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Abstract: Urinary tract cancers are considered life-threatening conditions worldwide, and Bladder
Cancer is one of the most malignant urinary tract tumors, with an estimated number of more than
1.3 million cases worldwide each year. Bladder Cancer is a heterogeneous disease; the main symptom
is painless hematuria. However, patients with Bladder Cancer may initially be misdiagnosed as
Cystitis or infection, and cystoscopy alone may sometimes be misdiagnosed as urolithiasis or Cystitis,
thereby delaying medical attention. Early diagnosis of Bladder Cancer is the key to successful
treatment. This study uses six deep learning methods through different oversampling techniques
and feature selection, and then through dimensionality reduction techniques, to establish a set that
can effectively distinguish between Bladder Cancer and Cystitis patient’s deep learning model. The
research results show that based on the laboratory clinical dataset, the deep learning model proposed
in this study has an accuracy rate of 89.03% in distinguishing between Bladder Cancer and Cystitis,
surpassing the results of previous studies. The research model developed in this study can be
provided to clinicians as a reference to differentiate between Bladder Cancer and Cystitis.

Keywords: Cystitis; Bladder Cancer; deep learning; dimensionality reduction; data imbalance
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1. Introduction

According to the latest global cancer data for 2020 released by the International Agency
for Research on Cancer (IARC) of the World Health Organization, cancer caused nearly
10 million deaths in 2020 [1]. As one of the top ten most common cancers in the world,
Bladder Cancer is the tumor with the highest cost associated with lifetime treatment and
one of the tumors with the most significant impact on postoperative quality of life [2]. Even
in 2019, an estimated 17,600 people died from Bladder Cancer in the United States, a figure
that accounts for 2.9% of all cancer deaths [3].

Bladder Cancer is one of the most common and expensive human malignancies to
treat [4–6]; Bladder Cancer refers to various malignant tumors in the bladder. Possible
symptoms include frequent urination, dysuria, pain in urination, low back pain, abdominal
pain, and severe painless hematuria [7]. In the general adult population, invisible hematuria
is found in 2–7% of men and 3–15% of women [8]; therefore, it cannot be made cost-
effective for screening [9]. Bladder Cancer may initially be misdiagnosed as Cystitis or
infection, which may be a complication during the early growth of the tumor before
clinical diagnosis [10]. Previous studies have also suggested that Bladder Cancer may
be mistaken for Interstitial Cystitis [11,12]. Because mass or thickening of the bladder
wall is the dominant imaging feature of Eosinophilic Cystitis, similar to Bladder Cancer,

Mathematics 2023, 11, 4118. https://doi.org/10.3390/math11194118 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194118
https://doi.org/10.3390/math11194118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1605-8488
https://doi.org/10.3390/math11194118
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194118?type=check_update&version=1


Mathematics 2023, 11, 4118 2 of 29

differentiation from Bladder Cancer can be challenging [13]. In addition, Interstitial Cystitis
(IC) may be misdiagnosed as Cystitis, leading to the misdiagnosis of Bladder Cancer [14].
On imaging, it sometimes presents masses that mimic various papillary urethral tumors
and are misdiagnosed as Bladder Cancer before surgery [15].

Clinical chemistry tests and urine analysis are the main diagnostic screening tests in
clinical laboratories [16], and each change in the test can be interpreted as a relationship
with the disease, such as complete urine analysis including color, clarity, specific gravity,
and chemical analysis according to the past literature. Furthermore, urine sediment ex-
amination [17] and chemical analysis are usually performed using a strip system to check
for pH, glucose, ketones, occult blood, bilirubin, and protein [18]; however, some diseases
may present abnormal results of chemical analysis, for example, ketonuria can be found
in the urine of diabetic patients. At the same time, hematuria indicates bleeding in the
urinary tract [19]. In addition, the examination of urinary sediment may reveal crystals,
red blood cells, white blood cells, bacteria, and tubules, which provide information about
the urinary tract system [20]; thus, interpreting clinical tests alone can lead to misleading
diagnoses [21]. Laboratory test results can be interpreted by experienced clinicians but can
also be integrated and interpreted in combination with artificial intelligence (AI), such as
machine learning algorithms [22].

Machine learning (ML) is a type of artificial intelligence that enables it to learn indepen-
dently from data without human intervention [23]. In addition to various machine learning
algorithms often used in medical research, examples such as decision trees, random forests,
XGBoost, and GBM have been frequently used in medical research [24–26]. Recently, many
applied machine learning studies have been introduced into clinical practice, and machine
learning has become a powerful tool to improve the accuracy of cancer diagnosis and prog-
nosis. For example, Garapati et al. [27] established an objective computer-aided system to
identify the stage of Bladder Cancer through CT urography. In addition, machine learning
is also applied to metabolomics to identify early and late stages of Bladder Cancer [28],
and Tsai et al. [29] applied machine learning to predict Bladder Cancer based on clinical
laboratory data. This study will explore the use of deep learning technology to distinguish
patients with Bladder Cancer and Cystitis and hope to improve the accuracy of prediction.

This study attempts to correctly identify patients with Cystitis and Bladder Cancer by
using actual numerical clinical data, and the research scenario is shown in Figure 1. This
study attempted to match multiple deep learning models with different data preprocessing
and dimensionality reduction techniques and attempted to surpass previous studies in
accuracy on clinical datasets. The data preprocessing includes missing value (MI), feature
selection (RFE/CST/MBR), and imbalanced data processing (SMOTE/ADASYN). After
data preprocessing is completed, dimensionality reduction technology is adopted to avoid
excessive features and overfitting of the model. Then, the reduced feature set is sent to six
deep learning models (DBN, GRU, LSTM, DNN, ANN, and MLP) input feeds to obtain the
deep learning technology with the best accuracy.
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2. Background and Related Work
2.1. Bladder Cancer and Cystitis
2.1.1. Cystitis

Cystitis is a generic term used to define any bladder inflammation, which can be acute
or chronic. At the same time, the severity can range from mild discomfort in the lower
abdomen to life-threatening bleeding [30]. There are several categories to describe the
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various causes of Cystitis, divided into infectious, radiation, chemical, mechanical, intersti-
tial Cystitis/chronic pelvic pain syndrome, and several conditions disguised as Cystitis.
However, on a broader level, Cystitis can be divided into infectious and noninfectious.
Patients with infectious Cystitis often complain of irritating emptying symptoms, difficulty
urinating, frequency, urgency, and pain in the pubic hair, with severe bleeding occurring
only in rare cases. Another major category of Cystitis is sterile or noninfectious Cystitis,
which can be caused by radiation and chemical irritations. Unlike infection-induced Cysti-
tis, noninfectious Cystitis is more clinically severe and can cause extreme pain, hematuria,
and irritating emptying symptoms [30].

Interstitial Cystitis (IC) is a unique chronic syndrome in that it does not fit the classical
distinction of infectious or noninfectious Cystitis [30]. Characterized by a range of lower
urinary tract irritation symptoms and pain, the broad clinical definition of IC includes any
patient who complains of urgency, frequency, and pelvic/perineal pain in the absence of
bacterial infection or cancer [31]. Common symptoms include frequent urination, noctur-
nal urination, the urgency to urinate, bladder allergy, bladder discomfort, and bladder
pain [32]. Unfortunately, IC is difficult to diagnose. To do this, clinicians must rule out
urinary or vaginal infections, Bladder Cancer, bladder inflammation or infections caused
by radiation therapy, eosinophilic and tuberculous Cystitis, kidney stones, endometriosis,
neurological disorders, sexually transmitted diseases, low-count bacteria in the urine, and
male prostatitis. Finally, Cystoscopy performed under general or regional anesthesia is
used [33].

Eosinophilic Cystitis is a rare inflammatory disease of the bladder with uncertain
etiology, first described by Brown [34] as eosinophilic granuloma on the bladder wall.
Although many cases have been reported in adult and pediatric populations, their etiology
remains elusive [35]. The most common symptoms are frequency, dysuria, urgency, pain,
and hematuria, and the typical clinical findings are bladder mass, peripheral eosinophilic
thickening, and bladder wall thickening [36].

