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Abstract: The osprey optimization algorithm (OOA) is a new metaheuristic motivated by the strategy
of hunting fish in seas. In this study, the OOA is applied to solve one of the main items in a power
system called economic load dispatch (ELD). The ELD has two types. The first type takes into
consideration the minimization of the cost of fuel consumption, this type is called ELD. The second
type takes into consideration the cost of fuel consumption and the cost of emission, this type is called
combined emission and economic dispatch (CEED). The performance of the OOA is compared against
several techniques to evaluate its reliability. These methods include elephant herding optimization
(EHO), the rime-ice algorithm (RIME), the tunicate swarm algorithm (TSA), and the slime mould
algorithm (SMA) for the same case study. Also, the OOA is compared with other techniques in the
literature, such as an artificial bee colony (ABO), the sine cosine algorithm (SCA), the moth search
algorithm (MSA), the chimp optimization algorithm (ChOA), and monarch butterfly optimization
(MBO). Power mismatch is the main item used in the evaluation of the OOA with all of these methods.
There are six cases used in this work: 6 units for the ELD problem at three different loads, and
6 units for the CEED problem at three different loads. Evaluation of the techniques was performed
for 30 various runs based on measuring the standard deviation, minimum fitness function, and
maximum mean values. The superiority of the OOA is achieved according to the obtained results for
the ELD and CEED compared to all competitor algorithms.

Keywords: osprey optimization algorithm; economic load dispatch; power system

MSC: 68Txx

1. Introduction

An important optimization issue for a power system’s efficient and trouble-free opera-
tion is the economic load dispatch (ELD). The net electricity demand is rising alarmingly
quickly. As a result, the cost of fuel for producing electricity is also rising. Therefore,
to ensure power systems operate reliably, it is necessary to lower operational costs. By
maximizing the thermal units’ ability to produce energy, the ELD issue aims to lower the
system’s running costs while also enhancing the system’s dependability. The combined
economic emission dispatch (CEED) problem is a result of the tendency in recent years to
consider cost and pollution while planning and operating power systems [1,2]. As a result,
ELD and CEED are intricate power system optimization problems with nonlinear fitness
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functions, equality requirements, and inequality constraints. Because the ELD problem
is not linear, standard techniques are only partially effective in addressing it. Different
metaheuristic methods have been suggested by researchers to address such issues. The
benefits of metaheuristic algorithms have confirmed the effectiveness of other approaches
in dealing with complex optimization problems [3–5].

To determine the real and reactive power of the electrical generation system, the linear
programming approach was utilized; however, such methods have a significant calculation
time and are occasionally unable to offer a global solution for huge data sets [6]. The pattern
search approach was suggested as a way to find the best solution to the ELD problem,
and the impacts of valve loading were considered. To validate the findings, the suggested
algorithm was evaluated on a variety of test data and compared to existing optimization
methods [7]. Transmission losses, dynamic operation limitations, and restricted operating
zones were all employed in conjunction with the ELD problem in the PSO approaches [8].
The ELD issue, which comprises a DC load flow and network security limitations, was
solved using quadratic programming [9].

Numerous metaheuristic (MH) methods have been developed to address the ELD
issue in the same setting. These MH techniques may be broadly divided into four sorts of
algorithms: evolutionary, swarm-based, physical-based, and human-based. All of these
types simulate swarm activity or other natural phenomena to find the best solution.

Recently, many optimization algorithms, such as the white shark optimizer [10], the
search and rescue optimization algorithm (SAR) [11], the greedy sine-cosine nonhierarchi-
cal gray wolf optimizer (G-SCNHGWO) [12], the efficient chameleon swarm algorithm
(CSA) [13], the memetic sine cosine algorithm [14], the hybrid Harris hawks optimizer
(HHO) [15], the oppositional pigeon-inspired optimizer (OPIO) algorithm [16], the modi-
fied krill herd algorithm [17], the modified differential evolution algorithm [18], artificial
eco system-based optimization [19], turbulent flow of water optimization (TFWO) [20], par-
ticle swarm optimization (PSO) [21], evolution strategy (ES) [22], teaching learning based
optimization (TLBO) [23], the modified symbiotic organisms search algorithm (MSOS) [24],
civilized swarm optimization (CSO) [25], the ant lion optimization algorithm (ALO) [26],
the efficient distributed auction optimization algorithm (DAOA) [27], the hybrid grey wolf
optimizer (HGWO) [28], the improved genetic algorithm (IGA) [29], the improved firefly
algorithm (IFA) [30], biogeography-based optimization (BBO) [31], the heat transfer search
(HTS) algorithm [32], adaptive charged system search (ACSS) [33], the evolutionary sim-
plex adaptive Hooke–Jeeves algorithm (ESAHJ) [34], the enhanced moth-flame optimizer
(EMFO) [35], multi-strategy ensemble biogeography-based optimization (MSEBBO) [36],
several new hybrid algorithms [37], a fully decentralized approach (DA) [38], the exchange
market algorithm (EMA) [39], bacterial foraging optimization (BFO) [40], the artificial coop-
erative search algorithm (ACS) [41], a new firefly algorithm (FA) via a non-homogeneous
population [42], a modified chaotic artificial bee colony (MABC) [43], a distributed auction
based algorithm (AA) [44], the one rank cuckoo search algorithm (ORCSA) [45], and the
modified crow search algorithm (MCSA) [46] have been employed to find the optimal
solution for the ELD problem. The description of each work is presented in Table 1.

