote social participation. Among
them, the interests represented by public welfare rescue units and government departments
are consistent, usually taking the fairness of emergency rescue as the main consideration,
and taking dissatisfaction, cost, time, and so on, as the goal [5,6]. On the other hand,
commercial rescue units will consider the economy of emergency rescue, which is consistent
with minimizing the total economic cost of emergency logistics in the literature [7,8]. The
commercial rescue system’s systematic network has yet to be expanded, and it should
always be the government departments’ responsibility in terms of the macro-unification of
command and scheduling.

Therefore, from the perspective of multi-level decision makers that participate in
joint decision making, it is necessary to adopt a method of bi-level programming and
robust optimization based on the communication and cooperation between emergency
management departments and commercial rescue units without considering public welfare
rescue units. During the planning period, this paper studies the MEMD-LRP problem
considering the rescue time window, the priority of distribution of different kinds of
emergency materials, the uncertain emergency materials demand at the accident point, and
the uncertain transportation time of emergency materials, and then optimizes the maritime
emergency logistics system as a whole to ensure the demand of the accident points can
be met, and the total cost of the emergency logistics system can be reduced in different
cases. This paper is an extension of Peng et al.’s [9] study on MEMD-LRP in a deterministic
decision-making environment. This study can provide optimal location selection and route
planning solutions for MEMD-LRP in an uncertain decision-making environment within
the planning period. It also offers decision makers a reference basis for addressing various
emergency situations.

The following is the rest of the paper. The second part provides an overview of
related studies, the third part describes the research problem, the construction, and the
transformation of the model in detail, and the fourth part gives the solution analysis. Finally,
the fifth part summarizes the paper.

2. Literature Review

The LRP proposal can be traced back to the 1980s [10]. This problem has aroused
widespread concern and attracted many scholars to conduct in-depth research. At present,
scholars at home and abroad have conducted a lot of research on the various extended
models of general logistics LRP and the improvement of the solution methods [11–13].
In the innovation of solving methods, to solve the multi-objective chance-constrained
programming model under an uncertain transportation time and cost, Lu et al. [14] changed
the antennae search of a single beetle to multiple, embedded Dijkstra algorithms, and
designed a hybrid beetle swarm optimization algorithm. Lu et al. [15] designed the ant
colony system and improved the grey wolf optimization algorithm to solve the fourth
party logistics routing problem model through the convergence factor and proportional
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weight in order to improve the grey wolf optimization algorithm. Şatir Akpunar and
Akpinar [16] proposed a hybrid adaptive large neighborhood search algorithm (ALNS) to
solve the LRP problem, which improves the performance of the algorithm by combining
the variable neighborhood search (VNS) algorithm with the elite local search algorithm.
Alamatsaz et al. [17] combines the progressive hedging algorithm (PHA) with a genetic
algorithm (GA) to large-scale solve the green capacitated locating-routing problem. As
scholars pay attention to the research of emergency logistics, the joint research of emergency
logistics and LRP has become one of the hotspots. Earlier emergency logistics LRPs were
considered in deterministic environments. Gan and Liu [18] designed a new multi-objective
model based on multi-hazard and multi-supplier scenarios, and proposed an improved
non-dominated sorting genetic algorithm (NSGA-II) to find the optimal scheduling scheme.
Liu et al. [19] studied the location-routing problem in the early stage of an earthquake from
a fair perspective, developed the multi-objective model by using a dictionary sequential
object optimization method considering emergency window constraints and partial road
damage, and designed a hybrid heuristic algorithm to solve the problem.

With the deepening of the research, the emergency logistics LRP problem gradually
evolved from a problem in a deterministic decision-making environment to a more relevant
problem in an uncertain decision-making environment, and methods such as stochastic
programming, fuzzy functions, and robust optimization have gradually become main-
stream tools for solving uncertain problems such as demand, time, and so on, in emergency
logistics LRP. Ai et al. [20] constructed a discrete nonlinear integer programming model and
solved it using a heuristic algorithm after transforming it into a two-stage model in the con-
text of emergency resource distribution in maritime emergency response systems. Zhang
et al. [21] studied sustainable multi-warehouse emergency facility LRP with information
uncertainty; constructed multi-objective travel time, emergency response cost, and carbon
dioxide emission model; designed a hybrid intelligent algorithm integrating an uncertainty
simulation- and designed a genetic algorithm to solve it. Afshar and Haghani [22] pro-
posed a comprehensive model for integrated supply chain operations in response to natural
disasters that integrates details such as the optimal location of multi-level temporary facili-
ties, vehicle routing, and pickup or delivery schedules in a dynamic environment. Zhang
et al. [23] proposed a scenario-based mixed-integer planning model for reliable LRP with
the risk of the stochastic disruption of facilities, designing meta-heuristic algorithms based
on maximum likelihood sampling methods, route reallocation, a two-stage neighborhood
search, and simulated annealing. Ghasemi et al. [24] proposed a mixed-integer mathemat-
ical planning model for the location assignment of a multi-objective, multi-commodity,
multi-period, multi-vehicle, and modeled-by-scenario-based probabilistic approach for
seismic emergency responses, which is solved using improved multi-objective particle
swarm optimization, nondominated sequential genetic algorithm, and the epsilon con-
straint method. Long et al. [25] studied the multi-objective multi-periodic LRP of epidemic
logistics considering stochastic demand, proposed a corresponding robust model, and
proposed a preference-inspired co-evolutionary algorithm based on Tchebycheff decompo-
sition (PICEA-g-td). Caunhye et al. [26] proposed a two-stage LRP that was transformed
into a single-objective solution for the problem of risk management in the case of a disaster
with an uncertain demand and infrastructure status. A nonlinear integer open location-
routing model was constructed by Wang et al. [27] that considered travel time, total cost,
and reliability when distributing post-disaster relief materials, and they proposed a non-
dominated sorting differential evolution algorithm and a non-dominated sorting genetic
algorithm to solve it. Raeisi et al. [28] constructed a robust fuzzy multi-objective optimiza-
tion model to solve the hazardous waste management problem, which was solved using
various heuristic algorithms and analyzed comparatively. Shen et al. [29] proposed a trian-
gular fuzzy function to obtain the fuzzy demand considering the uncertainty of the demand
in the disaster area, constructed a multi-objective model considering the carbon emissions,
and used a two-stage hybrid algorithm to solve the problem. Zhang et al. [30] proposed
a novel dynamic multi-objective split-delivery location-routing two-stage optimization
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model for the emergency logistics of offshore oil spill accidents, and developed a hybrid
heuristic algorithm to solve it. Ghasemi et al. [31] proposed a scenario-based stochastic
multi-objective location-allocation-routing model considering the existence of uncertainty
before and after a disaster, which was solved using epsilon constraints and meta-heuristic
algorithms.

Some scholars have also considered the problem of joint decision-making by multi-
ple levels of decision makers in solving emergency LRPs in uncertain decision-making
environments. Saeidi-Mobarakeh et al. [32] constructed a bi-level programming model
with the government as the decision maker at the upper level and the government’s fol-
lowers as the decision makers at the lower level to solve a hazardous waste management
problem under uncertainty, and a robust optimization was used in the multi-part solution
methodology. Zhou et al. [33] addressed the uncertainty in the emergency logistics system,
investigated the integration of the location of transit facilities and the transportation of
relief materials, constructed a gray mixed-integer bi-level nonlinear program, and designed
a hybrid genetic algorithm to solve the proposed model. Chen et al. [34] conducted a study
on the robustness and sustainability of the port logistics system for emergency materials
using a bi-level programming method to achieve coordinated optimization of emergency
logistics infrastructure locations and emergency rescue vehicle routing planning, as well as
simulation using statistical modeling.

This study comprehensively reviews 10 representative studies in related fields and
compares them in several aspects, such as research background, model construction meth-
ods, types of emergency materials, time windows, and solution methods, as shown in
Table 1. Overall, the research for emergency logistics LRPs is richer and deeper, and
stochastic programming, fuzzy functions, robust optimization, and bi-level programming
decision-making tools are beginning to be applied to emergency logistics LRPs in uncertain
decision-making environments. The hybrid heuristic algorithms, which combine the ant
colony algorithm, particle swarm algorithm, genetic algorithm, and other algorithms, are
widely used in the solution of emergency logistics LRPs. To our limited knowledge, most
of the existing studies are based on land-based disasters and emergencies, and even though
the literature [20] has investigated the distribution of emergency resources in maritime
emergency response systems, only the probability distribution of the demand has been
considered. In addition, existing research has focused on the use of multi-objective models,
and the bi-level programming method has not been applied to the marine accident LRP
of multi-agent joint decision making under uncertain decision environments. Although
the literature [34] studied the port logistics system for emergency materials, it did not
address the distribution of maritime emergency materials. The purpose of this paper is to
make a plan for different levels of decision makers in maritime emergency logistics systems
under uncertain decision-making environments. To achieve this, a combination of a bi-level
programming method and a robust optimization method is adopted.

Table 1. Comparison with related studies.

Author Uncertainty Maritime
Emergency Modeling Method Emergency

Materials
Time

Window Solution Method

Gan and Liu [18] No Yes Multi-objective
modeling Multiple Yes Improved NSGA-II

Ai et al. [20] Yes Yes Single-objective
modeling Single No Hybrid heuristic

algorithm

Zhang et al. [21] Yes No Multi-objective
modeling No No Hybrid intelligence

algorithm

Zhang et al. [23] Yes No
Scenario-based
Single-objective

modeling
No No Metaheuristic

approach
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Table 1. Cont.

Author Uncertainty Maritime
Emergency Modeling Method Emergency

Materials
Time

Window Solution Method

Long et al. [25] Yes No
Multi-objective

multi-stage
robust modeling

Yes No
Preference-inspired

coevolutionary
algorithm

Wang et al. [27] Yes No Multi-objective
modeling Yes No

Non-dominated
sorting genetic

algorithm
Non-dominated

sorting differential
evolution algorithm

Shen et al. [29] Yes No
Fuzzy function
Multi-objective

modeling
No No Two-stage hybrid

algorithm

Zhang et al. [30] Yes Yes
Dynamic

multi-objective
modeling

No Yes Hybrid heuristic
algorithm

Zhou et al. [33] Yes No
Bi-level

programming
modeling

Yes - Hybrid genetic
algorithm

Chen et al. [34] Yes Yes (Port)
Bi-level

programming
modeling

No No Statistical methods

This paper Yes Yes
Robust bi-level
programming

modeling
Yes Yes Hybrid heuristic

algorithm

3. Mathematical Problem Formulation
3.1. Problem Description

The decision making of MEMD-LRP involves the location of shore-based emergency
material reserves and maritime emergency material distribution route planning, which
aims to distribute emergency materials with different priorities from the selected emergency
material reserves to the accident point based on information such as the location of the
potential accident point, and under constraints such as satisfying the time window. But
due to the fact that in the actual MEMD-LRP, the ship’s sailing time and the accident
point emergency materials demand uncertainty, the location decision and routing planning
decision can be significantly affected.

