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Abstract: The structure of soils is often heterogeneous with layered strata having distinct perme-
abilities. An advanced mathematical and numerical coupled model of elastic wave propagation
in poroelastic multi-layered soils subjected to subsoil water infiltration is proposed in this study.
The coupled model was based on the introduction of an inhomogeneous functionally graded fluid-
saturation of the considered soil depending on the infiltration time, which was evaluated employing
Richards’ equation. The time-harmonic solution was formulated in terms of the Fourier transform
of Green’s matrix and the surface load that excites the vibration. The convergence and efficiency of
the proposed approach are demonstrated. An example of dispersion curves for partially saturated
porous strata made of loam, sand, and rock at different infiltration times is provided, and it is shown
that the characteristics of the surface acoustic waves change with time, which can be further used for
inverse problems’ solution.
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1. Introduction

Controlling fluid transport within subsurface porous media is crucial to many en-
vironmental and industrial studies from agriculture to geophysics. Therefore, efficient
mathematical and computer models accurately simulating their behavior are required.
Complex engineering problems currently can be solved using robust numerical methods
such as the finite element method, as well as the spectral element method, the boundary
element method, the finite volume method, and meshless methods. Various coupling
procedures (hybrid and coupled numerical methods) have been proposed incorporating
different numerical methods in order to take advantage of their respective benefits [1–3].

The structure of real porous media is often heterogeneous with layered strata with
distinct permeabilities causing uneven flow partitioning across the strata. Developing
more-advanced interpretation tools is hindered by the lack of open-source and semi-
analytical numerical techniques for simulating partially saturated porous media [4]. Thus,
the aim of this study was to develop an advanced mathematical and numerical coupled
model of elastic wave propagation in poroelastic multi-layered soil subjected to subsoil
water infiltration.

Sufficient soil water content, which is a key requirement for good agricultural yields,
depends on numerous factors. First of all, there are the temperature and humidity of the
environment leading either to the evaporation of moisture from the soil or, vice versa,
contributing to the saturation of the soil with water [5,6]. The soil hydrology is also a
significant factor, which depends on the soil texture and structure [7,8].
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The water infiltration process in variably saturated soil pores as described by Richards’
equation demonstrates the complex nonlinear distributions of porous water content with
soil depth and is dependent on the material parameters of the composite (solid and complex
fluid as a combination of air and water), initial water saturation, and time of infiltration [9].
Soil water dynamics are simulated using various numerical methods from the finite element
method [10–12] and Bayesian inverse modeling using Markov chain Monte Carlo [13,14]
to machine learning-based methods. For instance, Yang and Mei [15], Jana et al. [16]
employed physics-informed neural-network-based numerical approaches for studying
soil water vertical infiltration. Other approaches include using pore-scale simulations
with X-ray tomography [17] and continuum approaches using volumetric averaging [18].
A comparison of some different traditionally used models for soil water infiltration such as
the Philip model, Kostiakov model, Mezencev model, USDA-NRCS model, and Horton
model can be found in [19]. The latest techniques in field estimation of soil water infiltration
include the use of electrical resistivity tomography (ERT) and ground-penetrating radar
(GPR) [20].

The theoretical study of elastic wave propagation in fluid-saturated porous media is
based on the boundary-value problem for Biot’s equation [21–23]. To solve the wave prob-
lems for poroelastic structures with complex irregular boundaries and obstacles, the follow-
ing numerical methods have been developed: the boundary element method
(BEM) [24,25], the finite element method [26–28], and its modifications as the spectral
element method [29,30], extended finite elements [31,32], or particle finite elements [33,34],
as well as meshless methods [35,36]. Waves in poroelastic structures with traditional reg-
ular boundaries are usually investigated by analytical and semi-analytical methods. The
description of such methods to analyze waves excited in poroelastic isotropic structures
with plane-parallel boundaries such as half-spaces or layered spaces and the analysis of
guided waves in the layered media can be found in [37–42]. The matrix iteration methods
for modeling waves in multilayered porous media were developed in [43,44]. The wave
propagation in functionally graded poroelastic fluid-saturated media have also been actively
studying recently [45–48] by semi-analytical approaches. Dudarev et al. [45] also developed
and studied the method for the reconstruction of Biot’s modulus as spatial function using
elastic waves measured on the surface of a poroelastic functionally graded cylinder. The
analytical solution of a multi-layered structure satisfies the conditions at infinity and allows
studying guided waves, as well as can be used as a basis for boundary integral equation
methods and the BEM for layered structures with irregularities [49–51].

