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Abstract: The broad learning system (BLS) is a brief, flat neural network structure that has shown
effectiveness in various classification tasks. However, original input data with high dimensionality
often contain superfluous and correlated information affecting recognition performance. Moreover,
the large number of randomly mapped feature nodes and enhancement nodes may also cause a risk
of redundant information that interferes with the conciseness and performance of the broad learning
paradigm. To address the above-mentioned issues, we aim to introduce a broad learning model with
a dual feature extraction strategy (BLM_DFE). In particular, kernel principal component analysis
(KPCA) is applied to process the original input data before extracting effective low-dimensional
features for the broad learning model. Afterwards, we perform KPCA again to simplify the feature
nodes and enhancement nodes in the broad learning architecture to obtain more compact nodes
for classification. As a result, the proposed model has a more straightforward structure with fewer
nodes and retains superior recognition performance. Extensive experiments on diverse datasets
and comparisons with various popular classification approaches are investigated and evaluated to
support the effectiveness of the proposed model (e.g., achieving the best result of 77.28%, compared
with 61.44% achieved with the standard BLS, on the GT database).

Keywords: broad learning; feature extraction; kernel principal component analysis; neural network

MSC: 68T07

1. Introduction

Many intelligent methods, e.g., nearest-neighbor classifiers, support vector machine,
and neural networks, have been developed and implemented for various classification
applications [1,2]. Among them, the neural network is one of the most popular and
attractive methods at present. For instance, some deep neural networks have shown
remarkable performance and obtained breakthroughs in many areas, including pattern
recognition and image processing tasks, in recent years [3]. The essential ideas of these
typical, deep neural networks aim to deepen the layers of neural networks and then obtain
more high-level features from input data [4]. However, due to a large number of layers and
complicated structure with huge hyper-parameters, the training process is quite long and
tedious, which may affect the deployment and application of real-world classification tasks.
In addition, deep networks usually require the support of powerful computing resources
that are calculation-expensive at present [5]. Moreover, the complicated architecture of
these models brings many difficulties in analyzing them theoretically. Thus, the flat neural
network with a brief structure and fewer parameters is a flexible and competitive model [6].
It can achieve reasonable classification results without a complicated structure and a long
training process.
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Many researchers have recently developed and investigated the broad learning system
(BLS), an attractive, flat neural network [6]. It is designed and implemented according to
the random vector functional-link neural network (RVFLNN), a fast model that provides
the generalization ability of functional approximation [7]. The BLS not only inherits the
advantages of the RVFLNN but also obtains remarkable performance. The principles
of basic broad learning (BL) are quite concise. Specifically, the input training data are
randomly mapped to produce the corresponding feature nodes at first. Then, the generated
mapped feature nodes are further treated and mapped with random weights to generate
enhancement nodes. In this way, both feature nodes and enhancement nodes are utilized to
compute the output results based on ridge regression approximation. The learned weights
obtained using ridge regression approximation can be applied to the test data to generate
the corresponding predicted results [6].

The BLS is effective and has shown brilliant results in diverse classification and pattern
recognition studies. Many researchers have developed and implemented this model and
made many meaningful achievements [8–13]. For instance, Feng et al. implemented and in-
tegrated a fuzzy system into the basic BLS to replace original feature nodes with a group of
Takagi–Sugeno fuzzy subsystems [14]. Their experimental results show that their proposed
model achieves suitable performance compared with other models. The authors in [15]
aimed to modify and replace the ridge regression approximation of standard BL with
the regularized discriminative approach to generate more effective learned weights for
image classification and then demonstrated the model’s outstanding classification capabil-
ity. Researchers ameliorated the BLS structure, obtaining recurrent-BLS and Gated-BLS,
for text classification and received the desired results in training time and accuracy [16].
Yang et al. indicated that feature nodes and enhancement nodes may contain inefficient
and redundant features. They performed a series of autoencoders on the BLS to acquire
more effective features for various classification applications [17]. Other researchers also
attempted to combine a deep model, such as Convolutional Neural Network (CNN), with
the BLS for classification and showed that their model is flexible in many applications [18].
Chen et al. adopted a similar strategy to implement a CNN-based broad learning model
that extracts valuable features of facial emotional images before classifying emotions [19].
Many scholars have investigated the BLS in diverse applications. Sheng et al. developed
a visual-based assessment system to evaluate a soccer game according to the BLS, which
was effective in assessing trainees’ performance [20]. In Ref. [21], the authors implemented
a discriminant manifold BLS method to classify hyperspectral images and effectively en-
hanced the recognition accuracy with limited training samples. In Ref. [22], the researchers
proposed a competitive BLS method for COVID-19 detection based on CT scans or chest
X-ray images. In addition, Zhou et al. also investigated the BLS in the healthcare area and
developed a semi-supervised BLS within transfer learning for EEG signal recognition [23].
Other researchers implemented the BLS with decomposition algorithms for AQI forecast-
ing and obtained ideal results [24]. Zhao et al. processed input signals with principal
component analysis (PCA) to generate valuable features and employed it with the BLS for
fault diagnosis in a rotor system. Their results indicate that the PCA method can achieve
dimension reduction of the input data as well as the extraction of valid features, where the
BLS can acquire accurate fault diagnosis results efficiently [25].

Although the BLS has been studied, upgraded, and applied in many aspects, it still has
some deficiencies that need to be mitigated. For instance, traditional input data for the broad
learning structure may contain high correlation and redundancy that can interfere with the
recognition results. This issue is also mentioned and discussed in [25]. In addition, Chen et
al. mentioned that the broad learning architecture may have redundant information that
can be simplified in terms of the feature nodes and enhancement nodes [6]. A similar view
is also reported in [17]. These above-mentioned limitations are caused by the redundancy
or high correlation of the input or generated data. Many feature engineering approaches
can alleviate these issues in the basic BLS. Thus, it is suitable to apply feature engineering
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methods for further processing to obtain more effective feature information and enhance
the upgraded model’s performance.