2.1.2. Bladder Cancer

Bladder Cancer is the second most common malignancy of the urinary tract, account-
ing for approximately 3.2% of all cancers worldwide, and it is a significant cause of cancer
morbidity and mortality. Most Bladder Cancers are diagnosed after the presence of macro-
hematuria [37], and the majority of cases (80%) occur in people over 65 years of age, with
the highest incidence in people aged 85–89 years [38]. The most common symptom of
Bladder Cancer is severe painless hematuria. In addition, unexplained symptoms of fre-
quent urination, urgency, or irritating emptying should alert clinicians to the possibility of
Bladder Cancer [7]. Bladder Cancer is invasive and non-invasive, with non-invasive having
a reasonable risk and prognosis but muscle-aggressive having a poor prognosis [39].

The clinical spectrum of Bladder Cancer can be divided into three categories: Prognosis,
management, and treatment goals. The first category includes non-muscular aggressive
tumors, where treatment is designed to reduce recurrence and prevent progression to
more advanced stages. The second category includes muscle-invasive lesions, where the
goal of treatment is to determine whether the bladder should be removed or preserved
without affecting survival and determine whether the primary lesion can be managed
independently or whether the patient is at high risk of long-distance transmission, which
requires a systematic approach to improve the likelihood of a cure. Finally, the critical issue
is prolonging the quantity and quality of life, including metastatic diseases. Many agents
with different mechanisms of action have antitumor effects against this disease [40].

Bladder Cancer does have the same symptoms as other diseases in its early stages,
such as kidney cancer, prostate cancer, interstitial Cystitis, kidney stones, benign prostatic
hyperplasia, and trauma [41]. Bladder Cancer may initially be misdiagnosed as Cystitis or
infection, which may be a complication during early tumor growth before clinical diagno-
sis [42]. The symptoms of in situ Bladder Cancer and chronic Cystitis are similar, such as
hematuria, frequent urination, and lower abdominal discomfort, and some patients even
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have urinary incontinence. If a patient has been treated for chronic Cystitis with antibiotics,
cancer cells will take the opportunity to spread. While bladder inflammatory diseases such
as interstitial Cystitis are sometimes challenging, they are often misdiagnosed [43].

2.1.3. Distinguishing Bladder Cancer and Cystitis

Bladder Cancer is the ninth most common malignancy worldwide [5], and clinicians
use knowledge from different specialties to analyze histological, clinical, and demographic
information [44]. Statistical methods such as Cox regression, logistic regression, and Kaplan–
Meier estimators are commonly used in the analysis. For example, Kaplan–Meier methods
and Cox proportional risk models were used to assess prognostic factors for recurrence,
progression, and disease mortality in patients with Bladder Cancer [45]. Logistic regression
based on 12 variables was used to determine predictors of 5-year overall survival in patients
with Bladder Cancer who underwent radical cystectomy (Bassi et al., 2007). However, with
the rapid development of health technology and informatics, the accuracy of predictions
largely depends on the efficient integration of information from data obtained from various
sources (clinical or pathological), which makes traditional statistical analysis relying on
clinician knowledge and experience a difficult task. For example, regression modeling is
a standard statistical technique that often requires some explicit assumptions about the
relationship between the data that may not be valid [46]. Therefore, machine learning has
been introduced into medicine to overcome the problems of statistical methods and reveal
the knowledge hidden in complex clinical data [47].

In medicine and healthcare, machine learning has been applied to personalized and
predictive medicine [48], cancer diagnosis and detection [49], and prevention and treatment
policy research [44]. For Bladder Cancer, reliable predictions of patients undergoing cystectomy
were achieved using an artificial neural network (ANN) prediction model and optimized by
genetic algorithms (GA) [50]. This system has the potential for widespread use in medical
decision support. In addition, Ji et al. [51] used ANN and radial basis function networks to
predict the survival rate of patients with Bladder Cancer. In addition, clinic pathological and
molecular markers were also used to create an ANN model to predict the one-year survival rate
of patients with invasive Bladder Cancer [52]. Relevant studies on patients with Bladder Cancer
and Cystitis are summarized in Table 1.

Table 1 shows the study on machine learning in the medical field and Cystitis and Bladder
Cancer. Machine learning has made essential contributions to medical diagnosis, including
diagnosis classification, image recognition, and disease diagnosis. It can be known from Table 1
that distinguishing Bladder Cancer from Cystitis patients can only be achieved using machine
learning [29]. There are few studies on using deep learning and other data pre-processing
methods to improve their work. Therefore, this study intends to fill this research gap to improve
the accuracy of distinguishing Bladder Cancer from Cystitis patients.

Table 1. Machine learning in the medical field and studies on Cystitis or Bladder Cancer.

Studies on Cystitis or Bladder Cancer Method ACC Author

Prediction of one-year survival in patients with muscular invasive
Bladder Cancer ANN 82% [52]

Prediction of survival in patients with Bladder Cancer after
diagnosis RBF 85% [51]

Accuracy of prognosis in patients with radical cystectomy ANN, LR LR:75.9%
ANN:76.4% [46]

Distinguish between Cystitis and Bladder Cancer DT, RF, SVM, XGBoost GBM ACC:87.6% [29]
Test for Bladder Cancer Trasfer learning (CNN) ACC:96.9% [53]

Related studies in the medical field Subject Method Author

Medical image recognition Quantify tumor characteristics RF [23]
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Table 1. Cont.

Studies on Cystitis or Bladder Cancer Method ACC Author

Complex data classification

Heart disease and hypertension
data classification Tree-based [24]

Hypertensive patient prediction
RF

SVM
XGBoost

[25]

2.2. Deep Learning
2.2.1. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) and their recent advances in deep learning (DL)
are booming in computer science [54]. The standard network for pattern recognition in the
MATLAB® toolbox is a two-layer feedforward network. There are transmission functions
in both the hidden layer and the output layer. The design idea of ANN is to imitate the
working mode of the human brain. ANN consists of an input, multiple hidden, and an
output layer. The units of adjacent layers are fully connected. Therefore, it has a solid ability
to fit, especially for nonlinear functions. Due to the complex model structure, training
artificial neural networks is very time-consuming. It is worth noting that ANN models are
trained by backpropagation algorithms [55]. Figure 2 shows the basic structure of neural
networks, including input, hidden, and output layers.
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2.2.2. Deep Neural Network (DNN)

When training Deep Neural networks (DNN), unlabeled data are first used to learn
parameters in an unsupervised feature learning stage. The network is then adjusted by
labeling the data to form a supervised learning phase [55]. Figure 3 shows an example of
a deep neural network [56]. DNN is a collection of neurons organized in a multilayered
sequence where the neuron receives neuronal activation from the previous layer as input
and performs simple calculations (such as a weighted sum of the input, followed by
nonlinear activation). The neurons of the network work together to realize complex
nonlinear mapping from input to output. This mapping is learned from the data by
adjusting each neuron’s weight using error backpropagation [57].
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2.2.3. Deep Belief Network (DBN)

A Deep belief network (DBN) is a probabilistic generative model consisting of multiple
layers of random latent variables, often with binary values, referred to as hidden units or
feature detectors. The top two layers have non-directional, symmetric connections between
them and form an associative memory, the lower layer receives top-down directional
connections from the upper layer, and the state of the lowest layer’s units represents a data
vector [58]. As shown in Figure 4, a DBN consists of an input layer (in red circle), multiple
hidden layers (in white circle), and an output layer (in green circle). Each layer is a node or
neuron connected, and the previous layer’s output is regarded as the input layer of each
hidden layer [59]. Training a DBN consists of two stages: Unsupervised pre-training and
supervised fine-tuning [60]. First, each RBM is trained using the layering pre-training of
greedy, and then the weights of softmax layers are learned from labeled data.
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The key idea of the deep confidence network is that the weight W learned by the
restricted Boltzmann machine defines both the prior distribution p (v|h, W) and the hidden
vector p (h|W), so the probability of producing a visible vector is v. After learning W,
we keep p (v|h, W) and replace p (h|W) with a better model of the aggregate posterior
distribution on hidden vectors; that is, the non-factor distribution is generated by averaging
the factor posterior distribution generated by the various data vectors, learning this better
model by taking the hidden activity vector generated by the training data as the training
data for the next learning module. Hinton et al. [60] showed that if this substitution is
performed in the right way, the lower limit of variation for the probability of training data
under the comprehensive model can be raised.