Chen et al. [52] investigated the correlation between soil moisture changes and de-
formations at slope surfaces by means of elastic wave propagation in soils. Their analysis
of longitudinal and shear wave velocities in homogeneous media showed that the elastic
wave velocity continuously decreases in response to moisture content and deformation.
Chen et al. [53] estimated the elastic wave velocity of an unsaturated soil slope, and they
showed that the effects of rainfall duration/initial water content, density, slope angle,
and surface layer thickness on the decrease rate of the normalized wave velocity with the
volumetric water content and the tilt angle are relatively small in homogeneous media.
Solazzi et al. [54] assumed a one-dimensional unconsolidated porous half-space under
steady-state saturation conditions and considered the influence of the capillary suction
effects on the longitudinal and shear wave dispersion characteristics for different wa-
ter table depths and overlying soil textures. Recently, Deng et al. [55] presented Biot’s
model with two fluid phases and also studied body waves in vertically inhomogeneous
saturated porous media resulting from porous water infiltration. To the authors’ knowl-
edge, the surface wave propagation problem was not considered taking into account the
infiltration effect.

Therefore, we propose here a semi-analytical two-stage numerical method for mod-
eling wave propagation in multi-layered porous media with properties varying across
the strata and taking into account the infiltration effect. In the first stage, the depth and
time-dependent saturation were evaluated employing Richards’ equation. Then, an in-
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homogeneous functionally graded fluid saturation was transferred into Biot’s equations,
which were solved via the semi-analytical boundary integral equation method at various
infiltration times. The algorithm for Green’s matrix of multi-layered porous solids [41]
was improved in this investigation in terms of numerically stable matrix iterations for the
considered vertically stratified (functionally graded) medium [56]. The convergence and
efficiency of the method are demonstrated. Examples of dispersion curves for partially
saturated porous strata made of loam, sand, and bedrock at different infiltration times are
provided, and it is shown that the characteristics of surface acoustic waves change with
time, which can be further used for inverse problems’ solution. The model also assists in
the investigation of the influence of infiltration time on wave propagation in porous media.

2. Mathematical Models
2.1. Elastic Waves in a Layered Poroelastic Soil

The wave propagation generated by the surface load of an inhomogeneous soil mod-
eled by a three-layered half-space was considered (Figure 1). Further, we used the desig-
nation for a layer as L(M, z1, z2), whereM is the set of material properties and z1 and
z2 are the z-coordinates in the Cartesian coordinate system (x, y, z) (or (x1, x2, x3) as the
same) of the planes bounding the layer. The layered half-space HS = Lloam ∪Lsand ∪Lrock
consists of two poroelastic layers Lloam = L(Mloam, 0, z1), Lsand = L(Msand, z1, z2) with
thicknesses a1 and a2, z1 = −a1 and z2 = −a1 − a2, consequently, and the bottom pure
elastic homogeneous half-space Lrock = L(Mrock, z2,−∞). The first poroelastic layer Lloam
models the loam with vertically inhomogeneous fluid contents due to water infiltration and
air saturation of the vacated pore space. The infiltration is a dynamical process; however,
its speed is much less than the speed of the elastic waves; therefore, the properties of the
first layer are considered to be fixed during the measurements of elastic waves.
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Figure 1. Multilayered poroelastic soil with functionally graded saturation.

The steady-state harmonic waves with frequency ω were considered further
(u(t) = u(ω) exp(−iωt)). The displacements in a poroelastic medium according to
Biot [21] are expressed in terms of two complex-valued displacement vectors us and
u f in the solid skeleton and porous fluid, respectively. The displacements are governed by
Biot’s equations in the frequency domain:

∇[(λ + µ)∇ · us + Q∇ · u f ] + µ∇2 us + ρ̂11ω2us + ρ̂12ω2u f = 0,

∇[Q∇ · us + R∇ · u f ] + ρ̂12ω2us + ρ̂22ω2u f = 0.
(1)
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The complex amplitudes of the traction vector τn at a surface element with normal n
are given as

τn = τs;n − φp f n

τs;n =
[
λ∇ · us + Q∇ · u f

]
n + 2µ∇us · n + µ(n×∇× us)

p f = − 1
φ

[
Q∇ · us + R∇ · u f

]
.

(2)

Here, τs;n is the traction (stress) of the solid skeleton, p f is the pore fluid pressure, ∇
is the nabla operator, “·” and “×” are operators of the dot and cross products, respectively,
and λ, µ, Q, R are Biot’s poroelastic constants. The coefficients ρ̂mn = ρmn − i(−1)m+nb/ω
are expressed in terms of the effective mass densities ρ11, ρ22, and ρ12 = ρ21 and the
dissipation factor b. The relative displacements of the fluid as w = φ(us − u f ) needs
further for analysis.