Many techniques and algorithms have been developed and implemented for feature
extraction from raw input data [26,27], which can obtain essential features and achieve
dimensionality reduction. One of the widely used methods is PCA [28]. It can produce a
series of orthogonal bases that acquire the directions of the maximum variance among input
data, as well as the uncorrelated coefficients among new bases [29,30]. In this way, PCA
explores a linear subspace with lower dimensionality compared with the original input
feature space, where the new generated features retain the effective information for further
analysis. Numerous studies have applied the PCA method for pattern recognition and
classification and have shown favorable results. For example, Hargrove et al. implemented
PCA to process the detected signals in pattern recognition-based myoelectric control and
achieved remarkable results [31]. Howley et al. investigated PCA to process spectral
data. They indicated that applying PCA can enhance classification performance with
high-dimensional data [32].

Standard PCA is designed to perform linear dimensionality reduction. However, if
the input data contain more complex structures that are difficult to represent in the linear
subspace, basic PCA may perform poorly [33]. Fortunately, KPCA (kernel principal compo-
nent analysis) is introduced and developed to process nonlinear dimension reduction as
well as feature extraction [34]. This KPCA method has been widely utilized and verified
in various applications. In Ref. [35], the authors applied KPCA to extract gait features
and then evaluated it with support vector machine (SVM) to improve the recognition of
gait patterns. Their results indicate that KPCA is effective for feature extraction, as well
as dimensionality reduction, and for enhancing the classification of young–elderly gait
patterns. Fauvel et al. investigated KCA for feature extraction from hyperspectral remote
sensing data. Their experimental results validate the usefulness of KCA for evaluating
hyperspectral data compared with the conventional PCA approach [36]. Shao et al. evalu-
ated KPCA to extract signal features from a gear system, which can be applied to identify
various faults effectively [37].

Given the advantages of KPCA in feature extraction/dimensionality reduction [34] and
the above-mentioned issues in broad learning structures, we aim to propose a novel model,
i.e., a broad learning model with a dual feature extraction strategy (BLM_DFE), for classifi-
cation in this work. Differently from the basic broad learning architecture and the related
mentioned studies on KPCA for recognition [35–37], the proposed model is innovatively
implemented based on the broad learning structure with dual KPCA operations. In this
way, this model can process the original input data into low-dimensional, newly extracted
data with the first KPCA, and it can process the generated feature/enhancement nodes
into compressed nodes with the second KPCA. Therefore, we can establish a new model
that simplifies the structure of broad learning and simultaneously improves recognition
performance with effective, low-dimensional features. These distinguishing characteristics
of BLM_DFE make it different from the ordinary broad learning approach. Moreover, sev-
eral experimental evaluations indicate that BLM_DFE can obtain competitive classification
accuracy compared with other popular methods.

Overall, the motivation of the proposed BLM_DFE is to upgrade the original BLS,
ameliorate the broad learning structure, and further enhance classification performance
in various classification tasks. Thus, the main objectives of this study are to utilize the
advantages of KPCA to address the above-mentioned issues of the ordinary broad learning
model to obtain more effective features and achieve the desired performance in classification
for many real-world applications.

The main contributions of this work can be presented as follows:

• We implement a novel broad learning structure that embeds the KPCA technique to
enhance classification performance.

• The proposed model compresses feature/enhancement nodes by performing KPCA
and uses fewer nodes to achieve better performance.
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• The proposed model with a dual feature extraction strategy can perform better than
the original BLS on diverse benchmark databases.

• This dual feature extraction strategy with KPCA can further improve the recogni-
tion results compared with using a single KPCA in the broad learning structure, as
indicated by the ablation study.

• Several kernel functions are investigated and evaluated in the proposed model on
various benchmark databases to validate its effectiveness.

• Many popular classifiers are compared, further demonstrating the rationality and
effectiveness of the proposed model.

• BLM_DFE is a general model that can achieve the desired results on multiple types
of data.

The rest of the paper is organized as follows: Section 2 expresses some basic methods
and techniques. In Section 3, the proposed model is presented. Extensive experiments and
analysis are conducted in Section 4. Furthermore, we give a brief discussion in Section 5.
Finally, Section 6 provides a conclusion for this study.

2. Basic Methods and Techniques

In this section, we present the basic methods and techniques of standard broad learn-
ing, PCA, and KPCA in detail. These specific principles and steps are utilized and integrated
to construct the proposed BLM_DFE model, which is further expressed in the next section.

2.1. Standard Broad Learning Architecture

The standard broad learning structure for classification is presented in Figure 1.
It can be observed that data samples X are regarded as input with N samples, while
each sample preserves M dimensions. The corresponding label matrix of input data
samples is denoted by Y ∈ RN×c, where c is the number of classes among the input
data samples. Each feature node used in the broad learning structure can be randomly
mapped as follows:

Zi = ϕi

(
XW fi

+ β fi

)
, i = 1, . . . , n (1)

where W fi
and β fi

are randomly produced with appropriate dimensions. Moreover, W fi
is further fine-tuned by applying the sparse autoencoder technique [6,38]. Chen et al.
indicated that utilizing a sparse autoencoder can slightly fine-tune the generated features
and obtain more useful features for evaluation [6]. In the proposed model, we also follow
the same strategy from the standard BLS to acquire the desired features. In this way, all
produced feature nodes can be expressed as follows:

Zn = [Z1, Z2, . . . , Zn] (2)

Then, each enhancement node can be generated based on Zn as

Hj = ζ j(ZnWei + βei ), j = 1, . . . , m (3)

where Wei and βei are randomly generated in the same way as mentioned in the feature
nodes. Thus, we can obtain a series of enhancement nodes as Hm = [H1, H2, . . . , Hm].
All feature nodes and enhancement nodes can be applied for predicting label matrix Y
as follows:

Y = [Z1, Z2, . . . , Zn|H1, H2, . . . , Hm ]W = [Zn|Hm ]W = AW (4)

where A = [Zn|Hm ] includes all feature/enhancement nodes and W denotes the trainable
learned weights that convert A to label matrix Y in the broad learning framework. Trainable
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learned weight matrix W can be computed based on ridge regression approximation
(Appendix A) [6,39] as follows:

W =
(

AT A + λBLS I
)−1

ATY (5)

where λBLS indicates the penalty parameter. From Figure 1, it can be noted that the broad
learning framework is clear and just horizontally expands a large number of nodes for
calculating weights W. However, if the dimension of input data or features is quite high
with correlation, standard broad learning may not work well.

Y

𝑍1 𝑍2 𝑍𝑛

Feature nodes 𝑍𝑛

𝐻1 𝐻𝑚

Enhancement nodes 𝐻𝑚

Input data set: X

Random mapping

W

Figure 1. The standard architecture of broad learning. The feature/enhancement nodes are con-
structed to compute the learned weight (W).