According to the no free lunch (NFL) formula [47–51], different metaheuristics perform
and behave differently when tackling diverse classes of problems. One cutting-edge
metaheuristic approach to solving the ELD problem is the osprey optimization algorithm
(OOA) [52]. The OOA method is simple to implement due to its straightforward formula,
few parameters, and fundamental idea.
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Table 1. Literature survey for each method.

Year Reference Description

2003 [21] The EED problem was solved using the PSO method while taking into account generator limitations
such as ramp rate limits and prohibited operation zones.

2005 [29]
Power economic dispatch problems were solved using an IGA, and it was tested using three different
scenarios: one that considered valve-point effects, one that considered various fuels, and one that
addressed both valve-point effects and numerous fuels.

2008 [40]
Non-convex ED problems with a variety of restrictions may be solved with ease by the Nelder-Mead
hybrid technique. Simulations of several standard test systems with variable numbers of generating
units were run.

2009 [25] A series of multi-minima economic dispatch problems were used to evaluate the performance of CSO.

2010 [31]
Convex and non-convex ELD problems facing thermal plants were solved using a BBO method. This
approach was applied to four different test systems, both small and big, requiring differing degrees
of complexity.

2013 [36]

For resolving ELD problems, the authors suggested a MSEBBO. The no free lunch theorem is used by the
MEEBBO to enhance the three elements of BBO to maintain a good balance between exploration and
exploitation. Additionally, a powerful repair method is suggested to address the various ELD problem
constraints.

2014 [43] The standard IEEE 30 bus with six generators, fourteen generators, and forty thermal generating units
was subjected to the modified artificial bee colony approach for non-convex CEED problems.

2014 [44]
The non-convex ELD problem was solved using a distributed auction-based method and had many
constraints, including the valve-point loading effect, numerous fuel alternatives, and restricted operating
zones.

2015 [23] To solve EPLD problems while considering transmission losses, the TLBO method was used. This
method explores the solution space for the global optimal point.

2015 [38]
The non-convex formulation of the ED problem can be solved very efficiently using a DA method, and
transmission losses can be precisely taken into consideration in a fully decentralized way. Three case
studies were examined.

2015 [45] ELD issues were solved with the ORCSA method. Additionally, complete testing on several systems
with various restrictions and thermal unit characteristics was presented.

2016 [24] Five systems—13-unit, 40-unit, 80-unit, 160-unit, and 320-unit systems—with various features,
constraints, and dimensions were used to evaluate the performance of the MSOS.

2016 [28] Using a HGWO, four economic dispatch problems with 6, 15, 40, and 80 generators were tested.

2016 [39]
The EMA is a reliable and effective technique for locating the global optimization’s best solution for ELD
situations. Additionally, four test systems in four distinct dimensions—3, 6, 15, and 40 units—with both
convex and non-convex cost functions—were used to develop it.

2018 [27] The most effective approach for the ELD problem was discovered using the DAOA.

2018 [33] Using an ACSS method, a variety of economic dispatch cases formed of 6-, 13-, 15-, 40-, 160-, and
640-unit generating systems were studied as benchmarks for small- and large-scale problems.

2018 [35]
The non-convex ELD problem with valve-point effects and emissions was solved using the EMFO
method on three typical test systems comprising 6, 40, and a large-scale 80 generating units with
non-convex fuel cost functions.

2018 [46] The non-convex ELD problem was solved using the MCSA and applied to five well-known test systems.