p(v) = ∑
h

p(h|W)p(v|h, W) (1)

2.2.4. Long Short-Term Memory (LSTM)

LSTM is a neural network model that integrates implicit internal memory, and many
researchers have demonstrated its high efficiency in time series prediction [61]. The LSTM
unit extends memory units with additional memory units. LSTM can solve gradient
disappearance and explosion problems in many sequential tasks. LSTM models can be
used in deep learning machines as complex nonlinear functions that take advantage of
long-term memory. LSTM extends three control gates: Input, output, and forget. These
gates, which control the flow of information into or out of the unit and reset the memory
unit, build a complex memory unit structure in the LSTM model. The general structure
of the LSTM unit that holds the network’s time unit state and hides the state is shown in
Figure 5.
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2.2.5. Gate Recurrent Unit (GRU)

The GRU model was proposed by Cho et al. [62], who chose a new type of hidden
unit driven by an LSTM unit to read and modify the memory unit by controlling the
input gate, ignore gate, and output gate. Different functions were then used to update
the state of the hidden layer [61]. The performance of GRUs in speech signal modeling is
similar to long-term short-term memory. In addition, its training time is shorter than that of
traditional LSTMS, and its parameters are fewer than those of LSTM because it lacks output
gates. Figure 6 shows the structure of GRU, and the final model is more straightforward
than the standard LSTM model and is a prevalent variant [59].
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2.2.6. Multilayer Perceptron (MLP)

A multilayer perceptron is a system of neurons interconnected by weights and output
signals generated by the weighting and application of a nonlinear activation function to
node inputs and their respective weights [63]. Since it is a feedforward neural network, the
output of one layer of neurons is fed to the next layer of neurons, and the layer between
the input and output layers is called the hidden layer [64]. In addition, the output of
this neural network is compared to the target value to determine the error, which is then
backpropagated to update the weights, resulting in a lower error in the next period [65].

MLP is the basis for backpropagation algorithms and continuous approximation
techniques [66]. A general MLP is a network consisting of three layers (n ≥ 2), including
the input, output, and hidden layers, as shown in Figure 7. The general architecture of an
MLP can be described as follows:

Step 1: Input vector (x1, x2, . . . , xp) in p-dimensional space and the output vector (y1, y2,
. . . , yq) in the q-dimensional space.
Step 2: Each neuron in one layer is linked to all the neurons in the previous layer. The
output of the previous layer is the input of the next layer.
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Step 3: The MLP works as follows: In the input layer (in yellow square), the neuron receives
the input signal and processes it (calculates the weight and passes it to the activation
function), producing the result of the activation function. The results obtained from the
first hidden layer (in blue circle) are then processed and passed to the second hidden layer
(in purple circle). This process continues until the neurons in the output layer (in green
circle) produce results.
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3. Material and Methods
3.1. Dataset

Data for this study were collected from clinical laboratory data of patients diagnosed
with Cystitis, Bladder Cancer, and other types of cancer at Mackay Memorial Hospital from
January 2017 to February 2020 [29]. Among them were 144 patients with Cystitis (56 women
and 88 men, aged 60.12± 11.99 years), 200 patients with kidney cancer (62 women and 138 men,
age 63.41± 10.45 years), 201 prostate cancer patients (201 male patients, age 71.83 ± 6.42 years),
591 Bladder Cancer patients (205 female patients and 386 male patients, age 66.73± 9.4 years),
and 200 uterine cancer patients (200 female patients, age 60.86 ± 10.26 years). The total number
of data is 1336, and the description of data variables is shown in Table 2.

3.2. Research Process

The research process of this study is shown in Figure 8. Data pre-processing is
divided into three parts, namely, feature selection (RFE, Chi-Squared Test, and Model-based
ranking), missing value processing, and imbalanced data processing (SMOTE/ADASYN).
In the data pre-processing stage, min-max normalization technology is used to normalize
the dataset. In the next stage, the dimensionality reduction technique (PCA) is used, and
then the dataset is divided into the training set and test set by using 5-fold cross-validation.
Selecting hyperparameters is a crucial step in creating effective deep-learning solutions.
DL algorithms often include specific hyperparameters that control various factors, such as
memory usage and execution costs. A hyperparameter is a variable set before a learning
algorithm is applied to a context-specific dataset. The optimal number depends on the
characteristics of the dataset associated with each task and each situation. The reduced
feature set generated by the dimensionality reduction technique is fed into six depth
models (DNN, ANN, DBN, LSTM, GRU, and MLP) as input. In the training model stage,
the optimizer is used to determine the best model for the model with the best results. In
the model training stage, the hyperparameters of the hidden layer, such as the learning rate
and activation function, are adjusted before the input is processed. Finally, after adjusting
the parameters, the efficiency model can be obtained to distinguish between the patients
with Bladder Cancer and Cystitis.
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Table 2. The description of variables.

Variable Variable Name Type

X1 Patient Number Integer
X2 age Numeric
X3 gender Boolean
X4 hypertension Boolean
X5 diabetes Boolean
X6 smoking Boolean
X7 drinking Boolean
X8 beetle nuts Boolean
X9 family history Boolean
X10 A/G Ratio Numeric
X11 Albumin Numeric
X12 ALP Numeric
X13 ALT Numeric
X14 AST Numeric
X15 BUN Numeric
X16 Calcium Numeric
X17 Chloride Numeric
X18 Creatinine Numeric
X19 Direct Bilirubin Numeric
X20 Estimated GFR Numeric
X21 Glucose AC Numeric
X22 pH Numeric
X23 Potassium Numeric
X24 Sodium Numeric
X25 Specific Gravity Numeric
X26 Total Bilirubin Numeric
X27 Total Cholesterol Numeric
X28 Total Protein Numeric
X29 Triglyceride Numeric
X30 Uric acid Numeric
X31 Urine epitheilum (UL) Numeric
X32 Urine epithelium count Numeric
X33 Nitrite Boolean
X34 Strip WBC Numeric
X35 Urine Bilirubin Numeric
X36 Urine Glucose Numeric
X37 Urine Ketone Numeric
X38 Urine Protein Numeric
X39 Urobilinogen Numeric
X40 Urine occult Blood NumericMathematics 2023, 11, x FOR PEER REVIEW 10 of 29 

 

 

 
Figure 8. Research Process. 

3.3. Data Preprocessing 
3.3.1. Missing Value Processing 

This study uses multiple imputations (MI) to process missing values. Multiple impu-
tation (MI) is widely regarded as an excellent method to calculate missing values of exist-
ing data [67]; the purpose of multiple interpolation is to reconstruct data to preserve the 
original relationship between variables as much as possible [68]. Multiple interpolations 
solve the problem of too small or too large standard error obtained by using traditional 
methods of processing missing data, and multiple interpolation has become an essential 
and influential method in the statistical analysis of incomplete data. During this time, its 
application has expanded to include analyzing observational data from public health 
studies and clinical trials. Therefore, MI may be a better choice for medical-related clinical 
data [69–71]. Its principle is to provide unbiased and valid correlation estimates based on 
information from available data, producing estimates similar to those calculated for com-
plete data. Missing data and multiple interpolation may affect coefficient estimates for 
variables with missing data and other variables without missing data [72]. 