2.2. Basic Principal Component Analysis

The main idea of basic PCA aims to efficiently express data by decomposing a data
space to one linear combination in a small collection of bases constructed by orthogonal
axes, which attempts to maximally decorrelate the data [35,40]. Consider a series of centered
input raw data samples {xri}, i = 1, . . . , N, where N denotes the number of input raw
samples, while each xri is a D-dimensional vector. Moreover, xri should be under the
following condition:

N

∑
i=1

xri = 0 (6)

Then, PCA can diagonalize the following covariance matrix:

C =
1
N

N

∑
i=1

xrixri
T (7)

where xrixri
T denotes a vector product that generates a corresponding matrix. In this way,

we should address the following eigenvector issue:

λV = CV (8)

where V represents the eigenvectors of covariance matrix C and λ denotes the correspond-
ing eigenvalues. The produced principal components among the input data are composed
of decorrelated expansion coefficients in the new bases, which follow the direction with the
maximum variance of the input data defined by mutually orthogonal eigenvectors [35,41].
Here, we can select the first few eigenvectors to perform feature extraction. Then, we
obtain low-dimensional features with a few principal components using PCA. However,
standard PCA may lack significant information regarding the highly complicated structure
of input data.
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2.3. Kernel Principal Component Analysis

Compared with standard PCA, KPCA is a nonlinear feature extraction approach [33,35].
In general, nonlinear transformation φ(xr) converts an original D-dimensional feature
space into an M-dimensional feature space, where often M � D. Thus, each sample xri
can be projected onto φ(xri). Here, we assume that projected new features contain zero
mean, as follows:

1
N

N

∑
i=1

φ(xri) = 0 (9)

The corresponding covariance matrix of these projected features can be computed as

∼
C =

1
N

N

∑
i=1

φ(xri)φ(xri)
T (10)

Thus, eigenvalues and eigenvectors can be expressed as follows:

∼
C
∼
Vh =

∼
λh
∼
Vh (11)

where h = 1, 2, . . . , M. We can obtain the following equation based on Equations (10) and (11) as

1
N

N

∑
i=1

φ(xri)

{
φ(xri)

T∼Vh

}
=
∼
λh
∼
Vh (12)

which can be expressed in the form

∼
Vh =

N

∑
i=1

ahiφ(xri) (13)

Here, we substitute
∼
Vh in Equation (12) with Equation (13) to obtain

1
N

N

∑
i=1

φ(xri)φ(xri)
T

N

∑
j=1

ahjφ
(
xrj

)
=
∼
λh

N

∑
i=1

ahiφ(xri) (14)

Assume that the kernel function is defined as follows:

κ
(
xri, xrj

)
= φ(xri)

Tφ
(
xrj

)
(15)

And we multiply both sides of Equation (14) by φ(xrl)
T and then obtain

1
N

N

∑
i=1

κ(xrl , xri)
N

∑
j=1

ahjκ
(
xri, xrj

)
=
∼
λh

N

∑
i=1

ahiκ(xrl , xri) (16)

This can be represented by utilizing the matrix notation

K2ah =
∼
λhNKah (17)

where Ki,j can be represented as

Ki,j = κ
(
xri, xrj

)
(18)

ah in Equation (17) denotes the N-dimensional column vector that contains elements
ahi, with i = 1, . . . , N. ah can be addressed using

Kah =
∼
λhNah (19)
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Therefore, the resulting principal components can be computed as follows:

yh(xr) = φ(xr)T∼Vh =
N

∑
i=1

ahiκ(xr, xri) (20)

If the projected data (φ(xri)) dissatisfy the zero mean, we need to utilize Gram matrix
∼
K to substitute the above-mentioned kernel matrix K to solve this issue [30]. This Gram
matrix can be briefly denoted by

∼
K = K−K1N − 1NK + 1NK1N (21)

where 1N indicates the N × N matrix that contains all elements with 1/N.
The power of the kernel method is unnecessary to calculate φ(xri) explicitly. In this

way, the kernel matrix can be directly constructed from training data samples {xri} [42].
There are several commonly used kernels in KPCA [43]. The Gaussian kernel, i.e., radial
basis function (RBF), is defined as

κ(x, y) = exp
(
−‖x− y‖2/2σ2

)
= exp

(
−γ‖x− y‖2

)
(22)

The sigmoid kernel can be defined as

κ(x, y) = tanh
(

δxTy + b
)

(23)

The linear kernel can be expressed as

κ(x, y) = xTy (24)

where γ, σ are parameters that can be adjusted, while b is a constant. In this work, we
briefly set b to zero for the sigmoid kernel.

For test data samples {xti}, i = 1, . . . , L, the test matrix is Ktest
ij = φ(xti)

Tφ
(

xrj
)
. In

addition, we can obtain the corresponding
∼
K

test
as follows [40]:

∼
K

test
= Ktest −Ktest1N − 1LNKtest + 1LNKtest1N (25)

where 1LN denotes one matrix that contains all elements with 1/N.

3. Proposed Broad Learning Model with a Dual Feature Extraction Strategy

From the basic methods of KPCA mentioned in Section 2, we can conclude that the
KPCA technique is effective in feature extraction and dimensionality reduction, which
can relieve issues in the standard broad learning framework described in Section 1. It
is reasonable and meaningful to insert KPCA into a broad learning structure to extract
effective features and compress the number of nodes in this study.