2019 [41] The ACS technique, based on a co-evolutionary technique, was offered as a potential solution to the
challenging ELD problem.

2020 [26]
Problems involving the optimal ELD were handled using the ALO. The results of applying the ALO
algorithm to all three cases revealed that it has greater potential than other techniques for the solution,
stability, and convergence velocity.
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Table 1. Cont.

Year Reference Description

2020 [32] The HT method was used to resolve the complex ELD problem with the integration of wind generation.

2021 [13] The ELD problem was resolved based on CSA’s effective operation with a six-unit system.

2021 [20] To solve ELD and CEED issues, the authors created a TFWO method.

2021 [34]
On five generating systems with valve-point effects, the ESAHJ performance was evaluated. The test
findings for the suggested approach showed high convergence features and low generation costs,
making them extremely effective and encouraging.

2021 [42]
ELD problems were solved with the FA. A 15-unit ELD problem with many considerations for each
generator was solved using ten benchmark functions, and a 13-unit non-convex system with a
valve-point loading effect was solved.

2022 [11]
The SAR was used by the authors to get at the optimum approach for the CEED and ELD. The outcomes
demonstrated that the SAR was the optimum option for ELD, integrated pollution control, and economic
dispatch.

2022 [12] To solve ELD problems, the authors proposed a GSCGWO. The power generators in these four power
systems total 10, 15, 40, and 140, with various valuation times.

2022 [16] The ELD problem of small-scale (13-unit, 40-unit), medium-scale (140-unit, 160-unit), and large-scale
(320-unit, 640-unit) test systems was solved using the OPIO algorithm.

2022 [17] The authors solved an ELD issue with the MKH method. In comparison to other metaheuristics, the
MKH was found to perform rather well, and tweaking parameters in the MKH was also fairly simple.

2023 [14] The ELD problem was solved by a memetic sine cosine algorithm that was applied to six real-world
cases: 3, 6, 13, 13, 15, and 40 units of generator.

2023 [15] ELD problems were solved using HHO methods in six generation units.

2023 [18] The global minimum and other instances of the ELD were obtained by solving a series of test functions
using the modified differential evolution method.

The main points of contribution and objectives in this paper are illustrated as follows:

• To discuss two network studies: ELD with various load demands and CEED with
various load demands.

• A new metaheuristic technique called osprey optimization algorithm (OOA) is applied
to solve the ELD and CEED problems.

• The proposed OOA method is compared with the rime-ice algorithm (RIME), the
tunicate swarm algorithm (TSA), the slime mould algorithm (SMA), and elephant
herding optimization (EHO) for the same case study.

The paper is organized as follows: the CEED and ELD issues are deliberated in
section two. The OOA method is discussed in section three. The discussion of the results
is presented in section four. The conclusions and areas for future work are depicted in
section five.

2. Economic Load Dispatch Problem

One of the problems with the operation of power systems is ELD. The primary chal-
lenge in solving the ELD issue is reducing fuel consumption expenses to maximize the
economic advantage for power plants. The primary variable in the ELD issue defines the
vector for distributing resources so that each unit produces the most power. Following is a
discussion of CEED and ELD analysis with losses.

2.1. ELD

The mathematical equations of ELD with losses can be labeled as follows. To run n
generators, the consumption fuel cost will be pinpointed as follows:

Min(F) = F1(P1) + . . . Fn(Pn) (1)
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where F stands for the net fuel cost, F1 for the cost of fuel in the first generator, and Fn
for the cost of fuel in the nth generator. The following methods will be used to obtain a
function of consumption fuel cost in quadratic form:

in(F) =
n

∑
k=1

Fi(Pi) =
n

∑
k=1

akP2
k + bkPk + ck (2)

where a, b, and c stand for the fuel cost’s weight constants. Additionally, using
Equations (3) and (5), the generator constraints for each unit can be varied from zero
up to 500 MW.

n

∑
k=1

Pk − PD − PL = 0 (3)

where PD denotes the total demand of the network and PL denotes 6 transmission losses of
the network which can be calculated as follows:

PL =
n

∑
i=1

n

∑
j=1

PiBijPj (4)

where Bij refers to the loss factor, Pi refers to the generated power at the ith generator, and
Pj refers to the generated power at the jth generator.