In practice, the parameters of poroelastic materials (Mloam andMsand) are presented
by the specific porosity φ, shear modulus µ, the bulk modulus of dried porous material
Kd, the bulk modulus Ks, K f , and the mass densities ρs, ρ f of the solid skeleton and porous
fluid, consequently, as well as the tortuosity parameter αs, the intrinsic permeability κs,
and the dynamic viscosity of the fluid η f . The parameters of Equations (1) and (2) are
expressed as

Q = φ(1− φ− Kd/Ks)Λ, R = φ2Λ,
λ = Kd + Q2/R− 2/3µ, Λ = Ks/(1− φ− Kd/Ks + φKs/K f );
ρ12 = φρ f (1− αs), ρ11 = ρs(1− φ) + ρ12,
ρ22 = ρ f φ− ρ12, b = η f φ2/κs.

(3)

The pore fluid in the top layer Lloam is vertically functionally graded due to infiltration,
which leads to homogeneous water saturation ς(z). Let ρw, Kw, ηw and ρa, Ka, ηa be
the mass densities, the bulk modulus, and the viscosities of water and air, respectively.
One of the conventional approaches is to consider a homogenized fluid. Applying the
mixing theory to water and air, the effective bulk modulus K f , mass density ρ f , and
viscosity η f are taken as [23,57]

1
K f

=
ς

Kw
+

1− ς

Ka
, ρ f = ρwς + ρa(1− ς), η f = η

ς
wη

1−ς
a , (4)

The displacements us and tensions τn in the pure elastic bottom half-space obey the
Lame equations and Hooke’s law as follows:

∇[(λ + µ)∇ · us] + µ∇2 us + ρsω2us = 0,
τn = λ∇ · usn + 2µ∇us · n + µ(n×∇× us)

(5)

The excitation of elastic waves is caused by the surface load given by axisymmetric
traction q(x, y) = q(r), r2 = x2 + y2, at some finite circular region Ω as

τ3 = q, p f = q3, at z = 0, (x, y) ∈ Ω. (6)

The displacement us and tension τ3 vectors are continuous at the interfaces between
layers. The continuity of the normal component of the relative phase displacements w3 and
porous fluid pressure p f are additionally imposed at the porous–porous interface as

[us] = 0, [τ3] = 0, [w3] = 0, [p f ] = 0 at z = z1. (7)
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At the interface between the porous layer and elastic half-space, the relative phase
displacements w3 is eliminated:

[us] = 0, [τ3] = 0, [w3] = 0 at z = z2. (8)

Describing correctly waves at infinity, such radiation conditions as the limiting absorp-
tion principle [58] were used.

2.2. Mathematical Model of Water Infiltration into Porous Soil

The water flow in porous media is governed by Richards’ equation:

∂θ

∂t
=

∂

∂xi

[
K
(
KA

ij
∂h
∂xj

+KA
iz

)]
− S (9)

written in terms of the volumetric water content θ, the pressure head h, and the unsaturated
hydraulic conductivity:

K(h, x1, x2, x3) = Ks(x1, x2, x3)Kr(h, x1, x2, x3) (10)

which is the function of the saturated hydraulic conductivity Ks and the relative hydraulic
conductivity Kr. Here, Cartesian coordinates xi (i = 1, 2, 3) were considered; as before, t is
the time of water infiltration, KA is an anisotropy tensor, and S is a sink term.

The water content θ(h) and hydraulic conductivity K(h) are unsaturated soil hy-
draulic properties that are highly non-linear functions of the pressure head h.
Different analytical models exist to compute these quantities. However, the formulation of
Van Genuchten [9] offers a reasonable balance between accuracy and model complexity.
Hence, this formulation is used in this study. According to the van Genuchten model,
water content and hydraulic conductivity are expressed in terms of the residual water
content θr, the saturation water content θs, the inverse of the air-entry pressure αh, the
pore-size distribution index n, and the effective water content:

Se =
θ − θr

θs − θr
(11)

The pore connectivity parameter l is as follows:

θ(h) =

 θr +
θs − θr

[1 + |αhh|n]m
, h < 0

θs, h ≥ 0
(12)

K(h) = KsS l
e

[
1−

(
1− S

1
m
e

)m]2

(13)

Here,

m = 1− 1
n

, n > 1.

