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Abstract: In this paper, we study⊕-sb-metric spaces, which were introduced to generalize the concept
of strong b-metric spaces. In particular, we study the properties of the topology induced via an ⊕-sb
metric (separation properties, countability axioms, etc.), prove the continuity of the ⊕-sb-metric,
establish the metrizability of the ⊕-sb-metric spaces of countable weight, discuss the convergence
structure of an ⊕-sb-metric space and prove the Baire category type theorem for such spaces. Most
of the results obtained here are new already for strong b-metric spaces, i.e., in the case where an
arithmetic sum “+” is taken in the role of ⊕.
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1. Introduction

Metric spaces, introduced by Maurice Frechét in 1906 [1], belong to the most funda-
mental concepts of modern mathematics. For the convenience of presentation, we recall
here this well-known concept.

Definition 1. A metric on a set X is function d : X× X → R+, where R+ = [0, ∞), satisfying
the following axioms:

(1m) d(x, x) = 0 for all x ∈ X;
(2m) d(x, y) = 0 =⇒ x = y for all x, y ∈ X;
(3m) d(x, y) = d(y, x) for all x, y ∈ X;
(4m) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The pair (X, d), where d is a metric on the set X, is called a metric space.

Soon after the inception of the notion of a metric, some mathematicians have shown
interest in generalizing it, omitting some of the axioms and retaining others. This is how
pseudometric spaces [2] (by eliminating axiom (2m)), semi-metric spaces (by eliminating
axiom (4m)), and quasimetric spaces (by eliminating axiom (3m)) appeared. Much later,
works appeared in which one or more axioms of the metric were revised and replaced by
weaker axioms. Among these types of concepts, we include partial metrics [3,4], generalized
metrics [5], S-metrics [6–8], Sb metrics [9], b-metrics [10], strong b-metrics [11], etc. An
interested reader can learn a lot about this from the monograph by Kirk and Shazad [11]. In
turn, as the title shows, in this work, our interests are sb-metric spaces and their generalized
analogs, the so-called ⊕-sb-metrics. However, for the sake of completeness, we recall here
the more general notion of a b-metric space introduced by S, Czerwik [10] (see also [12,13]).
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Definition 2. Mapping d : X× X → R+ is called a b-metric or, more precisely, a bk-metric if it
satisfies axioms (1m)–(3m) of Definition 1 and the following weakened version of axiom (4m):

(4b) d(x, z) ≤ k · (d(x, y) + d(y, z)) for all x, y, z ∈ X

where k ≥ 1 is some fixed constant.

Obviously, if k = 1, then a b-metric is just an ordinary metric. On the other hand,
permission of k to take different values greater than one leads to the fact that the concept
of b-metric spaces allows us obtention of different interesting and important examples of
metric-type mappings that fail to become metrics. For example, by setting d(x, y) =| x− y |2
for x, y ∈ R, we receive a b2-metric, which is not a metric. Another example is a b2-metric
on the set C[a, b] of continuous real-valued functions on an interval [a, b] ⊂ R, which is
defined using

∫ b
a (g(x)− f (x))2dx for f , g ∈ C[a, b].

Unfortunately, there does not exist a “natural” topology induced via a b-metric. The
reason for this obstacle is that “open balls” in a b-metric space need not be open (see the
detailed comments on this problem in [14,15]). This was the reason for introducing in [11]
the notion of a strong b-metric, or an sb-metric for short, which is the intermediate between
a b-metric and a metric.

Definition 3. Mapping d : X× X → R+ is called an sb-metric or, more precisely, an sbk-metric
if it satisfies axioms (1m)–(3m) of Definition 1 and the following weakened version of axiom (4m):

(4sb) d(x, z) ≤ d(x, y) + k · d(y, z) for all x, y, z ∈ X,

where k ≥ 1 is some fixed constant.

Obviously, every metric is an sbk-metric for any k ≥ 1, and every sbk-metric is a
bk-metric. On the other hand, the authors of [16] present a series of examples showing that
sbk-metrics form a proper class between metrics and bk-metrics.