Pmin
k ≤ Pk ≤ Pmax

k (5)

2.2. CEED

Progress on the ELD issue can be achieved by considering the reduction of emission
costs alongside the production cost, which is defined as the CEED. The factor of emission
can be mathematically calculated by:

Min(E) =
n

∑
k=1

Ei(Pi) =
n

∑
k=1

αkP2
k + βkPk + γk (6)

The CEED objective function is calculated according to the following equation:

objective function = Min

(
n

∑
k=1

Ei(Pi) + he

n

∑
k=1

Fi(Pi)

)
(7)

where refers to the penalty factor for the price as given in Equation (8):

he =
Fi(Pimax)

Ei(Pimax)
(8)

The generator constraints in each unit are accounted for by Equations (3) and (5).

3. Osprey Optimization Algorithm

In this section, the recent osprey optimization algorithm (OOA) is presented, and then
the mathematical modeling is presented [52].

3.1. Inspiration of OOA

The osprey, often referred to as the fish, river, and sea hawk, is a nocturnal fish-eating
bird of prey with a wide geographic range. A clever natural behavior that can serve
as the foundation for creating a new optimization algorithm is the osprey approach of
catching fish and carrying them to an advantageous location to consume them. To build
the suggested OOA method, which is covered in the following section, these intelligent
osprey behaviors were mathematically modeled.
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3.2. Mathematical Modelling

The procedure of updating the positions of ospreys in the two phases of exploration
and exploitation based on the simulation of natural osprey behavior is presented [52] after
the startup of the OOA is detailed in this subsection.

3.2.1. Initialization

The suggested OOA is a population-based strategy that, using a repetition-based
method, can find a workable solution based on the search power of its population members
in the problem-solving space. Based on its location in the search space, each osprey
calculates the values of the problem variables as a member of the OOA population. As a
result, each osprey represents a potential solution to the issue, represented numerically by
a vector. The OOA population, which is made up of all ospreys, can be described using a
matrix per Equation (9). Using Equation (10), the location of ospreys in the search space is
initialized at random at the start of the OOA implementation. To be specific, the factors
mentioned in Equations (2) and (6) are represented by xi,j as defined in Equation (10).

X =



X1
...

Xi
...

XN


N×m

=



x1,1 · · · x1,j · · · x1,m
...

. . .
...

. . .
...

xi,1 · · · xi,j · · · xi,m
... ∴

...
. . .

...
xN,1 · · · xN,j · · · xN,m


N×m

,
(9)

xi,j = lbj + ri,j·
(
ubj − lbj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , m, (10)

where X represents the population matrix of the locations of the ospreys, Xi represents
the jth osprey (a candidate solution), xi,j represents its jth dimension (problem variable),
N represents the number of ospreys, m represents the number of problem variables, ri,j
represents random numbers in the range [0, 1], lbj, and ubj represent the lower bound and
upper bound.

The objective function defined in Equations (3) and (7) can be assessed since each
osprey is a potential solution to the problem that corresponds to that particular osprey.
According to Equation (11), a vector can be used to represent the evaluated values for the
problem’s objective function.

F =



F1
...

Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN)


N×1

, (11)

where Fi is the calculated objective function value for the ith osprey and F is the vector of
the objective function values.

The primary criteria for assessing the quality of potential solutions are the values
evaluated for the objective function. The best candidate solution (i.e., the best member)
corresponds to the best value found for the objective function, and the worst candidate
solution (i.e., the worst member) corresponds to the worst value obtained for the objective
function. The best candidate solution must be modified in each iteration since the location
of the ospreys in the search space is updated on each iteration.

3.2.2. Phase 1: Identification of Positions and Hunting of Fish (Exploration)

Ospreys are powerful hunters with great eyesight that allows them to locate fish
underwater. They locate the fish, attack it, and chase the fish by diving under the surface.
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The first stage of the OOA’s population update was modeled using a simulation of ospreys’
actual natural behavior. The position of the osprey in the search space changed significantly
as a result of modeling the osprey attack on fish, increasing the exploration capacity of the
OOA in locating the ideal location and eluding the local optima.

The placements of other ospreys in the search space that have a higher objective
function value were regarded as undersea fishes for each osprey in the OOA design. Using
Equation (12), the set of fish for each osprey was determined as:

FPi = {Xk | k ∈ {1, 2, . . . , N} ∧ Fk < Fi} ∪ {Xbest} (12)

where FPi is the fish position set for the ith osprey and Xbest is the best osprey solution.
One of these fish is randomly located by the osprey, which then strikes it. Using

Equation (13), a new position for the matching osprey was determined based on the
simulation of the osprey’s movement towards the fish. According to Equation (14), the
osprey will move to this new position if it enhances the value of the objective function.

xP1
i,j = xi,j + ri,j·

(
SFi,j − Ii,j·xi,j

)
,

xP1
i,j =


xP1

i,j , lbj ≤ xP1
i,j ≤ ubj;

lbj, xP1
i,j < lbj;

ubj, xP1
i,j > ubj.