The parameters α and n are considered empirical shape-fitting parameters, and l has
been estimated to be equal to 0.5 on average for a wide range of soils.

2.3. Numerical Solution of Richards’ Equation

Richards’ Equation (9) does not have an analytical solution and is limited to numerical
solutions only. In this study, we used the commercially available HYDRUS-3D software
package from PC-Progress [59]. HYDRUS uses Galerkin-type linear finite element schemes
to numerically solve the water flow equation. The solution to matrix equations derived
from the discretization of the governing equations varies based on the problem’s magni-
tude. For banded matrices, Gaussian elimination is employed, while symmetric matrices
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utilize the conjugate gradient method, and asymmetric matrices use the ORTHOMIN
method. The software can examine the movement of water and solutes in porous media
that are unsaturated, partially saturated, or fully saturated. Flow and transport can take
place in the vertical or horizontal plane, a three-dimensional area with radial symmetry
around the vertical axis, or a fully three-dimensional space. HYDRUS can handle wa-
ter flow computation for domains having boundaries with a prescribed head and flux,
boundaries influenced by atmospheric conditions, free drainage boundary conditions, or
more-intricate combinations.

In this study, the soil domain was discretized with three different boundary conditions
(BCs). The top surface was assigned an “Atmospheric” BC, while the bottom layer was
assigned a “Free Drainage” BC. The side walls of the domain were assigned a “No Flow”
BC, resulting in a flow regime that is purely vertical. The first two BCs are described below.

2.3.1. Atmospheric BC

The Atmospheric BC is a system-dependent BC that exists at the interface between the
air and the soil that is exposed to atmospheric conditions. The fluid flux at this boundary
is driven by external conditions (such as precipitation) and also due to existing soil water
content conditions that can be time-dependent. The application of this BC imposes that the
numerical solution of (9) is obtained by limiting the absolute water flux in a manner that
satisfies the following two conditions:

|K(KA
ij

∂h
∂xj

+KA
iz)ni| ≤ E (14)

and
ha ≤ h ≤ hs (15)

where ni are components of the outward unit vector normal to the boundary, E is the
maximum potential flux rate (infiltration or evaporation), h is the pressure head at the
soil surface, ha is the minimum allowed pressure head determined from the equilibrium
between the soil water and the atmospheric water vapor pressure, and hs is the maximum
allowed pressure head, which is generally the condition of complete saturation where the
value can be set to zero.

This BC allows for the direction of the water flux at the interface to switch directions
depending on the prevailing internal and external conditions. For example, the application
of water (by precipitation or irrigation) at the boundary to the soil domain with water con-
tent below saturation results in the infiltration (or the downward movement) of the water.
On the other hand, the introduction of the effect of temperature allows for the evaporation
of water through the boundary (upward movement). In this study, the Atmospheric BC
was assigned to ensure the free flow of water through the domain with no upward suction
due to the creation of vacuum pockets.

2.3.2. Free Drainage BC

This is a gradient type BC of the form(
KA

ij
∂h
∂xj

+KA
iz

)
ni = f (x, y, z, t) (16)

Here, HYDRUS implements a unit vertical hydraulic gradient that mimics free water
flow through the boundary. Such scenarios are very commonly encountered in field studies
where the soil profile is deep and the water table is much below the study domain.
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3. Simulation of Wave Propagation in Functionally Graded Poroelastic Media
3.1. Wavefield Representation in a Homogeneous Poroelastic Layer

Let us consider a poroelastic layer L(Mp, z1, z2), where Mp is a set of poroelastic
parameters. The solution of Biot’s Equation (1) us and u f in a homogeneous media can be
determined in terms of two scalar potentials ϕ1, ϕ2 and the curl potential ψ as follows:

us = ∇ϕ1 + η2∇ϕ2 +∇×ψ,

u f = η1∇ϕ1 +∇ϕ2 + η3∇×ψ.
(17)

Here, the potentials ϕk (k = 1, 2) and ψ = {∂ψ1/∂y,−∂ψ1/∂x, ψ2} obey the
Helmholtz equations:

∇2 ϕk +κ2
pk ϕk = 0, κpk = ω/vpk; k = 1, 2 (18)

∇2ψj +κ2
s ψj = 0, κs = ω/vs; j = 1, 2 (19)

The fast and slow longitudinal wave velocities vpi, coefficients mi, and shear velocity
vs in decomposition (17) are determined by the formulas:

v2
pk =

[
b− (−1)k

√
b2 − 4∆C∆B

]
/(2∆B), v2

s = µρ̂22/∆B;
η1 = −(P− v2

p1ρ̂11)/(Q− v2
p1ρ̂12), η2 = −(R− v2

p2ρ̂22)/(Q− v2
p2ρ̂12),

b = Rρ̂11 − 2Qρ̂12 + Pρ̂22, ∆B = ρ̂11ρ̂22 − ρ̂2
12,

∆C = PR−Q2, P = λ + 2µ

(20)

and η3 = − ρ̂12

ρ̂22
in Equation (17).