3.3.2. Feature Selection 
After calculating missing values, it is also necessary to identify essential features with 

strong positive correlations with important features in disease diagnosis, and extracting 
vector features eliminates useless predictive features and irrelevant features [73]. Feature 
selection is a crucial step in machine learning and data analysis, as it helps improve model 
performance by identifying and retaining the most relevant features while discarding ir-
relevant or redundant ones. The choice of feature selection methods should be motivated 
by the specific characteristics of the dataset and the problem to solve.  

In order to compare whether different feature selection methods will affect the final 
accuracy, this study adopts three feature selection methods. Here is how Recursive Fea-
ture Elimination (RFE), the Chi-Squared Test (CST), and Learning Model-Based Feature 
Ranking (MBR) methods relate to the literature and their motivations: 

RFE is a feature selection method that recursively fits a model (such as a classifier or 
regressor) to the data, ranks the features by their importance, and eliminates the least im-
portant features at each iteration. RFE is widely used and has been applied in various 
domains, including bioinformatics, finance, and image processing. Researchers have 

Figure 8. Research Process.



Mathematics 2023, 11, 4118 10 of 29

3.3. Data Preprocessing
3.3.1. Missing Value Processing

This study uses multiple imputations (MI) to process missing values. Multiple im-
putation (MI) is widely regarded as an excellent method to calculate missing values of
existing data [67]; the purpose of multiple interpolation is to reconstruct data to preserve
the original relationship between variables as much as possible [68]. Multiple interpolations
solve the problem of too small or too large standard error obtained by using traditional
methods of processing missing data, and multiple interpolation has become an essential
and influential method in the statistical analysis of incomplete data. During this time,
its application has expanded to include analyzing observational data from public health
studies and clinical trials. Therefore, MI may be a better choice for medical-related clinical
data [69–71]. Its principle is to provide unbiased and valid correlation estimates based
on information from available data, producing estimates similar to those calculated for
complete data. Missing data and multiple interpolation may affect coefficient estimates for
variables with missing data and other variables without missing data [72].

3.3.2. Feature Selection

After calculating missing values, it is also necessary to identify essential features with
strong positive correlations with important features in disease diagnosis, and extracting
vector features eliminates useless predictive features and irrelevant features [73]. Feature
selection is a crucial step in machine learning and data analysis, as it helps improve model
performance by identifying and retaining the most relevant features while discarding
irrelevant or redundant ones. The choice of feature selection methods should be motivated
by the specific characteristics of the dataset and the problem to solve.

In order to compare whether different feature selection methods will affect the final
accuracy, this study adopts three feature selection methods. Here is how Recursive Feature
Elimination (RFE), the Chi-Squared Test (CST), and Learning Model-Based Feature Ranking
(MBR) methods relate to the literature and their motivations:

RFE is a feature selection method that recursively fits a model (such as a classifier
or regressor) to the data, ranks the features by their importance, and eliminates the least
important features at each iteration. RFE is widely used and has been applied in various
domains, including bioinformatics, finance, and image processing. Researchers have
demonstrated its effectiveness in selecting informative features while improving model
generalization. RFE is motivated by the idea that by iteratively removing less important
features, the model’s performance can be enhanced. This method is particularly useful
when dealing with high-dimensional datasets where feature selection is essential for model
interpretability and efficiency [74].

The CST is a statistical method used for feature selection in classification tasks. It
assesses the independence between a feature and the target variable by measuring the dif-
ference between observed and expected frequencies of feature-target pairs. The motivation
for using CST lies in its ability to capture relationships between categorical features and
categorical target variables. It helps in selecting features that are most likely to have a sig-
nificant impact on the target variable’s class distribution [75]. Chi-square (χ2) statistics are
used to test the independence of two variables by calculating scores to measure the degree
of independence of the two variables. In feature selection, χ2 measures the independence
of features relative to categories. The initial assumption of χ2 is that features and categories
are independent before scores are calculated [76], and scores with larger values indicate a
high dependency. A Chi-square [77] score with c class and r values is defined as (2) and (3):

x2 = −∑r
i=1 ∑c

j=1

(
nij − uij

)
uij

(2)
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nij is the number of samples value with the ith value of the feature.

uij =

(
n∗jni∗

)
n

(3)

ni is the number of samples and i is the feature value. ni is the number of samples in
class j. n is the number of samples.

MBR methods involve training a machine learning model (e.g., decision trees, random
forests, and gradient boosting) and ranking features based on their contribution to the
model’s performance. Many machine learning algorithms inherently rank features based
on their importance during the training process. For example, decision trees and random
forests assign feature importance scores. Researchers have leveraged these methods for
feature selection, and their effectiveness is well-documented. MBR methods are motivated
by the Idea that features contributing the most to the model’s performance should be
retained, while irrelevant features can be discarded. This approach is data-driven and
adapts to the specific problem at hand.

3.3.3. Imbalanced Data Processing

Imbalanced data mean that the number of specific categories in the data is particularly
large or small, which quickly leads to the prediction of a large number of categories during
model training or prediction, resulting in the prediction results of the model being worse
than expected. However, the sampling method transforms the imbalanced dataset into a
balanced dataset by processing the training set, which will improve the final result in most
cases. Two imbalanced data processing methods, the Synthetic minority oversampling
technique (SMOTE) and the Adaptive Synthetic Sampling Approach (ADASYN), will
be adopted in this study. Using SMOTE and ADASYN in imbalanced data processing
offers several benefits for improving the performance of machine learning models in
such scenarios. The benefits of SMOTE are addressing class imbalance, improved model
performance, the preservation of information, and a reduced risk of overfitting [78].

SMOTE is a nearest-neighbor-based technique used by Euclid to determine the distance
between data points in a feature space, and SMOTE is a popular and effective method
for solving class imbalances in many fields [78]. SMOTE’s central idea was to synthesize
more samples based on the feature-space similarities between the few existing instances.
Specifically, given the imbalanced data T, for each minority class instance xi ∈ T, SMOTE
first uses the Euclidean distance for xi, then randomly selects one of the K nearest neighbors,
computes the difference between the eigenvectors xi and its corresponding nearest neighbor,
and finally, multiplies the eigenvector difference by a random number and adds the new
vector to xi. The mathematical formula used to synthesize the new minority sample is
shown in Equation (4) [79]:

xnew = xi +
(

xk
i − xi

)
× δ (4)

In xk
i , one of the nearest neighbors is xi, and δ is a random value belonging to (0, 1), so

the resultant few instances xnew are a point xi connected along the segment and its nearest
neighbor xk

i .
The ADASYN algorithm is an adaptive synthetic oversampling algorithm proposed by

He et al. [80]. The benefits of ADASYN are adaptability, handling class overlap, robustness
to noise, and balanced distribution with focused effort. The ADASYN method aims to
reduce the imbalanced data between classes and adaptively adjust classification restrictions
using complex samples. To synthesize different amounts of new sample data for a smaller
number of samples, the key is to find a probability distribution ri and apply n to determine
the number of samples to be synthesized for each small class of samples.

For each class of samples, we obtain the K nearest neighbor of xi in the n-dimensional
space, the ratio of ri =

∆i
k , i = 1,2, . . . , m. ∆i is the class number near the K value of xi.
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Therefore, ri∈ (0,1]. Given the probability distribution of (∑ri = 1) of r̂ = ri
∑ms

i=1 ri
, the case

for most classes around each minority sample is calculated. We calculate the number of
synthetic samples based on the xi of each minority sample: gi : gi = r̂i + G [81].

SMOTE and ADASYN are valuable tools for addressing class imbalances in machine
learning datasets. They can improve model performance, generalize better, and reduce bias
against most classes. The choice between SMOTE and ADASYN depends on the nature
of the dataset. SMOTE is usually a good choice when the occupational imbalance does
not change much, and the occupational overlap is not significant. ADASYN, on the other
hand, is better suited to datasets with different densities, overlapping categories, and noisy
datasets because it can adapt to the specific challenges these datasets pose.

