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Abstract: Modern science is frequently based on the exploitation of large volumes of information
storage in datasets and involving complex computational architectures. The statistical analyses of
these datasets have to cope with specific challenges and frequently involve making informed but
arbitrary decisions. Epidemiological papers have to be concise and focused on the underlying clinical
or epidemiological results, not reporting the details behind relevant methodological decisions. In this
work, we used an analysis of the cardiovascular-related measures tracked in 4–8-year-old children,
using data from the INMA-Asturias cohort for illustrating how the decision-making process was
performed and its potential impact on the obtained results. We focused on two particular aspects of
the problem: how to deal with missing data and which regression model to use to evaluate tracking
when there are no defined thresholds to categorize variables into risk groups. As a spoiler, we
analyzed the impact on our results of using multiple imputation and the advantage of using quantile
regression models in this context.

Keywords: missing data; quantile regression; tracking; cohort studies; children’s health; cardiovascular risk
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1. Introduction

Modern science is frequently based on the exploitation of large volumes of information
stored in datasets and involving complex computational architectures [1]. Sometimes,
these datasets compromise a huge number of participants. That is the case for those
studies based on large registries, which frequently include hundreds of thousands or even
millions of patients [2]. In this situation, despite some aspects of the statistical analyses
becoming unuseful (i.e., p values), the main challenge is the computational capacity for
handling the number of subjects. The so-called “omic sciences”, including genomics,
transcriptomics, proteomics, and metabolomics, among other technologies, represent a
clear example of research requiring a high computational capacity but usually involving
few subjects. In these studies, the researchers collected a number of variables and had to
cope with several specific methodological challenges. Among those, we have examples
such as preserving the security of the data, the difficulty of cleaning and checking their
consistency, or the presence of missing values. The loss of subjects between follow-ups in
the case of longitudinal studies, the data harmonization when the information comes from
different records or systems, and apparently trivial aspects such as sometimes being able
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to know the information contained in each variable are just a few examples of the issues
that researchers have to deal with. Schmitt et al. [3] presented an interesting document in
which the authors described the cohort, quality assurance procedures, and results of the
Successful Aging after Elective Surgery (SAGES) study, highlighting the relevance of the
processes related to data collection for having a successful project.

We consider here studies in which a relevant amount of information is systematically
collected with the goal of studying the evolution of the enrolled participants in an undefined
future, trying to delineate the associations between exposure to potential risk factors and
posterior health status. Cohort designs, such as the landmark Framingham study [4],
which was originally aimed to identify the determinants of cardiovascular disease (CVD)
and whose collected data have been used with different goals; the European Prospective
Intake and Cancer (EPIC) study [5], designed to investigate the relationships between
nutritional, lifestyle, and environmental factors and the incidence of different types of
cancer and other chronic diseases; or the Environmental Influences On Child Health
Outcomes (ECHO) program [6], a network of pediatric cohorts that aims to understand the
effects of a broad range of early environmental influences on child health and development,
are just few examples. Particularly, there are a number of them that enrolled pregnant
women and had active follow-ups with themselves and their children to determine whether
pre-, peri-, or post-natal exposures may influence childhood or even adulthood health
outcomes. Examples of these so-called birth cohorts are the Infancia y Medio Ambiente
(INMA) (Environment and Childhood) project [7], a network concerned with the relation
of environmental exposures with growth, health, and development from early fetal life
until puberty, or the New Hampshire Birth Cohort (NHBC) study [8], which investigated
the effect of several factors such as environment contaminants on the health outcomes of
pregnant women and their children.

Usually, related subprojects involve part of the subjects and a limited number of
variables. They suffer from the same problems. The use of multivariate statistical techniques
implies that even if a subject is only missing one of the required variables, then it should
be completely excluded from the analysis. Additionally, in longitudinal studies in which
large numbers of variables are collected at different follow-ups, subjects having missing
information at one follow-up can differ from those having missing information in another.
This can result in a drastic reduction in the available sample size and, perhaps worse,
the potential introduction of systematic biases. Aside from that, the study of risk factors
in health populations, and particularly in children, copes with unclear or controversial
threshold definitions. As a result, children thresholds are chosen as a specific percentile of
the variable of interest [9], usually assuming that it is normally distributed with parameters
estimated in healthy children; that is, there is not enough knowledge about the targets and
clinically meaningful thresholds.