In uncertain decision-making environments, a joint decision-making model with mul-
tiple levels of decision makers becomes particularly important. The MEMD-LRP can be
described from the perspective of bi-level programming, in which the upper-level decision
maker (the emergency management department) integrates the location problem of the
emergency reserves. Because the construction of the emergency reserve is required to be
outsourced to the manufacturer [35], the emergency management department must con-
sider the emergency reserve stockpile construction cost and accident point time satisfaction
loss cost. Lower-level decision makers (commercial rescue units) independently plan emer-
gency material distribution routes based on upper-level decisions to minimize distribution
costs, ship transportation costs, ship dispatch costs, and time penalty costs. Rescue units
will develop the distribution program feedback to the emergency management department,
and according to the response of the rescue units here to make decisions, the interaction
between the two is constantly carried out, forming an iterative decision-making process to
develop the overall optimal decision to adapt to the maritime emergency’s uncertainty.

The maritime emergency logistics system involving multi-level decision-making
agents studied in this paper is shown in Figure 1.
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Figure 1. Schematic diagram of the maritime emergency logistics system involving multi-level
decision-making agents.

The paper has the following assumptions:

(1) Commercial rescue units are taken, as the lower-level decision makers of this study
and public relief units are not considered;

(2) Multiple candidates reserve with unrestricted capacity and known locations;
(3) Multiple potential accident points with known locations, without any consideration

of drift spread;
(4) Emergency materials in multiple levels with known priorities for distribution; for

different types of emergency materials, the transport of the materials should be in
the order of priority, and there should be different distribution costs for each level of
emergency materials;

(5) The number of ships is sufficient; they are of the same type and capacity, and emer-
gency materials of different levels can be mixed under the limitation of the time
window of the accident point;

(6) Each accident point receives assistance from a single emergency material reserve, and
only one ship is permitted to visit the accident location during the allocation of each
level of emergency materials, all within a specified time window;

(7) Each ship is affiliated with a specific emergency material reserve, commences its
journey from that reserve, and upon completing the material delivery, returns to
the same reserve. Furthermore, each ship can serve multiple accident points while
adhering to the time window constraints;

(8) Because the study in this paper is in the preventive stage, which is the overall layout
of the maritime emergency logistics system during the planning period, the wind
speed, current speed, and the average still water speed of the ship between the nodes
is assumed to be constant [20,36];

(9) To simplify the problem, the time of loading and unloading materials is not considered
when calculating the arrival node time, and only the ship’s sailing time at sea is
considered;

(10) The numerical value and probability distribution information of ship sailing time and
accident point demand for different levels of emergency materials are unknown, but
only their respective upper and lower limits are known, and these two parameters do
not influence each other and exist independently in their respective uncertain sets.

The variables and symbols in this paper are described in Table 2.
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Table 2. Model sets, parameters, variables, and their descriptions.

Sets Descriptions

I = {i|i = 1, 2, · · · , |I |} Candidate shore-based emergency reserves set
J = {j|j = 1, 2, · · · , |J |} Accident points set

B = I ∪ J Network nodes set
K = {k|k = 1, 2, · · · , |K |} Ships set

W = {w|w = 1, 2, · · · , |W |} Emergency material priority levels set

Parameters Descriptions

Fi
The fixed construction cost for the i candidate shore-based

emergency reserve (CNY)
Sk The cost per unit distance for the k ship (CNY/nm)
C0 The fixed dispatch cost per ship
G The fixed capacity of the ship (unit/ship)

Djw
The demand for emergency materials of level w at accident

point j (unit)

Cijw
The cost of transporting emergency materials of level w from
reserve i to accident point j per unit of material (CNY/unit)

Vpqk

The actual average speed of the ship k when traveling from
node p to q, accounting for the influence of wind and current

speeds (kn)

VA
pqk

The average speed of the ship k in still water from node p to q
(kn)

V1 The wind speed (kn)
V2 The current speed (kn)
Lpq The actual distance traveled from node p to q (nm)

TEjω
The expected arrival time of accident point j for emergency

materials of level w (h)

TLjω
The latest arrival time of level w emergency materials that the

accident point j can tolerate (h)

Tjw
The real-time delivery arrival of the emergency materials level

w at the accident point j (h)

Tpq
The actual sailing time of the ship from point p to point q,

where Tpq =
Lpq
Vpqk

(h)

C1

The time penalty cost coefficient caused by the arrival of
emergency materials of level w at accident point j earlier than

TEjω

C2

The time-penalty cost coefficient incurred if the emergency
materials of level w arrive at accident point j later than TEjω

and earlier than TLjω

Pjw
The time penalty cost function for transporting the w level

emergency materials to the incident point j

F
(

Tjw

) The time satisfaction function of the accident point j during
the conveyance of emergency materials of level w

φ
(

F
(

Tjw

)) The function representing the cost penalty coefficient for time
satisfaction loss in transporting emergency materials of level

w to accident point j
A A sufficiently large positive number

Variables Descriptions

xi
If the emergency materials reserve is built at the location i,

then 1; otherwise, 0

yij
If the accident point j is served by emergency reserve i, then 1;

otherwise, 0
qk If the ship k is put into service, then 1; otherwise, 0

zpqk If the ship k sails from node p to node q, then 1; otherwise, 0

Auxiliary variable Descriptions

ujw
If the accident point j requires emergency materials of level ω,

then 1; otherwise, 0
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3.2. Model Construction
3.2.1. Description of Time Penalty Cost

Maritime emergency rescue is characterized by a strong time-sensitive rescue, so the
time-penalty cost function in MEMD-LRP is constructed, and the relationship between time
and time-penalty cost is shown in Figure 2, which is consistent with the authors’ previous
study [9].
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The time penalty cost function expression is:

Pjw =


C1
(
TEjw − Tjw

)
, Tjw < TEjw

0, Tjw = TEjw
C2
(
Tjw − TEjw

)
, Tjw > TEjw

, ∀j ∈ J, w ∈W (1)

3.2.2. Description of Time Satisfaction Loss Cost at Accident Point

The upper-level emergency management decision makers face the challenge of balanc-
ing the cost of establishing shore-based emergency reserves with the time satisfaction at
accident sites. To simplify calculations, time satisfaction is converted into a cost of time
satisfaction loss integrated into the upper-level decision-maker’s objectives. In this paper, a
linear time satisfaction function is chosen. When a ship k delivers emergency materials of a
certain level to accident point j but fails to meet the expected arrival time TEjω at accident
point j, time satisfaction is reduced at accident point j. The greater the deviation from
the arrival time TEjω of emergency materials w at accident point j, the more significant
the reduction in time satisfaction. Furthermore, the cost associated with the loss of time
satisfaction at accident point j is tied to the demand for emergency materials at that accident
point. The penalty coefficient for the cost of time satisfaction loss at accident point j follows
a segmented function corresponding to time satisfaction, with the functional relationship
determined to be φ

(
F
(
Tjw
))

[9].
The expression representing the time satisfaction function of accident point j concern-

ing the arrival time of a certain level of emergency materials is as follows:

F
(
Tjw
)
=


1, Tjw = TEjw
TEjw−Tjw

TEjw
, 0 ≤ Tjw < TEjw

TLjw−Tjw
TLjw−TEjw

, TEjw < Tjw ≤ TLjw

0, TLjw < Tjw

, ∀j ∈ J, w ∈W (2)
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The mathematical representation for the penalty coefficient associated with the loss
cost of time satisfaction at accident point j is as follows:

φ
(

F
(
Tjw
))

=


0, F
(
Tjw
)
= 1

1, F
(
Tjw
)
=

TEjw−Tjw
TEjw

, ∀j ∈ J, w ∈W

1, F
(
Tjw
)
=

TLjw−Tjw
TLjw−TEjw

, ∀j ∈ J, w ∈W

+∞, F
(
Tjw
)
= 0

(3)

The total cost resulting from the lost time satisfaction at accident point j can be
expressed as follows:

∑
i∈I

∑
j∈J

∑
w∈W

xiφ
(

F
(
Tjw
))

yijDjw (4)

3.2.3. MEMD-LRP Robust Bi-Level Nominal Models

Based on the above assumptions and cost descriptions, the nominal model (denoted
as BLNM) for constructing the robust bi-level model of MEMD-LRP is shown below.

(1) Upper level modeling:

min f1 = ∑
i∈I

Fixi + ∑
i∈I

∑
j∈J

∑
w∈W

xiφ
(

F
(
Tjw
))

yijDjw (5)

s.t. 1 ≤∑
i∈I

xi ≤ I (6)

yij − xi ≤ 0, ∀i ∈ I, j ∈ J (7)

xi ∈ {0, 1} (8)

The goal defined in objective function (5) is to minimize both the construction expenses
of emergency reserves and the costs associated with time satisfaction losses at the accident
point; constraint (6) restricts the actual count of emergency reserve constructions to not
surpass the number of candidate shore-based emergency reserves; constraint (7) enforces
that only when selected as an emergency material reserve can materials be transported;
constraint (8) represents an upper-level decision variable.

(2) Lower level modeling:

min f2 = ∑
i∈I

∑
j∈J

∑
w∈W

ujwDjwCijwyij + ∑
p,q∈B

∑
k∈K

zpqkLpqSk + ∑
k∈K

C0qk + ∑
w∈W

∑
i∈I

∑
j∈J

yijPjw (9)

s.t. ∑
i∈I

yij = 1, ∀j ∈ J (10)

∑
k∈K

∑
j∈J

zijk ≥ xi, ∀i ∈ I (11)

∑
i∈I

∑
j∈J

zijk ≤ 1, ∀k ∈ K (12)

zpqk ≤ qk, ∀p, q ∈ B, p 6= q, k ∈ K (13)

∑
k∈K

∑
p∈B

zpjkujw = 1, ∀j ∈ J, w ∈W (14)

∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

Djwujwyijzpqk ≤ G, ∀k ∈ K (15)



Mathematics 2023, 11, 4140 10 of 30

∑
k∈K

zpqk = 0, ∀p, q ∈ I (16)

∑
p∈B

zpqk − ∑
p∈B

zqpk = 0, ∀k ∈ K, q ∈ B (17)

∑
j∈J

zijk + ∑
j∈J

zjrk ≤ 1, ∀i, r ∈ I, k ∈ K (18)

yijDj(w+1) ≤ ujw A, ∀w = 1, · · · ,
∣∣∣W∣∣∣−1, i ∈ I, j ∈ J (19)

Tjw ≤ Tj(w+1), ∀w = 1, · · · ,
∣∣∣W∣∣∣−1, j ∈ J (20)

∑
j∈J

Tjw ≤ ∑
j∈J

Tj(w+1), ∀w = 1, · · · , |W| − 1, j ∈ J (21)

yijTjw ≤ TLjw, ∀i ∈ I, j ∈ J, w ∈W (22)

Tpw + zpqkTpq ≤ TLqw, ∀p, q ∈ J, w ∈W, zpqk = 1 (23)

yij ∈ {0, 1}, qk ∈ {0, 1}, zpqk ∈ {0, 1} (24)

In a bi-level programming model, the upper model’s constraints apply uniformly to
the lower model. Objective function (9) aims to minimize the total costs encompassing
different levels of emergency material distribution, ship transportation, ship dispatch,
and time penalties; constraint (10) ensures that each incident point receives assistance
from a single emergency reserve; constraint (11) ensures that each selected emergency
materials reserve is assigned ships; constraint (12) ensures that each ship is linked to one
selected emergency reserve; constraint (13) indicates that only operational ships are eligible
for transportation; constraint (14) mandates that, during the distribution of each level of
emergency materials, only one ship passes through each accident point; constraint (15)
indicates that the demand for emergency materials at the accident point along a ship’s
route must not exceed the ship’s capacity; constraint (16) indicates that there cannot be
transportation between any two emergency materials reserves; constraint (17) indicates
that ships entering from a point must also exit from that point; constraint (18) indicates
that a ship leaving the emergency reserve is required to return to the same emergency
reserve in the end; constraint (19) indicates that the transport of emergency materials from
emergency reserve i to accident point j can commence for the next level only after the
emergency materials of the previous level have been transported; constraints (20) and (21)
denote that the actual delivery time of high-priority emergency materials is strictly less
than the actual delivery time of low-priority emergency materials; constraint (22) denotes
that the actual arrival time of level w emergency materials transported from emergency
material reserve i to incident point j is less than or equal to the latest allowable delivery
time for level w emergency materials at incident point j; constraint (23) accounts for the
time window constraints on a ship while servicing multiple point points, and constraint (24)
is the lower-level decision variable.