As far as the already known results about sb-metrics justify, properties of sb-metric
spaces have more analogs with properties of metric spaces than in the case of general
b-metric spaces. Indeed, in [17], it is shown that an sb-metric space (X, d) has a unique
(up to isomorphism) completion (X∗, d∗), which is identical on its subspace (X, d). Some
known theorems about fixed points for mapping of metric spaces are extended to the case
of mappings of sb-metric spaces, e.g., [18–20]. Mapping f : (X, dX)→ (Y, dY) of sb-metric
spaces is continuous if and only if it is continuous as the mapping of the corresponding
induced topological spaces [16]. The product of a countable family of sbk-metric spaces
(that is, for a fixed k) is the sbk-metric [16]. The main purpose of this paper is to further
advance the study of topology-related properties of sb-metric spaces. However, following
the ideas first presented in [16], in the last, fourth axiom of Definitions 1–3, we replace
operation + with a more general operation ⊕, which we call a generalized t-conorm.
From the theoretical point of view, our observation defining the extended t-conorms is
based on the following fact: Ordinary sum and supremum operations on [0, ∞), which
are used in the definitions of metric-type and ultrametric-type spaces, have properties
similar to the properties of t-conorm defined on the unit interval [0, 1]. Based on this
observation, we call such operations defined on [0, ∞) extended t-conorms. Thus, when
we define metric-type structures over extended t-conorms, the theories of metric-type and
ultrametric-type structures are generalized under a single roof. In addition, such approach
allows adjustment of the developed theory to other generalization of metric-type structures
based on extended t-conorms, e.g., Example 3. More precisely, the theorems proven in
this article are true not only for sb-metric (hence metric) and ultra-sb-metric (ultra-metric)
spaces but also for all generalizations obtained using any operation ⊕ defined on [0, ∞)
that satisfies the properties in Definition 4.

Considering this paper as a definite continuation of our previous article [16], we feel
the need to clarify the relationship between the two works. In [16], we focused on the two
issues. The first one was replacing, in the third (triangular) axiom, in the definition of a
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metric-type structure (namely, metrics, pseudometrics, b-metrics, and strong b-metrics)
addition + with a more general operation ⊕, which we called an extended t-conorm.
Proceeding in this direction, we constructed examples of extended t-conorms, which can be
used in these definitions, studied some categorical properties of ⊕-metric-type spaces, and
considered relations between them. The second problem considered in [16] was caused
by the question posed by Kirk and Shahzad in [11]. Namely, we constructed a series of
examples of strong b-metrics that fail to be metrics. In turn, in this paper, we focus on the
study of topological and distance-type properties of ⊕-sb-metrics, particularly of strong
b-metrics, and conclude that such properties of strong b-metric spaces are much closer to
the corresponding properties of metrics than to the properties of b-metrics.

The paper is structured as follows. In Section 2, we collect information about extended
t-conorms ⊕ necessary for our study. The following Sections 3 and 4 contain the main
results of this work: here, we study basic topological and metric properties of ⊕-sb-metric
spaces. In the last, Conclusion section, we outline some directions that could be of interest
for the further research in the context of ⊕-sb-metric spaces, in particular in the context
of sb-metrics.

2. Preliminaries: Extended t-Conorms

Definition 4 ([16]). Let R+ = [0, ∞). Binary operation ⊕ : [0, ∞)× [0, ∞)→ R+ is called an
extended t-conorm if for all a, b, c ∈ R+ the following properties hold:

(⊕1) ⊕ is commutative, that is a⊕ b = b⊕ a;
(⊕2) ⊕ is associative, that is a⊕ (b⊕ c) = (a⊕ b)⊕ c;
(⊕3) ⊕ is monotone, that is a ≤ b =⇒ a⊕ c ≤ b⊕ c;
(⊕4) 0 is the neutral element for ⊕, that is a⊕ 0 = a.

Remark 1. Note that in case operation ⊕ is defined on [0, 1]× [0, 1] and takes its values in [0, 1],
then the definition of an extended t-conorm reduces to the concept of a t-conorm [21]. Just for this
observation, we refer to ⊕ as an extended t-conorm.

Sometimes, we also need the following special properties of operation ⊕:

Definition 5. ⊕ is called semi-distributive if for all a, b, k ∈ R+

(⊕sd) k · (a⊕ b) ≤ k · a⊕ k · b.
⊕ is called distributive if for all a, b, k ∈ R+

(⊕d) k · (a⊕ b) = k · a⊕ k · b.
⊕ is called compressible if

(⊕cmp) a ≤ b⊕ c ⇐⇒ a
a+1 ≤

b
b+1 ⊕

c
c+1 .

⊕ is called continuous if
(⊕con) ⊕ : R+ ×R+ → R+ is continuous as a two-argument function.