The brief diagram of the proposed BLM_DFE is presented in Figure 2. The raw input
data are initially processed with the first KPCA to obtain new input data. Then, these
produced new input data containing more compact information can be used to construct
feature and enhancement nodes. Thus, all these produced feature/enhancement nodes are
further processed with the second KPCA to generate new compressed nodes for calculating
the learned weights. These learned weights are applied for classification to evaluate the
proposed model. Furthermore, the whole architecture of this model is shown in Figure 3.
In detail, the original input training data samples (xr) are processed with the first KPCA
(green box) to generate new, low-dimensional features (xrnew) as the new input for the
broad learning model (green arrow displayed in Figure 3). The raw test data samples (xt)
are also mapped with the first KPCA, as explained in Section 2.3. In this way, we can
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obtain the new feature nodes (orange circles) and new enhancement nodes (yellow circles)
as follows:

Z_newn = [Z_new1, Z_new2, . . . , Z_newn] (26)

H_newm = [H_new1, H_new2, . . . , H_newm] (27)

All new feature nodes and enhancement nodes can be used to construct a new matrix
as follows:

A_new = [Z_newn|H_newm ] (28)

Here, we continue to apply KPCA (light-blue box) to process and compress A_new,
due to a large number of feature/enhancement nodes within the redundant information.
Then, the generated A_com (the compressed nodes in light-blue circles) are used to calculate
the recognition results as follows:

Y = A_com
∼
W (29)

The new trainable learned weight matrix (
∼
W) can be computed in the same way as

mentioned in Section 2.1:

∼
W =

(
A_comT A_com + λI

)−1
A_comTY (30)

where A_com denotes the compressed nodes, as expressed in Figure 3; Y indicates the label
matrix; I signifies the identity matrix; and λ represents the regularization parameter. For
the test procedures, test samples xtnew mapped with the first KPCA are processed and
generated corresponding to the feature/enhancement nodes, which are further mapped
and compressed with the second KPCA and applied to determine the predicted output

matrix (Ypredict) with the learned weight matrix (
∼
W). Thus, the final predicted class labels

can be obtained using Ypredict.

Raw input data

First KPCA

New input data

Construct feature and 
enhancement nodes

Second KPCA

New compressed nodes

Determine learned weights 
for classifica�on

Figure 2. The basic diagram of the proposed BLM_DFE for classification.
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Y

𝑍_𝑛𝑒𝑤1

Feature nodes 𝑍_𝑛𝑒𝑤𝑛

𝐻_𝑛𝑒𝑤1

Enhancement nodes 𝐻_𝑛𝑒𝑤𝑚

Raw input data set: xr

Random mapping

𝑊

New input data set: 𝑥𝑟𝑛𝑒𝑤

Compressednodes A_com

𝑍_𝑛𝑒𝑤2 𝑍_𝑛𝑒𝑤𝑛
𝐻_𝑛𝑒𝑤𝑚

First KPCA

Second KPCA

Figure 3. The architecture of the proposed BLM_DFE. It utilizes a dual feature extraction strategy to

process raw input data and map feature/enhancement nodes with KPCA. Here,
∼
W indicates the train-

able learned weights computed from the compressed nodes, while Y denotes the corresponding labels.

To sum up, the specific steps of the proposed BLM_DFE can be described as follows:

1. Compute the new training data based on KPCA with Equations (9)–(21), and select
one kernel among Equations (22)–(24).

2. Calculate feature/enhancement nodes (Z_newn, H_newm) with Equations (1) and (3)
in the broad learning structure.

3. Apply the second KPCA to generate A_new2 according to Equations (9)–(21).

4. Compute the learned weight matrix (
∼
W) with Equation (30) for the proposed model.

5. Map the raw test data samples based on the first KPCA; map the generated correspond-
ing test feature/enhancement nodes based on the second KPCA with Equation (25).

6. Obtain the classification results under the learned weight matrix (
∼
W) for the test data.

4. Experiments and Analysis
4.1. Experimental Settings

Here, we conducted diverse experiments on various benchmark databases with the
proposed BLM_DFE and compared some popular classifiers, including the standard BLS.
Specifically, several classification methods, including collaborative representation-based
classification (CRC) [44], sparse representation-based classification (SRC) [45], probabilis-
tic collaborative representation-based classifier (ProCRC) [46], least square regression
(LSR) [47], k-nearest neighbors (K-NNs) [48], BLS, low-rank ridge regression (LRRR) [49],
sparse low-rank regression (SLRR) [49], discriminative LSR (DLSR) [50], FEDLDA [51],
and FEMDA [52], and the proposed model were carefully analyzed and assessed. The
parameters of these compared classifiers were tuned to achieve competitive results on each
database. For the standard BLS, we set 1600 feature nodes and 5000 enhancement nodes for
these evaluated databases. For the proposed method, we selected three types of kernels
(mentioned in Section 2.3) to implement and perform classification, respectively. These
models are denoted by BLM_DFE(RBF), BLM_DFE(sigmoid), and BLM_DFE(linear), which
are also abbreviated as BLM_DFE(R), BLM_DFE(S), and BLM_DFE(L).
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We randomly selected different sample numbers from each class as the training set
(Tr.) from each database, while the rest was regarded as the test set in this study. For the
training/test sets, we simulated the processing steps mentioned in Figure 2 as follows:
The data samples of the original training set were initially processed with the first KPCA
(green box expressed in Figure 3) to generate new training input data. Then, these new
training input data were utilized to produce training feature/enhancement nodes based
on Equations (1) and (3). Afterwards, the generated training feature/enhancement nodes
were processed with the second KPCA to produce compressed training nodes to compute
the learned weights. In addition, the first and second KPCAs were also deployed
according to Equations (9)–(21). For the data samples in the test set, we also followed the
above-mentioned steps to map the original test input data and test feature/enhancement
nodes using the first and second KPCAs to produce test compressed nodes. In this way,
we calculated the learned weights (from the training phase) with the compressed test
nodes to predict the test results. All mentioned classification approaches were repeated
10 times to acquire the final average classification results. Besides this, experiments on
the proposed model were implemented on MATLAB 2022a using a PC with a 3.60 GHz
CPU and 32 GB RAM.

In this study, we conducted experiments on various types of benchmark databases,
including plant, object, face, clothing, and healthcare fields. These databases were applied
to evaluate the effectiveness of the proposed model comprehensively. The details of these
evaluated databases are expressed as follows: The GT database has 750 facial images
from 50 persons (shown in Figure 4a) that were further resized to 40 × 30 grayscale
samples for assessment [53]. Each candidate contains 15 samples with various facial
expressions. The Flavia database [54] contains 1907 images of 32 leaf species, which were
further processed into 40 × 40 grayscale samples for analysis. Each class of leaf contains
various lengths, widths, and shapes (shown in Figure 4b). The COIL20 database [55]
preserves 1440 grayscale images of 20 classes, which were further resized to 32 × 32 for
evaluation (illustrated in Figure 4c). Each class of COIL20 contains 72 images of an object
with various orientations. The COIL100 database [56] has 7200 images of 100 objects. Each
object contains 72 samples obtained by rotating the object by 5 degrees in each pose interval,
and the images were further resized to 32 × 32 grayscale samples for analysis (shown
in Figure 4d). The Fashion-MNIST database [57] contains fashion products of 10 classes,
such as trousers, dresses, etc. Here, we used a subset of the original database consisting
of 2000 images (200 samples per class) [58], which were further processed to 28 × 28 for
evaluation (displayed in Figure 4e). In addition, a disease detection database for identifying
fatty liver disease (i.e., the FLD database) was also evaluated in this study. This database
contains 220 fatty liver disease samples and 220 healthy samples. Each sample contains one
facial image (768× 576) of a candidate and was further processed to obtain facial key blocks
before generating the corresponding color feature for analysis. More details about this
database can be explored in Ref. [59]. In addition, the information on the above-mentioned
databases is explained in Table 1.