In this work, we aim to provide some statistical insight for longitudinal cohort studies
involving controversial threshold definitions. Despite some of the considered techniques
being new, we put the focus on their utilization in this particular setting. Dealing with
missing data or selecting the adequate regression methodology implies making a number
of decisions which could impact the final conclusions. Published documents are over-
whelmingly focused on describing the obtained results and, in general, do not present in
detail each decision made. Here, we pay more attention to those methodological details, an-
alyzing the impact of the made decisions on the final results and discussing their suitability
in relation to the possible alternatives.

2. Materials and Methods
2.1. The INMA-Asturias Cohort

In 2004, the INMA-Asturias cohort [10] was established as a prospective, population-
based cohort study. As part of the INMA project [7], its aim is to examine the potential
impact of environmental exposures on maternal and child health outcomes, with special
emphasis on exposure to environmental pollutants and genetic and nutritional factors.
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The cohort is located in a 483 km2 area in northern Spain, with San Agustín University
Hospital (Avilés, Asturias) serving as the reference hospital. The economy of this region
historically relied on industries characterized by important environmental pollution. Origi-
nally, the area included a population of 165,201 inhabitants (reduced to 144,875 in 2021),
and the reference hospital is a public health center with 436 beds, providing primary care
as well as central, medical, and surgical services to this population.

From May 2004 to June 2007, pregnant women attending their first prenatal visits at
the obstetrics service of San Agustín University Hospital or the Las Vegas health center
(Corvera, Avilés) were consecutively selected if they met the following criteria: mother’s
age≥ 16 years, singleton pregnancy, scheduled delivery at San Agustín University Hospital,
no assisted conception, and no communication handicap. Extensive data were collected
by trained staff through questionnaires, medical records, biological and environmental
samples, and anthropometric measures. Follow-up visits took place at the first and third
trimesters of pregnancy, at birth, and when the children’s ages were 18 months and 4, 8,
and 12 years.

The availability of blood samples enabled the measurement of markers of adult
cardiovascular risk factors, including serum lipid, glucose, insulin, blood pressure, and an-
thropometric measures. These markers have expanded the scope of research beyond the
initial objectives, allowing study of the tracking of cardiovascular-related measures. Here,
we use the work by Fernández-Iglesias et al. [11] to illustrate the motivation behind specific
methodological decisions and their potential impact on the results obtained.

2.2. Tracking of Cardiovascular-Related Measures

In epidemiology, predictability or maintenance of the range of a biological variable (or
specifically of risk factors for chronic diseases) within a specific population is referred to as
tracking. Particularly in children, early studies of growth established that some measures
are relatively stable over time periods [12]. This phenomenon has interested both biologists
and statisticians since the early 1980s, although there is no widely accepted definition of
the term. Attempts to put the underlying concept into practice have resulted in the two
main conceptions shown in Box 1.

Box 1. Tracking definitions.

• The ability to predict subsequent observations (t + 1) from earlier observations (1, . . . , t) [13].
If, in a cohort of n children, we measured their heights yi,t, with 1 ≤ i ≤ n and 1 ≤ t ≤ k, then
tracking is the ability to predict yi,t+1 from yi,1, · · · , yi,t.

• The maintenance of a relative position within a distribution of values in the observed popula-
tion through time [14,15]. Therefore, in the children’s height example, the question is whether
children at higher percentiles at time t will also be at higher percentiles at time t + 1.

Here, we focus on this second conception in an attempt to explore the relationship
between longitudinal measurements.

Considering that atherosclerosis is a progressive accumulation process that can begin
in childhood and youth [16,17], in Fernández-Iglesias et al. [11], we studied the track-
ing between 4 and 8 years of the following cardiovascular-related variables that reflect
well-established CVD risk factors in adulthood: waist-to-height ratio (WC/Height ratio)
for central obesity, mean arterial pressure (MAP) for hypertension, triglycerides (TG),
high-density lipoprotein cholesterol (HDL-c), and the atherogenic coefficient (AC) for dys-
lipidemia, and the homeostatic model assessment of insulin resistance (HOMA-IR) for
insulin resistance.