3.3.4. Dimensionality Reduction

Principal Component Analysis (PCA) is a multivariable dimensionality reduction
technique that analyzes a data table in which several interrelated quantitatively dependent
variables describe observations. Its goal is to extract meaningful information from a table
and represent it as a new set of orthogonal variables called principal components [82]. The
quality of PCA models can be evaluated using cross-validation techniques. PCA models
can be summarized as correspondence analysis (CA) to deal with qualitative variables and
multi-factor analysis (MFA) to deal with heterogeneous variable sets [82]. Historically, PCA
was first proposed in the context of statistics for estimating the principal component of the
multivariable random variable x [83,84]. Specifically, given a zero-mean multivariable x
∈ RD and an integer d < D, d is the principal component of x, and y ∈ RD is defined as d
uncorrelated linear components of x [85].

yi = ui>x ∈ R, ui ∈ RD , i = 1, 2, . . . , d, (5)

Maximizing the variance of yi

ui ᵀ ui = 1 and Var(y1) ≥ Var(y2) ≥ . . . ≥ Var(yd) > 0. (6)

For example, to find the first principal component y1, let us find a vector u*
1 ∈ RD

such that
u∗1 = argmax

ui∈RD
Var(u1 ᵀ x) s.t. u1 ᵀ u1 = 1. (7)

3.4. Evaluation Metrics

Through the following evaluation metrics, the effectiveness obtained after classification
can be evaluated, and the classification results can be divided into True Positive (TF), that
is, correct acceptance, True Negative (TN) or correct rejection, False Positive (FP) or wrong
acceptance, and False Negative (FN) or wrong rejection. Accuracy, Sensitivity, Specificity,
and other relevant metrics can be calculated from these four metrics [86].

(1) Accuracy

An accuracy assessment is defined as the ratio of correctly predicted samples to the
total number of predicted samples. TP is true positive, TN is true negative, and total
represents the total number of predictions.

Accuracy =

(
(TP + TN)

Total

)
(8)

(2) Precision

Precision calculates the correct classification number that is penalized for an incorrect
classification number.

Precision =
TP

TP + FP
(9)
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(3) Recall

Recall counts the number of correct categories punished for missing entries

Recall =
TP

TP + FN
(10)

(4) Specificity

Specificity is the proportion of people without an original negative test, commonly
referred to as the proportion of “true negative”

Speci f icity =
TN

FP + TN
(11)

(5) F-Score

F-Score is the harmonic average of measurement accuracy and recall rate

F− Score = 2× Precision× Recall
Precision + Recall

(12)

(6) ROC

The larger the area under the ROC curve (AUC), the higher the accuracy of the
detection

ROC =
sensitivity + speci f icity

2
(13)

4. Experimental Results and Discussion
4.1. Software Environment Settings

The operating environment of this research experiment was developed by MacOS
Monterey v12.2.1 (Apple Inc., Cupertino, CA, USA), and the software used was Visual
Studio Code v1.71.2 (Microsoft, Redmond, WA, USA). The following table shows the
method and software name of the pre-processing stage, including missing value processing,
imbalanced data processing, and feature selection. The software summary of the selection
method is shown in Table 3.

Table 3. Pre-processing software setup.

Preprocessing Stage Method Software

Missing value processing MI IBM SPSS v29

Unbalanced data processing SMOTE
Imbalanced-learn v0.10.1

ADASYN

Feature selection
RFE

scikit-learn v1.3.0CST

MBR

The six deep learning frameworks that distinguish Cystitis and Bladder Cancer are
DNN, ANN, GRU, LSTM, MLP, and DBN. Except for DBN, which uses Tensorflow v2.11.0
(Python, open source), they all use Keras v2.11.0 in Tensorflow. The dimensionality reduc-
tion technology Principal Component Analysis (PCA) uses scikit-learn v1.3.0 (Python, open
source), and the optimization algorithm is developed using Python 2.7.18 (open source).

4.2. Hyperparameter Setting

The hyperparameter settings of the deep learning model will affect the classification
results. The parameter setting table of this study is shown in Table 4. The parameter
setting tables in the respective deep models are all referenced from different literature. For
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example, the optimal parameter setting of the GRU model comes from Lee et al. [87], the
optimal parameter settings of the LSTM model are from Heikal et al. [88], the optimal
parameter settings of the DNN model are from Gunawan et al. [89], the optimal parameter
settings of the MLP model are from Arabzad et al. [90], the optimal parameter settings of
the ANN model are from Helwan and Tantua [91], and the optimal parameter settings of
the DBN model are from Suparwito et al. [92].

Table 4. Parameter setting of each deep learning model.

Method Attributes

DNN
Class Number of character Number of hidden

layer
Number of neurons
in 1st hidden layer

Number of neurons
in 2nd hidden layer

Digits 10 3 300 50

Letters 26 3 300 50

GRU
Epoch Batch size Learning rate Gradient threshold Dropout rate

1000 200 0.005 1 10

LSTM
Hidden state

dimension Dropout rate Learning rate Number of epochs Batch size

200 0.5 0.001 10 50

ANN
Number of neurons

in output layer
Number of neurons

in hidden layer Iterations number Learning rate Momentum rate

2 40 5000 0.001 0.4

MLP
Number of neurons

in input layer
Number of neurons

in output layer
Number of neurons
in each hidden layer Learn rate Number of hidden

layers

10 2 20 0.05 2

DBN
Hidden layers Activation function Learning rate Learning rate scale Momentum rate

8-17-9 Thnh 0.1 5000 0.4

4.3. Feature Selection

The original data are processed using multiple imputation (MI) to handle missing
values, and after LabelEncoder and normalization, it is then applied to three feature
selection methods. Table 5 shows the features selected by the three different feature
selection methods. It can be seen that there are some differences in the features selected by
different feature selection methods.

In addition, this dataset has the problem of data imbalance, so this study uses the
SMOTE algorithm to deal with the problem of data imbalance and then conducts training
and testing of six deep learning models. Table 6 shows the accuracy of the six deep learning
models. As can be seen from the table, the preliminary research results of the six deep
learning models have not yet reached expectations despite the extraction of important
features, as shown in Table 7. The research results in Table 6 show that the MLP deep
learning model has better results, and the accuracy reached 78.48%. Therefore, this study
will conduct further model optimization research on the MLP model.

Table 5. Features selected by three different feature selection methods.

Feature Name Feature Content
Feature Selection

CST RFE MBR

Nitrite Whether it contains nitrite
√ √ √

Age Patient age
√ √ √
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Table 5. Cont.

Feature Name Feature Content
Feature Selection

CST RFE MBR

Diabetes Whether the patient has
diabetes

√ √ √

Smoking Whether the patient
smokes

√ √ √

Beetle nuts Whether the patient ate
betel nut

√ √ √

Family history Whether the patient has a
genetic history

√ √ √

Drinking Whether the patient has
consumed alcohol

√ √

Urine Bilirubin Urinary bilirubin values
√ √

Urine Protein Urine Protein values
√ √

Hypertension Whether the patient has
high blood pressure

√ √

Chloride Chloride values
√ √

Estimated GFR Renal bulb filtration rate
√ √

Potassium Potassium values
√ √

Specific Gravity Specific gravity of urine
√ √

Strip WBC white blood cell values
√ √

Total Cholesterol Total cholesterol values
√ √

Uric acid Uric acid values
√ √

Urine Ketone Urine Ketone values
√ √

Note:
√

indicates used.

Table 6. Model accuracy evaluation after initial feature selection.

Method

Model RFE CST MBR

Accuracy

DBN 74.36% 63.29% 52.32%
GRU 62.87% 60.76% 51.53%
LSTM 67.51% 70.04% 51.48%
DNN 70.04% 70.01% 72.15%
ANN 70.16% 67.08% 68.35%
MLP 78.48% 74.39% 75.94%

Table 7. Evaluation metrics for other deep learning models.