Table 1. The information of the 6 databases used.

Database Name Num. of Samples Num. of Classes Dimensions Data Type

GT 750 50 40 × 30 Image
Flavia 1907 32 40 × 40 Image
COIL20 1440 20 32 × 32 Image
COIL100 7200 100 32 × 32 Image
Fashion-MNIST 2000 10 28 × 28 Image
FLD 440 2 768 Extracted feature
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Typical samples of various databases, including (a) GT, (b) Flavia, (c) COIL20, (d) COIL100,
(e) Fashion-MNIST, (f) FLD.

4.2. Experimental Results

The corresponding results of various classification methods are displayed in Table 2 in
terms of the GT database. It can be noted that the proposed BLM_DFE(R) achieved the best
accuracy (ARR) compared with other common classifiers by randomly selecting different
sample numbers for each class as the training set.

Table 2. The results in ARR (%) of various methods on the GT database (best results in bold).

Tr SRC CRC ProCRC K-NNs LSR BLS FEDLDA

5 65.06 56.86 57.38 65.92 60.84 61.44 60.82
6 69.89 59.49 60.07 69.02 64.42 64.87 64.29
7 72.15 62.10 62.75 70.92 66.03 66.43 65.73
8 74.31 62.43 63.17 73.17 66.54 68.23 68.46

Tr FEMDA LRRR SLRR DLSR BLM_DFE(R) BLM_DFE(S) BLM_DFE(L)

5 68.42 61.94 61.02 72.34 77.28 74.08 73.72
6 72.93 65.31 64.73 76.33 79.44 77.18 77.00
7 74.38 67.59 67.50 79.05 82.15 80.35 78.52
8 75.43 69.09 68.16 81.49 83.74 81.71 80.91

The related experimental results conducted on the Flavia, COIL20, COIL100, Fashion-
MNIST, and FLD databases are shown in Tables 3–7, respectively. The proposed model
obtained excellent performance compared with other methods, especially by applying
BLM_DFE(R). Besides this, BLM_DFE(S) usually also achieves competitive results in this
study. Compared with the standard BLS, the results of our model, e.g., BLM_DFE(R),
are often significantly improved here. Therefore, the results in Tables 2–7 validate the
effectiveness of the proposed model in classification tasks. Overall, it can be observed that
applying the RBF kernel in this BLM_DFE model often shows more superiority over other
kernels in the experimental results displayed in Tables 2–7.
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Table 3. The results in ARR (%) of various methods on the Flavia database (best results in bold).

Tr SRC CRC ProCRC K-NNs LSR BLS FEDLDA

4 61.14 55.68 56.05 63.37 55.59 53.88 57.28
5 65.14 57.77 58.29 65.89 57.64 55.67 59.56
6 66.62 58.76 59.24 68.13 58.72 57.12 61.73
7 68.43 59.81 60.13 70.39 59.49 58.32 62.95

Tr FEMDA LRRR SLRR DLSR BLM_DFE(R) BLM_DFE(S) BLM_DFE(L)

4 65.73 54.99 54.76 64.69 66.81 64.05 62.57
5 68.60 57.92 57.05 67.25 69.14 65.63 67.02
6 71.06 58.42 57.98 68.89 71.07 68.75 68.00
7 73.31 59.86 59.07 71.30 72.26 70.87 70.52

Table 4. The results in ARR (%) of various methods on the COIL20 database (best results in bold).

Tr SRC CRC ProCRC K-NNs LSR BLS FEDLDA

4 80.45 75.96 76.14 80.60 76.76 73.32 79.70
5 83.74 79.87 80.03 84.12 80.17 78.48 81.28
6 85.57 80.58 80.86 85.39 80.61 81.52 84.33
7 87.74 83.22 83.57 87.00 83.45 83.69 85.48

Tr FEMDA LRRR SLRR DLSR BLM_DFE(R) BLM_DFE(S) BLM_DFE(L)

4 81.85 78.16 77.04 83.04 85.35 84.13 84.97
5 85.59 79.90 79.39 86.29 88.40 87.83 88.16
6 86.61 82.89 81.26 87.72 90.73 90.23 90.69
7 89.15 84.41 82.80 89.42 91.92 92.05 91.69

Table 5. The results in ARR (%) of various methods on the COIL100 database (best results in bold).

Tr SRC CRC ProCRC K-NNs LSR BLS FEDLDA

7 76.63 62.48 63.82 76.12 65.13 73.53 76.85
8 79.23 63.94 65.50 78.39 66.39 76.84 78.56
9 80.68 65.18 66.87 80.31 67.52 79.19 80.44
10 82.13 65.93 67.81 81.30 68.17 81.71 81.40

Tr FEMDA LRRR SLRR DLSR BLM_DFE(R) BLM_DFE(S) BLM_DFE(L)

7 78.77 65.63 65.23 81.92 83.59 80.19 80.34
8 81.00 66.93 66.19 83.97 85.44 84.63 83.51
9 82.74 67.85 67.62 85.72 86.82 86.24 85.00
10 84.18 68.42 68.31 86.38 87.88 88.32 85.95

Table 6. The results in ARR (%) of various methods on the Fashion-MNIST database (best results in bold).

Tr SRC CRC ProCRC K-NNs LSR BLS FEDLDA

10 70.80 69.05 69.02 65.63 68.34 70.63 61.84
15 73.09 71.58 71.50 66.62 70.65 72.37 63.08
20 75.61 73.47 73.36 69.20 72.15 74.11 64.30
25 77.01 74.52 74.46 69.83 73.54 74.61 65.39

Tr FEMDA LRRR SLRR DLSR BLM_DFE(R) BLM_DFE(S) BLM_DFE(L)

10 70.48 67.67 67.15 67.26 72.45 71.24 70.76
15 73.27 69.59 69.72 70.79 73.93 74.64 72.30
20 74.76 70.42 70.32 72.08 75.74 75.18 73.64
25 75.95 71.42 71.08 73.19 76.52 76.13 73.89
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Table 7. The results in ARR (%) of various methods on the FLD database (best results in bold).