Applying the Fourier transform,

G(α1, α2) = Fx,y[g] =
∞∫∫
−∞

g(x, y)ei(α1x+α2y) dxdy,

with respect to coordinates x1 and x2 allows us to write the potentials in terms of rela-
tions (20) as the general solutions of Equations (18) and (19):

Φk(α, z) = Fx,y[ϕk] = t+k e−σpk(z1−z) + t−k e−σpk(z−z2), k = 1, 2
Ψm(α, z) = Fx,y[ψm] = t+2+me−σs(z1−z) + t−2+me−σs(z−z2), m = 1, 2.

(21)

where
α =

√
α2

1 + α2
2, σpk =

√
α2 −κ2

pk, (k = 1, 2), σs =
√

α2 −κ2
s .

The branches of the square roots for σ were chosen so that

Re σ > 0, Im σ 6 0

for real α in accordance with the limiting absorption principle [60]. Meanwhile, the rela-
tions (21) are expressed via exponentially decaying terms (z2 6 z 6 z1 6 0), which provide
numerical stability.

Due to the isotropic property of the materials considered in this investigation, axisym-
metric terms can be extracted from the displacement and stress fields. Therefore, applying
the Fourier transform and the linear transformation:

B =

 0 0 1
iα1/α2 iα2/α2 0
iα2/α2 −iα1/α2 0

,
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The Fourier transforms Ũs(α, z) = BFx,y[us], Ũ f (α, z) = BFx,y[u f ], T̃(α, z) = BFx,y[τ3],
and Pf (α, z) = Fx,y[p f ] are also axisymmetric with respect to the Fourier transform param-
eters (α1, α2):

Ũγ = {Φ′γ + α2Ψγ 1, Φγ + Ψ′γ 1, Ψγ 2}T , γ = s, f ,
T̃ = {ξ1Φ1 + ξ2Φ2 + 2µα2Ψ′1, 2µΦ′s + µ(2α2 −κ2

3)Ψ1, µΨ′2}T ,
Pf =

1
φ [(Q + Rη1)κ2

p1Φ1 + (Qη2 + R)κ2
p2Φ2].

(22)

Here,
Φγ = ηγ 1Φ1 + ηγ 2Φ2,

Ψs k = Ψk, Ψ f k = η3Ψk

are the linear combinations of the potentials, whereas

ξk = 2µα2ηs k − ((P + Q)ηs k + (R + Q)η f k)κ2
pk,

ηs 1 = η f 2 = 1, ηs 2 = η2, η f 1 = η1.

Satisfying the boundary conditions (7), the generalized state vector V(α, z) = {Ũs, W3, T̃, Pf},
where W3 = φ(Ũs 1− Ũ f 1), must be continuous at the interfaces between two dissimilar poroe-
lastic layers. Employing Equations (21) and (22), the generalized state vector is written in matrix
form as follows:

V = C+(z)t+ + C−(z)t−;
C+ = M+(α)G(α, z1 − z), C− = M−(α)G(α, z− z2).

(23)

Here, the amplitude coefficient vectors t± = {t±1 , t±2 , t±3 , t±4 } obey appropriate bound-
ary conditions at the interfaces,

G = exp(−diag{σp1, σp2, σs}z)

is the diagonal exponential matrix,

M± = M(α,±σp1,±σp2,±σs),

M(α, σ1, σ2, σ3) =



σ1 η2σ2 α2

1 η2 σ3
d11 d12 d13
d21 d22 d23
d31 d32 d33
d41 d42 d43


and

d1k = φ(η f k − ηsk)σk, (k = 1, 2), d13 = φ(η3 − 1)α2;
d2k = ξk, d23 = 2µα2σ3;
d3k = 2µηskσk, d33 = µ(2α2 −κ2

s );
d4k = −(ηskQ + η f kR)κ2

k /φ.