Method Accuracy Precision F1 Score Sensitivity Specificity AUC

DNN 68.8% 65.12% 69.71% 75% 63.11% 69.06%
ANN 67.52% 65.25% 67% 68.75% 66.39% 67.57%
LSTM 63.68% 64.84% 58.13% 52.68% 73.77% 63.22%
GRU 60.68% 68.52% 44.58% 33.04% 86.07% 59.55%

4.4. Deep Learning Optimizer

The main purpose of adding optimizers to deep learning is to train neural networks
so that they can learn from data and improve performance. Optimization algorithms play a
key role in the neural network training process because they help the network adjust model
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parameters. There are many optimization algorithm choices for deep learning training.
Different algorithms may affect the quality of the training effect. Different optimization
algorithms are used in the process of deep learning model training and optimization,
hoping to improve the performance of existing models.

After the MLP model undergoes the RFE feature selection method, this study will use
different optimization algorithms, such as the Gray Wolf Optimizer (Gwo), Salp Swarm
Algorithm (Ssa), Cuckoo Search (Cs), Sine Cosine Algorithm (Sca), Firefly Algorithm
(Fa), Particle Swarm Optimization (Pso), Whale Optimization Algorithm (Woa), Gene
Algorithm (Ga), Flower Pollination Algorithm (Fpa), and Bat Algorithm (Ba). The MLP
model parameters are adjusted in the hope of improving the accuracy. The experimental
results are shown in Table 8. As a result, the accuracy has not been significantly improved.
This may be because the optimization algorithm itself also has feature selection steps. Using
the same feature selection may lead to the loss of important features. It may be because
these optimization algorithms are still unable to find the global optimal solution. There
are certain limitations. Although the optimization algorithm can effectively find the local
optimal solution, it is difficult to find the global optimal solution sometimes.

Table 8. Classification accuracy results of different optimizers.

Model Original Acc Feature Selection Optimizer/Acc

MLP 78.48%

RFE

Pso:68.77%
Woa:68.78%
Ga:70.04%
Sca:71.31%
Ssa:74.26%

CST

Ssa:66.24%
Sca:67.09%
Ga:70.04%
Ba:70.89%

Gwo:71.73%

MBR

Ba:71.73%
Ssa:79.32%

Gwo:75.95%
Cs:76.79%
Ga:78.48%

Mirjalilietal [93] developed the GWOA intelligent optimization algorithm in 2014.
This approach attempts to mimic gray wolves and their leadership hierarchy. The Gray
Wolf is one of nature’s predators. They usually come in groups of 5 to 12. In their social
ruling class, these wolves follow strict rules. The internal leadership hierarchy is split into
α, β, δ, andωwolves [94].

Alpha (α) Wolf: It makes decisions and leads hunting and other activities.
Beta (β) wolves: They support the alpha in decision-making and are subordinate to

the alpha.
Type delta (δ) wolves: These wolves (δ) obey the alpha and beta wolves and are

responsible for protecting the pack and assisting the dominant wolves in hunting.
Omega (ω) Wolves: Affiliated with alpha, beta, and delta Wolves, responsible for

monitoring territorial boundaries.
The Salp swarm algorithm (SSA) is based on Salp predation behavior that can solve

complex daily life optimization problems in nature. Marine life is diverse, and most of these
species share the same behaviors and characteristics, such as communication styles, motor
performance, and finding food. The Salp is a species of Marine organism in the Salpidae
family. Its shape is very similar to that of a jellyfish (cylindrical). Marine organisms
share certain behaviors, such as group behavior. Salp is known as the salp chain, and
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biological researchers believe this behavior helps sea squirts achieve better movement and
foraging [95].

The Sine-cosine algorithm (SCA) is a population-based optimization algorithm intro-
duced by [96], motivated by the trigonometric sine and cosine functions. SCA generates
various initial random solutions and uses mathematical models based on sine and cosine
functions to require them to transition to the best solution. The algorithm also combines
various random and adaptive variables to maintain exploration and utilization of the search
space at various optimization milestones.

Cuckoo search (CS) is a relatively new algorithm proposed by [97], and CS is highly
efficient at solving global optimization problems. Cuckoo search (CS) is a new nature-
inspired meta-heuristic algorithm based on larval parasitism in some cuckoo species. The
steps are as follows:

Each cuckoo lays one egg at a time and then drops it into a randomly selected nest.
The best nests and high-quality eggs will be passed on to the next generation.
The number of available host nests is fixed, and cuckoo eggs are likely to be found by

host birds. In this case, the host bird either throws away the eggs or abandons the nest and
builds a new one.

4.5. Dimensionality Reduction

Since the experiment of adding optimizers to deep learning did not improve the
performance of the deep learning model, this study also used dimensionality reduction
technology (PCA) and different oversampling methods, plus feature selection methods.
The experimental results are shown in Table 8, and it can be seen from Table 9 that the
classification accuracy of the MLP deep learning model composed of the SMOTE method
for oversampling in data preprocessing, the MBR method for feature selection, and the
dimensionality reduction technology PCA significantly increased to 89.03%, showing that
the oversampling method can indeed effectively deal with the problem of data imbalance.
The MBR feature selection method can effectively select the best feature subset. Coupled
with dimensionality reduction technology, it can indeed improve the performance of
the model.

Table 9. Feature selection of different oversampling and classification accuracy results with dimen-
sionality reduction.

Method Oversampling Feature Extraction ACC With PCA

MLP

ADASYN
CST 66.09% 68.94%
RFE 77.77% 79.20%
MBR 79.48% 85.47%

SMOTE
CST 71.83% 73.52%
RFE 77.77% 79.20%
MBR 78.9% 89.03%

Finally, this study summarizes all experimental results in Table 10. This study uses
six deep learning methods (ANN, DNN, DBN, LSTM, GRU, and MLP), combined with
different feature selection methods (MBR, CST, and RFE). In addition to methods dealing
with data imbalance (ADASYN and SMOTE), optimization algorithms were employed
during the process. The final results show that preprocessing uses MBR for preliminary
feature selection, then uses oversampling (SMOTE) technology to process the data, and
finally uses principal component analysis (PCA) to select the final features with the highest
accuracy. Excellent results were achieved with an accuracy of 89.03% in classifying Cystitis
and Bladder Cancer.
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Table 10. Comparison of the accuracy in distinguishing Bladder Cancer from Cystitis.

Method Imbalanced Feature Extraction Dimensionality
Reduction Optimizer ACC

ANN

ADASYN RFE PCA -

71.77%
DNN 72.57%
DBN 65.82%
LSTM 47.26%
GRU 52.74%

MLP

ADASYN

MBR

PCA

Bat 79.75%
Genetic 80.17%

Salp Swarm 81.43%
Cuckoo Search 82.28%

Grey Wolf Optimizer 84.81%

CST

Salp Swarm 64.4%
Genetic 66.67%

Sine Cosine 68.78%
Bat 68.78%

Grey Wolf Optimizer 69.2%

RFE

Genetic 73.41%
Whale Optimization 75.11%

Particle Swarm
Optimization 75.94%

Sine Cosine 77.21%
Salp Swarm 78.06%

-

Sine Cosine 78.9%
Firefly 79.75%

Cuckoo Search 82.28%
Salp Swarm 83.12%

Grey Wolf Optimizer 86.5%

SMOTE
MBR

PCA -
89.03%

CST 73.52%
RFE 77.75%

4.6. Comparison with Previous Research

This study implements a deep learning approach that can effectively distinguish
patients with Bladder Cancer and Cystitis, thereby contributing to the medical field. Table 11
is a comparison table of related research. In previous studies, Tong et al. [98] used machine
learning methods (ML) to classify the urine metabolome and its potential application
in the diagnosis of interstitial Cystitis in the study of Cystitis. Freitas [53] used feature
fusion, transfer learning, and CapsNets to detect Bladder Cancer, but they did not make
the dataset public. In other studies, Yu et al. [99] and Tsai et al. [29] both used machine
learning technology to distinguish Bladder Cancer from Cystitis, while this study used
a deep learning model to distinguish patients with Bladder Cancer and Cystitis and the
accuracy rate reached 89.6%, which is the highest accuracy rate among all studies so far.