Remark 2. Referring to commutativity and monotonicity of ⊕, it is easy to prove that ⊕ is
continuous whenever it is continuous in at least one of the arguments.

Proposition 1. If an extended t-conorm is continuous, then for every r > 0 there exists s > 0 such
that s⊕ s < r.

Proof. We take any 0 < p < r. Then, by continuity of ⊕, there exists q > 0 such that
p⊕ q < r. To complete the proof, it is sufficient to take s = min{p, q} and to note that by
monotonicity of the operation ⊕,

s⊕ s ≤ p⊕ q < r.

By induction, from this proposition, we can easily prove the next statement:
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Corollary 1. If an extended t-conorm is continuous, then for every r > 0 and every n ∈ N there
exists s > 0 such that

⊕n
i=1 sn < r, where sn = s for all n ∈ N.

For a constant k ≥ 1, we can take m ∈ N such that k
m ≤ s. Therefore, the previous

statement can be formulated as follows:

Corollary 2. If an extended t-conorm ⊕ is continuous, then for every r > 0, every constant k ≥ 1,
and every n ∈ N there exists m ∈ N such that

⊕n
i=1

k
m < r.

Moreover, noticing that in case when ⊕ is semi-distributive it holds k ·⊕n
i=1

1
m ≤⊕n

i=1
k
m , we have also the following:

Corollary 3. If an extended t-conorm ⊕ is continuous and semi-distributive (at least for constants
k ≥ 1) , then for every r > 0), every constant k ≥ 1 and every n ∈ N, there exists m ∈ N such that
k ·⊕n

i=1
1
m < r.

Below, we offer two basic examples and one additional example of (semi-)distributive
continuous extended t-conorms ⊕.

Example 1. We let a⊕L b = a + b. Thus, ⊕L : R+ ×R+ → R+ is an ordinary addition. It is
obvious that + satisfies all properties from Definition 4. We can easily see that operation ⊕L is
distributive, compressible and is continuous on the whole spaceR+×R+. When restricted to the tri-
angle {x + y ≤ 1 | x, y ≥ 0} ⊂ [0, 1]× [0, 1], operation ⊕L reduces to the Łukasiewicz t-conorm.

Example 2. We let a ⊕M b = a ∨ b, where ∨ denotes the maximum. It is obvious that ⊕M
satisfies all properties in Definition 4. Thus, ⊕ is the extension of the maximum t-conorm ⊕M from
[0, 1]× [0, 1] to R+ ×R+. We can easily see that operation ⊕M is distributive and is continuous.
The compressibility of ∨ follows from the following obvious inequality:

b ≤ c if and only if
b

b + 1
≤ c

c + 1
for all a, b, c ∈ R+.

Example 3. We let a⊕T b = a ∨ b ∨ a · b. It is obvious that ⊕T satisfies properties ⊕1, ⊕3 and
⊕4 from Definition 4. We verify associativity of ⊕T as follows.

a⊕T (b⊕T c) = a⊕T (b ∨ c ∨ b · c)
= a ∨ (b ∨ c ∨ b · c) ∨ a · (b ∨ c ∨ b · c)
= a ∨ b ∨ c ∨ b · c ∨ a · b ∨ a · c ∨ a · b · c
= a ∨ b ∨ a · b ∨ c ∨ a · c ∨ b · c ∨ a · b · c
= (a ∨ b ∨ a · b) ∨ c ∨ (a ∨ b ∨ a · b) · c
= (a ∨ b ∨ a · b)⊕T c

= (a⊕T b)⊕T c.

The continuity of ⊕T is obvious. We show that ⊕T satisfies the property of semi-distributivity
for constants k ≥ 1 as follows:

k · (a⊕T b) = k · (a ∨ b ∨ a · b) = k · a ∨ k · b ∨ k · a · b
≤ k · a ∨ k · b ∨ k2 · a · b
= k · a⊕T k · b.

The extended t-conorm ⊕T is not compressible. For example, 5 ≤ 2 ⊕T 3 but 5
5+1 �

2
2+1 ⊕T

3
3+1 .
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3. Topology of an ⊕-sb-Metric Space

We let X be a set, ⊕ be a continuous extended t-conorm.

Definition 6 ([16]). Mapping d : X × X → R+ is called an ⊕-sb metric, or, more precisely, an
⊕-sbk metric if

(1m) d(x, x) = 0 for all x ∈ X;
(2m) d(x, y) = 0 =⇒ x = y for all x, y ∈ X;
(3m) d(x, y) = d(y, x) for all x, y ∈ X;
(4⊕sb) d(x, z) ≤ k · d(x, y)⊕ d(y, z) for all x, y, z ∈ X.