For the case of a pure elastic isotropic layer, the solution is also of the form (23), where the
generalized state vector V = {Ũs, T̃} and matrices M(α, σp, σs), and G = exp(−diag{σp, σs}z)
is 6× 2-dimensional now. Here,

σp =
√

α2−κ2
p, σs =

√
α2−κ2

s

and κp, κs are wavenumbers of P- and S-waves in the elastic medium.
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3.2. ES-Matrix Method for a Layered and Functionally Graded Poroelastic Structure

The generalized state vector V(α, z) can be found in the form of Equation (23) for a
layered poroelastic structure S as

V = E+
S c+ + E−S c−, (24)

where E±S (α, z) and their horizontal concatenation ES = [E+
S , E−S ] are stepwise matrix func-

tions, the so-called matrices of the eigensolutions of the layered structure (ES-matrices),
which were introduced in [51] for layered piezoelectric materials. The vector of the am-
plitude coefficients c+ has the same size as the vector t+ for the first layer of S, while
the vector c− is of the same size as the vector t− for the last layer of the structure in the
representation (23) for the corresponding layers.

The ES-matrices’ construction algorithm is recurrent. The ES-matrix En of the layered
structure Sn = Sn−1 ∪ Ln is obtained from the known ES-matrix En−1 of the laminate
Sn−1 =

⋃n−1
j=1 Lj and the ES-matrix ELn = [C+

n , C−n ] of the layer Ln as follows:

E+
n =

{
E+

n−1 + E−n−1T−, z ∈ Sn−1,
C+

n T+, z ∈ Ln
, E−n =

{
E−n−1R−, z ∈ Sn−1,
C+

n R+ + C−n , z ∈ Ln.
(25)

Here, the matrices C±n are constructed like the matrices C± in Equation (23) just for
appropriate material parameters of the layer Ln. Constant matrices T± and R± should be
determined from the boundary condition at the interface x3 = zn between Sn−1 and Ln:

Λn−1,nE±n (zn + ε) = Λn,n−1E±n (zn − ε) at ε→ +0, (26)

where matrices Λn−1,n and Λn,n−1 are employed to determine the quantities for the bound-
ary conditions (7) or (8). Therefore, if the contacting layers are of the same type, then these
matrices are identity matrices, but if the contacting layers Ln−1 and Ln are porous and pure
elastic, respectively, then Λn−1,n = Λp,s and Λn,n−1 = Λs,p, where

Λp,sV = {Ũs, W3, T̃}, Λs,pV = {Ũs, 0, T̃}.

Satisfying the boundary condition (26), T± and R± in (25) can be obtained as blocks
of the following matrix: (

T+ R+

T− R−

)
= W−1Z, (27)

where W and Z are expressed using horizontal concatenations of C±n and E±n−1 as

W =
[
Λn−1,nC+

n (zn), −Λn,n−1E−n−1(zn)
]
,

Z =
[
Λn−1,nE+

n−1(zn),−Λn,n−1C−n (zm)
]
.

The functionally graded porous layer Lloam is simulated as a layered structure La
loam

with M homogeneous sublayers:

Lloam ≈ La
loam(M) =

M⋃
k=1

L(Mloam(d̄k), dk−1, dk), (28)

where Mloam(d̄k) is the set of poroelastic properties of the loam slice calculated according to
Equations (3) and (4) for fixed water saturation ς(d̄k), d̄k =

1
2 (dk−1 + dk) and dk = z1 k/M.

For the known ES-matrix EHS(α, z) of the considered half-space HS, the displacements
us(x, ω) and u f (x, ω) are expressed in terms of the inverse Hankel transform as

uγ(x, ω) =
1

2π

∫
Γ

Kγ(α,−i
∂

∂x
,−i

∂

∂y
, z)Q(α)J0(α r)α dα, γ ∈ {s, f }, (29)
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where Q = Fx,y[q] and Kγ(α, α1, α2, z) = Fx,y[kγ(x, y, z)] are the Fourier transforms of the
surface load and Green’s matrix kγ, respectively, while J0(z) is the Bessel function of the
first kind of zero order. The infinite path Γ goes along the real axis and surrounds the
real poles α = ζ of matrix Kγ in accordance with the limiting absorption principle [41,61].
Green’s matrices have the following form:

Kγ = B−1K̃γB =

 −i(α2
1 Mγ + α2

2 Nγ)/α2 −i α1α2(Mγ − Nγ)/α2 −iα1Pγ

−i α1α2(Mγ − Nγ)/α2 −i(α2
2 Mγ + α2

1 Nγ)/α2 −iα2Pγ

α1Sγ/α2 α2Sγ/α2 Rγ

, (30)

where the matrix:
K̃γ = ΛuγE+

HS(α, z)
(
ΛloadE+

HS(α, 0)
)−1 (31)

can be simplified and rewritten as the matrix of the axisymmetric solutions for unitary
axisymmetric loads as follows:

K̃γ(α, z) =

 Rγ Sγ 0
Pγ Mγ 0
0 0 Nγ

.