The time for the ship k to reach the accident point q is calculated by the following
formula:

Tqw = Tpw + zpqkTpq, ∀p, q ∈ J, w ∈W, zpqk = 1 (25)
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The ship’s k speed will be influenced by both the wind and current speed; consequently,
the ship’s k actual average speed is the vector superposition of the average still water speed,
wind speed, and current speed of the ship k, which is calculated as follows:

Vpqk = VA
pqk + V1 + V2, ∀p, q ∈ B, p 6= q (26)

3.2.4. MEMD-LRP Robust Bi-Level Modeling

The upper-level objective function in the MEMD-LRP robust bi-level nominal model
is first linearized by introducing the auxiliary variable CL, which leads to constraint (27)
from constraints (2) and (3):

CL =


0, Tjw = TEjw

1, 0 ≤ Tjw < TEjw or TEjw < Tjw ≤ TLjw, ∀j ∈ J, w ∈W
+∞, TLjw < Tjw

(27)

Continuing to linearize the upper objective function by introducing the auxiliary
variable lij and making it equal to the product of two 0–1 variables, we have (28)–(32):

lij = xiyij, ∀i ∈ I, j ∈ J (28)

lij ≤ xi, ∀i ∈ I, j ∈ J (29)

lij ≤ yij, ∀i ∈ I, j ∈ J (30)

lij ≥ xi + yij − 1, ∀i ∈ I, j ∈ J (31)

lij ∈ {0, 1} (32)

Function (5) is then transformed into function (33):

min f1 = ∑
i∈I

Fixi + ∑
i∈I

∑
j∈J

∑
w∈W

CLlijDjw (33)

In this paper, we consider that the uncertain parameter ship sailing time only appears
in the constraints of the lower level, which has no direct influence on the upper and
lower objective functions, whereas the uncertain parameter accident point demand for
different levels of emergency materials has a direct influence on the upper and lower
objective functions and constraints; the two uncertain parameters do not appear in the same
constraints at the same time. The robust model proposed by Soyster [37] is optimized for
the worst case scenario. Maritime emergency response has urgency and high requirements
on rescue time when considering uncertainty in ship sailing time. The conservative Soyster
robust model is used to construct a robust bi-level model containing uncertain parameters
regarding the ship’s sailing time. The Bertsimas and Sim [38] robust model is a gradual
development of the Soyster robust model, introducing the budget of uncertainty (BoU)
to regulate the degree of robust conservatism. Bertsimas and Sim’s robust model is used
to construct a robust bi-level model of emergency material demand at accident points
containing uncertain parameters. The degree of conservatism of the whole robust bi-level
model can be adjusted by introducing the uncertain budget of the emergency material
demand, and the objective function and constraints of the emergency material demand
containing uncertain parameters are transformed using the peer-to-peer transformation
method of the Bertsimas and Sim robust model [39,40].

It is assumed that the uncertain ship sailing time T̃pq is perturbed in an interval
uncertainty set; the different levels of emergency material requirements at the accident
point D̃jw are perturbed in a box uncertainty set, and the decision-maker only knows
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the upper and lower bounds of the unknown parameters, which are distributed on their
respective bounded symmetric intervals, and the distribution information is unknown:

T̃pq ∈
[
Tpq − T̂pq, Tpq + T̂pq

]
, ∀p, q ∈ B, p 6= q (34)

D̃jw ∈
[
Djw − bjwD̂jw, Djw + bjwD̂jw

]
, ∀j ∈ J, w ∈W (35)

In constraints (34) and (35), Tpq represents the nominal value (NV) of the ship’s
sailing time between nodes, which is equivalent to the corresponding value in the de-
terministic model, and T̂pq ≥ 0 is the amount of time perturbation. Djω is the nominal
value of the demand for different levels of emergency materials at the accident point,
D̂jw ≥ 0 is the amount of demand perturbation, and bjω is a random variable taking val-
ues in the interval [0,1] and with an unknown distribution, notated as its uncertainty set

U1 =

{
bjw | ∑

w
∑
j

bjw ≤ Γ1, 0 ≤ bjw ≤ 1, ∀j ∈ J, w ∈W

}
. And Γ1 is the uncertain budget of

demand, controlling the uncertainty level of its uncertainty set, defining the box uncertainty
set with the budget. The value of Γ1 is related to the decision maker’s preference: If the
value of the uncertainty budget is larger, the more conservative the robust model is, the
better the robustness of the solution, and the more satisfactory results can be obtained in
the worst case scenario. However, if the value of the uncertainty budget is smaller, the less
robust it is; however, better results may be obtained in the ideal case. Decision makers can
adjust the values according to their preferences to obtain decision methods with different
degrees of conservatism to achieve a compromise between optimality and robustness [40].

For the upper and lower bounds of the uncertain budget Γ1, it is easy to see that
Γ1 ≥ 0, by ∀bjw ∈ [0, 1]. By the definition of the uncertain set U1, and constraint (35), we
also obtain Γ1 ≤|J|×|W|.

MEMD-LRP Robust Bi-Level Model Based on Ship Sailing Time Uncertainty

(1) Robust bi-level modeling

Observing that the ship sailing time appears in (23) and (25) in the BLNM, the above
equations are adjusted correspondingly when constructing the robust bi-level model to
obtain the new robust constraints (60) and (63). The MEMD-LRP robust bi-level model
based on the uncertainty of ship sailing time denoted as TRBLM is constructed according
to the Soyster robust model as follows:

Upper level modeling:

min f1 = ∑
i∈I

Fixi + ∑
i∈I

∑
j∈J

∑
w∈W

CLlijDjw (36)

s.t. 1 ≤∑
i∈I

xi ≤ I (37)

yij − xi ≤ 0, ∀i ∈ I, j ∈ J (38)

xi ∈ {0, 1} (39)

CL =


0, Tjw = TEjw

1, 0 ≤ Tjw < TEjw or TEjw < Tjw ≤ TLjw, ∀j ∈ J, w ∈W
+∞, TLjw < Tjw

(40)

lij = xiyij, ∀i ∈ I, j ∈ J (41)

lij ≤ xi, ∀i ∈ I, j ∈ J (42)
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lij ≤ yij, ∀i ∈ I, j ∈ J (43)

lij ≥ xi + yij − 1, ∀i ∈ I, j ∈ J (44)

lij ∈ {0, 1} (45)

The objective function and constraints of the TRBLM upper model are changed, except
that (37)–(39) are exactly the same as BLNM, but the meaning is exactly the same and will
not be repeated.

Lower level modeling:

min f2 = ∑
i∈I

∑
j∈J

∑
w∈W

ujwDjwCijwyij + ∑
p,q∈B

∑
k∈K

zpqkLpqSk + ∑
k∈K

C0qk + ∑
w∈W

∑
i∈I

∑
j∈J

yijPjw (46)

s.t. ∑
i∈I

yij = 1, ∀j ∈ J (47)

∑
k∈K

∑
j∈J

zijk ≥ xi, ∀i ∈ I (48)

∑
i∈I

∑
j∈J

zijk ≤ 1, ∀k ∈ K (49)

zpqk ≤ qk, ∀p, q ∈ B, p 6= q, k ∈ K (50)

∑
k∈K

∑
p∈B

zpjkujw = 1, ∀j ∈ J, w ∈W (51)

∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

Djwujwyijzpqk ≤ G, ∀k ∈ K (52)

∑
k∈K

zpqk = 0, ∀p, q ∈ I (53)

∑
p∈B

zpqk − ∑
p∈B

zqpk = 0, ∀k ∈ K, q ∈ B (54)

∑
j∈J

zijk + ∑
j∈J

zjrk ≤ 1, ∀i, r ∈ I, k ∈ K (55)

yijDj(w+1) ≤ ujw A, ∀w = 1, · · · ,
∣∣∣W∣∣∣−1, i ∈ I, j ∈ J (56)

Tjw ≤ Tj(w+1), ∀w = 1, · · · ,
∣∣∣W∣∣∣−1, j ∈ J (57)

∑
j∈J

Tjw ≤ ∑
j∈J

Tj(w+1), ∀w = 1, · · · , |W| − 1, j ∈ J (58)

yijTjw ≤ TLjw, ∀i ∈ I, j ∈ J, w ∈W (59)

Tpw + zpqkT̃pq ≤ Tpqw, ∀p, q ∈ J, w ∈W, zpqk = 1 (60)

yij ∈ {0, 1}, qk ∈ {0, 1}, zpqk ∈ {0, 1} (61)
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Vpqk = VA
pqk + V1 + V2, ∀p, q ∈ B, p 6= q (62)

where the time for the ship k to reach the accident point q is calculated as:

Tqw = Tpw + zpqkT̃pq, ∀p, q ∈ J, w ∈W, zpqk = 1 (63)

The objective function and constraints of the TRBLM lower model, except for (34) and
(35), are identical to those of the BLNM, but have exactly the same meaning and will not be
repeated.

(2) Robust equivalent model

According to references [37,41,42], the transformation of constraint (60) and (63) con-
taining the equals sign yields constraints (64) and (65):

Tpw + zpqk
(
Tpq + T̂pq

)
≤ TLqw, ∀p, q ∈ J, w ∈W, zpqk = 1 (64)

zpqk
(
Tpq − T̂pq

)
≤ Tqw − Tpw ≤ zpqk

(
Tpq + T̂pq

)
, ∀p, q ∈ J, w ∈W, zpqk = 1 (65)

The robust equivalent model TRBLM-RC of the model TRBLM is obtained:
Upper objective function (36) with constraints (37)–(39) and (40)–(45), and lower

objective function (9) with constraints (10)–(22), (24), (26), (64), and (65).
When the amount of time perturbation is T̂pq = 0, the ship sailing time is equal to

the corresponding value in the deterministic case, so the models TRBLM, TRBLM-RC, and
BLNM are equivalent.