Tr SRC CRC ProCRC K-NNs LSR BLS FEDLDA

20 77.80 77.43 77.40 75.15 71.25 75.28 62.25
30 79.53 79.50 79.45 76.37 72.79 76.63 65.68
40 80.19 80.42 80.44 78.36 73.56 77.94 67.89
50 81.65 81.71 81.76 79.15 75.26 78.76 69.56

Tr FEMDA LRRR SLRR DLSR BLM_DFE(R) BLM_DFE(S) BLM_DFE(L)

20 76.34 75.13 74.98 73.65 78.15 76.12 74.95
30 78.26 76.94 76.08 74.66 80.61 77.26 76.42
40 79.53 78.47 78.31 75.36 81.39 78.06 77.39
50 80.76 79.32 79.23 76.56 81.97 78.85 78.82

We also performed a brief ablation study to show the usefulness of the dual feature
extraction/dimensionality reduction approach with KPCA in BLM_DFE. We implemented
and applied KPCA to extract low-dimensional features as the new input for the standard
broad learning framework without further processing the feature/enhancement nodes
with the second KPCA. This designed model is denoted by KBLM with different kernels,
i.e., KBLM(RBF), KBLM(sigmoid), and KBLM(linear). These methods are abbreviated as
KBLM(R), KBLM(S), and KBLM(L).

Another alternative method is to only apply the second KPCA to process and compress
the feature/enhancement nodes while still keeping the original input samples for the broad
learning framework. This developed model is expressed as BLMK with various kernels,
i.e., BLMK(RBF), BLMK(sigmoid), and BLMK(linear). More simply, these methods are
concisely denoted by BLMK(R), BLMK(S), and BLMK(L), respectively.

To demonstrate the superiority and rationality of the proposed model, we compared
BLM_DFE with KBLM, BLMK, and basic BLS on the GT and Flavia databases. The corre-
sponding experimental results are presented in Tables 8 and 9. It can be easily observed
that the proposed model usually obtains outstanding recognition results in these tables.
For instance, BLM_DFE(R) achieved an accuracy of 77.28% with five training samples on
the GT database and obtained 66.81% in terms of accuracy with four training samples on
the Flavia database. Thus, these results also confirm the discriminatory power of A_com
generated based on a dual feature extraction strategy with the KPCA technique.

Table 8. The results in ARR (%) of the ablation analysis on the GT database (best results in bold).

Tr BLS KBLM(R) BLMK(R) BLM_DFE(R) KBLM(S)

5 61.44 76.06 70.94 77.28 73.28
6 64.87 79.16 74.87 79.44 76.20
7 66.43 81.90 76.92 82.15 79.35
8 68.23 83.66 78.80 83.74 81.66

Tr BLMK(S) BLM_DFE(S) KBLM(L) BLMK(L) BLM_DFE(L)

5 65.46 74.08 72.99 58.44 73.72
6 68.53 77.18 75.84 61.93 77.00
7 71.75 80.35 78.35 63.28 78.52
8 73.06 81.71 81.63 66.17 80.91
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Table 9. The results in ARR (%) of the ablation analysis on the Flavia database (best results in bold).

Tr BLS KBLM(R) BLMK(R) BLM_DFE(R) KBLM(S)

4 53.88 65.86 61.35 66.81 63.25
5 55.67 67.53 65.62 69.14 65.59
6 57.12 68.64 67.39 71.07 69.13
7 58.32 69.83 68.08 72.26 71.02

Tr BLMK(S) BLM_DFE(S) KBLM(L) BLMK(L) BLM_DFE(L)

4 59.08 64.05 63.73 53.07 62.57
5 61.38 65.63 66.10 55.38 67.02
6 63.42 68.75 67.33 57.55 68.00
7 63.79 70.87 70.49 57.84 70.52

Here, we utilized the random forest classifier to evaluate the generated A_com and
computed its corresponding feature importance scores for further assessment [60]. In
particular, we applied the BLM_DFE(R) model on the GT database with five training
samples to produce the corresponding A_com features. Then, we used the random forest
method to analyze the generated A_com to retrieve the corresponding importance scores,
as shown in Figure 5a. The horizontal axis represents the number of input features (A_com),
while the vertical axis represents the importance score of each input feature. Moreover, we
also followed this strategy to evaluate the Flavia database with four training samples and
computed its feature importance scores, as displayed in Figure 5b. From Figure 5, it can be
observed that each input feature is effective for prediction, with the first few dozen features
being very important for prediction. These results are consistent with the KPCA technique,
which can process raw input data and calculate the principal components as generated
features. In addition, we discuss the settings of the number of principal components for
KPCA to ensure that the generated A_com is optimal and effective in Section 4.3.

We chose the classification results (five samples per class as the training set in the
GT database displayed in Table 2) for further evaluation. The accuracy of the proposed
model was utilized to compare the accuracy using the standard BLS by performing the
t-test [61]. We also followed this strategy for evaluating the accuracy results on other
databases (4, 4, 7, 10, 20 samples per class as the training sets in the Flavia, COIL20,
COIL100, Fashion-MNIST, FLD databases) for assessment. The corresponding results
of the p-value are expressed in Table 10. It can be observed that these p-value results
represent the statistically significant difference in BLM_DFE compared with the original
BLS in terms of accuracy on different databases.

(a)
Figure 5. Cont.
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(b)
Figure 5. The bar chart of applying random forest classifier to compute feature importance scores
with A_com generated from the BLM_DFE(R) model on the (a) GT database and (b) Flavia database.

Table 10. The p-value of our BLM_DFE versus standard BLS on various databases.