In addition, the ROC curve of this study is shown in Figure 9. The ROC curve (Receiver
Operating Characteristic curve) is a chart commonly used to evaluate the performance
of binary classification models. It plots the true positive rate (also called the recall or
sensitivity) of the classifier as the y-axis and the false positive rate as the x-axis. The
AUC in the ROC curve in Figure 10 is 0.92 (ROC curve area), which shows the good
performance of the model in classification problems, with high discrimination ability and
prediction accuracy.
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Table 11. Comparison with previous research.

Disease D
im

ensionality
R

eduction

Method Dataset Author Result

C
ystitis

B
ladder

C
ancer

√
(ML)SVM, LR Cystitis data set [98] Acc: 86%√

(DL)CNN Experimental data set (unpublished) [53] -
√ √

(ML)Decision tree Shandong Provincial Hospital Dataset
(unpublished) [99] -

√ √
(ML)lightGBM Clinical trial data set [29] Acc: 87.6%√ √ √

(DL) MLP Clinical trial data set Our Study Acc: 89.03%

Note:
√

indicates used.
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In addition to accuracy, this study also included other evaluation metrics for com-
parison with relevant studies. As shown in Table 12, the deep learning method used in
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this study also achieved good performance in terms of precision and specificity. Precision
refers to the accuracy of the model in predicting positive samples, that is, the proportion
of samples predicted as positive samples by the model that are actually positive samples.
In this study, our research precision is as high as 94.85%, which means that the model
can accurately identify Bladder Cancer, which is very important for application scenarios
that require high precision. At the same time, the specificity of a clinical trial refers to
the test’s ability to correctly identify patients who do not have the disease, so a test with
100% specificity can correctly identify all patients who do not have the disease [100], and
the specificity in our study was as high as 95.97%. This means that the model can better
distinguish between true negative samples and false positive samples, further improving
the reliability and effectiveness of the proposed model. The F1 score is a harmonic average
of accuracy and recall and is particularly useful when dealing with unbalanced datasets.
Lopsided datasets are standard in the medical field, and the occurrence of a particular
disease may be rare compared to non-disease cases. Sensitivity measures the proportion
of actual positive cases (patients with a disease) correctly identified by the model. In a
medical context, sensitivity is critical because it indicates the ability of a diagnostic test to
correctly identify an individual who truly has a disease. The AUC represents the probability
that the model will rank a randomly selected positive instance higher than a randomly
selected negative instance. The higher the AUC value (close to 1), the better the model can
distinguish between diseased and non-diseased individuals.

Table 12. Comparison of evaluation metrics.

Method Accuracy Precision F1 Score Sensitivity Specificity AUC Author

MLP 89.03% 94.85% 87.62% 82.30% 95.97% 92% Our Study
lightGBM 87.6% 86.3% 87.7% 89.5% 85.5% 93.2% [29]

5. Discussion
5.1. Feature Selection

This study uses three feature selection methods, MBR, CST, and RFE, to screen out the
main features. From Table 6, it is found that the characteristics of nitrite test, age, diabetes,
smoking, betel nut consumption, and family history are duplicated among the three feature
selection methods, and the recurring characteristics are discussed as follows:

1. The nitrite test is a commonly used detection method. It can measure the nitrite
content (Nitrite) in urine. High nitrite content may be related to an increased risk of
Bladder Cancer. When we consume foods containing nitrite, nitrites can be converted
into carcinogens in the body, especially in acidic environments, such as urine in the
bladder. These carcinogens can cause damage to the cells lining the bladder and
increase the risk of Bladder Cancer. Using nitrites alone to differentiate between
Bladder Cancer and Cystitis (inflammation of the bladder or urinary tract infection) is
not a reliable diagnostic method because, in both cases, nitrites may be present in the
urine. However, nitrite testing can be part of a broader diagnostic approach.

2. Age is one of the known risk factors for Bladder Cancer. As age increases, the risk of
Bladder Cancer also increases. Age can be a factor in distinguishing between Bladder
Cancer and Cystitis patients, but it is not a definitive diagnostic criterion on its own.
Instead, age is one of several factors that healthcare professionals consider when
evaluating a patient’s condition. Bladder Cancer is more commonly diagnosed in
older individuals, typically over the age of 60. Older individuals may be more likely
to develop symptoms of Bladder Cancer, such as hematuria (blood in the urine), lower
back pain, or weight loss. It is important to emphasize that while age can provide
some context, it is not a standalone diagnostic tool for distinguishing between Bladder
Cancer and Cystitis. The final diagnosis and treatment plan should be determined by
a healthcare professional based on a comprehensive evaluation that takes into account
multiple factors.
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3. Diabetes, a chronic medical condition characterized by high blood sugar levels, can im-
pact the risk and presentation of various health issues, including Bladder Cancer and
Cystitis. However, diabetes alone is not a definitive diagnostic tool for distinguishing
between these two conditions. Diabetes is associated with certain risk factors that can
affect the development and progression of Bladder Cancer. These risk factors include
obesity, a sedentary lifestyle, and a history of smoking, which are more common in
individuals with diabetes. Diabetes can sometimes cause urinary symptoms, such
as frequent urination, increased thirst, and recurrent urinary tract infections (UTIs).
It is important to note that while diabetes may influence the risk and presentation
of bladder conditions, including Bladder Cancer and Cystitis, it is not a standalone
diagnostic tool. Patients with diabetes who experience urinary symptoms or have
concerns about their bladder health should promptly seek medical attention. Early
detection and appropriate evaluation are essential for the effective management of
these conditions, and healthcare providers will use a multifaceted approach to reach a
diagnosis.

4. Smoking and eating betel nuts have also been confirmed to be risk factors for Bladder
Cancer and are related to an increased incidence of Bladder Cancer. Smoking is a
recognized risk factor for Bladder Cancer. Smokers are more likely to develop Bladder
Cancer than non-smokers. Therefore, smoking history is an important consideration
when evaluating patients with urinary symptoms. Smoking-related Bladder Cancer
often presents with symptoms such as hematuria, frequent urination, and low back
pain. However, these symptoms can also be seen with Cystitis. Healthcare providers
may use diagnostic tests including urinalysis, urine culture, imaging studies (such as
CT scan or ultrasound), cystoscopy (visual examination of the bladder), and tissue
biopsies. These tests provide a more definite diagnosis. Betel nut consumption has
been linked to an increased risk of oral and esophageal cancer, but not directly to
Bladder Cancer or Cystitis. However, it is still necessary for healthcare providers to
evaluate patients for betel nut use for an overall health assessment. In conclusion,
while smoking and betel quid consumption are important factors to consider when
assessing bladder condition, they are not diagnostic tools. The final diagnosis of Blad-
der Cancer or Cystitis relies on a comprehensive evaluation, including the patient’s
medical history, symptoms, and diagnostic test results.

5. Genetic history (Family history) is also considered to be one of the risk factors for
Bladder Cancer, and individuals with Bladder Cancer cases in their families may be
at increased risk. Distinguishing between patients with Bladder Cancer and Cystitis
based solely on genetic family history is challenging because both diseases can occur
independently of genetic predisposition. However, family history can be a valuable
piece of information when assessing a patient’s risk factors and should be considered
as part of a comprehensive evaluation. Healthcare providers will ask patients about
their family history of any relevant medical conditions, including Bladder Cancer,
urinary tract disease, and other genetic conditions that may be associated with an
increased risk of Bladder Cancer. Certain genetic syndromes are associated with an
increased risk of Bladder Cancer, such as Lynch syndrome (hereditary nonpolyposis
colorectal cancer) and familial adenomatous polyposis (FAP).