MEMD-LRP Robust Bi-Level Model Based on the Uncertainty of Emergency Material
Demand at Accident Points

(1) Robust bi-level model

It is observed that the demand for emergency materials at the accident point appears in
objective functions (36) and (9), and constraints (15) and (19) of the model. Thus, the above
equations must be adjusted correspondingly when constructing the robust optimization
model considering the uncertainty of the demand for emergency materials at the accident
point to obtain the new robust upper and lower objective functions (66) and (76), and robust
constraints (66) and (76).Other constraints are kept unchanged for the time being. Denote
the robust bi-level model as DRBLM, as follows:

Upper level modeling:

min f1 = min

(
∑
i∈I

Fixi + max∑
i∈I

∑
j∈J

∑
w∈W

(
Djw + bjwD̂jw

)
CLlij

)
(66)

s.t. 1 ≤∑
i∈I

xi ≤ I (67)

yij − xi ≤ 0, ∀i ∈ I, j ∈ J (68)

xi ∈ {0, 1} (69)

CL =


0, Tjw = TEjw

1, 0 ≤ Tjw < TEjw or TEjw < Tjw ≤ TLjw, ∀j ∈ J, w ∈W
+∞, TLjw < Tjw

(70)

lij = xiyij, ∀i ∈ I, j ∈ J (71)
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lij ≤ xi, ∀i ∈ I, j ∈ J (72)

lij ≤ yij, ∀i ∈ I, j ∈ J (73)

lij ≥ xi + yij − 1, ∀i ∈ I, j ∈ J (74)

lij ∈ {0, 1} (75)

Lower level modeling:

min f2 = min

(
∑

p,q∈B
∑
k∈K

zpqkLpqSk + ∑
k∈K

C0qk + ∑
w∈W

∑
i∈I

∑
j∈J

yijPjw + max∑
i∈I

∑
j∈J

∑
w∈W

(
Djw + bjwD̂jw

)
ujwCijwyij

)
(76)

s.t. ∑
i∈I

yij = 1, ∀j ∈ J (77)

∑
k∈K

∑
j∈J

zijk ≥ xi, ∀i ∈ I (78)

∑
i∈I

∑
j∈J

zijk ≤ 1, ∀k ∈ K (79)

zpqk ≤ qk, ∀p, q ∈ B, p 6= q, k ∈ K (80)

∑
k∈K

∑
p∈B

zpjkujw = 1, ∀j ∈ J, w ∈W (81)

∑
k∈K

zpqk = 0, ∀p, q ∈ I (82)

∑
p∈B

zpqk − ∑
p∈B

zqpk = 0, ∀k ∈ K, q ∈ B (83)

∑
j∈J

zijk + ∑
j∈J

zjrk ≤ 1, ∀i, r ∈ I, k ∈ K (84)

Tjw ≤ Tj(w+1), ∀w = 1, · · · ,
∣∣∣W∣∣∣−1, j ∈ J (85)

∑
j∈J

Tjw ≤ ∑
j∈J

Tj(w+1), ∀w = 1, · · · , |W| − 1, j ∈ J (86)

yijTjw ≤ TLjw, ∀i ∈ I, j ∈ J, w ∈W (87)

Tpw + zpqkTpq ≤ TLqw, ∀p, q ∈ J, w ∈W, zpqk = 1 (88)

yij ∈ {0, 1}, qk ∈ {0, 1}, zpqk ∈ {0, 1} (89)

Tqw = Tpw + zpqkTpq, ∀p, q ∈ J, w ∈W, zpqk = 1 (90)

Vpqk = VA
pqk + V1 + V2, ∀p, q ∈ B, p 6= q (91)
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∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

Djwujwyijzpqk + max ∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

bjwD̂jwujwyijzpqk ≤ G, ∀k ∈ K (92)

yijDj(w+1) + maxyij

(
bj(w+1)D̂j(w+1)

)
≤ ujw A, ∀i ∈ I, j ∈ J, w = 1, · · · ,

∣∣∣W∣∣∣−1 (93)

(2) Robust equivalent model

Upper and lower objective functions (66) and (76) of the DRBLM and constraints (92)
and (93) of the DRBLM are nonlinear expressions containing inner maximization subterms,
which are not convenient to solve directly. Using strong duality theory, it is possible to
transform the DRBLM into a more easily solvable robust equivalent model, denoted as
RBLM-RC.

The problem of maximizing the inner level of the objective function (66) is first decom-
posed to obtain Equation (94):

maxbjw∈U1∑
i∈I

∑
j∈J

∑
w∈W

(
Djw + bjwD̂jw

)
CLlij = ∑

i∈I
∑
j∈J

∑
w∈W

DjwCLlij + maxbjw∈U1∑
i∈I

∑
j∈J

∑
w∈W

bjwD̂jwCLlij (94)

The linear programming problem with inner-level maximization is shown in con-
straints (95)–(97):

maxbjw∈U1∑
i∈I

∑
j∈J

∑
w∈W

bjwD̂jwCLlij (95)

s.t. ∑
w

∑
j

bjw ≤ Γ1 (96)

0 ≤ bjw ≤ 1 (97)

Transformation according to the strong duality theory further yields duality problems
(98)–(100) for problems (95)–(97), where ρjw, θ is a duality variable.

minρjw + Γ1θ (98)

s.t. ρjw + θ ≥∑
i∈I

∑
j∈J

∑
w∈W

D̂jwCLlij, ∀j ∈ J, w ∈W (99)

ρjw, θ ≥ 0 (100)

Function (66) is then converted to function (101):

min f1 = ∑
i∈I

Fixi + ∑
i∈I

∑
j∈J

∑
w∈W

DjwCLlij + ∑
i∈I

∑
j∈J

∑
w∈W

ρjw + Γ1θ (101)

Similarly, objective function (41) is then transformed into function (102), which satisfies
constraints (103) and (104):

min f2 = ∑
p,q∈B

∑
k∈K

zpqkLpqSk + ∑
k∈K

C0qk + ∑
w∈W

∑
i∈I

∑
j∈J

yijPjw + ∑
i∈I

∑
j∈J

∑
w∈W

DjwujwCijwyij + ∑
i∈I

∑
j∈J

∑
w∈W

ρjw1 + Γ1θ1 (102)

s.t. ρjw1 + θ1 ≥∑
i∈I

∑
j∈J

∑
w∈W

D̂jwujwCijwyij, ∀i ∈ I, j ∈ J, w ∈W (103)

ρjw1, θ1 ≥ 0 (104)
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The treatment of constraint (66) according to the strong duality theory leads to con-
straints (103)–(106):

∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

Djwujwyijzpqk + maxbjw∈U1 ∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

bjwD̂jwujwyijzpqk ≤ G, ∀k ∈ K (105)

∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

Djwujwyijzpqk + minρjw2,θ2 ∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

ρjw2 + Γ1θ2 ≤ G, ∀k ∈ K (106)

s.t. D̂jwujwyijzpqk ≤ ρjw2 + θ2, ∀i ∈ I, j ∈ J, p, q ∈ B, w ∈W (107)

ρjw2, θ2 ≥ 0, ∀j ∈ J, w ∈W (108)

where ρjw2 and θ2 are duality variables, the “min” sign in constraint (106) can be ignored,
and constraint (106) is equivalent to (109).

∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

Djwujwyijzpqk + ∑
p,q∈B

∑
i∈I

∑
j∈J

∑
w∈W

ρjw2 + Γ1θ2 ≤ G, ∀k ∈ K (109)

Similarly, constraint (76) can be transformed into (108)–(110):

yijDj(w+1) + ρjw3 + Γ1θ3 ≤ ujw A, ∀i ∈ I, j ∈ J, w = 1, · · · ,
∣∣∣W∣∣∣−1 (110)

s.t. yijD̂j(w+1) ≤ ρjw3 + θ3, ∀i ∈ I, j ∈ J, w = 1, · · · ,
∣∣∣W∣∣∣−1 (111)

ρjw3, θ3 ≥ 0, ∀j ∈ J, w ∈W (112)

The robust equivalent model DRBLM-RC of the model DRBLM is obtained:
Upper objective function (101) with constraints (6)–(8), (27)–(32), (99), and (100), and

lower objective function (102) with constraints (10)–(14), (16)–(18), (20)–(26), (103), (104)
and (107)–(112).

When the demand uncertainty budget is Γ1 = 0, the demand for emergency materials
is equal to the corresponding value in the deterministic scenario, so the models DRBLM,
DRBLM-RC, and BLNM are equivalent.

3.3. Solution Method

The bi-level programming model is an NP-hard problem, and no exact solution
algorithm exists [43]. Whether it is the robust bi-level nominal model constructed in this
paper or the transformed robust equivalent model, due to the interaction between the upper
level decision and the lower level decision, and many variables and constraints, this makes
the solution more and more difficult. The following two algorithms should be combined;
the ant colony algorithm, which has a strong global optimization search capability, and the
tabu search algorithm, which has a strong local search capability, avoid falling into the local
optimum, and obtains the global optimal solution [44,45]. The ACO-TS algorithm designed
in this paper is the same as the one previously designed by the authors in the literature [9],
except the corresponding parameters are adjusted according to the model when solving,
which will not be repeated here. The specific solution flowchart is shown in Figure 3.
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4. Solution Analysis
4.1. Example Information

Six ports in the Bohai Sea area were selected as alternative shore-based emergency
material reserves, and 40 real historical cases in the Bohai Sea area were selected to design
the arithmetic examples of this study according to the accident level, adding the emergency
materials of different priority levels as well as the time window of the accident point and
other related information. The example information of this paper is the same as that in
study [9], which is shown in Appendix A.

The models and algorithms designed in this paper are solved using MATLAB R2017a
and run on a computer with Intel(R) Core (TM) i7-10510U CPU @ 1.80 GHz CPU and 16 GB
RAM. The key algorithmic parameters include the number of iterations N, number of ants
m, ant crawling speed speed, the pheromone evaporation coefficient ρ, pheromone increase
intensity Q, length of the taboo table L, and so on.

4.2. Analysis of the Algorithm and Solution Results
4.2.1. Algorithm Analysis

To verify the effectiveness of the algorithm in this paper, we compared the results of
the ACO algorithm with the TS algorithm and the ACO algorithm without the TS algorithm
in solving the BLNM model. During the experiment, we found that when the parameter
is set to N = 150, m = 150, speed = 0.05, Q = 1, the ACO algorithm cannot obtain the
feasible solution, while the ACO-TS algorithm can obtain the feasible solution. When the
parameter is set to N = 1000, m = 200, speed = 0.05, Q = 1, ACO can obtain the feasible
solution when the number of emergency material reserves is six. We set the parameter to
N = 150, m = 150, speed = 0.05, Q = 1, L= 20, and use the ACO-TS algorithm to obtain
the optimal solution under different emergency material reserve quantities, as shown in
Table 3.
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Table 3. The optimal solution of the BLNM model obtained by the ACO-TS algorithm.

