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Abstract: The primary objective of this work is to discuss a surface family with the similarity of
Bertrand curves in 3D Galilean space. Subsequently, by applying the Serret–Frenet frame, we estimate
the sufficient and necessary statuses of a surface family with Bertrand curves as joint asymptotic
curves. The dilation to ruled surfaces is also summarized. Meanwhile, the epitomes are illustrated to
provide an explanation of the theoretical results.
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1. Introduction

The geometric design of a surface is the quintessence of meaning in Computer-Aided
Geometric Design. Nowadays, considerable studies are being undertaken to design a
surface family with a specific curve. In Euclidean 3-space E3, Wang et al. [1] considered a
surface family with a joint geodesic. The diverse marching-scale functions are examined
in [2]. Li et al. defined a surface family and a developable surface family with a joint
curvature line, respectively, in [3,4]. Bayram et al. [5] and Liu et al. [6] examined a sur-
face family and a developable surface family with a joint asymptotic curve, respectively.
Further, some distinctive curves have been addressed to design a surface family, e.g., the
Smarandache curve is considered to be geodesic to design a surface family with various
frames in [7,8]. Bayram [9] specified a surface family with an involute curve to be an
asymptotic curve. Guler [10] considered an offset surface family with a joint asymptotic
curve. Atalay [11,12] defined a surface family with Mannheim curves to be asymptotic
curves and geodesic, respectively. R. A. Abdel-Baky and N. Alluhaib [13] examined a
surface family and developable surface family with a joint geodesic curve.

Galilean geometry is the simplest model of semi-Euclidean geometry in which the
isotropic cone reduces to a plane. It is demonstrated as a bridge from Euclidean geometry
to special relativity. The prime divergence of Galilean geometry is its private gravity, as it
allows the scientist to explore it in detail without losing a large amount of time and debater
energy. Put differently, the visibility of Galilean geometry forms its growth with a simple
question, and overall extension of a new geometric organization is essential for its effective
rapprochement with Euclidean geometry. Also, overall development is feasible to provide
the scientist the psychological assurance of the consistency of the examined structure [14].
In the 3D (three-dimensional) Galilean space G3, reports on the appropriate steps on
surfaces with an asymptotic curve are scarce. This is a significant and enchanting issue in
functional applications. Artikbaev and Saitova [15] gave essential concepts of the geometry
of 3D spaces in vector formulation in an affine vector space An. Dede et al. [16,17] resolved
tub surfaces and the descriptions of parallel surfaces. Yuzbas et al. [18,19] considered
a surface family with a curve that is joint asymptotic curve and geodesic, respectively.
Jiang et al. [20] considered a surface pencil pair with a Bertrand pair as joint asymptotic
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curves. Almoneef and Abdel-Baky [21] designed a surface family with Bertrand curves
to be geodesic curves. AL-Jedani and Abdel-Baky [22] inspected a surface family and
developable surface family with a joint geodesic curve.

In this paper, we adopt an elegant manner for designing a surface family with a
Bertrand pair as joint asymptotic curves. Given the allowable curves, we initially question
a condition that is both sufficient and necessary for the specified curves to be asymptotic
Bertrand curves. In the procedure of conclusion, the sufficient and necessary conditions
when the resulting surface family is a ruled surface family are also analyzed. Meanwhile,
different representative curves are selected to confirm the manner. The paramount point to
note here is the manner we have utilized (compared with [20]).

2. Basic Concepts

The 3D (three-dimensional) Galilean space G3 is a Cayley–Klein geometry contributed
via the projective metric of signature (0, 0,+,+) [14,23,24]. The absolute figure of the
Galilean space is contingent on the arranged triad {ω, f , I}, where ω is the (absolute) plane
in the real 3D projective space P3(R), f is the line (absolute line) in ω, and I the steady
elliptic involution of points of f . Homogeneous coordinates in G3 are offered in such a way
that the absolute plane ω is specified by x0 = 0, the absolute line f by x0 = x1 = 0, and the
elliptic involution by (0 : 0 : x2 : x3) → (0 : 0 : x3 : −x2). A plane is named Euclidean
if it contains f ; on the other hand, it is named isotropic—that is, if planes x=const. are
Euclidean—as is the plane ω. Other planes are isotropic. Further, an isotropic plane does
not involve any isotropic orientation.