(13)

Xi =

{
XP1

i , FP1
i < Fi;

Xi, else,
(14)

where XP1
i is the ith osprey new position based on the first phase of OOA, xP1

i,j is its jth
dimension, FP1

i is its fitness function, SFi is the fish selected for ith osprey, SFi,j is the jth
dimension, ri,j are random numbers in the interval [0, 1], and Ii,j are random numbers from
the set {1, 2}.

3.2.3. Phase 2: Carrying the Fish to the Suitable Location Position (Exploitation)

The osprey carries a fish it has caught to a good location where it will consume it.
Based on a simulation of this real behavior, the second stage of updating the population
in the OOA was modeled. The osprey’s position in the search space was created by small
changes caused by modeling the carrying of the fish to the proper position, which increased
the OOA’s exploitation power in the local search and caused convergence towards better
solutions close to the discovered solutions. In the OOA design, a new random position was
initially determined for each member of the population as a “suitable position for eating
fish” using Equation (15). This simulated the natural behavior of ospreys.

Then, per Equation (16), it replaced the former location of the related element if the
value of the objective function was enhanced in this new position.

xP2
i,j = xi,j +

lbj+r·(ubj−lbj)
t , i = 1, 2, . . . , N, j = 1, 2, . . . , m, t = 1, 2, . . . , T,

xP2
i,j =


xP2

i,j , lbj ≤ xP2
i,j ≤ ubj;

lbj, xP2
i,j < lbj;

ubj, xP2
i,j > ubj,

(15)

Xi =

{
XP2

i , FP2
i < Fi;

Xi, else,
(16)

where XP2
i is the ith osprey new position based on the second phase of the OOA, xP2

i,j is the

jth dimension, FP2
i is its fitness function, ri,j are random numbers in the interval [0, 1], t is

the iteration counter of the method, and T is the total number of iterations.
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3.3. Repetition Process, Flowchart, and Pseudocode of OOA

The first iteration of the planned OOA was finished by revising all of the ospreys’
positions according to the first and second stages. The best candidate solution was then
modified based on a comparison of the values of the objective function. The algorithm then
moved on to the following iteration with the revised osprey placements, and so forth until
the last iteration based on Equations (12)–(16). The best candidate solution saved during
the iterations is finally presented as a solution to the problem after the algorithm was fully
implemented. The chart in Figure 1 and accompanying pseudocode in Algorithm 1 [52]
show the OOA implementation processes.
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4. Analysis and Discussion of Results

The OOA performance for the two issues of ELD and CEED is presented. The proposed
OOA method was compared with the tunicate swarm algorithm (TSA) [53], the RIME [54],
the SMA [55] and elephant herding optimization (EHO) [56]. The ELD problem was first
applied as a case study for 6 units at three load demand values (700, 1000, and 1200 MW).
The CEED problem was applied as a second case study for 6 units at three load demand
values (700, 1000, and 1200 MW). The general setting for all techniques is illustrated in
Table 2.
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Table 2. Parameters setting of each method.

Algorithms Parameter Setting

General setting
No. of iterations = 1000
Decision parameters = 6

Population size = 30

OOA ri,j are random numbers in the interval [0, 1],
Ii,j are random numbers from the set {1, 2}

RIME r1, and r3 are random numbers within (−1, 1)
r2 is a random number in the range (0, 1)