Pair (X, d) is called an ⊕-sb-metric space.

Examples of ⊕-metric type structures can be found in Section 5 of our previous
paper [16] specially devoted to this problem.

Remark 3. Applying axioms (3m) and (4⊕sb), we have

d(x, z) = d(z, x) ≤ k · d(z, y)⊕ d(y, x) = d(x, y)⊕ k · d(y, z),

and hence, axiom (4⊕sb) is equivalent to axiom

(4’⊕sb) d(x, z) ≤ d(x, y)⊕ k · d(y, z) for all x, y, z ∈ X.

3.1. Balls in an ⊕-sb-Metric Space

Definition 7. We let (X, d) be an ⊕-sb-metric space and let a ∈ X and r > 0. Then, set

B(a, r) = {x | x ∈ X, d(a, x) < r}

is called an open ball with center a ∈ X and radius r.

We let Td be the topology on X induced by family B = {B(x, r) | x ∈ X, r > 0} of all
open balls as a subbase. As we show further in this subsection, B is actually a base of Td.

Proposition 2. An open ball is open in the topological space (X, d), i.e., given ball B(a, r) and
point x0 ∈ B(a, r), there exists ball B(x0, ε) ⊆ B(a, r).

Proof. Since x0 ∈ B(a, r), it follows that d(a, x0) < r and hence, by continuity of ⊕, we can
find ε > 0 such that d(a, x0)⊕ ε < r. We now let δ = ε

k . We show that B(x0, δ) ⊆ B(a, r).
Indeed, we let z ∈ B(x0, δ). Then, taking into account Remark 3, we have

d(a, z) ≤ d(a, x0)⊕ k · d(x0, z) ≤ d(a, x0)⊕ k · δ ≤ d(a, x0)⊕ ε < r.

Proposition 3. Intersection of a finite family of open balls is an open set in topology Td.

Proof. We let {B(a, r1), . . . , B(a, rn)} be a family of open balls and let x0 ∈
⋂n

i=1 B(a, ri). By
Proposition 2 for each i ∈ {1, . . . , n}, we can find εi > 0 such that B(x0, ri) ⊆ B(a, ri). Let
r0 = min{ε1, . . . , εn}. It is clear that B(x0, r0) ⊆

⋂n
i=1 B(a, ri).

Corollary 4. Family B = {B(x, r) | x ∈ X, r > 0} of all open balls is a base for topology Td.

Since, obviously, family B = {B(a, 1
n ) | n ∈ N} is a local base at point a ∈ X, we also

obtain the following corollary:

Corollary 5. The topological space (X, Td) is first-countable.

We let (X, d) be an ⊕-sb-metric space and B̄(a, r) = {x | x ∈ X, d(a, x) ≤ r}. We call
set B̄(a, r) closed ball with centre a and radius r.
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Theorem 1. We set B̄(a, r) closed in topology Td.

Proof. We let y 6∈ B̄(a, r), then d(a, y) > r. By continuity of ⊕, we can find ε > 0 such that
r⊕ k · ε < d(a, y). We claim that B(y, ε) ∩ B̄(a, r) = ∅.

Indeed, we let z ∈ B(y, ε) ∩ B̄(a, r) = ∅. Then,

d(a, y) ≤ d(a, z)⊕ k · d(z, y) ≤ r⊕ k · ε < d(a, y),

which contradicts our assumption. Hence, B̄(a, r) is a closed set in topology Td.

Remark 4. For completeness, we want to emphasize that the closed ball B̄(a, r) is not necessarily
the closure of the open ball B(a, r). In other words, ⊕-sb metrics are not necessarily "round" at all.
To demonstrate this, consider the following example given in our previous paper [16].

Example 4. We let Xa = {a} × [0, 1], Xb = {b} × [0, 1], Xc = {c} × [0, 1] and X = Xa ∪
Xb ∪ Xc. We denote x = {i} × {x̄} ∈ X where x̄ ∈ [0, 1] and i ∈ {a, b, c}. We define
d : X× X → [0, 5] as follows:

d(x, y) = d(y, x) =


x− y , x, y ∈ Xi

1 , x ∈ Xa, y ∈ Xb
2 x ∈ Xa, y ∈ Xc
5 x ∈ Xb, y ∈ Xc

,

where d is an sb3-metric (see Example 7 in [16] and notice that ⊕ = +). For x = {a} × {0}, we
have B(x, 1) = {a} × [0, 1) and B̄(a, 1) = Xa ∪ Xb but B(x, 1) = Xa.