For any γ =(γ1, γ2, γ3) and β = (β1, β2, β3) ∈ G3, their scalar Galilean product is

< γ, β > =

{
γ1β1, if γ1 6= 0∨ β1 6= 0
γ2β2 + γ3β3, if γ1 = 0∧ β1 = 0,

(1)

and their vector Galilean product is

γ× β =



∣∣∣∣∣∣
0 j k
γ1 γ2 γ3
β1 β2 β3

∣∣∣∣∣∣, if γ1 6= 0 ∨ β1 6= 0,∣∣∣∣∣∣
i j k
0 γ2 γ3
0 β2 β3

∣∣∣∣∣∣, if γ1 = 0 ∧ β1 = 0.

(2)

where i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) are the standard basis vectors in G3.
A curve β(u) = (β1(u), β2(u), β3(u)); u ∈ I ⊆ R. A curve is said to be an allowable

curve if it has no inflection points,
.
β×

..
β 6= 0, and no isotropic tangents,

.
β1 6= 0. An al-

lowable curve is similar to a smooth curve in Euclidean space. For an allowable curve β:
I ⊆ R→ G3 represented by the Galilean invariant arc-length s, we have

β(s) = (s, β2(s), β3(s)). (3)

The curvature κ(s) and torsion τ(s) of the curve β(s) are

κ(s) =
∥∥∥β
′′
(s)
∥∥∥ =

√(
β
′′
2(s)

)2
+
(

β
′′
3(s)

)2
,

τ(s) =
1

κ2(s)
det
(

β′, β′′, β′′′
)
. (4)
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Note that an allowable curve has κ(s) 6= 0. The affiliated Serret–Frenet vectors are

υ(s) = β
′
(s) =

(
1, β

′
2(s), β

′
3(s)

)
,

ς(s) =
1

κ(s)
β
′
(s) =

1
κ(s)

(
0, β

′′
2(s), β

′′
3(s)

)
,

η(s) =
1

τ(s)

(
0,
(

1
κ(s)

β
′′
2(s)

)′
,
(

1
κ(s)

β
′′
3(s)

)′)
, (5)

where υ(s), ς(s), and η(s), respectively, are the tangent, principal normal, and binormal
vectors. For every point of β(s), the Serret–Frenet formulae read υ

′

ς
′

η
′

 =

 0 κ(s) 0
0 0 τ(s)
0 −τ(s) 0

 υ
ς
η

. (6)

The planes that match to the subspaces Sp{υ, ς}, Sp{ς, η}, and Sp{η, υ}, respectively,
are named the osculating plane, normal plane, and rectifying plane.

Definition 1 ([20–22]). Let β(s) and β̂(s) be two allowable curves in G3. Both curves in the pair
{β̂(s), β(s)} are named Bertrand curves (mates) if the principal normals, ς(s) of β(s) and ς̂(s) of
β̂(s), are linearly dependent—that is,

β̂(s) = β(s) + f ς(s). (7)

where f is a constant.
We signalize a surface M in G3 by

M : y(s, χ) = (y1(s, χ), y2(s, χ), y3(s, χ)), (s, χ) ∈ D ⊆ R2. (8)

If yj(s, χ) = ∂y
∂j , the isotropic surface normal is

ξ(s, χ) = ys ∧ yχ, (9)

which is perpendicular to each of the vectors ys and yχ.

Definition 2 ([20–22]). A curve on a surface is asymptotic if and only if the surface normal is
parallel to the binormal vector of the curve.

An isoparametric curve is a curve β(s) on a surface y(s, χ) that has a stationary s- or
χ-parameter value. In other words, there exists a parameter χ0 such that β(s) = y(s, χ0) or
β(χ) = y(s0, χ). Given a parametric curve β(s), we call it an isoasymptote of the surface
y(s, χ) if it is both an asymptotic and parameter curve on y(s, χ).

3. Main Results

This section displays an approach to organizing a surface family with two Bertrand
curves as joint asymptotic curves. Therefore, we take into computation the Bertrand curves
such that the tangent planes of the surface family are concomitant with the osculating
planes of the two curves.

Let {β̂(s), β(s)} be allowable Bertrand curves, and {β̂; υ̂, ς̂, η̂} are declared in
Equations (3)–(6). By making the surface tangent plane coincide with the curve oscu-
lating plane, the surface M with β(s) is expounded by

M : y(s, χ) = β(s) + a(s, χ)υ(s)+b(s, χ)ς(s); 0 ≤ χ ≤ χ. (10)
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Similarly, the surface M̂ with β̂(s) is expounded by

M̂ : ŷ(s, χ) = β̂(s) + a(s, χ)υ̂(s)+b(s, χ)ς̂(s); 0 ≤ χ ≤ χ. (11)

Here, a(s, χ) and b(s, χ) are named as directed marching-scale functions with b(s, χ) 6=
0. The paramount point to note here is the manner we have utilized (compared with [20]).