Reserves Upper Total
Cost (CNY)

Time
Satisfaction

Loss Cost
(CNY)

Lower Total
Cost (CNY)

Emergency
Materials

Distribution
Cost (CNY)

Ship
Dispatch

Cost (CNY)

Shipping
Cost (CNY)

Time
Penalty Cost

(CNY)

(2,3,5) 560,621 621 90,486.35 2494 66,600 14,175.79 7216.56
(2,4,5,6) 760,621 621 90,479.06 2494 67,500 13,200.90 7284.16

(1,2,3,4,5) 96,0621 621 88,139.80 2494 63,000 15,402.78 7243.02
(1,2,3,4,5,6) 1,160,621 621 88,654.75 2494 64,800 14,397.99 6962.76

The decision-making process of the bi-level programming model is that the upper level
gives priority to the decision-making, and the lower level makes independent decisions
based on the upper level’s decision-making, which is fed back to the upper level. Therefore,
the solution when the number of emergency material reserves is three is the overall optimal
solution of BLNM; that is, to establish emergency materials reserves in Yingkou Port,
Tianjin Port, and Weifang Port. The service of all accident points can be satisfied when
the total cost of the upper lever is 560,621. Ransikarbum and Mason [46] point out that
geographic information system or maps are needed for emergency material distribution
location-routing decision aiding; therefore, we used the software to convert the actual
geographical coordinates of the emergency materials reserves and the accident points into
Cartesian coordinates, and drew the location-routing map in Figure 4, which represents the
actual geographical location. The part routes of emergency materials distribution are also
shown in Table 4.
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Figure 4. Location-routing map. The red dots represent the selected emergency materials reserves.
The blue dots represent the potential accident points. The lines represent the route of the ship.

It can be seen that the emergency materials reserves have the situation of cross-regional
distribution when serving the accident points, and it is not always based on the principle
of giving priority to the nearest accident points. This is due to the higher priority and time
satisfaction requirements of emergency materials distribution, such as reserve 2 in Figure 4.
Table 4 is responsible for the distribution of emergency materials at accident points 22
and 25.
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Table 4. Emergency materials distribution route (part).

Reserves Accident Points of
Reserves Service Ship

Distribution Routes
(Emergency Materials Level in

Parentheses)

2
1, 9, 10, 11, 12, 13, 17, 22,

25, 29, 37, 40

1 0-37(1)-0
2 0-11(1)-0
3 0-1(1)-25(1)-0
4 0-9(1)-12(1)-0
5 0-22 (1)-0
6 0-13(1)-37(2)-0

3
4, 7, 8, 14, 15, 16, 17, 18,
19, 21, 26, 27, 28, 30, 32,

34, 35, 36, 38

1 0-36(1)-17(2)-15(2)-21(3)-0
2 0-18(1)-19(2)-4(2) -0
3 0-17(1)-8(1)- 0
4 0-21(1)-26(1)-0
5 0-35(1)-19(1)-0
6 0-27(1)-14(2)-7(3)-0

5 2, 3, 5, 6, 20, 23, 24, 31, 33,
39

1 0-23(1)-0
2 0-20(1)-2(1)-0
3 0-39(1)-0
4 0-3(1)-0
5 0-24(1)-0
6 0-33(1)-0

Because our penalty cost function has high requirements for the timely arrival of
emergency materials, to further analyze the ACO-TS and ACO algorithms, we increased
the parameter of loading and unloading time of emergency materials to Tk = 0.05 h/unit,
and set the algorithm parameter as N = 200, m = 200, speed = 0.05, Q = 1 to solve the
problem. Equations (23) and (25) are transformed into:

Tpw + TkDpwzpqk + Tpq ≤ TLqw, ∀p, q ∈ J, w ∈W, zpqk = 1 (113)

Tqw = Tpw + TkDpwzpqk + zpqkTpq, ∀p, q ∈ J, w ∈W, zpqk = 1 (114)

We have obtained the optimal solution of the two algorithms under different emer-
gency material reserve construction numbers, as shown in Tables 5 and 6. When the
number of emergency materials reserves constructed is one, neither of the two algorithms
has an optimal solution. However, ACO-TS provides optimal solutions as the number of
emergency supply depots increases from two to six, while the ACO algorithm only achieves
optimal solutions when the number of reserves is three, five, and six. Furthermore, for
the same number of emergency materials reserves constructions, ACO-TS yields a smaller
optimal solution than ACO.

Table 5. The optimal solution of the BLNM model obtained by the ACO-TS algorithm.

Reserves Upper Total
Cost (CNY)

Time
Satisfaction

Loss Cost
(CNY)

Lower Total
Cost (CNY)

Emergency
Materials

Distribution
Cost (CNY)

Ship
Dispatch

Cost (CNY)

Shipping
Cost (CNY)

Time
Penalty Cost

(CNY)

(2,5) 360,621 621 89,078.47 2494 64,800 14,454.11 7330.37
(2,5,6) 560,621 621 91,609.56 2494 66,600 15,306.08 7209.48

(1,2,4,5) 760,621 621 86,400.66 2494 65,700 11,334.81 6871.74
(1,2,3,4,5) 960,621 621 85,884.94 2494 64,800 11,531.14 7059.79

(1,2,3,4,5,6) 1,160,621 621 84,288.8 2494 62,100 12,569.88 7124.91
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Table 6. The optimal solution of BLNM model obtained by ACO algorithm.

Reserves Upper Total
Cost (CNY)

Time
Satisfaction

Loss Cost
(CNY)

Lower Total
Cost (CNY)

Emergency
Materials

Distribution
Cost (CNY)

Ship
Dispatch

Cost (CNY)

Shipping
Cost (CNY)

Time
Penalty Cost

(CNY)

(1,2,4) 580,621 621 99,227.50 2494 75,600 13,256.34 7877.16
(1,2,3,5,6) 960,621 621 103,418.47 2494 80,100 12,910.56 7913.90

(1,2,3,4,5,6) 1,160,621 621 87,991.54 2494 63,900 14,046.92 7550.63

It takes 64 times to run the algorithm through all emergency materials reserves, but
there is no obvious rule in the number of iterations of the algorithm in each operation.
To sum up, ACO-TS performs well in solving the problem, and can obtain more feasible
solutions and optimal solutions, and the optimal solution is smaller than the corresponding
optimal solution of the ACO algorithm.

4.2.2. Solution Results Analysis

To explore the impact of the uncertainty of ship sailing time on MEMD-LRP decision
making in the planning period, examples with different values of the time disturbance ratio
are set up. To explore the impact of the uncertainty of the demand for emergency materials
at the accident point on the MEMD-LRP decision in the planning period, several sets of
examples are set up, with different values for the demand uncertainty budget parameter Γ1
and demand disturbance ratio. To verify the validity of the model constructed in this paper,
the above arithmetic example is solved based on the ACO-TS algorithm described in detail
in the literature [9], in which the number of algorithmic iterations N and number of ants m
are set to 150, aiming at giving the optimal decision in different cases while exploring the
influence of uncertain ship sailing times and uncertain emergency material demand at the
accident point on the decision of MEMD-LRP.

1. The impact of ship sailing time uncertainty on MEMD-LRP decision making

To analyze the effect of uncertain ship sailing time on the MEMD-LRP decisions
during the planning period, the model TRBLM-RC is solved using the ACO-TS algorithm,
with the time disturbance ratios set to 0, 10%, 20%, 30%, 40%, and 50%. The optimal
decision when the time disturbance ratio is equal to 0 is also equivalent to the optimal
decision of the nominal model. Based on the decision-making principle that the upper
level of bi-level programming prioritizes decision-making, and the lower level makes
autonomous decisions on this basis, the optimal location-routing decisions under different
time disturbance ratios are obtained. The results are shown in Table 3, and the cost curves
under different time disturbance ratios are shown in Figure 4.

From the calculation results presented in Table 7 and illustrated in Figure 5, the
following conclusions can be drawn:

(a) The optimal number of locations under different time perturbation ratios is the
same—both are three—and the total cost of the upper level is the same, but the
location results are different. It shows that different time disturbance ratios have a
certain influence on the location scheme. The reason why the location results are
different, but the total cost of the upper level is the same, is that the decision-maker
of the upper level has the right to prioritize decision making and usually chooses
the decision that maximizes its interests, so the location decision of the upper level
always chooses the case where the total cost of the upper level is the smallest.

(b) With the upper level total cost remaining the same, the general trend in the lower-level
total cost is to increase as the time disruption ratio increases. As the time disturbance
ratio increases, the change in ship sailing time gradually increases, and the lower-level
decision maker is affected in planning the route. When the disturbance ratio is 0
and 50%, the total cost of the lower-level increases by 4%, although the upper-level
location decision is the same. When the disturbance ratios are 10%, 30%, and 40%,
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the upper-level decisions remain the same, but the total lower-level cost increases
by about 2% for the latter two, indicating that the disturbance ratios do have an
impact on route planning. When the disturbance ratio is 20%, the lower-level total
cost exceeds the lower-level total cost under other disturbance ratios. This is because
the lower decision maker is making decisions within the allowable range of the upper
decision-maker; the upper decision maker prioritized to make the decision that is
most beneficial to him/herself; and the impact of the lower decision-maker for the
total cost of the system is less than the upper decision-maker. This kind of decision
maker for the lower decision maker may not be the optimal decision, and at this time,
the upper decision maker of the location scheme is different from the location scheme
under all other perturbation ratios.

(c) Among the optimal solutions under different time disruption ratios, the choice of
location (2,5,6) is the preferred selection. This suggests that establishing emergency
materials reserves in Yingkou Port, Weifang Port, and Yantai Port is a more cost-
effective option while ensuring the rescue of all accident points.

Table 7. The optimal location-routing decision under different time disturbance ratios.

Disturbance
Ratio (%)

Location
Decisions

Upper Total
Cost/CNY

Lower Total
Cost/CNY Total Cost/CNY

0 (2,3,5) 560,621 90,486.35 651,107.35
10 (2,5,6) 560,621 91,645.96 652,266.96
20 (1,2,5) 560,621 96,984.13 657,605.13
30 (2,5,6) 560,621 93,874.88 654,495.88
40 (2,5,6) 560,621 93,984.37 654,605.37
50 (2,3,5) 560,621 94,678.47 655,297.47
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Through the above analysis, it can be found that the greater the uncertainty of ship
sailing time—in most cases to distribute the emergency materials to the accident point in
time under constraints such as meeting the time—the greater the total cost of the system,
and the greater the cost of emergency rescue. By setting different time perturbation ratios,
the upper- and lower-level decision makers can obtain the optimal decision that meets the
interests under different sailing time conditions.
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2. The impact of uncertain emergency material demands at accident points on MEMD-
LRP decision making

To analyze the impact of the emergency material demands of the uncertain accident
points on MEMD-LRP decision making in the planning period, the ACO-TS algorithm is
used to solve the DRBLM-RC model. The uncertain budget parameters Γ1 are 10, 20, 30, 30,
50, 60, 70, 80, and 90, and the ratio of demand disturbance is 10, 20, and 30. Based on the
upper-level priority decision making of bi-level programming and the decision-making
principle of lower-level independent decision making, the optimal location-routing decision
under different uncertain budgets and different demand disturbance ratios is obtained.
The results are shown in Table 8, and the results under different demand disturbance ratios
are shown in Figure 6.