Operationally, tracking is challenging [18], particularly when examining risk factors.
The most commonly used statistical techniques in the literature include logistic regression,
correlation coefficients, or linear regression models. Logistic regression models require
the use of thresholds to categorize risk factors that are inherently continuous, typically
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using specific quantiles. This is an extremely common approach in epidemiology research,
but it has major limitations. It may lead to a loss of statistical power, to less precise es-
timates, or to difficulty in comparing results between studies when the thresholds are
sample-dependent [19–21]. Choosing them arbitrarily can be a pitfall, especially when
studying adult risk factors in generally healthy children. In such cases, it is advisable
to use a methodology that allows for the use of continuous measures. However, com-
monly used continuous approaches, such as correlation coefficients or linear regression
models [22–24], also have important limitations. These methods primarily concentrate
on assessing the impact within the central part of the variable’s distribution. However,
in the context of variables denoting risk factors, a shift in the variable’s mean often does
not imply a meaningful clinical or health-related impact. Instead, it is the consequences
observed at the extreme part of the distribution that hold a relevant significance. Conse-
quently, the insights yielded by these techniques may not contribute substantial valuable
knowledge. To overcome this challenge, in Section 2.4, we propose the use of quantile
regression models to overcome two challenges: (1) to analyze the tracking of risk factors
while avoiding the use of thresholds and (2) to maintain the focus on the extreme parts of
the distribution.

2.3. Missing Data: Multivariate Imputation

Missing data is a recurrent problem in statistics which is especially impactful on
longitudinal studies. Little and Rubin [25] proposed a missing data classification based on
the underlying loss mechanism (Box 2).

Box 2. Types of missing data according to missingness mechanisms.

Let {X, Y} be a k-dimensional random matrix. For the sake of simplicity, we will assume univariate
missing data; that is, Y is the only variable containing missing values. Let R be the response indicator
vector; that is, R = 1 if Y is observed, and we have R = 0 otherwise. Then, the following apply:

• The missing completely at random (MCAR) model satisfies

P{R|(Y, X)} = P{R},

That is, the probability of being missing does not depend either on Y or X. This means that
there are no systematic differences between the missing and observed values. For example,
serum lipid measurements may be missing because some samples have been lost in transit to
the laboratory.

• The missing at random (MAR) model satisfies

P{R|(Y, X)} = P{R|X},

That is, the probability of being missing depends on the observed data.
For example, serum lipid measures may be more likely to be missing in
young people, as they tend to be less concerned and do not attend visits for
blood collection.

• The missing not at random (MNAR) model satisfies

P{R|(Y, X)} = P{R|Y},

That is, the probability of being missing depends on the missing values themselves or on
unobserved information. For example, in a study to assess the effect of a hypertensive
treatment, hypertensive subjects may present greater collaboration that results in a lower
number of missingness.

The statistical analysis approach depends on each of these situations. Under the MCAR
model, the observed data can be considered a random sample from the original target
sample. In such cases, a complete-case analysis does not introduce bias in the estimated
parameters but implies a sample size reduction with the associated loss of power. When
missing data are not MCAR, as observed, the data do not represent the full population, and
the complete-case approach may provide biased results. Multiple imputation (MI) methods
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can produce unbiased estimations and preserve the original sample size under the MAR
situation [26]. However, under the MNAR model, as long as the missingness depends on
unobserved information, MI could fail [27]. Strategies to handle the MNAR model include
collecting more information about the causes for the missingness or performing sensitivity
analyses to evaluate the results under various scenarios [26].

The MI method, proposed in Rubin [28], does not focus on imputing the “closest”
possible values to the actual missing values but rather making valid and efficient inferences
about the parameters of interest. The key concept of MI is to use the distribution of the ob-
served data to estimate a set of plausible values for the missing ones. Random components
are incorporated into these estimated values to reflect their uncertainty. Multiple datasets
are created and then analyzed individually. Finally, the individual estimations are combined
to obtain the overall estimates, their standard errors, and adequate confidence intervals.

MI procedures consider the MAR model and the relationship

Y = g(X) + ε, (1)

where g(·) and ε are the link function and random white noise, respectively. Box 3 summa-
rizes the MI algorithm.

Box 3. Steps of the MI method.

Let {Xn, Yn} be a random sample drawn from {X, Y}, and let β be the target parameter. We assume
that the values yi1 , · · · , yim (1 ≤ i ≤ n, m < n) are missing.

• Step 1. From the non-missing values, we compute the function ĝ(·) which estimates g(·)
(Equation (1)). For each missing value, yij (1 ≤ i ≤ n, 1 ≤ j ≤ m) generates a pseudo-value
ŷij = ĝ(X ij ,n) + εij , where εij is randomly generated. With this dataset, we estimate the target
parameter β̂ and its variance, V̂2.