Database GT Flavia COIL20 COIL100 Fashion-MNIST FLD

p-Value 1.91× 10−13 2.29× 10−13 9.79× 10−13 1.24× 10−12 1.55× 10−3 1.43× 10−3

4.3. Parameter Analysis

In BLM_DFE, several parameters should be carefully tuned to show the desired
classification results. For instance, parameter λ in Equation (30) is used to compute the
learned weights. The parameters of the kernel, such as γ, in Equation (22) are utilized in
KPCA. The number of principal components, i.e., PCN, is set in KPCA. Since we implement
and insert KPCA twice in the broad learning structure, if we select the RBF kernel, there are
five parameters, i.e., λ, (γKPCA1, PCNKPCA1) of the first KPCA, and (γKPCA2, PCNKPCA2)
of the second KPCA, that need to be adjusted. To the best of our knowledge, investigating
and finding the optimal parameters represent an open issue in various applications [62–64].
Here, we employed the same number of feature/enhancement nodes and other settings
used in the standard BLS mentioned in Section 4.1, while only parameters λ, γ, and PCN
were evaluated and selected to explore the optimal combinations step by step.

In our work, we fixed other parameters while evaluating parameter λ, as shown in
Figure 6a. It can be observed that our model was insensitive to parameter λ in the range
of [10−12–10−4] and obtained suitable performance. Afterwards, we fixed parameter λ
and investigated parameters γKPCA1, PCNKPCA1, as shown in Figure 6b. We can find
that our model achieved satisfactory results with γKPCA1 and PCNKPCA1 located at 10−2

and in the range of [60–100], respectively. In this way, we continued to evaluate γKPCA2,
PCNKPCA2 when others were fixed, as shown in Figure 6c. It can be noted that parameters
γKPCA2, PCNKPCA2 are located in the ranges of [10−6–10−3] and [180–240], respectively,
guaranteeing reasonable performance. In this way, we can roughly explore the optimal
parameters of the proposed model. For other kernels and other databases, we also investi-
gated them using a similar strategy to acquire the corresponding optimal parameters for
performing classification.
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(a)

(b)

(c)
Figure 6. The classification accuracy (%) results with various combinations of parameters to evaluate
(a) parameter λ, (b) parameters γKPCA1, PCNKPCA1, (c) parameters γKPCA2, PCNKPCA2 on the GT
database with 5 training samples per class.



Mathematics 2023, 11, 4087 17 of 22

4.4. Computing Time

Here, we chose the GT and Flavia databases to analyze and evaluate the whole com-
putation time of the proposed BLM_DFE(R) and other popular classification approaches.
The parameter settings were kept the same as mentioned in Section 4.1. The corresponding
results are shown in Tables 11 and 12. Although the computation time can be longer com-
pared with the comparison methods, such as LSR, it is still acceptable when considering its
competitive recognition results mentioned in Tables 2 and 3.

From Section 3, it can be found that the main computational overheads of the BLM_DFE

model are computing the learned weight matrix (
∼
W) (Equation (30)) and two-KPCA pro-

cessing, while the computational costs of other calculations are negligible and insignificant.
Considering that we have n input samples as the training set, L indicates the number of
feature/enhancement nodes of the original BLS; c represents the number of classes of the
input samples; and p denotes the number of compressed nodes of BLM_DFE. Thus, the
complexity of two-KPCA processing is O

(
2n3). The complexity of computing Equation (30)

is O
(

p3 + np2 + np2 + pnc
)
, where O

(
p3) represents the cost of matrix inversion operation

and O
(
np2 + np2 + pnc

)
denotes the cost of several matrix multiplication operations. Thus,

the overall computational complexity of the proposed BLM_DFE can be represented as
O
(
2n3 + p3 + np2 + np2 + pnc

)
. The main computational cost of the original BLS is to cal-

culate the learned weight matrix (W) (Equation (5)), which has computational complexity
of O

(
L3 + nL2 + nL2 + Lnc

)
. Compared with the basic BLS, the computational complexity

of the proposed model mainly depends on the two additional KPCA processes, resulting in
a higher computational overhead when the number of input samples (n) is large. However,
due to the use of KPCA to compress the number of feature/enhancement nodes, p is usually
much smaller than L, resulting in our model having advantages in computational overhead
on small- and medium-sized datasets. The comparison of computational time (BLS versus
BLM_DFE) in Tables 11 and 12 also reflects this point.

Table 11. The computing time of various classification methods on the GT database with 5
training samples.

Method SRC CRC ProCRC K-NNs LSR BLS

Computing time (s) 2.29 0.52 0.18 0.09 0.01 4.65

Method FEDLDA FEMDA LRRR SLRR DLSR BLM_DFE(R)

Computing time (s) 1.08 24.48 1.03 1.65 0.21 2.57

Table 12. The computing time of various classification methods on the Flavia database with 4
training samples.

Method SRC CRC ProCRC K-NNs LSR BLS

Computing time (s) 4.33 1.16 0.47 0.11 0.01 4.89

Method FEDLDA FEMDA LRRR SLRR DLSR BLM_DFE(R)

Computing time (s) 0.87 16.13 1.06 1.74 0.15 2.87

5. Discussion

We have designed and developed a novel method that imposes KPCA on the broad
learning framework to improve recognition performance. The novel outcomes of this
BLM_DFE can be presented as follows: Our model can process the original input data and
generate feature/enhancement nodes to obtain more effective features as well as simplify
the architecture of broad learning. Furthermore, by applying various kernels of KPCA,
this dual feature extraction approach shows its effectiveness in the experimental results
shown in Tables 2–7. For instance, it can be seen that the proposed model with an RBF
kernel obtains the accuracy of 83.74%; with the sigmoid kernel, it achieves 81.71% accuracy;
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with the linear kernel, it produces 80.91% accuracy; all under 8 training samples on the GT
database. Although the results of applying different kernels are different, they also prove
the superiority of the proposed model. For example, K-NNs, as one comparison method,
only achieved 73.17% accuracy under the same experimental settings. The reason that the
proposed model can improve the classification performance compared with the original BLS
and other methods can be expressed as follows: Applying KPCA can obtain more effective
feature representation compared with the original high-dimensional data. Besides this,
compressing a large number of raw feature/enhancement nodes and transforming them
into another feature space can reduce redundant nodes and preserve useful information.
Given these points, researchers can consider implementing their own models to obtain
better recognition results based on the proposed dual feature extraction strategy in terms
of high-dimensional input data or features already extracted using learning models in
real-world applications.