Table 8. The optimal location-routing decision under an uncertain budget and demand disturbance ra-
tios.

Uncertain
Budget

Demand
Disturbance

Ratio (%)

Location
Decision

Upper Total
Cost/CNY

Lower Total
Cost/CNY

Total
Cost/CNY

0 — (2,3,5) 560,621 90,486.35 651,107.35

10
10 (1,2,5) 560,731 93,824.81 654,555.81
20 (2,5,6) 560,791 93,759.10 654,550.10
30 (1,2,5) 560,862 93,825.91 654,687.91

20
10 (2,5,6) 560,731 92,874.87 653,605.87
20 (2,3,5) 560,791 92,301.58 653,092.58
30 (2,4,5) 560,862 93,864.90 654,726.90

30
10 (2,5,6) 560,731 92,207.50 652,938.50
20 (2,3,5) 560,791 96,484.78 657,275.78
30 (1,2,5) 560,862 91,934.91 652,796.91

40
10 (2,5,6) 560,731 95,037.06 655,768.06
20 (2,3,5) 560,791 91,663.90 652,454.90
30 (1,2,5) 560,862 90,440.81 651,302.81

50
10 (2,5,6) 560,731 92,591.82 653,322.82
20 (2,3,5) 560,791 91,275.81 652,066.81
30 (1,2,5) 560,862 93,825.91 654,687.91

60
10 (1,2,5) 560,731 96,893.24 657,624.24
20 (2,3,5) 560,791 97,588.78 658,379.78
30 (2,4,5) 560,862 94,175.60 655,037.60

70
10 (1,2,5) 560,731 93,165.67 653,896.67
20 (2,5,6) 560,791 94,173.81 654,964.81
30 (2,4,5) 560,862 93,675.75 654,537.76

80
10 (1,2,5) 560,731 92,870.09 653,601.07
20 (1,2,5) 560,791 96,044.88 656,835.88
30 (1,2,5) 560,862 94,448.07 655,310.07

90
10 (2,5,6) 560,731 94,072.70 654,803.70
20 (2,5,6) 560,791 99,535.75 660,326.75
30 (2,5,6) 560,862 95,048.72 655,910.72



Mathematics 2023, 11, 4140 24 of 30Mathematics 2023, 11, x FOR PEER REVIEW 25 of 31 
 

 

  
(a) (b) (c) 

Figure 6. Cost curves for different demand-disruption ratios. (a) The demand disturbance ratio is 

10%. (b) Demand disturbance ratio is 20%. (c) Demand disturbance ratio is 30%. 

The following conclusions can be drawn from the computational results in Table 8 

and Figure 6: (a)When uncertain budget and demand-disruption ratios vary, the upper-

level reserve locations remain constant at three, but the chosen location schemes differ, 

indicating a certain influence of uncertain budget and demand-disruption ratios on loca-

tion selection. When the uncertain budget remains constant, the total upper-level cost ex-

hibits a systematic increase with varying demand-disruption ratios. The reason for the 

increase in upper-level cost with increasing demand-disruption ratios lies in the fact that 

the cost of accident point time satisfaction loss in the upper-level objective function is de-

mand-related. Whether in the DRBLM model or the DRBLM-RC model, the values of dual 

variables depend on the magnitude of demand-disruption. At this time, the impact of un-

certain budget values on the upper-level objective function is relatively minimal. 

(b) Once upper-level location decisions are determined, lower-level decision makers 

make decisions to maximize their interests based on these upper-level decisions. At this 

stage, the total lower-level cost is influenced by variations in uncertain budget and de-

mand-disruption ratios. In cases where the uncertain budget equals 10, 20, 50, 70, 80, and 

90, the overall trend of the total lower-level cost follows an increasing pattern with in-

creasing demand-disruption ratios, but fluctuations occur in these scenarios. However, in 

cases where the uncertain budget equals 30, 40, and 60, this trend does not hold. In these 

instances, lower-level decision makers are constrained by the upper-level decisions, 

where the upper level prioritizes its maximization of interests. As a result, the total lower-

level cost for scenarios with lower demand-disruption ratios can exceed that of scenarios 

with higher demand-disruption ratios. This phenomenon also explains the presence of 

fluctuations in cases with uncertain budgets of 10, 20, 50, and 90. When demand-disrup-

tion ratios are equal, the overall trend of the lower-level total cost generally increases with 

the increase of an uncertain budget. 

(c). When the demand disturbance ratio is 10% and 20%, this change is not obvious 

when the demand ratio is 30%, and there are more volatility points. When uncertain budg-

ets are smaller, the changing pattern is less distinct than when uncertain budgets are 

larger. This illustrates that greater demand uncertainty has a more substantial impact on 

location-routing decisions. The less distinct or irregular changing patterns can be at-

tributed, on the one hand, to the upper-level’s prioritization of minimizing the overall 

system cost at the expense of the lower-level’s interests. On the other hand, it could also 

result from excessively small demand-disruption ratios, causing the influence of uncertain 

budget on location-routing decisions to be less pronounced. 

(d) Among all the optimal decisions mentioned above, location decisions (1,2,5) and 

(2,5,6) perform well, and are the preferred choices among numerous decisions; namely, 

establishing emergency material depots in Dalian Port, Yingkou Port, and Weifang Port, 

or Yingkou Port, Weifang Port, and Yantai Port. They exhibit resilience against uncertain 

factors. 

Figure 6. Cost curves for different demand-disruption ratios. (a) The demand disturbance ratio is
10%. (b) Demand disturbance ratio is 20%. (c) Demand disturbance ratio is 30%.

The following conclusions can be drawn from the computational results in Table 8 and
Figure 6:

(a) When uncertain budget and demand-disruption ratios vary, the upper-level reserve
locations remain constant at three, but the chosen location schemes differ, indicating
a certain influence of uncertain budget and demand-disruption ratios on location
selection. When the uncertain budget remains constant, the total upper-level cost
exhibits a systematic increase with varying demand-disruption ratios. The reason for
the increase in upper-level cost with increasing demand-disruption ratios lies in the
fact that the cost of accident point time satisfaction loss in the upper-level objective
function is demand-related. Whether in the DRBLM model or the DRBLM-RC model,
the values of dual variables depend on the magnitude of demand-disruption. At this
time, the impact of uncertain budget values on the upper-level objective function is
relatively minimal.

(b) Once upper-level location decisions are determined, lower-level decision makers
make decisions to maximize their interests based on these upper-level decisions. At
this stage, the total lower-level cost is influenced by variations in uncertain budget and
demand-disruption ratios. In cases where the uncertain budget equals 10, 20, 50, 70,
80, and 90, the overall trend of the total lower-level cost follows an increasing pattern
with increasing demand-disruption ratios, but fluctuations occur in these scenarios.
However, in cases where the uncertain budget equals 30, 40, and 60, this trend does
not hold. In these instances, lower-level decision makers are constrained by the upper-
level decisions, where the upper level prioritizes its maximization of interests. As a
result, the total lower-level cost for scenarios with lower demand-disruption ratios
can exceed that of scenarios with higher demand-disruption ratios. This phenomenon
also explains the presence of fluctuations in cases with uncertain budgets of 10, 20, 50,
and 90. When demand-disruption ratios are equal, the overall trend of the lower-level
total cost generally increases with the increase of an uncertain budget.

(c) When the demand disturbance ratio is 10% and 20%, this change is not obvious when
the demand ratio is 30%, and there are more volatility points. When uncertain budgets
are smaller, the changing pattern is less distinct than when uncertain budgets are
larger. This illustrates that greater demand uncertainty has a more substantial impact
on location-routing decisions. The less distinct or irregular changing patterns can
be attributed, on the one hand, to the upper-level’s prioritization of minimizing the
overall system cost at the expense of the lower-level’s interests. On the other hand,
it could also result from excessively small demand-disruption ratios, causing the
influence of uncertain budget on location-routing decisions to be less pronounced.

(d) Among all the optimal decisions mentioned above, location decisions (1,2,5) and
(2,5,6) perform well, and are the preferred choices among numerous decisions; namely,
establishing emergency material depots in Dalian Port, Yingkou Port, and Weifang
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Port, or Yingkou Port, Weifang Port, and Yantai Port. They exhibit resilience against
uncertain factors.

Through the analysis presented above, it is evident that both the uncertain demand
budget and demand disruption ratio impact the decisions of MEMD-LRP, but this impact
heavily relies on their respective values. Decision makers can integrate the circumstances of
maritime emergencies, adjusting the values of the uncertain demand budget parameter to
subsequently fine-tune the model’s robustness level. With consideration of their preferences,
decision makers can flexibly make choices and devise emergency material reserve location
and distribution plans, which can effectively address uncertainties in maritime emergencies
and enable rapid responses.

5. Conclusions

Taking maritime emergency material distribution as the background, this paper ex-
plores the robust bi-level models of MEMD-LRP in uncertain decision-making environ-
ments from the perspective of joint decision making among multiple decision makers.
Using a case study based on the Bohai Sea area, the research analyzes the optimal decision
making of MEMD-LRP under conditions of uncertain sailing time and uncertain emer-
gency material demand at accident points during the planning period. We have solved
the problems raised in the introduction; under the constraints of the rescue time window
and the priority of emergency materials allocation, a series of emergency material reserve
locations and emergency material distribution schemes which can effectively deal with
the uncertainty in maritime emergencies are developed for the upper and lower levels of
decision makers. The optimal decision under different conditions can not only meet the
needs of the accident point, but also reduce the total cost of the emergency logistics system
within the prescribed rescue time window, thus realizing the overall optimization of the
maritime emergency logistics system. The study yields the following managerial insights:

(a) Upper-level decision makers such as emergency management departments must
possess prioritized decision-making authority. Their goal should be to maximize their
own interests while considering the interests of lower-level decision-makers, such as
commercial rescue units. When making decisions regarding the selection of emergency
material reserve locations, it is necessary not only to evaluate the suitability of the
number of reserve constructions but also to consider the feedback from commercial
rescue units regarding the location decisions. For lower-level decision makers like
commercial rescue units operating within the framework permitted by the emergency
management department, these units should make decisions while fully considering
their interests. Additionally, they should provide timely feedback on shipping route
decisions to the emergency management department.

(b) Both uncertain ship sailing times and uncertain emergency material demands will
influence the decisions of MEMD-LRP, and these decisions will be constrained by the
managerial insights mentioned in (a). Upper- and lower-level decision makers can
adjust the ratios of ship sailing time disruption and demand disruption, modify the
values of the demand uncertainty budget parameter based on maritime emergencies,
and make flexible decisions according to their preferences. By doing so, they can
formulate emergency material reserve location and emergency material distribution
decisions that not only address the uncertainties in maritime emergencies, but also
respond rapidly.