EHO alpha = 0.5, beta = 0.1
SMA Z = 0.03
TSA Pmin = 1 and Pmax = 4

4.1. Results of ELD Issue

A case study of 6 units at three load demand levels is presented in analysis of the
ELD problem. Several algorithms were applied to this problem, such as the OOA, TSA,
RIME, SMA, and EHO. Thirty independent runs were applied to measure the performance
of all of the competitor methods. Based on these runs, the minimum, standard deviation,
mean, and maximum values were recorded as statistical data at each level of load as seen
in Table 3. Based on this data, the OOA achieves the best standard deviation and the best
objective function. So, the most accurate and reliable algorithm for ELD is the OOA. Table 4
illustrates the best cost of consumption fuel for all cases. Table 5 depicts the best-generated
power from each unit at a 700 MW load demand based on the best fitness function for all
algorithms. Table 6 shows the best-generated power from each unit at a 1000 MW load
demand based on the best fitness function for all algorithms. Table 7 demonstrates the
best-generated power from each unit at a 1200 MW load demand based on the best fitness
function for all algorithms. Based on the recorded results from all methods among the
30 runs, the robustness curve characterizes the value of the objective function among each
run. Figures 2–4 showcase the characteristics of the robustness curve for all levels of the
load demand. Based on the recorded results from all of the methods among the best runs
out of the 30 that achieve the best fitness function, the convergence curve characterizes the
fastest method that reaches the objective function. Figures 5–7 depict the characteristics
of the convergence curve for all levels of load demand. Based on the robustness and
convergence characteristics, the OOA achieves the optimum global solution.

Table 3. Statistical data for ELD using all algorithms ($ per hour).

Demand
(MW) Algorithm Min SD Mean Max

700

OOA 8489.71013 5,076,187.167 935,505.3799 27,812,146.81
RIME 157,119.6598 56,610,134.62 52,654,562.24 190,938,550.9
EHO 323,503.0771 164,951,021.9 157,742,034.9 830,026,118.4
SMA 8502.406541 898.1936009 9689.146486 12,698.30255
TSA 161,424.5504 1.25 × 107 11,045,846.26 43,283,357.63

1000

OOA 12,145.56118 147.1792166 12,328.60609 12,769.69945
RIME 43,804.62747 45,918,517.41 44,117,668.43 159,925,064.1
EHO 1,385,818.233 43,729,545 39,739,552.31 160,205,265
SMA 12,310.85263 3167.418523 13,720.89249 29,123.65877
TSA 338,416.1136 1.49 × 107 14,797,087.09 70,710,421.98

1200

OOA 14,844.17028 106,377.3814 34,559.66353 597,774.5881
RIME 647,657.0993 111,021,190.9 76,380,860.23 557,699,468.3
EHO 66,594,721.86 2,050,678,201 2,246,833,875 8,220,483,497
SMA 14,960.25669 2462.012063 16,065.99129 27,329.59533
TSA 1,040,954.65 21,439,850.48 23,898,498.47 65,710,037.14
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Table 4. Minimum fuel consumption costs for ELD ($ per hour).

Algorithm 700 MW 1000 MW 1200 MW

OOA 8489.71013 12,145.56118 14,844.17028
RIME 8930.126895 12,220.14976 14,929.15938
EHO 9201.247567 13,577.96384 17,159.01262
SMA 8502.406541 12,269.08288 14,890.22354
TSA 8719.411543 12,324.03706 15,043.25053

Table 5. The generated power (MW) from each unit for ELD at 700 MW load demand.

OOA RIME EHO SMA TSA

288.1936492 100 74.27685394 291.9724948 179.5604411
71.24189189 97.67174678 96.60780328 95.58202252 68.62630472
94.19305375 172.6253448 108.0508678 96.94958415 120.8437852
77.62559738 134.7024241 128.464386 66.84420361 133.2068048
101.6542888 112.6905922 151.8904691 97.50539107 161.4281797
78.76324794 96.46689215 153.8266087 62.48476668 50

Table 6. The generated power (MW) from each unit for ELD at 1000 MW load demand.

OOA RIME EHO SMA TSA

400.5765793 416.3680247 89.88251423 413.3002088 499.1064857
184.3641601 58.65210153 115.9348269 199.8242953 56.13947257
198.9629992 247.8243991 136.9111861 186.8499139 144.1194586
60.51914068 107.9181452 145.4592182 51.97368989 138.9537992
124.4995504 95.19702846 208.9981201 50.99369441 114.1379038
54.35074684 98.1158557 327.7323289 119.9990952 70.12055135

Table 7. The generated power (MW) from each unit for ELD at 1200 MW load demand.