From the above-mentioned experimental results (Tables 2–7), it can be observed
that the performance of BLM_DFE(L) is usually worse than that of BLM_DFE(R) and
BLM_DFE(S). The reason is that BLM_DFE(L) uses a linear kernel, rather than the RBF
or sigmoid kernel applied in BLM_DFE(R) and BLM_DFE(S), which can perform nonlin-
ear dimension reduction and often achieve more competitive performance. Thus, these
related experimental results also confirm the effectiveness of the KPCA applied in the
proposed model.

We evaluated the proposed BLM_DFE on six different databases. Our model achieved
significant improvements in the data types of face, plant, and object compared with the
original BLS (refer to Tables 2–5). Since this model achieved good results on face, plant,
and object data types, we could consider handling practical applications similar to these
mentioned data types, such as flowers, in future investigations.

In the ablation study, we compared the proposed model with several reduced models
implemented by ourselves, such as KBLM and BLMK. From the experimental results in
Tables 8 and 9, we can find that the dual feature extraction strategy showed excellent
performance. The performance of the linear kernel used in the proposed model often
showed inferiority with respect to the other kernels, such as RBF. This evidence illustrates
that nonlinear KPCA can obtain effective features and perform dimensionality reduction
on more complicated structures of input data. In addition, although the results of BLMK
are inferior to those of KBML and BML_DFE, this model is still competitive and achieved
good results on the described databases. For instance, BLMK with an RBF kernel attained
the accuracy of 67.39% compared with LRRR, which obtained 58.42% accuracy when
employing six training samples on the Flavia database. Considering this, BLMK could
simplify the structure of the BLS with fewer nodes for classification, making BLM_DFE
also inherit this advantage in recognition applications. The results of this ablation study
teach us that a large number of nodes may have redundant information. Hence, it is a
meaningful way to compress these nodes in classification tasks. Moreover, to further verify
the effectiveness of the generated A_com, we plan to apply the acquired A_com features
with other popular classifiers, such as SVM, for evaluation in future studies. Thus, we can
assess whether A_com can further improve the classification performance when employed
together with other common models, which can explore and enhance the novelty of the
proposed model.

In this study, we attempt to insert the KPCA technique into a broad learning struc-
ture to address some issues mentioned above (e.g., redundant information among fea-
ture/enhancement nodes) in the standard BLS and further enhance its classification per-
formance. The KPCA technique is embedded in the broad learning architecture, rather
than simply being combined with it. Besides this, some recent studies [17,25] also adopted
similar strategies to modify the basic BLS and improved their proposed models’ perfor-
mance, as expressed in the Introduction section. Therefore, although the proposed model is
relatively simple in terms of technical soundness, considering the obvious improvement
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in experimental results on various benchmark databases and related studies by other
researchers, we believe this work is still meaningful in terms of novelty.

The advantages of the proposed model are very obvious and clear, as mentioned in
the previous sections. However, there is still room for improvement in the proposed model.
For instance, KPCA is a quite popular and widely used feature extraction method that has
been validated in various studies and applications. Thus, we selected KPCA to extract the
low-dimensional useful features as the new input in the broad learning framework. Valid
high-level information in the extracted raw input data may be ignored. Hence, integrating
other feature extraction methods, such as stacked autoencoder [65], to generate multiple
features as the new input may further enhance classification performance. Given this point,
we aim at exploring and investigating a multi-feature extraction broad learning model in
our future studies. There are some disadvantages to our BLM_DFE. For instance, when
using KPCA to process data, we need to address an N × N matrix (with N indicating
the number of input samples), and the computational complexity is O

(
N3), which is also

expressed in Section 4.4. Therefore, if the number of input samples is very large, the
computational cost of KPCA is also high. Considering this point, the proposed model is
more suitable for dealing with classification tasks with small- or medium-sized databases.
The original BLS has a good ability to process and evolve new input data in classification
applications. Another shortcoming of this BLM_DFE model is that the embedding and
processing of KPCA change the raw input data or original feature/enhancement nodes,
affecting its ability to dynamically deal with new input data. However, it is still acceptable
when considering the superior performance of the proposed model on various databases
compared with other popular classifiers, including the standard BLS. In addition, we aim to
further explore ameliorating this model to have a better capability to dynamically process
data in the future.

Here, we introduced a dual feature extraction strategy by applying KPCA embedded in
the broad learning structure to handle high-dimensional input data and feature/enhancement
nodes, which adds several transformation operations. One of the main issues is that these
operations can make the fine tuning and understanding of this model more complex.
However, the KPCA technique can compress feature/enhancement nodes to obtain concise
and valuable features, which are used to compute the learned weight matrix using ridge
regression as in the standard BLS. Therefore, we only need to embed multiple KPCA
operations in building this model while not significantly increasing the complexity of this
model structure. In addition, we validated our implemented model on various real-world
databases. The corresponding experimental results also verify the rationality and usability
of our model in practical classification applications.

6. Conclusions

In this paper, we illustrated a novel broad learning model with a dual feature extraction
strategy for classification applications. Compared with the raw input data and original
feature/enhancement nodes used in the basic broad learning framework, the proposed
model can exploit the effective low-dimensional features with the raw input data and
compress the used nodes to simultaneously simplify the structure of the broad learning
architecture. In this way, we can accomplish ideal classification results by imposing this
dual feature strategy on the broad learning model. Related experimental results on various
benchmark databases confirm the effectiveness of the proposed model compared with other
popular classification approaches, including the basic BLS. Moreover, further investigation
and amelioration of the proposed model to enhance the feature extraction ability or flexible
data processing ability are desired in future studies.
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Appendix A

Ridge regression approximation is applied in Equations (5) and (30) (i.e.,
Equations (A1) and (A2)) in this study as follows:

W =
(

AT A + λBLS I
)−1

ATY (A1)

∼
W =

(
A_comT A_com + λI

)−1
A_comTY (A2)

All parameters of ridge regression approximation in Equations (A1) and (A2) are listed
and explained in Table A1.

Table A1. Notations involved in ridge regression approximation in this work.

Number Symbol Definition

1 W Trainable learned weight matrix in the original BLS
2 A All feature/enhancement nodes used in the original BLS
3 AT The transposed matrix of A
4 A−1 The inverse matrix of A
5 λBLS Penalty parameter used in the original BLS
6 I Identity matrix
7 Y Label matrix
8

∼
W New trainable learned weight matrix used in BLM_DFE

9 A_com Compressed nodes used in BLM_DFE
10 λ Regularization parameter used in BLM_DFE
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