In order to manifest that β(s) is an asymptotic curve on M, via Equation (10), we
investigate what the marching-scale functions should satisfy. Thus, we have

ys(s, χ) = (1 + as)υ + (aκ + ηs)ς + τbη,
yχ(s, χ) = aχυ+bχς.

}
(12)

The normal vector of M can be expounded by

ξ(s, χ) := ys × yχ = τbaχυ + [(1 + as)bχ − (κa + ηs)aχ]η. (13)

Also, since the curve β(s) is isoparametric on the surface, there exists a parameter χ = χ0 ∈
[0, χ] such that y(s, χ0) =β(s)—that is,

a(s, χ0) = b(s, χ0) = 0, as(s, χ0) = bs(s, χ0) = 0. (14)

Thus, when χ = χ0—i.e., over the curve β(s)—the surface normal is

ξ(s, χ0) = bχ(s, χ0)η(s). (15)

Coincidence of the surface normal ξ with the binormal η(s) identifies the curve as
an asymptotic curve. We set {M̂, M} to symbolize the surface family. Hence, combining
Equations (13) and (14), the next theorem is given:

Theorem 1. {M, M̂} interpolate {β(s), β̂(s)} as joint asymptotic Bertrand curves if and only if

a(s, χ0) = b(s, χ0) = 0, 0 ≤ χ0 ≤ χ, 0 ≤ s ≤ L,
(1 + as(s, χ0))bχ(s, χ0)− bs(s, χ0)aχ(s, χ0) 6= 0.

}
(16)

Noteworthily, any surface M (M̂) described by Equations (10) and (11) and fulfilling
Equation (16) is a constituent of the surface family with asymptotic curve β(s) (β̂(s)).
Equation (16) is more convenient and elegant for implementations than that reported in [1].
In order to resolve the situations in Theorem 1 simply, the functions a(s, χ), and b(s, χ) can
be expounded by

a(s, χ) = l(s)A(χ),
b(s, χ) = m(s)B(χ).

(17)

Here l(s), m(s), A(χ), and B(χ) are C1 functions that are not identically zero. Hence,
from Theorem 1, we can give the following corollary.

Corollary 1. {M, M̂} interpolate {β(s), β̂(s)} as joint asymptotic Bertrand curves if and only if

A(χ0) = B(χ0) = 0, l(s) = const., m(s) = const. 6= 0,
db(χ0)

dχ = const. 6= 0, 0 ≤ χ0 ≤ χ, 0 ≤ s ≤ L.

}
(18)

Now, we establish other sorts of marching-scale functions:
(1) If 

a(s, χ) =
p
Σ

k=1
a1kl(s)k A(χ)k,

b(s, χ) =
p
Σ

k=1
b1km(s)kB(χ)k,

(19)
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then {
A(χ0) = B(χ0) = 0,

b11 6= 0, m(s) 6= 0, and dV(χ0)
dχ 6= 0,

(20)

where l(s), m(s), A(χ), and η(χ) are C1 functions; aij, bij ∈ R (i = 1, 2; j = 1, 2, ..., p); and
l(s) and m(s) are not identically zero.

(2) If 
a(s, χ) = f (

p
Σ

k=1
a1klk(s)Ak(χ)),

b(s, χ) = g(
p
Σ

k=1
b1kmk(s)Bk(χ)),

(21)

then {
A(χ0) = B(χ0) = a(χ0) = f (0) = g(0) = 0,

b11 6= 0, db(χ0)
dχ = const 6= 0, m(s) 6= 0, g

′
(0) 6= 0,

(22)

where l(s), m(s), A(χ), B(χ), f , and g are C1 functions. Since there are no constraints joined
to the specified curve in Equations (18), (20), or (22), the set {M̂, M} interpolating {β(s),
β̂(s)} as common asymptotic Bertrand curves can permanently be offered by choosing
convenient marching-scale functions.

Example 1. Let β(s) be an allowable helix pointed by

β(s) = (s, sin s, cos s), 0 ≤ s ≤ 2π.

Then,

β
′
(s) = (1, cos s,− sin s),

β
′′
(s) = (0,− sin s,− cos s),

β
′′′
(s) = (0,− cos s, sin s).

Use Equations (3)–(5) to gain κ(s) = 1, τ(s) = 1, and

υ(s) = (1, cos s,− sin s),

ς(s) = (0,− sin s,− cos s),

η(s) = (0, cos s,− sin s).

Let f = 2 in Equation (7); we obtain β̂(s) = (s,− sin s,− cos s) and

υ̂(s) = (1,− cos s, sin s),

ς̂(s) = (0, sin s, cos s),

η̂(s) = (0,− cos s, sin s).