• Step 2. We repeat Step 1 B times (where B is a large enough number) and obtain a vector of
estimations {β̂1, · · · , β̂B} and another with their respective variabilities {V̂2

1 , · · · , V̂2
B}. Notice

that in each repetition, the error (ε) is randomly generated. Therefore, each repetition provides
a different dataset.

• Step 3. We use Rubin’s rules to combine the vectors obtained in Step 2 into a single estimation
with its variability. This estimation reflects both the uncertainty due to the sample variation

and the uncertainty due to the missing data. The m β̂k estimates and ŜEk standard errors are
combined using Rubin’s rules to produce an overall estimate and standard error that reflect
both the uncertainty due to the sample variation and the uncertainty due to the missing data.

Different algorithms have been proposed for estimating Equation (1) [29]. For instance,
if we consider the linear model

Y = β · X + ε, (2)

then we have the imputation process

ŷij = β̂ · Xij + εij , (1 ≤ i ≤ n, 1 ≤ j ≤ m)

where εij is randomly generated.
In many MI algorithms, a Bayesian perspective is often adopted, treating the parame-

ters associated with the link function g(·) as random variables rather than fixed constants.
This approach introduces uncertainty about missing values not only by incorporating
random noise through the error term εij , as noted in Step 1 of Box 3, but also by introducing
uncertainty into the link function parameters, whose state of knowledge is represented
through a posterior distribution [26]. For instance, if we consider the same linear model
(Equation (2)), then we have the imputation process

ŷij = β̂ · Xij + εij , (1 ≤ i ≤ n, 1 ≤ j ≤ m)
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where εij is randomly generated and β̂ is sampled from its posterior distribution based on
the available data.

Rubin’s rules [28] combine the results of the B analysis performed to obtain

¯̂β =
1
B

B

∑
k=1

β̂k.

The variance of ¯̂β, denoted as V2
T , is calculated by

V2
T = V2

W + V2
B ·
(

1 +
1
B

)
, (3)

where V2
W is the within-imputation variance and represents the sample variation and V2

B is
the between-imputations variance and represents the extra variance due to the uncertainty
around the imputed data; that is, we have

V2
W =

1
B

B

∑
k=1

V̂2
k , and

V2
B =

1
B− 1

B

∑
k=1

(β̂k − ¯̂β)2

Inflating the between-imputation variance in Equation (3) by the factor 1/B reflects
the extra variability as a consequence of imputing the missing data using a finite number
of imputations instead of an infinite number. For constructing 100× (1− α)% confidence
intervals, we assume ¯̂β is normally distributed and use the general formula

¯̂β± zα/2

√
V2

T ,

where zα/2 is the critical value of the standard normal distribution.
Different indexes have been proposed for measuring the severity of the missing data

problem. We consider here the so-called fraction of missing information (FMI), which
estimates the proportion of the total variance due to the imputations and is defined by

FMI =
V2

B(1 + 1/B)
V2

T
.

The FMI ranges between 0 and 1. It is equal to zero only if the missing data do
not add extra variation to the sample variance, an exceptional situation which implies
perfect imputation models. And it is equal to one when the whole variation is caused
by the missing data. In practice, this is equally unlikely since it means that there is no
variation in the observed information [30]. The higher the value of this indicator, the greater
the influence of the imputation model on the final results. Another index is the relative
efficiency (RE), which represents the relative efficiency of using B rather than an infinite
number of imputations:

RE =
1

1 + FMI/B
. (4)

It ranges from 0.5 to 1, where the higher the value, the less efficiency would be gained
by increasing the number of imputed datasets.

The INMA-Asturias Cohort Example

In our study, we had a total of 416 children, but just 154 (37.02%) had all the required
information. The missing percentage for cardiovascular-related variables oscillated between
6.97% and 44.47%. In the models, measures at age 4 play the role of the independent
variable, and the same measures at age 8 play the role of the dependent variable. We
excluded children who lacked data at the 4 and 8 year time points simultaneously. The final



Mathematics 2023, 11, 4070 7 of 17

considered sample (307 children) showed missing percentages which ranged from 2.3% to
25.1% (see Table S1).

The first decision related to missing data is the plausibility of the MAR assumption.
We can reject data to be MCAR using the Little [31] test or by exploring if there are variables
associated with missingness. But there is no way to distinguish whether the data are MAR
or MNAR without additional information. In general, the MAR assumption will be more
reasonable the more variables are included in the imputation model that are related to the
missingness of the data on the variable of interest or to the variable of interest itself. In our
case example, assuming the data were MAR, we had extra related auxiliary variables that
could be incorporated into the imputation model, suggesting that the imputation methods
could perform considerably well.