3.2. Continuity of an sb-⊕-Metric

As different from the case of a b-metric, an sb-metric is continuous as function d :
X× X → R+. Within the framework of this paper, we have the following statement:

Theorem 2. We let ⊕ be a continuous t-conorm and let (X, d) be an ⊕-sb-metric space. Then, the
⊕-sb-metric d : X× X → (R+,⊕) is continuous.

Proof. Since the topology induced by an ⊕-sb-metric is first countable (see Corollary 5),
we can use sequences for the proof of the theorem. Namely, it is sufficient to show that
if (xn)n∈N, (yn)n∈N are sequences in the space (X, d) and limn→∞ xn = x, limn→∞ yn = y,
then limn→∞ d(xn, yn) = d(x, y). Explicitly this means that, given ε > 0, we have to find
δ > 0 such that

d(x, y) ≤ d(xn, yn) ≤ d(x, y)⊕ ε (1)

whenever d(x, xn) < δ and d(y, yn) < δ.
Instead, we prove inequality

d(x, y) ≤ d(xn, yn)⊕ ε ≤ (d(x, y)⊕ ε)⊕ ε = d(x, y)⊕ (ε⊕ ε). (2)

Formally, it is weaker than the provable inequality (1); however, taking into account
continuity and associativity of the extended t-conorm ⊕, both inequalities are equivalent.
We proceed as follows.

We let ε > 0 be given. Referring to Corollary 2, we choose δ > 0 such that k · δ⊕ k · δ ≤ ε.
From the convergence of sequence (xn)n∈N to x and the convergence of sequence (yn)n∈N
to y, we find n0 ∈ N such that for all n ≥ n0 it holds that d(x, xn) < δ, d(y, yn) < δ. Now,
referring to the triangle inequality of the ⊕-sb-metric, Remark 3, the commutativity of ⊕,
we have the following sequence of inequalities:

d(xn, yn) ≤ d(y, xn)⊕ k · d(yn, y) ≤ (d(y, x)⊕ k · d(x, xn))⊕ k · d(y, yn) =
d(x, y) + k · (d(x, xn)⊕ d(y, yn)) ≤ d(x, y)⊕ (k · δ⊕ k · δ) ≤ d(x, y)⊕ ε.

In a similar way, we have
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d(x, y) ≤ d(x, yn)⊕ k · d(yn, y) ≤ (d(xn, yn)⊕ k · d(xn, x))⊕ k · d(yn, y) =
d(xn, yn)⊕ (k · d(xn, x))⊕ k · d(yn, y)) ≤ d(xn, yn)⊕ (k · d(xn, x))⊕ (k · d(yn, y)) ≤

d(xn, yn)⊕ (k · δ⊕ (k · δ) ≤ d(xn, yn)⊕ ε.

From the above two inequalities, we obtain the required

d(x, y) ≤ d(xn, yn)⊕ ε ≤ (d(x, y)⊕ ε)⊕ ε =≤ d(x, y)⊕ (ε⊕ ε).

3.3. Separation and Cardinality Properties of ⊕-sb-Metric Spaces

Proposition 4. We let ⊕ be a continuous extended t-conorm. Then, topology Td of an ⊕-sb-metric
space (X, d) is Hausdorff.

Proof. We let a, b ∈ X, a 6= b and hence d(a, b) = r > 0. By Proposition 1, there exists s > 0
such that s⊕ s < r. We show that B(a, s

k ) ∩ B(b, s) = ∅. Indeed, if x ∈ B(a, s
k ) ∩ B(b, s),

then it would be

d(a, b) ≤ k · d(x, a)⊕ d(x, b) ≤ k · s
k ⊕ s ≤ s⊕ s < r,

contrary to our assumption.

Theorem 3. We let ⊕ be a continuous extended t-conorm. Then, topology Td of an ⊕-sb metric
space (X, d) is normal.