The linear operators Λload and Λuγ applied to the wavefield V are defined as

ΛloadV = {T̃ , Pf }, ΛuγV = Ũγ.

Matrix Kγ in integral representation (29) obtained after substituting the derivatives
with respect to the spatial coordinates x and y for α1 and α2, respectively, becomes a
differential operator applied to J0(α r) [61].

4. Results

Let us consider three-layered strata: the poroelastic loam layer of thickness a1 = 1 m
subjected to the process of water infiltration, the poroelastic fully water saturated sand
layer of thickness a2 = 1 m, and the pure elastic bedrock. The elastic parameters of the
considered materials taken in [62] are shown in Table 1. The loam hydrological parameters
are the following:

θr = 0, θs = 0.463, n = 1.56, l = 0.5, αh = 3.5 (1/m), Ks = 0.2496 (m/day).

Table 1. Material poroelastic parameters.

Material
ρs Ks µ

φ
ρ f K f Kd αs

κs · 1013 η f 106

kg/m 3 GPa MPa kg/m 3 MPa MPa m 2 N s/m 2

water-
saturated
loam

2650 35 6.3 0.463 997 2.25 · 103 17.6 1.58 3.74 100

air-
saturated
loam

2650 35 6.3 0.463 1.1 0.145 17.6 1.58 3.74 18

water-
saturated
sand

2650 35 13.3 0.437 997 2.25 · 103 35.3 1.64 3.74 100

bedrock 2600 52.7 15,600 0 – – – – – –

4.1. Infiltration in Loam

The soil simulation domain was initialized with the water content θ varying linearly
with depth. The water content at the top surface had an initial condition (IC) at just below
the porosity value (0.463) and linearly reduced with depth to reach an IC value of 0.001
(just above the residual water content) at the bottom layer of the domain. This is an IC
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scenario that well represents a dry soil domain being wetted from the top down and is
encountered in reality during experiments to determine the hydraulic conductivity of the
soil in the field using disk infiltrometers. Values just under θs and just above θr were used
in order to not encounter computational errors in the numerical solution.

The finite element solution of Richards’ equation for the representative volume of
the loam (1× 1× 1 m3) provides the water saturation parameter ς(t, x3) = θ̄(t, x3)/φ,
where θ̄(t, x3) is the mean value of θ(t, x1, x2, x3) over the plane coordinate (x1, x2). The
obtained saturation ς is depicted in Figure 2 for times t ∈ [0, 45] days. A significant
deviation from the initial linear distribution of porous water content is observed. The water
content decreases gradually in the upper part of the loam layer, while the water content
increases in the second (bottom) part of the layer. Thus, the water saturation gradually
levels off, reaching an almost constant value ς = 0.47 throughout the thickness of the layer
at t = 45 days of the infiltration process. During infiltration, water partially and freely
penetrates the layer of sand. It was further assumed that there is some runoff of water in
the sand; therefore, the sand layer was assumed to be fully saturated.

0 0.2 0.4 0.6 0.8 1

Depth, m

0

0.2

0.4

0.6

0.8

1

S
at

u
ra

ti
o

n

t = 0 t=1 t=5 t=10 t=15 t=45, days

Figure 2. Water saturation ς(z) changing per infiltration time t (in days) starting from the initial
linear distribution.

4.2. Validation. Influence of Water Saturation on Surface Waves

To validate the developed method, let us consider the layered soil at t = 1 day of
infiltration and excite the wave fields by a constant vertical load in a circle of radius a = 1 m:

q(x) =
{
{0, 0, 1}, r 6 a
{0, 0, 0}, r > a

.

The numerical satisfaction of displacements us, u f by the governing Equations (1) and (5)
in the layers of the structure is presented in Figure 3 for two frequencies: f = 100 Hz
(Subplot a) and f = 200 Hz (Subplot b) at points (1, 0, z) (m). The displacements are calculated
using the numerical integration of the representation (29) with the relative error ε = 1× 10−5.
Therefore, the derivatives for the governing Equations (1) and (5) are calculated numerically
as well with the second-order-accurate formula with the relative error ε = 1× 10−5. Then,
the obtained residuals for the governing equations are divided by the norm of the inertial
part of the equations. The functionally graded loam is simulated as an M-layered medium
described by the relations (28). To check the accuracy, the continuous properties M(z) are
substituted into the governing Equations (1) and (2). Therefore, the relative error in the
functionally graded loam is decaying with M, while it is stable in the homogeneous media
(sand and bedrock).
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The convergence of the developed method for functionally graded strata is demon-
strated in Figure 4 by means of the vertical component of the Umov–Poynting vector ez.
For the case of a poroelastic medium, this component has the following representation [63]:

ez = −ω
2 Im(us · τ3 − w3 p∗f ).