The second point is to specify the imputation model. To avoid unnecessary complexity,
we have represented in this section the multiple imputation theory for univariate missing
data. In our case, missing data occurred in more than one variable, and thus we applied a
multiple imputation strategy for imputing multivariate missing data. In particular, we ap-
plied the multivariate imputation by chained equations (MICE) method [32] using the predictive
mean matching algorithm. A detailed description and definition of this algorithm, which is
based on Bayesian imputations in the MICE package, can be found in the work of Stef van
Buuren [33]. Initially, we specified the imputation model with five (=B) imputed datasets
[32,34–36]. Regarding to imputation model diagnosis, we assessed the maintenance of the
observed relationship between the dependent and independent variables in the complete
datasets. Figure 1, for example, shows that the distributions of observed and imputed data
for TG were quite similar, as expected under the MAR approach.

The next decision was to determine the final B value. As the rate of missing information
was below 0.5, we applied the criteria suggested by White et al. [36], Graham et al. [37],
and Bodner [38]. We started with B equal to the maximum percentage of missing data
observed (B = 26). Then, we applied the corresponding analysis to each generated dataset
and combined the results. The FMI was calculated and verified whether 100 · FMI ≤ B. B
should be adjusted to the minimum number that satisfies this criterion otherwise. Of the 81
quantile regression models performed, the FMI median was 0.25 (interquartile range (IR):
0.12; 0.29), but the maximum was 0.46. As the computation time and storage capacity were
not a concern, we finally selected B = 50.

After that, MI was repeated with the new number of imputations (B = 50), the models
were estimated for each of the 50 datasets created, and the overall estimates and variances
were calculated using Rubin’s rules. The influence that the imputation had on these
estimates was checked. Table 1 summarizes the corresponding indicators for each of the
cardiovascular-related measures. The proportion of the total variance due to the imputation
procedure was around 28% in the models involving measures with higher percentages of
missing data and around 10% in those measures with low percentages. Note that by using
a number of imputations B satisfying 100 · FMI ≤ B and taking into account Equation (4),
it is expected to obtain REs higher than 99%, as we observed in Table 1. Therefore, minimal
variation would occur just by increasing the number of imputations.
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Figure 1. Scatter plots for each of the initial five imputed datasets of TG measure at 4 vs. TG measure
at 8 years. TG = triglycerides; Imp = imputation.

Table 1. Median, first, and third quartiles for the indicators of the impact of the missing data,
expressed as percentages.

Measure FMI RE

TG 30.2 (28.7; 32.6) 99.4 (99.4; 99.4)

HDL-c 25.9 (23.1; 28.9) 99.5 (99.4; 99.5)

AC 28.6 (24.3; 29.7) 99.4 (99.4; 99.5)

WC/Height ratio 11.6 (9.6; 14.6) 99.8 (99.7; 99.8)

MAP 8.9 (7.4; 10.9) 99.8 (99.8; 99.9)

HOMA-IR 29.2 (27.6; 32.5) 99.4 (99.4; 99.5)
FMI = fraction of missing information; RE = relative efficiency; TG = triglycerides; HDL-c = high-density
lipoprotein cholesterol; AC = atherogenic coefficient; WC/Height ratio = waist-to-height ratio; MAP = mean
arterial pressure; HOMA-IR = homeostatic model assesment of insulin resistance.

2.4. Quantile Regression

Quantile regression models (QRMs) were introduced in 1978 by Koenker and Bas-
sett [39]. They offer a natural extension of the classical linear regression models in which,
instead of specifying the change in the conditional mean of the dependent variable’s distri-
bution associated with a change in the independent variables, the change in any conditional
quantile of the distribution is specified. In longitudinal studies, QRMs have been applied in
a wide variety of problems. For instance, Lipsitz et al. [40] used this technique for analyzing
the changes in the distribution of CD4 cell counts in patients with human immunodeficiency
virus. They are also commonly used for identifying risk factors in particular populations.
Fenske et al. [41] applied a QRM for detecting obesity risk factors in childhood.
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Mathematically, given the dependent variable Y, the k-dimensional independent
variable X, and the τth quantile with τ ∈ (0, 1), the QRM can be specified as follows:

Y = βτ · X + ετ ,

where the residuals verify that P(ετ ≤ 0|X) = τ; that is, its conditional τth quantile, qτ(·|·)
is zero. Therefore, we have

qτ(Y|X) = βτ · X + qτ(ετ |X) = βτ · X.