Proof. We let A ⊂ X, C ⊂ X be closed sets in (X, τd) and A ∩ C = ∅. Given x ∈ A, we
let d(x, C) = αx. By the continuity of the ⊕-sb-metric, it follows that αx > 0. Referring
to Proposition 1, there exists εx > 0 such that εx ⊕ εx < αx. Further, given y ∈ C, we
let d(y, A) = βy. By continuity of the ⊕-sb-metric, we have βy > 0. Again, according to
Proposition 1, there exists εy > 0 such that εy ⊕ εy < βy. Without loss of generality, let us
assume that εx ≥ εy. We define open neighbourhoods of closed sets A and C by setting
UA =

⋃
x∈A B(x, εx

k ) and UC =
⋃

y∈C B(y, εy). We claim that UA ∩UC = ∅.
Indeed, we let z ∈ UA ∩ UC. Then, there exist x ∈ A and y ∈ C such that z ∈

B(x, εx
k )∩ B(y, εy). Since εx ≥ εy, we have z ∈ B(x, εx

k )∩ B(y, εx). However, this means that

d(x, y) ≤ k · d(x, z)⊕ d(z, y) ≤ k · εx

k
⊕ εx = εx ⊕ εx < αx.

But this contradicts our assumption that d(x, C) = αx. Thus, the constructed open neigh-
bourhoods UA and UC are disjoint.

Now, we conclude the proof noticing that by Proposition 4, space (X, τd) satisfies the
T1 separation axiom.

From Theorem 3 and referring the Urysohn theorem stating that a second count-
able regular topological space is metrizable (see, e.g., [22]), we obtain the following
interesting fact:

Theorem 4. A second countable ⊕-sb-metric space, where ⊕ is a continuous extended t-conorm,
is metrizable.

Theorem 5. We let Td be a topology induced by an ⊕-sb-metric d, where ⊕ is a continuous
extended t-conorm. Then, the following properties are equivalent for topological space (X, Td):

1. (X, Td) is second countable, i.e., it has a countable base.
2. (X, Td) is separable.
3. (X, Td) is Lindelöf.

Proof.

• Implication (1) =⇒ (2) is true for any topological space.
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• To show implication (1) =⇒ (2), we let (X, d) be a separable⊕-sb-metric space and let
A = {ai | i ∈ N} be a dense countable subset of (X, d). For each ai, we fix a countable
local base B = {B(ai, rij) | j ∈ N, rij ∈ Q+}, where Q+ denotes the set of positive
rational numbers. We claim that family B = {B(ai, rij) | i ∈ N, j ∈ N} is a base for
topology Td.
We let x0 ∈ X and let U ∈ Td be its open neighbourhood. We take some open ball
B(x0, r) ⊆ U. Without loss of generality, we may assume that r ∈ Q+. Referring to
Proposition 1, we can find s ∈ Q+ such that s⊕ s < r. Since A is dense in (X, Td),
there exists ai ∈ A such that d(ai, x0) <

s
k . We choose B(ai, s

k ) ∈ B. Since, obviously,
x0 ∈ B(ai, s

k ), to complete the proof, we have to show that B(ai, s
k ) ⊆ B(x0, r).

Indeed, we let z ∈ B(ai, s
k ). Then,

d(z, x0) ≤ k · d(z, ai)⊕ d(ai, x0) ≤ k · s
k ⊕ s = s⊕ s < r.

• Implication (1) =⇒ (3) is true for any topological space.
• To prove implication (3) =⇒ (2), we let (X, d) be a Lindelöf ⊕-sb-metric space. For

every m ∈ N, we consider cover Um = {B(x, 1
m ) | x ∈ X}. we let Vm = {B(xm

i , 1
m ) |

i ∈ N} be its countable subcover and let V =
⋃∞

i=1 Vi We claim that countable set

D = {xm
i | i ∈ N, m ∈ N}

is dense in (X, Td).
Indeed, we take any x ∈ X and let ε > 0. We fix some m ∈ N such that 1

m < ε. Since
Vm = {B(xm

i , 1
m ) | i ∈ N} is a cover of X, there exists B(xm

i , 1
m ) containing point x

and hence d(x, xm
i ) < 1

m . However, this means that D = {xm
i | i ∈ N, m ∈ N} is a

countable dense subset of (X, Td), and hence the space of (X, Td) is separable.

Since a subspace of a second countable space has obviously a countable base, from the
previous theorem, we obtain

Corollary 6. Separability and Lindelöfness are hereditary properties in the class of⊕-sb-metric spaces.

4. Metric Properties of ⊕-sb-Metric Spaces

First, let us clarify in the context of our work the well-known concepts from the theory
of metric spaces.