OOA RIME EHO SMA TSA

468.1992937 500 76.71759497 415.970695 500
183.9250281 90.28209597 113.5295062 168.0667693 190.1559272
248.0430036 247.1131882 179.1731727 298.2491761 122.6292221

97.982237 123.8746742 181.4297643 104.1223325 128.515068
169.116858 157.7756826 192.5547606 199.9999955 173.3199231
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4.2. Results of CEED Problem

A case study of 6 units at three load demand levels is presented to analyze the CEED
problem. Several algorithms were applied to this problem, such as the OOA, TSA, RIME,
SMA, and EHO. Thirty independent runs were applied to measure the performance of
all of the competitor methods. Based on these runs, the minimum, standard deviation,
mean, and maximum values were recorded as statistical data at each level of load as seen
in Table 8. Based on this data, the OOA achieves the best standard deviation and the best
objective function. So, the most accurate and reliable algorithm for ELD is the OOA. Table 9
illustrates the best cost of consumption fuel for all cases. Table 10 depicts the best-generated
power from each unit at a 700 MW load demand based on the best fitness function for
all algorithms. Table 11 shows the best-generated power from each unit at a 1000 MW
load demand based on the best fitness function for all algorithms. Table 12 presents the
best-generated power from each unit at a 1200 MW load demand based on the best fitness
function for all algorithms. Based on the recorded results from all of the methods among
the 30 runs, the robustness curve characterizes the value of the objective function among
each run. Figures 8–10 depict the characteristics of the robustness curve for all levels of load
demand. Based on the recorded results from all of the methods among the best runs from
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the 30 runs that achieve the best fitness function, the convergence curve characterizes the
fastest method that reaches the objective function. Figures 11–13 display the characteristics
of the convergence curve for all levels of load demand. Based on the robustness and
convergence characteristics, the OOA achieves the optimum global solution.

Table 8. Statistical data for CEED using all algorithms ($ per hour).

Demand
(MW) Algorithm Min SD Mean Max

700

OOA 13,729.25276 451.5174275 14,516.06635 15,328.15021
RIME 192,447.3458 208,328,375.9 124,827,189.5 1,026,320,992
EHO 14,201,636.42 266,068,058.3 245,161,496.9 1,180,743,975
SMA 13,902.65065 1346.302672 16,232.30745 20,837.35633
TSA 437,640.1904 14,454,883.71 13,696,680.57 59,328,593.81

1000

OOA 21,615.36632 942.8912121 22,726.61646 24,636.02763
RIME 1,716,313.573 62,284,621.82 55,672,191.78 295,816,509.5
EHO 37,048.65857 40,394,801.02 39,978,221.4 128,249,578.6
SMA 21,825.35037 2359.444736 24,422.15373 32,181.52154
TSA 1,527,919.533 16,727,355.69 16,432,066.87 71,410,265.4

1200

OOA 27,973.14804 51,923.65941 38,269.17284 313,175.7045
RIME 867,550.5025 64,850,599.89 64,743,277.09 222,328,197.6
EHO 48,039,881.34 2,312,392,376 1,919,239,905 8,618,622,585
SMA 28,405.56152 1902.826273 30,216.01233 36,613.94417
TSA 231,004.4218 18,455,252.22 22,333,023.46 68,956,768.4

Table 9. Minimum fitness function for CEED ($ per hour).

Algorithm 700 MW 1000 MW 1200 MW

Fuel Emission Fuel Emission Fuel Emission

OOA 8483.634452 5588.646691 12,161.84094 10,233.44274 14,866.11098 14,612.79425
RIME 8431.695806 5047.42326 12,307.94781 13,121.02468 14,861.21847 15,743.05095
EHO 9206.302521 10,616.02658 13,814.47332 27,920.96174 17,437.93278 50,362.10471
SMA 8507.728643 6105.614158 12,188.25965 9816.166095 14,862.5486 15,868.57055
TSA 8776.708178 7371.129746 12,381.47358 10,375.96202 14,920.81305 18,329.33556

Table 10. The generated power (MW) from each unit for CEED at 700 MW load demand.

OOA RIME EHO SMA TSA

269.767936 343.4755772 88.50987751 217.1592473 131.1911477
96.13075673 59.06883111 92.10828089 89.13670916 170.6718075
111.2458027 96.84808663 104.5033046 156.2882148 199.7174815
101.0842946 55.47194818 109.9641282 82.28373091 55.52645172
60.74111401 93.04112837 124.918835 96.78800842 72.68207485
72.43570158 63.01857975 192.5541969 70.63969799 83.47079715

Table 11. The generated power (MW) from each unit for CEED at 1000 MW load demand.

OOA RIME EHO SMA TSA

365.8570453 346.5147003 87.1819096 357.847752 483.0745935
158.5402394 50 102.8530268 167.9022744 131.8231399
189.5613645 266.824565 102.8581958 202.5030352 101.8290821
110.3792318 85.95375207 134.8791731 50 146.1161231
115.2493189 200 247.0179056 166.607947 59.26627522
84.29429492 77.67398741 350.2591399 79.834013 99.95671992
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Table 12. The generated power (MW) from each unit for CEED at 1200 MW load demand.