According to Corollary 1, we have the following:
(A). If a(s, χ) = χ, b(s, χ) = 2χ, and χ0 = 0, Equation (18) is fulfilled. The set {M, M̂}

interpolating {β(s), β̂(s)} as joint asymptotic Bertrand curves is (Figure 1){
M : y(s, χ) = (s + χ, (1− 2χ) sin s + χ cos s, (1− 2χ) cos s− χ sin s),

M̂ : ŷ(s, χ) = (s + χ,−(1− 2χ) sin s− χ cos s,−(1− 2χ) cos s + χ sin s),

where the blue curve depicts β(s), the green curve is β̂(s), −1 ≤ χ ≤ 1, and 0 ≤ s ≤ 2π.
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Figure 1. M, yellow; M̂, red.

(B). If a(s, χ) = 1− cot χ, b(s, χ) = sin χ, and χ0 = 0, Equation (18) is fulfilled. The
set {M, M̂} interpolating {β(s), β̂(s)} as joint asymptotic Bertrand curves is (Figure 2)

M : y(s, χ) =

 s + 1− cot χ
sin s + (sin χ + 1− cot χ) cos s
cos s− (sin χ + 1− cot(χ)) sin s

,

and

M̂ : ŷ(s, χ) =

 s + 1− cot χ
− sin s− (sin χ + 1− cot χ) cos s
cos s− (− sin χ + 1− cot(χ)) sin s

,

where the blue curve depicts β(s), the green curve is β̂(s), 0 ≤ s, and χ ≤ 2π.

Figure 2. M, yellow; M̂, red.

It should be noted that we could extend this sequence of surfaces by selecting yet another
characteristic curve combination or number of curves to interpolate.

Ruled Surface Family with Joint Bertrand Asymptotic Curves

Suppose yi(s, χ) is a ruled surface with the directrix βi(s) and βi(s) is an isoparametric
curve of yi(s, χ); then, there exists χ0 such that yi(s, χ0) = βi(s). This means that the
surface can be stated as

Mi : yi(s, χ)− yi(s, χ0) = (χ− χ0)ei(s), 0 ≤ s ≤ L, with χ, χ0 ∈ [0, χ],

where yi(s, χ0) = βi(s) (i = 1, 2, 3) and ei(s) defines the direction of the rulings. According
to Equation (10), we have

(χ− χ0)ei(s) = a(s, χ)υi(s)+b(s, χ)ςi(s), 0 ≤ s ≤ L, with χ, χ0 ∈ [0, χ], (23)

which is a system of two equations with two unknown functions a(s, χ) and b(s, χ). To solve
a(s, χ) and b(s, χ), we have

a(s, χ) = (χ− χ0) < ei(s), υi(s) >,
b(s, χ) = (χ− χ0) < ei(s), ςi(s) > .

(24)
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The above equations are just the necessary and sufficient conditions for which yi(s, χ) is a
ruled surface with a directrix βi(s); i = 1, 2, 3.

In Galilean 3-space G3, it is demonstrated that there exist only three types of ruled
surfaces, specified as follows [24]:

Type I. Non-conoidal or conoidal ruled surfaces with a striction curve that does not lie in a
Euclidean plane.

Type II. Ruled surfaces with a striction curve in a Euclidean plane.
Type III. Conoidal ruled surfaces with an absolute line as the oriented line in infinity.

We now check if the curve βi(s) is also asymptotic on these three types:

Type I. β1(s) = (s, y(s), z(s)) does not lie in a Euclidean plane and e1(s) = (1, e2(s), e3(s))
is non-isotropic. The associated Serret–Frenet frame is identified by

υ1(s) =
(

1, y
′
(s), z

′
(s)
)

,

ς1(s) =
1

κ(s)

(
0, y

′′
(s), z

′′
(s)
)

,

η1(s) =
1

κ(s)

(
0,−z

′′
(s), y

′′
(s)
)

, (25)

where κ(s) =
√(

y′′(s)
)2

+
(
z′′(s)

)2. From Equations (18) and (19), we have

a(s, χ) = (χ− χ0), b(s, χ) = 0, (26)

which does not fulfill Theorem 1.
Type II. β2(s) = (0, y(s), z(s)) lies in a Euclidean plane and e2(s) = (1, e2(s), e3(s)) is

non-isotropic. Similarly, we have

υ2(s) =
(

0, y
′
(s), z

′
(s)
)

,

ς2(s) =
1

κ(s)

(
0, y

′′
(s), z

′′
(s)
)

,

η2(s) =
1

κ(s)
(0, 0, 0), (27)

where κ(s) =
√(

y′′(s)
)2

+
(
z′′(s)

)2. From Equations (18) and (21), we have

a(s, χ) = b(s, χ) = 0, (28)

which does not fulfill Theorem 1.