Definition 8. We let X be a non empty set,⊕ be a continuous extended t-conorm, d : X×X → R+

be an ⊕-sb-metric, {xn}n∈N ⊂ X be a sequence and x ∈ X.
(1) {xn}n∈N is said to converge to x if lim

n→∞
d(xn, x) = 0. In this case, we denote lim

n→∞
xn = x.

(2) {xn}n∈N is said to be a Cauchy sequence if lim
n,m→∞

d(xn, xm) = 0.

(3) (X, d) is said to be a complete ⊕-sb-metric if every Cauchy sequence converges in this space.

Theorem 6. We let ⊕ be a continuous extended t-conorm, d : X × X → R+ be an ⊕-sb-metric
and {xn}n∈N ⊂ X be a sequence. If {xn}n∈N converges, then its limit is unique.

Proof. We assume that lim
n→∞

xn = x and lim
n→∞

xn = y. We show that x = y. We have

d(x, y) ≤ d(x, xn)⊕ k · d(xn, y),

lim
n→∞

d(x, y) ≤ lim
n→∞

(d(x, xn)⊕ k · d(xn, y)),

lim
n→∞

d(x, y) ≤ lim
n→∞

d(x, xn)⊕ k · lim
n→∞

d(xn, y),

lim
n→∞

d(x, y) ≤ 0⊕ k · 0,

lim
n→∞

d(x, y) ≤ 0.

This implies that d(x, y) = 0, and therefore we have x = y.
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Theorem 7. We let ⊕ be a continuous extended t-conorm, d : X × X → R+ be an ⊕-sb-metric
and {xn}n∈N ⊂ X be a sequence. If {xn}n∈N converges, then it is a Cauchy sequence.

Proof. We assume that lim
n→∞

xn = x. Then, we have

d(xn, xm) ≤ d(xn, x)⊕ k · d(x, xn),

lim
n,m→∞

d(xn, xm) ≤ lim
n,m→∞

(d(xn, x)⊕ k · d(x, xm)),

lim
n,m→∞

d(xn, xm) ≤ lim
n→∞

d(xn, x)⊕ k · lim
m→∞

d(x, xm),

lim
n,m→∞

d(xn, xm) ≤ 0⊕ k · 0,

lim
n,m→∞

d(xn, xm) ≤ 0.

Therefore, lim
n,m→∞

d(xn, xm) = 0 and {xn} is a Cauchy sequence.

Theorem 8 (Baire Category Theorem for ⊕-sb-metric spaces). We let ⊕ be a continuous
extended t-conorm and (X, d) be a complete ⊕-sb-metric space. Then, the intersection of a countable
family of dense open sets is dense.

Proof. We let U1, U2, U3, . . . be a countable family of dense open sets and W be an arbitrary
open set. We show that

⋂
i Ui ∩W 6= ∅. Since U1 is dense,

W ∩U1 6= ∅,

and we can choose x1 ∈W ∩U1. Since (X, d) is normal (by Theorem 3) and hence is also
regular, there exists an open ball B(x1, r1) such that

x1 ∈ B(x1, r1) ⊆W ∩U1,

where r1 < 1. Similarly, since U2 is dense,

B(x1, r1) ∩U2 6= ∅,

and we can choose x2 ∈ B(x1, r1) ∩U2. Further, since (X, d) is regular, there exists an open
ball B(x2, r2) such that

x2 ∈ B(x2, r2) ⊆ B(x1, r1) ∩U2,

where r2 < 1
2 . Continuing in this way, we can choose xn for all n ∈ N in such a way that

xn ∈ B(xn, rn), rn <
1
n

ve B(xn, rn) ⊆ B(xn−1, rn−1) ∩Un.

We consider sequence {xn}n∈N. Since xn, xm ∈ B(xn0 , rn0), in case n, m > n0, we have

d(xn, xm) ≤ d(xn, xn0)⊕ k · d(xn0 , xm),

d(xn, xm) ≤ r0 ⊕ k · r0,

d(xn, xm) ≤
1
n0
⊕ k · 1

n0
,

lim
n,m→∞

d(xn, xm) ≤ lim
n,m→∞

(
1
n0
⊕ k · 1

n0

)
,

lim
n,m→∞

d(xn, xm) ≤ lim
n0→∞

1
n0
⊕ k · lim

n0→∞

1
n0

= 0.