(c) From the perspective of joint decision making among multiple decision makers, this
study focuses on two crucial aspects of the maritime emergency logistics system under
uncertain conditions: the selection of emergency material reserve locations and the
planning of emergency material distribution routes. The aim is to ensure their mutual
coordination, which can yield significant benefits in terms of achieving comprehensive
decision making and enhancing decision adaptability. This study contributes to a
more optimized and flexible emergency logistics system, ultimately improving the
capability to respond to maritime emergencies.
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This study discusses the impact of uncertain sailing times and uncertain emergency
material demand at the accident point on decision maker choices. In the future, we
can explore the impact of both on decision-makers simultaneously. In this study, the
limited reserve capacity of emergency materials is not considered. In fact, the capacity of
different emergency materials in different emergency material reserves may be limited,
and the decision making in the case of limited capacity can be discussed in the future.
Furthermore, this study did not account for the potential drift of accident points. In reality,
maritime emergencies can lead to the drift of accident points due to the intricate marine
environment, resulting in shifts in their geographical coordinates. Subsequent research
could be undertaken to address the possibility of such accident point drift scenarios.
The impact of uncertain delivery times, transportation costs, feasibility probability of
transportation routes, and a combination of these factors on MEMD-LRP decision making
can also be considered. More importantly, subsequent research will place a stronger
emphasis on presenting practical viewpoints and exploring relevant issues in emergency
rescue operations under an egalitarian policy framework.
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Appendix A

Table A1. Information regarding candidate shore-based emergency materials reserves.

Reserve ID Port Longitude Latitude Construction
Cost (CNY)

1 Dalian 121◦39′17′′ 38◦55′44′′ 200,000
2 Yingkou 122◦06′00′′ 40◦17′42′′ 180,000
3 Tianjin 117◦42′05′′ 38◦59′08′′ 200,000
4 Qinhuangdao 119◦36′26′′ 39◦54′24′′ 200,000
5 Weifang 120◦19′05′′ 36◦04′ 180,000
6 Yantai 121◦23′46.9′′ 37◦32′51.8′′ 200,000

Table A2. Data of accident points.

Point ID Longitude Latitude Accident
Level dj1/Unit TEj1/h TLj1/h

1 118◦06′1′′ 38◦52′2′′ Larger 8 1 7
2 119◦13′.7 38◦52′.3 General 6 2 8
3 119◦29.6′ 38◦43.3′ General 6 2 8
4 117◦51′.6 38◦55′.5 General 5 2 8
5 119◦08′.1 38◦47′.3 Small 0 0 0
6 118◦31′.9 38◦42′.3 Small 0 0 0
7 120◦25′.78 40◦02′.95 Larger 7 1 7
8 120◦50′.23 38◦37′.44 Larger 8 1 7
9 121◦33′15.54′′ 40◦05′13.86′′ Larger 7 1 7
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Table A2. Cont.

Point ID Longitude Latitude Accident
Level dj1/Unit TEj1/h TLj1/h

10 121◦48.80′ 40◦12.24′ Larger 6 1 7
11 120◦10′.98 39◦13′.0 Larger 8 1 7
12 120◦07′.211 40◦01′.560 Larger 7 1 7
13 121◦12′.88 40◦08′.59 General 5 2 8
14 120◦48′00.96′′ 39◦02′46.56′′ General 6 2 8
15 121◦08′49”.17 39◦35′49”.18 General 5 2 8
16 120◦35′48.42′′ 38◦35′34.92′′ General 4 2 8
17 121◦09′ 39◦27′ General 5 2 8
18 121◦01.08′ 40◦42.31′ General 5 2 8
19 122◦01′.3 38◦46′.2 General 6 2 8
20 118◦11.39′ 38◦26.19′ Larger 8 1 7
21 119◦36′.83 38◦58′.26 Larger 7 1 7
22 119◦23′.00 39◦23′.00 General 7 1 7
23 119◦42.84′ 39◦56.19′ General 5 2 8
24 119◦15′.13 39◦00′.14 General 5 2 8
25 119◦07′.00 39◦08′.60 Small 5 2 8
26 119◦41′.83 39◦47′.32 Small 6 2 8
27 117◦59′.24 38◦24′.81 Larger 5 2 8
28 119◦50′31.95′′ 39◦23′11.40′′ Larger 5 2 8
29 120◦05′.504 39◦13′.716 Larger 0 0 0
30 118◦16′.743 38◦50′.206 Larger 3 3 8
31 118◦31′860′′ 38◦48′628′′ Larger 0 0 0
32 118◦22′.48 38◦49′.71 Larger 0 0 0
33 118◦09′217 38◦15′177 General 8 1 7
34 121◦08′.1 37◦56′.3 General 6 1 7
35 118◦03.103′ 38◦08.700′ General 6 1 7
36 118◦55′.0 38◦13′.3 General 7 2 8
37 120◦02.204′ 38◦23.175′ General 6 2 8
38 121◦56′ 37◦42′ General 6 2 8
39 119◦22′ 37◦22′ General 2 3 8
40 121◦27.1′ 38◦22.7′ Larger 0 0 0

Table A3. Specific parameters of the model.

Symbol Value

G 30 unit/ship
Vpqk 25 kn
Sk CNY/nm
c0 900 CNY/ship
c1 10 CNY/h
c2 20 CNY/h

Cij1 5 CNY/unit
Cij2 4 CNY/unit
Cij3 3 CNY/unit



Mathematics 2023, 11, 4140 28 of 30
Mathematics 2023, 11, x FOR PEER REVIEW 29 of 31 
 

 

 

Figure A1. Distribution map of candidate emergency materials reserves and potential accident 

points. 

References 

1. Review of Maritime Transport 2022. Available online: https://unctad.org/rmt2022 (accessed on 22 August 2023). 

2. Annual Overview of Marine Casualties and Incidents. 2022. Available online: https://safety4sea.com/emsa-annual-overview-of-

marine-casualties-and-incidents-2022/ (accessed on 22 August 2023). 

3. Annual Report. 2022. Available online: https://www.bsu-bund.de/SharedDocs/pdf/EN/Annual_Statistics/Annual_Re-

port_2022.pdf?__blob=publicationFile&v=1 (accessed on 22 August 2023). 

4. Statistical Bulletin on the Development of Transportation Industry in 2022. Available online: 

https://xxgk.mot.gov.cn/2020/jigou/zhghs/202306/t20230615_3847023.html (accessed on 22 August 2023). 

5. Ransikarbum, K.; Mason, S.J. A bi-objective optimisation of post-disaster relief distribution and short-term network restoration 

using hybrid NSGA-II algorithm. Int. J. Prod. Econ. 2022, 60, 5769–5793. 

6. Yan, T.; Lu, F.; Wang, S.; Wang, L.; Bi, H. A hybrid metaheuristic algorithm for the multi-objective location-routing problem in 

the early post-disaster stage. J. Ind. Manag. Optim. 2023, 19, 4663–4691. 

7. Qin, J.; Ye, Y.; Cheng, B.-R.; Zhao, X.; Ni, L. The Emergency Vehicle Routing Problem with Uncertain Demand under Sustaina-

bility Environments. Sustainability 2017, 9, 288. 

8. Tan, K.; Liu, W.; Xu, F.; Li, C. Optimization Model and Algorithm of Logistics Vehicle Routing Problem under Major Emergency. 

Mathematics 2023, 11, 1274. 

9. Peng, Z.; Wang, C.; Xu, W.; Zhang, J. Research on Location-Routing Problem of Maritime Emergency Materials Distribution 

Based on Bi-Level Programming. Mathematics 2022, 10, 1243. 

10. Laporte, G.; Nobert, Y. An exact algorithm for minimizing routing and operating costs in depot location. Eur. J. Oper. Res. 1981, 

6, 224–226. 

11. Yang, J.; Sun, H. Battery swap station location-routing problem with capacitated electric vehicles. Comput. Oper. Res. 2015, 55, 

217–232. 

12. Boccia, M.; Crainic, T.G.; Sforza, A.; Sterle, C. Multi-commodity location-routing: Flow intercepting formulation and branch-

and-cut algorithm. Comput. Oper. Res. 2018, 89, 94–112. 

13. Yu, X.; Zhou, Y.; Liu, X.-F. A novel hybrid genetic algorithm for the location routing problem with tight capacity constraints. 

Appl. Soft. Comput. 2019, 85, 105760. 

Figure A1. Distribution map of candidate emergency materials reserves and potential accident points.

References
1. Review of Maritime Transport 2022. Available online: https://unctad.org/rmt2022 (accessed on 22 August 2023).
2. Annual Overview of Marine Casualties and Incidents. 2022. Available online: https://safety4sea.com/emsa-annual-overview-

of-marine-casualties-and-incidents-2022/ (accessed on 22 August 2023).
3. Annual Report. 2022. Available online: https://www.bsu-bund.de/SharedDocs/pdf/EN/Annual_Statistics/Annual_Report_20

22.pdf?__blob=publicationFile&v=1 (accessed on 22 August 2023).
4. Statistical Bulletin on the Development of Transportation Industry in 2022. Available online: https://xxgk.mot.gov.cn/2020

/jigou/zhghs/202306/t20230615_3847023.html (accessed on 22 August 2023).
5. Ransikarbum, K.; Mason, S.J. A bi-objective optimisation of post-disaster relief distribution and short-term network restoration

using hybrid NSGA-II algorithm. Int. J. Prod. Econ. 2022, 60, 5769–5793. [CrossRef]
6. Yan, T.; Lu, F.; Wang, S.; Wang, L.; Bi, H. A hybrid metaheuristic algorithm for the multi-objective location-routing problem in the

early post-disaster stage. J. Ind. Manag. Optim. 2023, 19, 4663–4691. [CrossRef]
7. Qin, J.; Ye, Y.; Cheng, B.-R.; Zhao, X.; Ni, L. The Emergency Vehicle Routing Problem with Uncertain Demand under Sustainability

Environments. Sustainability 2017, 9, 288. [CrossRef]
8. Tan, K.; Liu, W.; Xu, F.; Li, C. Optimization Model and Algorithm of Logistics Vehicle Routing Problem under Major Emergency.

Mathematics 2023, 11, 1274. [CrossRef]
9. Peng, Z.; Wang, C.; Xu, W.; Zhang, J. Research on Location-Routing Problem of Maritime Emergency Materials Distribution Based

on Bi-Level Programming. Mathematics 2022, 10, 1243. [CrossRef]
10. Laporte, G.; Nobert, Y. An exact algorithm for minimizing routing and operating costs in depot location. Eur. J. Oper. Res. 1981, 6,

224–226. [CrossRef]
11. Yang, J.; Sun, H. Battery swap station location-routing problem with capacitated electric vehicles. Comput. Oper. Res. 2015, 55,

217–232. [CrossRef]
12. Boccia, M.; Crainic, T.G.; Sforza, A.; Sterle, C. Multi-commodity location-routing: Flow intercepting formulation and branch-and-

cut algorithm. Comput. Oper. Res. 2018, 89, 94–112. [CrossRef]
13. Yu, X.; Zhou, Y.; Liu, X.-F. A novel hybrid genetic algorithm for the location routing problem with tight capacity constraints. Appl.