Let {Xn, Yn} be a random sample from {X, Y} (sample size n). The estimator β̂τ is
obtained by minimizing a sum of weighted absolute residuals that gives asymmetric penal-
ties depending on whether the values of the dependent variable are being overestimated
or underestimated:

τ · ∑
ετi≥0

|ετi |+ (1− τ) · ∑
ετi<0

|ετi | (1 ≤ i ≤ n). (5)

This means that the proportion of data points below the τth estimating regression line
ŷi = β̂τ · Xi (1 ≤ i ≤ n) is τ and the proportion lying above it is 1− τ. Equation (5) can be
minimized using different algorithms based on linear programming [42].

The interpretation of the coefficient estimates is analogous to those in classical linear
regression, except that instead of referring to the effect on the conditional mean of the
dependent variable, we refer to the conditional quantile. Each β̂τ can be interpreted as the
increment of the τth quantile of the dependent variable per unit of change in the value
of the corresponding independent variable, while the rest of the independent variables
are fixed.

There are several procedures for computing both the standard errors and confidence
intervals for the quantile regression coefficients. Under certain conditions, the usual
coefficient estimators are asymptotically normally distributed [42]. However, asymptotic
standard errors are complex, and resampling approaches are frequently employed [43].

QRMs overcome some limitations of classical linear regression tools, even if the
researcher is only interested in a central position and its behavior. Box 4 provides some
guidance on the situations for which a QRM may be appropriate. The last two points are
the keys to its usefulness in evaluating tracking. But it is worth noting that the last point
also makes these models highly suitable for assessing whether the effects of an exposure
are the same in all quantiles. And the third point also solves the incredibly common cases
where exposures follow skewed distributions.

Box 4. Situations in which quantile regression is useful.

1. In the presence of outliers. It is able to cope better with outliers, since it is based on the
estimation of a position measure such as the quantile. Outliers only have an influence on the
estimation of the quantile close to them.

2. In case of heteroscedasticity. If the variance depends on the independent variables, quantile
regression can capture this effect.

3. When distributional assumptions are not satisfied. QRMs do not make assumptions about
the distribution of errors, and thus they can be used when the conditions for applying other
regression models are not satisfied.

4. When the interest is at the extremes of the distribution. Sometimes the real interest of the
research question lies in what happens in the tails of the distribution. The QRM allows one to
answer this question by estimating the extreme quantiles.

5. When there is no known threshold defining the at-risk population. As the model can be
estimated for any quantile, it becomes possible to evaluate the impact of the independent
variables on a specific section of the distribution without having to select a particular point.
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The INMA-Asturias Cohort Example

Taking the TG measure as an example, we estimated the following QRMs for τ values
ranging from 0.1 to 0.9 in 0.05 intervals:

qτ(TG8|rank(TG4)) = β̂τ0 + β̂τ1 · rank(TG4),

where TG8 represents the TG measure at 8 years and rank(TG4) is the rank transformation
of the TG measure at 4 years. As previously mentioned, the tracking conception is based on
the relative positions of subjects within the distribution of the variable of interest. In order
to incorporate this relative position within the independent variable, a rank transformation
was applied. Here, we use the crude analysis as an example for simplicity, but as in any
regression model, adjustment variables can be included.

Our aim is studying the impact on the upper tail of the TG at the 8 year distribution,
(i.e., to estimate β̂τ1 for high τ values). However, estimating the effect for quantiles across
the whole distribution and plotting β̂τ1 estimates against τ serves as a useful exploratory
tool to assess whether the size and nature of the effect remains constant. Figure 2 shows
that the association differed for high-risk subjects (those at the highest quantiles of TG at
the 8 year distribution) compared with average subjects (those around the 0.5 quantile),
reflecting an increasing trend in the the association’s effect. This observation would not
have been possible using classical linear regression models.

−
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.2

0
.4

0
.6

0
.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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^
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Figure 2. Quantile regression parameters (β̂τ) per quantile (τ) for the effect of the rank transformation
of TG at 4 on TG at 8. The red dots and lines represent point estimate of the parameters, while the
grey bounds represent the confidence interval estimate. TG = triglycerides.