These results provide further evidence to support the association of these features with
Bladder Cancer. The consistency of the feature selection method in selecting these features
may mean that they have important information in the diagnosis and prediction of Bladder
Cancer. Further research can explore the role of these features. Biological mechanisms and
clinical significance can help to better understand their role in the development of Bladder
Cancer. In addition, these characteristics can also serve as the basis for Bladder Cancer
risk assessment models and contribute to the early detection and prevention of Bladder
Cancer occurrence.
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5.2. Feature Importance Ranking

In terms of model explanation, some studies have begun to use SHAP (Shapley
Additive explanation) [101]. SHAP is a method used in machine learning and artificial
intelligence to explain the output of complex predictive models. It is particularly useful
in situations where you want to understand why a model made a specific prediction or
decision. Many machine learning models, such as deep neural networks or gradient-
boosted trees, are often considered “black boxes” because they lack transparency. SHAP
helps make these models more interpretable by providing insights into the contribution of
each input feature to the model’s predictions. SHAP values allow one to rank input features
based on their contribution to model predictions. This can be helpful for feature selection,
understanding which features are most influential, and simplifying complex models by
focusing on the most important features [102].

In the SHAP feature importance map, each feature has a SHAP value, which indicates
the degree of influence of the feature on the model’s prediction results. The positive
or negative SHAP value indicates the positive or negative impact of the feature on the
prediction results. The size of the numerical value represents the degree of impact. This
study uses SHAP to select the top ten features that are important for Bladder Cancer and
Cystitis from the 28 features of the MBR method, displays them in Table 13 and Figure 10,
and further discusses the relationship between these features and Bladder Cancer:

1. The average SHAP values of Urine Protein and Urobilinogen are 8.85 and 1.13, respec-
tively, which means that they have a large positive impact on predicting the outcome
of Bladder Cancer, indicating that in this dataset, high urinary levels of protein and
urobilinogen may be associated with increased risk of Bladder Cancer.

2. The average SHAP values of smoking and diabetes were 0.83 and 0.62, respectively,
showing a positive correlation between them and Bladder Cancer, which means that
smoking and diabetes may increase the risk of Bladder Cancer.

3. The average SHAP values for Hypertension, patient gender (Gender), and patient
age (Age) were 0.57, 0.33, and 0.29, respectively. These characteristics were positively
correlated with Bladder Cancer, indicating that patients with hypertension, male sex,
and older age may be associated with a slightly increased risk of Bladder Cancer.

4. The average SHAP values of Urine Bilirubin, Strip WBC, and Drinking were 0.24,
0.21, and 0.14, respectively. These features showed a weak positive correlation with
Bladder Cancer, which means increased levels of urinary bilirubin and stripped white
blood cells, as well as alcohol-drinking behavior, may be associated with a slightly
increased risk of Bladder Cancer.

Table 13. SHAP values of the first ten features.

Rank Feature Name Content SHAP Value (Average)

1 Urine Protein Urine Protein values 8.85
2 Urobilinogen Urobilinogen values 1.13
3 Smoking Whether the patient smokes 0.83
4 Diabetes Whether the patient has diabetes 0.62

5 Hypertension Whether the patient has high
blood pressure 0.57

6 Gerder Patient gender 0.33
7 Age Patient age 0.29
8 Urine Bilirubin Urine Bilirubin values 0.24
9 Strip WBC white blood cell values 0.21

10 Drinking Whether the patient has
consumed alcohol 0.14

In summary, these discussion results provide preliminary insights into the characteris-
tics associated with Bladder Cancer and Cystitis. Our findings have important implications
for the prediction and diagnosis of Bladder Cancer and lay the foundation for further
research and clinical practice. However, further research still needs to consider other factors
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and interactions to fully understand the complexity of Bladder Cancer and Cystitis and its
relationship with these characteristics.

5.3. Correlation Heatmap

Correlation heatmap is a graphical representation method used to visualize the cor-
relation between features. It shows the degree of correlation between features and uses
color to represent the strength of the correlation. Dark colors indicate low correlation
or no correlation, bright colors indicate high correlation, and the Correlation Heatmap
represents the correlation matrix between the numerical variables to be considered in the
data model [103]. Figure 11 is the correlation matrix heatmap of this study, which uses
a matrix The form displays the correlation coefficient or degree of correlation between
features and uses different colors to indicate the strength of the correlation. If there is a high
degree of correlation between multiple features, there may be a multicollinearity problem.
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According to the results of the correlation heatmap in Figure 11, this study summarizes
several features with higher correlations in Table 14 and discusses them as follows:

1. There is a negative correlation between the glomerular filtration rate (Estimated GFR)
and creatinine (Creatinine), which means that when the glomerular filtration rate
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increases, the creatinine level decreases, which may be related to healthy kidney
function.

2. There is also a negative correlation between the glomerular filtration rate (Estimated
GFR), urinary protein (Urine Protein), and age (Age), which may mean that when the
glomerular filtration rate decreases, the concentration of urinary protein and age may
increase. These factors may be associated with the risk of kidney disease.

3. There is a positive correlation between smoking and drinking, which means that these
two behaviors often occur together, which may help understand the risk factors and
preventive measures for Bladder Cancer.

4. There is also a positive correlation between urinary protein (Urine Protein) and urinary
occult blood (Urine occult Blood), which may imply that these two characteristics
are related to the diagnosis or monitoring of Bladder Cancer. Changes in these
characteristics may reflect the development and progression of Bladder Cancer.

Table 14. Feature correlation coefficient ranking.

Feature (1) Feature (2) Correlation Coefficient

Smoking Drinking 0.49

Urine Protein Creatinine 0.46

Estimated GFR Urine Protein −0.37

Estimated GFR Age −0.35

Urine Protein Urine occult Blood 0.33

Estimated GFR Creatinine −0.6

In summary, the results of these correlation matrix heat maps provide valuable infor-
mation for our understanding of the relevant characteristics and possible risk factors that
distinguish Bladder Cancer from Cystitis and help assess the risk of Bladder Cancer and
formulate corresponding preventive measures. Further studies can build on these findings
to gain insight into these characteristics and correlates of distinguishing between Bladder
Cancer and Cystitis. According to the empirical study of yuan [104], SHAP interpretation
will fluctuate when small background datasets are used, and these fluctuations will de-
crease when the sample size of background datasets increases. However, evaluations like
the BLEU score and the Jaccard index indicate that SHAP is more reliable in ranking the
most and least important than the moderately important variables.

6. Conclusions

Bladder Cancer is a heterogeneous disease. Patients with Bladder Cancer may initially
be misdiagnosed as Cystitis or infection. Accurate diagnosis of early Bladder Cancer is
the key to successful treatment. This study proposes a deep learning model to distinguish
Cystitis from Bladder Cancer. This model can classify these two diseases more accurately.
However, due to the imbalance of the dataset, we found difficulties in classification. There-
fore, this study used data imbalanced technology (SMOTE) to balance the dataset. In
addition, we compared six different classification models based on deep learning algo-
rithms, namely ANN, DNN, GRU, DBN, LSTM, and MLP. By comparing these models,
we found that the MLP model performed better than the other five deep learning models.
Therefore, we further improved the MLP deep learning model by using three different
feature selection methods and multiple optimization algorithms to achieve better accuracy.
In order to further verify the effect of the deep learning model proposed in this study, this
study compared it with the lightGBM model proposed by Tsai et al. [29]. The experimental
results show that using the feature ranking technology based on the learning model as
the feature selection method is effective. Using principal component analysis (PCA) for
dimensionality reduction can achieve the best accuracy, with an accuracy rate of 89.03%.
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This result is better than past research results and can effectively reduce the possibility of
misdiagnosis and provide a better clinical diagnosis tool.

Although the MLP model proposed in this study has good classification performance
for Cystitis and Bladder Cancer, it still has limitations. First, all training data are from
Mackay Memorial Hospital, excluding multi-center data. The dataset for training and vali-
dating the MLP model should include more data, and further incorporating multi-center
data to improve the generalization performance of the model will be an important consid-
eration before the model is widely used in clinical practice. In the future, the efficiency
of evaluation indicators can also be improved by adopting different data preprocessing
methods, such as the Kalman Filter technology [105]. Moreover, we will continue to collect
data from other hospitals and include these data in training to strengthen the model’s
generalization ability, further improve the performance and reliability of the model, and
provide better support for clinical diagnosis and treatment.
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