Soft. Comput. 2019, 85, 105760. [CrossRef]

https://unctad.org/rmt2022
https://safety4sea.com/emsa-annual-overview-of-marine-casualties-and-incidents-2022/
https://safety4sea.com/emsa-annual-overview-of-marine-casualties-and-incidents-2022/
https://www.bsu-bund.de/SharedDocs/pdf/EN/Annual_Statistics/Annual_Report_2022.pdf?__blob=publicationFile&v=1
https://www.bsu-bund.de/SharedDocs/pdf/EN/Annual_Statistics/Annual_Report_2022.pdf?__blob=publicationFile&v=1
https://xxgk.mot.gov.cn/2020/jigou/zhghs/202306/t20230615_3847023.html
https://xxgk.mot.gov.cn/2020/jigou/zhghs/202306/t20230615_3847023.html
https://doi.org/10.1080/00207543.2021.1970846
https://doi.org/10.3934/jimo.2022145
https://doi.org/10.3390/su9020288
https://doi.org/10.3390/math11051274
https://doi.org/10.3390/math10081243
https://doi.org/10.1016/0377-2217(81)90212-5
https://doi.org/10.1016/j.cor.2014.07.003
https://doi.org/10.1016/j.cor.2017.08.013
https://doi.org/10.1016/j.asoc.2019.105760


Mathematics 2023, 11, 4140 29 of 30

14. Lu, F.; Chen, W.; Feng, W.; Bi, H. 4PL routing problem using hybrid beetle swarm optimization. Soft Comput. 2023, 27, 17011–17024.
[CrossRef]

15. Lu, F.; Feng, W.; Gao, M.; Bi, H.; Wang, S. Corrigendum to “The Fourth-Party Logistics Routing Problem Using Ant Colony
System-Improved Grey Wolf Optimization”. J. Adv. Transp. 2022, 2022, 9864064. [CrossRef]

16. Şatir Akpunar, Ö.; Akpinar, Ş. A hybrid adaptive large neighbourhood search algorithm for the capacitated location routing
problem. Expert Syst. Appl. 2021, 168, 114304.

17. Alamatsaz, K.; Ahmadi, A.; Mirzapour Al-e-hashem, S.M.J. A multiobjective model for the green capacitated location-routing
problem considering drivers’ satisfaction and time window with uncertain demand. Environ. Sci. Pollut. Res. 2022, 29, 5052–5071.
[CrossRef]

18. Gan, X.; Liu, J. A multi-objective evolutionary algorithm for emergency logistics scheduling in large-scale disaster relief. In
Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 51–58.

19. Liu, C.; Kou, G.; Peng, Y.; Alsaadi, F.E. Location-Routing Problem for Relief Distribution in the Early Post-Earthquake Stage from
the Perspective of Fairness. Sustainability 2019, 11, 3420. [CrossRef]

20. Ai, Y.-f.; Lu, J.; Zhang, L.-L. The optimization model for the location of maritime emergency supplies reserve bases and the
configuration of salvage vessels. Transp. Res. E-Log. 2015, 83, 170–188. [CrossRef]

21. Zhang, B.; Li, H.; Li, S.; Peng, J. Sustainable multi-depot emergency facilities location-routing problem with uncertain information.
Appl. Math. Comput. 2018, 333, 506–520.

22. Afshar, A.; Haghani, A. Modeling integrated supply chain logistics in real-time large-scale disaster relief operations. Socio-Econ.
Plan. Sci. 2012, 46, 327–338. [CrossRef]

23. Zhang, Y.; Qi, M.; Lin, W.-H.; Miao, L. A metaheuristic approach to the reliable location routing problem under disruptions.
Transp. Res. E-Log. 2015, 83, 90–110. [CrossRef]

24. Ghasemi, P.; Khalili-Damghani, K.; Hafezalkotob, A.; Raissi, S. Uncertain multi-objective multi-commodity multi-period multi-
vehicle location-allocation model for earthquake evacuation planning. Appl. Math. Comput. 2019, 350, 105–132.

25. Long, S.; Zhang, D.; Liang, Y.; Li, S.; Chen, W. Robust Optimization of the Multi-Objective Multi-Period Location-Routing Problem
for Epidemic Logistics System With Uncertain Demand. IEEE Access 2021, 9, 151912–151930. [CrossRef]

26. Caunhye, A.M.; Zhang, Y.; Li, M.; Nie, X. A location-routing model for prepositioning and distributing emergency supplies.
Transp. Res. E-Log. 2016, 90, 161–176. [CrossRef]

27. Wang, H.; Du, L.; Ma, S. Multi-objective open location-routing model with split delivery for optimized relief distribution in
post-earthquake. Transp. Res. E-Log. 2014, 69, 160–179. [CrossRef]

28. Raeisi, D.; Jafarzadeh Ghoushchi, S. A robust fuzzy multi-objective location-routing problem for hazardous waste under uncertain
conditions. Appl. Intell. 2022, 52, 13435–13455. [CrossRef] [PubMed]

29. Shen, L.; Tao, F.; Shi, Y.; Qin, R. Optimization of location-routing problem in emergency logistics considering carbon emissions.
Int. J. Environ. Res. Public Health 2019, 16, 2982. [CrossRef] [PubMed]

30. Zhang, L.; Lu, J.; Yang, Z. Dynamic optimization of emergency resource scheduling in a large-scale maritime oil spill accident.
Comput. Ind. Eng. 2021, 152, 107028. [CrossRef]

31. Ghasemi, P.; Goodarzian, F.; Abraham, A. A new humanitarian relief logistic network for multi-objective optimization under
stochastic programming. Appl. Intell. 2022, 52, 13729–13762. [CrossRef]

32. Saeidi-Mobarakeh, Z.; Tavakkoli-Moghaddam, R.; Navabakhsh, M.; Amoozad-Khalili, H. A bi-level and robust optimization-
based framework for a hazardous waste management problem: A real-world application. J. Clean Prod. 2020, 252, 119830.

33. Zhou, Y.; Zheng, B.; Su, J.; Li, Y. The joint location-transportation model based on grey bi-level programming for early post-
earthquake relief. J. Ind. Manag. Optim. 2022, 18, 45–73. [CrossRef]

34. Chen, Y.; Zheng, W.; Li, W.; Huang, Y. The Robustness and Sustainability of Port Logistics Systems for Emergency Supplies from
Overseas. J. Adv. Transp. 2020, 2020, 8868533. [CrossRef]

35. Wei, X.; Qiu, H.; Wang, D.; Duan, J.; Wang, Y.; Cheng, T.C.E. An integrated location-routing problem with post-disaster relief
distribution. Comput. Ind. Eng. 2020, 147, 106632. [CrossRef]

36. Ai, Y.; Zhang, Q. Optimization on cooperative government and enterprise supplies repertories for maritime emergency: A study
case in China. Adv. Mech. Eng. 2019, 11, 1687814019828576. [CrossRef]

37. Soyster, A.L. Technical Note—Convex programming with set-inclusive constraints and applications to inexact linear programming.
Oper. Res. 1973, 21, 1154–1157. [CrossRef]

38. Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [CrossRef]
39. Zhou, Y.; Yu, H.; Li, Z.; Su, J.; Liu, C. Robust Optimization of a Distribution Network Location-Routing Problem Under Carbon

Trading Policies. IEEE Access 2020, 8, 46288–46306. [CrossRef]
40. Cheng, X.; Jin, C.; Yao, Q.; Wang, C. Research on Robust Optimization for Route Selection Problem in Multimodal Transportation

under the Cap and Trade Policy. Chin. J. Manag. Sci. 2021, 29, 82–90.
41. Peng, C.; Li, J.; Ran, L.; Wang, S. Emergency Medical Service Station Robust Location Model and Algorithm Under Demand

Uncertainty. Oper. Res. Manag. Sci. 2017, 26, 21–28.
42. Hatefi, S.M.; Jolai, F. Robust and reliable forward–reverse logistics network design under demand uncertainty and facility

disruptions. Appl. Math. Model. 2014, 38, 2630–2647. [CrossRef]

https://doi.org/10.1007/s00500-023-08378-4
https://doi.org/10.1155/2022/9864064
https://doi.org/10.1007/s11356-021-15907-x
https://doi.org/10.3390/su11123420
https://doi.org/10.1016/j.tre.2015.09.006
https://doi.org/10.1016/j.seps.2011.12.003
https://doi.org/10.1016/j.tre.2015.09.001
https://doi.org/10.1109/ACCESS.2021.3125746
https://doi.org/10.1016/j.tre.2015.10.011
https://doi.org/10.1016/j.tre.2014.06.006
https://doi.org/10.1007/s10489-022-03334-5
https://www.ncbi.nlm.nih.gov/pubmed/35370360
https://doi.org/10.3390/ijerph16162982
https://www.ncbi.nlm.nih.gov/pubmed/31430997
https://doi.org/10.1016/j.cie.2020.107028
https://doi.org/10.1007/s10489-022-03776-x
https://doi.org/10.3934/jimo.2020142
https://doi.org/10.1155/2020/8868533
https://doi.org/10.1016/j.cie.2020.106632
https://doi.org/10.1177/1687814019828576
https://doi.org/10.1287/opre.21.5.1154
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1109/ACCESS.2020.2979259
https://doi.org/10.1016/j.apm.2013.11.002


Mathematics 2023, 11, 4140 30 of 30

43. Xu, J.P.; Wang, Z.Q.; Zhang, M.X.; Tu, Y. A new model for a 72-h post-earthquake emergency logistics location-routing problem
under a random fuzzy environment. Transp. Lett. 2016, 8, 270–285. [CrossRef]

44. Chen, J.; Gui, P.; Ding, T.; Na, S.; Zhou, Y. Optimization of Transportation Routing Problem for Fresh Food by Improved Ant
Colony Algorithm Based on Tabu Search. Sustainability 2019, 11, 6584. [CrossRef]

45. Li, Q.; Tu, W.; Zhuo, L. Reliable rescue routing optimization for urban emergency logistics under travel time uncertainty. ISPRS
Int. J. Geo.-Inf. 2018, 7, 77. [CrossRef]

46. Ransikarbum, K.; Mason, S.J. Goal programming-based post-disaster decision making for integrated relief distribution and
early-stage network restoration. Int. J. Prod. Econ. 2016, 182, 324–341. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/19427867.2015.1126064
https://doi.org/10.3390/su11236584
https://doi.org/10.3390/ijgi7020077
https://doi.org/10.1016/j.ijpe.2016.08.030

	Introduction 
	Literature Review 
	Mathematical Problem Formulation 
	Problem Description 
	Model Construction 
	Description of Time Penalty Cost 
	Description of Time Satisfaction Loss Cost at Accident Point 
	MEMD-LRP Robust Bi-Level Nominal Models 
	MEMD-LRP Robust Bi-Level Modeling 

	Solution Method 

	Solution Analysis 
	Example Information 
	Analysis of the Algorithm and Solution Results 
	Algorithm Analysis 
	Solution Results Analysis 


	Conclusions 
	Appendix A
	References