3. Results

The final results of the analysis may depend on the methodological decisions made.
Regarding the missing data, the possible alternative here would be to conduct a complete
case analysis. We compared the results between these two approaches and did not ob-
serve any systematic differences. However, contrary to what might be expected, not all
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confidence intervals were narrower when applying MI in contrast to the complete case
analysis. Figure 3 shows an example of the variances in the parameter estimates for several
TG at 8 years quantiles by analysis type, and we can observe that the estimates were not
more accurate for all parameters when using MI (τ = 0.3 and τ = 0.5). We observed this
phenomenon in all the models involving measures with a high percentage of missing data
(TG, HDL-c, AC, and HOMA-IR) but not in models involving the WC/Height ratio and
MAP, which had less than 10% missing data.

Regarding the statistical model, a binary response model such as logistic regression
could have been considered as an alternative to quantile regression. With this approach, we
would still focus on the upper tail of the distribution and explore the probability of being in
a high-risk TG category at 8 years, depending on the TG values at 4 years. For that purpose,
we considered the 0.9 quantile, which is both age- and sex-specific, to calculate the binary
variable that divided TG into the normal category (TG < 0.9 quantile) and the risk category
(TG ≥ 0.9 quantile). In our sample, without imputation, 72.3% of the 4-year-old children
had normal TG levels, 8.2% had risk levels, and 19.5% had missing data. At 8 years, 71.6%
of the children had normal levels, 8.5% had risk levels, and 19.9% had missing data.

0
0
.0

1
1
5

0
.0

2
3 τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7

Complete−case variance MI between variance MI within variance

Figure 3. Variance of parameter estimates in quantile regression models for TG at 8 years and TG
at 4 years by type of analysis: complete case or MI analysis. TG = triglycerides; MI = multiple
imputation; τ = quantile.

Using a QRM, we observed a positive association between the rank of TG at 4 years
and the 0.9 quantile of TG at 8 years (β̂0.9: 0.629, 95%CI: 0.129–1.129). The logistic regression
model showed a positive association between the rank of TG at 4 years and the odds of being
in the risk category of TG at 8 years (odds ratio (OR): 1.009, 95%CI: 0.995–1.023). While the
observed association and overall conclusion were the same, the estimated parameters were
not directly comparable. In the QRM, β̂0.9 represents an additive effect on the dependent
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variable, whereas the OR in the logistic regression model represents a multiplicative effect.
More specifically, for the same one-unit increase in the rank of TG at 4 years, in the first case,
we estimated a 0.629 mg/dL increase in the 0.9 TG quantile at 8 years, while in the second
case, we estimated there to be 1.009 times the risk of being in the TG risk category at 8 years.
Moreover, the outcome did not represent the same construct. In the QRM, the outcome was
a specific point of the TG distribution at 8 years, while in logistic regression, it was a section
of the distribution, assuming no variation in the effect within that section. Another option
would be to use the binary TG variable for both 4 and 8 years in the logistic regression.
In this case, we found that children who were in the risk category at 4 years were 3.287 times
(95%CI: 1.173–9.212) more likely to be in the risk category at age 8 than those who were not.
Again, the evidence on the nature of the association between variables was the same, as
high TG values at 4 years were positively associated with high TG values at 8 years, but the
estimated effects were not comparable.

4. Discussion

The epidemiology literature has plenty of statistical analysis. Despite these usually
being briefly explained, it is never clear what the impact on the observed results would be if
a different decision was made. Lack of space is a common problem in specialized journals,
and deep explanations are relegated to Supplementary Materials or directly omitted. Here,
we explored the impact of the decisions taken, particularly with regard to missing data and
the selection of the most appropriate statistical model for the study of variables involving
controversial thresholds.

In recent years, MI has become a quite popular method for dealing with missing data.
As we saw in Section 2.3, the most appropriate approach depends on the data missingness
mechanism and on the amount of missing data or the role played by the involved variables
(dependent or independent variables, adjustment variables, etc.) [44]. Several authors
recommend the use of MI procedures regardless of the mechanism of missingness [45].
They argue that, under the MCAR condition, it is preferred against a complete case analysis
because it results in more power. Under the MAR condition, it is preferred because, aside
from more power, it will give unbiased results, whereas complete case analysis may not.
And under the MNAR model, some authors suggest that it will provide less biased results
than complete case analysis [46]. However, the decision is not always straightforward,
and using MI only to maximize the sample size is a kind of artificial approach, which may
not always be successful when it is correctly performed. Here, we presented an example
where utilizing MI resulted in a higher sum of within-imputation variance and between-
imputation variance and, consequently, total variance for certain quantiles compared with
the variance obtained through complete case analysis. This may occur in cases where
the proportion of imputed data is large and there are no variables closely related to the
missing data or to the variables containing the missing data themselves. The MI model
would reflect the high uncertainty around the missing data, and the target parameter
estimation would be highly dependent on the generated datasets. This adds extra noise
and increases uncertainty when combining the results, and it potentially leads to higher
between-imputation variance values that offset the gain in the within-imputation variance
resulting from the increase in sample size. Another example in which MI might yield to
less precise confidence intervals, despite an increased sample size, is when there is a large
proportion of missing data in the explanatory variables, and these are highly correlated
with the response variable. In this case, MI can affect the precision of the estimates.