OOA RIME EHO SMA TSA

449.6819234 494.9447771 52.0752919 494.283923 461.4678788
147.8653475 143.4837708 100.9132864 142.773607 104.8448432
243.9501883 278.0708989 131.3313064 270.2859306 300
99.5666135 107.0759198 177.0521457 135.9364431 100.5227517

195.2957655 155.8467164 290.5798172 139.9015771 149.014853
99.41554831 54.80297076 481.7029118 50.79427633 120
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4.3. Discussion

The main item in ELD problems is called the value of power mismatch. This is the
absolute error between the units’ generated power and the summation of the demand
and transmission losses. As the value of power mismatch tends towards zero, the method
that extracts this value is the highest-performing technique. Table 13 contains the value of
this factor for ELD and CEED. Also, the proposed OOA is matched with other techniques
from the literature, such as the sine cosine algorithm, monarch butterfly optimization, an
artificial bee colony, the moth search algorithm, and the chimp optimization algorithm in
addition to the five methods used during the runs. Based on this data, the OOA technique
achieves the best power mismatch value in all cases. The Friedman test is a statistical test
used to decide the best algorithm for solving a problem. The results of the Friedman rank
test are shown in Figure 14. It is observed that OOA obtains the best rank, followed by
SMA then RIME, TSA, and EHO.

Table 13. The value of ELD and CEED power mismatch.

Cases Method 700 MW 1000 MW 1200 MW

ELD

OOA 7.64 × 10−13 7.50 × 10−13 4.26 × 10−13

RIME 1.48 × 10−5 3.16 × 10−6 6.33 × 10−5

EHO 2.239431602 9.904979361 20.33855573
SMA 5.61 × 10−9 4.18 × 10−9 7.00 × 10−9

TSA 1.53 × 10−5 3.26 × 10−5 0.000102591
SCA [11] 0.00076719 0.000182 0.00154
MBO [11] 2.338728225 20.33553784 13.5932468
ABC [11] 8.85 × 10−5 0.000172518 0.000464669
MSA [11] 8.164408631 16.26317 22.86726197

ChOA [11] 0.000284475 0.000476787 1.28 × 10−5

CEED

OOA 1.10 × 10−13 1.07 × 10−13 9.32 × 10−10

RIME 1.79 × 10−5 0.000169392 8.39 × 10−5

EHO 2.939436145 11.67444458 23.59139609
SMA 2.52 × 10−8 5.57 × 10−9 2.29 × 10−8

TSA 4.23 × 10−5 0.000150503 2.03 × 10−5

SCA [11] 0.000128581 0.001259941 0.00153618
MBO [11] 2.224948582 18.75789013 19.58822153
ABC [11] 0.000176679 3.74 × 10−5 0.000402522
MSA [11] 7.228241532 12.18295414 23.26274643

ChOA [11] 0.000284475 0.000476787 6.47 × 10−5
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5. Conclusions

A brand new metaheuristic algorithm called the osprey optimization algorithm (OOA)
imitates the way ospreys seek fish in the ocean in nature. To optimize 29 common bench-
mark functions from the CEC 2017 test suite, the OOA was assessed. Additionally, the
effectiveness of the OOA was contrasted with the effectiveness of twelve algorithms. In
this study, economic load dispatch (ELD), a crucial issue, is resolved using the OOA. ELD
specifically comes in two varieties: (1) the minimization of fuel consumption costs (also
known as ELD); and (2) the minimization of fuel consumption costs and emissions costs
(also known as Combined Emission and Economic Dispatch, or CEED). The goal of the
OOA is to maximize the economic value of the power system while minimizing the cost
of fuel use, which is the main concern with optimizing the ELD problem. The primary
variable in the ELD problem reflects the unit-specific allocation vector that determines the
best output for each system unit. The performance of the OOA was compared to several
algorithms, such as the slime mould algorithm (SMA), the rime-ice algorithm (RIME), the
tunicate swarm algorithm (TSA), and elephant herding optimization (EHO). Ultimately, the
findings supported the OOA’s effectiveness in cutting the cost of fuel for ELD and the cost
of fuel and emissions for CEED in comparison to the alternatives. Future applications of
the OOA method include resolving other large-scale, practical optimization issues related
to power systems and photovoltaic energy.
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