Hence, {xn}n∈N is a Cauchy sequence. Since (X, d) is a complete ⊕-sb-metric space, there
exists x ∈ X such that lim

n→∞
xn = x. For every n ∈ N, subsequence {xm}m≥n also converges



Mathematics 2023, 11, 4090 10 of 12

and, in addition, it converges to the same point x. Since all terms of this subsequence are
contained in B(xn, rn), we conclude that x ∈ B(xn, rn). Hence, we have

x ∈ B(xn, rn) ⊆ B(xn−1, rn−1) ∩Un ⊆W ∩Un

and
x ∈W ∩

(⋂
i
Un

)
6= ∅,

that is,
⋂

i Ui ∩W 6= ∅.

We specify the standard definition of uniform convergence of a sequence of functions
for the case of ⊕-sb-metric spaces as follows:

Definition 9. We let X be a topological space, ⊕ be a continuous extended t-conorm, (Y, d) be an
⊕-sb-metric space and fn, f : X → Y be a family of functions.

We say that sequence { fn} uniformly converges to f if for every ε > 0, there exists n0 ∈ N
such that

n ≥ n0 ⇒ d( fn(x), f (x)) < ε ∀x ∈ X.

Theorem 9. We let X be a topological space, ⊕ be a continuous extended t-conorm, (Y, d) be an
⊕-sb-metric space and let fn : X → Y be a family of continuous functions. If sequence { fn}n∈N
converges uniformly to function f : X → Y, then function f is also continuous.

Proof. We let V ⊆ Y be an open set, x0 ∈ f−1(V) and y0 = f (x0). There exits an open ball
B(y0, r) ⊆ V where r > 0. Referring to Corollary 2, we can find m ∈ N such that

k
m
⊕ k

m
⊕ k

m
< r.

Since { fn} converges uniformly to f , for 1
m > 0, we can find n0 ∈ N such that

n ≥ n0 ⇒ d( fn(x), f (x)) <
1
m

.

Since fn is continuous at x0, there exists a neighbourhood U of x0 such that

fn(U) ⊆ B
(

fn(x0),
1
m

)
.

For every x ∈ U, we have

d( f (x), f (x0)) ≤ k · d( f (x), fn(x))⊕ d( fn(x), f (x0))

≤ k · d( f (x), fn(x))⊕ (k · d( fn(x), fn(x0))⊕ d( fn(x0), f (x0)))

≤ k · 1
m
⊕
(

k · 1
m
⊕ 1

m

)
≤ k

m
⊕ k

m
⊕ 1

m

≤ k
m
⊕ k

m
⊕ k

m
< r.

However, this just means that f (x) ∈ B( f (x0), r) ⊆ V. Therefore, function f is continuous.

5. Conclusions

In this article, we continue to study ⊕-sb-metric spaces introduced in [16]. In the
process of this study, we notice that, in the case of a continuous extended t-conorm, the
topological properties of ⊕-sb-metric spaces are similar to the topological properties of
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metric spaces. This observation leads us to the question whether every ⊕-sb-metric space is
metrizable. Theorem 4 offers a positive answer in the case of spaces with countable weight.
In the future, we plan to study the problem of metrizability in a general setting. Another
direction of research is to study which of the important properties of metric spaces can be
extended to the class of⊕-sb-metric spaces. In particular, this concerns the properties of the
dimension of metric spaces, finite and infinite. In [23], and also in [24], interesting results
on transfinite asymptotic dimension [25] are established for metric spaces. It is a tempting
task to extend these and other results on asymptotic dimension to ⊕-metric spaces and
further to ⊕-sb-metric spaces.

Another question that seems interesting is to view ⊕-sb-spaces as a category. As mor-
phisms in this category, we can take continuous, uniformly continuous or non-expanding
mappings. However, we note that when studying ⊕-sb-metric spaces from a categorical
point of view, we should distinguish between two significantly different cases: the category
of ⊕-sbk metric spaces (that is, when the constant k is the same for all considered spaces)
and the category of ⊕-sb-metric spaces (that is, when the constant k can vary between
different spaces). The difference between these cases was noticed already in our previous
paper [16], see Section 6: the product of a countable family of ⊕-sbk-metric spaces is an
⊕-sbk-metric space, while ⊕-sb-metric spaces are invariant only under finite products.
Quite interesting, in our opinion, would be to study relations between the category of
⊕-sb-metric spaces and the category of ⊕-metric spaces: the latter one can be considered as
a complete subcategory of the first.
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