Here, p∗f is the complex conjugation of the water pressure p f . Due to continuity
boundary conditions at the interfaces, the vertical component ez is also continuous at
interfaces zk, which can be observed in Figure 4 for frequencies f = 100 and f = 200 Hz
at points (1, 0, z). Sufficient accuracy is already achieved at M = 20 for the considered
frequency range (frequencies up to f = 1000 Hz).
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Figure 3. The relative residuals for the governing equations for the considered poroelastic strata
at points (x, y, z), where x = 1 m, y = 0, at frequencies f = 100 Hz (Subplot (a)) and f = 200 Hz
(Subplot (b)) for different numbers of sublayers M simulating a loam layer affected by inhomogeneous
infiltration at t = 1 day.
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Figure 4. Vertical component ez(x, y, z) of Umov–Poynting vector for x = 1 m, y = 0 m at
f = 100 Hz (a) and f = 200 Hz (b), t = 1 day of infiltration, and different numbers of loam
sublayers M.

The slownesses sn for the n-th guided wave are related to the wavenumber ζn
as sn = ζn/ω, where the magnitudes of ζn are the poles of the Fourier transform of
Green’s matrix Kγ . The rather fast convergence of the slownesses with the number of
sublayers of loam M increase is observed. As an example, the dispersion curves, namely
the real and imaginary parts of the slownesses–frequency relation sn( f ), are shown in
Figure 5 for the considered poroelastic three-layer strata. Here, the convergence with
the variation of the number of sublayers M is also clearly demonstrated considering
M = 5, 10, and 20. All traveling waves determined here numerically have an atten-
uation due to pore fluid viscosity (see Figure 5b). The smallest attenuation (Imsn) is
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observed with the smallest slownesses (Resn). Here, we can also observe the relay
transmission of guided waves due to the osculation or repulsion of modes, which was
studied earlier for purely elastic laminates [64,65].

As the provided analysis has shown, the effect of infiltration on the guided waves’
slowness can be observed. The most-significant effect is observed for the slowest guided
wave (n = 1) at higher frequencies, as demonstrated in Figure 6. The real part of s1
increases, while the attenuation (Im s1) decreases with increasing infiltration time t. The
most-significant changes in s1 are observed during the first day of infiltration (t ≤ 1).
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Figure 5. Convergence of dispersion curves: slowness Re sn (Subplot (a)) and attenuation Im sn

(Subplot (b)) of guided waves excited at t = 1 day of infiltration as well as the zoom for Re s1 (c) and
Im s1 (d).
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Figure 6. Slowness Re s1 (Subplot (a)) and attenuation Im s1 (Subplot (b)) of the first fundamental
mode (n = 1) excited at different times t of porous water infiltration.

5. Discussion

The determination of the structure and water saturation of porous media is still
a challenging task requiring extensive and time-consuming calculations since complex
interactions in inhomogeneous and stratified media are to be accurately simulated. This
study presented a two-stage poroelastic dynamic model for modeling wave propagation
in partially saturated layered strata with the fluid saturation of the media depending on
the infiltration time. The semi-analytical method based on the boundary integral equation
method employed in the second stage of the simulations does not demand sufficient
computational resources and provides accurate results quickly.
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Sensors located at the surface of soil can register the characteristics of guided waves
as the reciprocal of phase velocities [66]. Therefore, the proposed two-stage method
can be further employed for the inverse problem solution, where the saturation can be
determined, e.g., from the experimentally determined wavenumber–frequency relations
for the propagating surface acoustic waves using the techniques for material properties’
identification in an elastic waveguide [67–69]. The latter should rely on information about
the dispersion characteristics of guided waves, which are extracted by applying the matrix
pencil method, for instance.

The developed mathematical model is applicable to fast parametric analysis of surface
acoustic wave propagation in various porous media due to its semi-analytical nature.
It should also be noted that other relations for homogenization or explicit two-fluid model
of poroelasticity [70,71] can be used to adjust the model to the experimental data.
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