Corollary 2. There is no ruled surface family of type I and II with joint Bertrand asymptotic curves
in G3.

Type III. β3(s) = (s, y(s), 0) does not lie in a Euclidean plane and e3(s) = (0, e2(s), e3(s)) is
non-isotropic. Then,

υ3(s) =
(
1, y′(s), 0

)
,

ς3(s) =
1

κ(s)
(
0, y′′(s)0

)
,

η3(s) =
1

κ(s)
(
0, 0, y′′(s)

)
, (29)
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where κ(s) = |y′′(s)|. From Equations (18) and (24), we have

a(s, χ) = 0, b(s, χ) = ε(χ− χ0)e2(s),

e2(s) 6= 0, χ0 6= 0,

 (30)

where

ε =

{
1, if y

′′
(s) > 0,

−1, if y
′′
(s) < 0.

(31)

Equation (30) fulfills Theorem 1. Similarity, the ruled surfaces M̂ of type III also have
the curve β3(s) as a joint asymptotic curve.

Hence, we have the following corollary:

Corollary 3. The ruled surface family of type III has joint Bertrand asymptotic curves.

Now, we seek the engagements of the ruled surface family of type III . Let β(s) =

(s, y(s), 0), 0 ≤ s ≤ L be a curve with β
′′
(s) 6= 0 from Equations (7), (29), and (30);

the Bertrand mate of β(s) is β̂(s) = (s, y(s) + ε f , 0). From Equations (10), (11), and (31),
the ruled surface family of type III with joint Bertrand asymptotic curves is{

M : y(s, χ) = (s, y(s), 0) + (χ− χ0)e2(s)(0, 1, 0).
M̂ : ŷ(s, χ) = (s, y(s) + f , 0) + ε(χ− χ0)e2(s)(0, 1, 0)

(32)

where f is a constant, ε fulfills Equation (31), e2 6= 0, and χ0 6= 0.

Example 2. In view of Example 1, we have the following:
(a). If a(s, χ) = 0, b(s, χ) = sin χ. The ruled {M, M̂} interpolating {β(s), β̂(s)} as joint

asymptotic Bertrand curves is (Figure 3){
M : y(s, χ) = (s, sin s, cos s) + (0,− sin s,− cos s) sin χ,
M̂ : ŷ(s, χ) = (s,− sin s,− cos s) + (0, sin s, cos s) sin χ,

where the blue curve depicts β(s), the green curve is β̂(s), 0 ≤ s, and χ ≤ 2π.

Figure 3. M, yellow; M̂, red.

(b). If a(s, χ) = 0, b(s, χ) = χ. The ruled {M, M̂} interpolating {β(s), β̂(s)} as joint
asymptotic Bertrand curves is (Figure 4){

M : y(s, χ) = (s, sin s, cos s) + χ(0,− sin s,− cos s),
M̂ : ŷ(s, χ) = (s,− sin s,− cos s) + χ(0, sin s, cos s),

where the blue curve depicts β(s), the green curve is β̂(s), −3 ≤ χ ≤ 3, and 0 ≤ s, χ ≤ 2π.



Mathematics 2023, 11, 4100 9 of 10

Figure 4. M, yellow; M̂, red.

(c). If a(s, χ) = 0, b(s, χ) = −χ. The ruled {M, M̂} interpolating {β(s), β̂(s)} as joint
asymptotic Bertrand curves is (Figure 5){

M : y(s, χ) = (s, sin s, cos s)− χ(0,− sin s,− cos s),
M̂ : ŷ(s, χ) = (s,− sin s,− cos s)− χ(0, sin s, cos s),

where the blue curve depicts β(s), the green curve is β̂(s), −0.7 ≤ χ ≤ 0.7, and 0 ≤ s ≤ 2π.

Figure 5. M, yellow; M̂, red.

4. Conclusions

In this work, we established the surface family and ruled surface family interpolating
Bertrand curves as joint asymptotic curves in Galilean space G3. For any allowable curve,
there only exists a ruled surface family of type III interpolating the curve as joint asymptotic
curves. Meantime, some curves are selected to organize the surface family and ruled surface
family that interpolate the Bertrand pair {β̂(s), β(s)} as joint asymptotic curves. We hope
that our results will be helpful to physicists and those researching general relativity. There
are a lot of opportunities for further study where these results will be beneficial to anyone
working in the field of computer-aided manufacturing. A parallel of the issue addressed in
this paper may be plausible for the pseudo-Galilean geometry.
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