We considered tracking analysis of the cardiovascular-related measures—particularly
TG—in healthy children as an example of analysis that requires avoiding the use of arbitrary
thresholds while focusing on the extreme parts of the outcome distribution. Correlation
coefficients and linear regression models are frequently used to explore tracking while
preserving the continuous nature of the variables. These methods would focus on esti-
mating the effect of TG at 4 years on the average TG at 8 years. Nevertheless, this does
not provide us with any information on the magnitude or direction of the association
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in the upper part of the TG distribution. In contrast, quantile regression addresses this
constraint and allows us to assess the impact within the region of interest without rely-
ing on quantile-based categorization. We compared our approach with two variations
of the classical logistic regression analysis using thresholds. The overall finding was the
same: There was a positive association between the high TG values at 4 and 8 years of
age. However, quantile regression provided much richer information. If there were a clear
threshold enabling the categorization of a cardiovascular-related variable into normal and
risk values, then logistic regression would allow us to estimate the effect on the probability
of being in the risk category at 8 years associated with an increase in TG values at 4 years,
thus providing an estimation of the tracking of the variable between these ages. However,
in the specific case of cardiovascular-related variables in children, where consensus on the
threshold values is lacking, we are truly estimating the effect on the probability of being in
a category that holds no clinical significance. And we are also assuming homogeneity of
risk within categories. In other words, the risk is the same for all individuals within the
normal category and the same for all individuals within the risk category. On the contrary,
quantile regression allows us to estimate this effect across all quantiles, thus covering the
entire part of the distribution that may imply potential risk. In our example, using quantile
regression, we were able to observe that the effect was not constant across all quantiles
of the distribution at age 8. Instead, it increased as the quantile increased. Using logistic
regression, we would not be able to see this behavior.

This suggests that the magnitude of tracking increases the more extreme the values
are, providing relevant insights. While there is no established risk threshold for TG in
pediatric ages, our findings indicate that increasing TG levels at 4 years may lead not only
to a higher average at 8 years but also to a longer upper tail of the TG distribution at 8 years.
Although it is not the purpose of this article, it should be mentioned that this could imply
difficulty in normalizing TG values in the future for those children who present extreme
values at 4 years of age and a progressive increase in TG values at 8 years of age. These
results have potential implications for children’s health, as the consequences associated
with such changes in TG levels are not yet known. These findings can also inform the
identification of cardiovascular-related measures that should be considered as targets for
screening and monitoring in clinical practice, as well as in the development of public health
guidelines and recommendations for children [11].

Quantile regression has gained widespread popularity in social science, economics,
environmental modeling, public health research [47–50], and in recent years, in the field
of environmental pollutant exposure [51–55]. In longitudinal data analysis, which suffers
from a high level of complexity due to the intercorrelation among repeatedly measured
observations, QRMs have also gained increasing popularity. Most longitudinal modeling
methods primarily focus on mean regression, concentrating solely on the average effects
of covariates and the mean trajectory of longitudinal outcomes. Consequently, similar to
independent data, quantile regression has also been extended and applied to longitudinal
data. Quantile regression for longitudinal data possesses the capacity, at both the population
and individual levels, to identify heterogeneous covariate effects, elucidate variations in
longitudinal changes across different quantiles of the outcome, and offer more robust
estimates when heavy-tailed distributions and outliers are present [56]. Despite this, its
application in longitudinal cohort studies for tracking purposes has been limited [57]. This
work serves as an example of its potential for investigating risk variables without known
thresholds or when research interests lie in non-central areas of the distribution, as occurs
in tracking studies or also when evaluating the possible effects of exposures. Even in other
cases, it can complement traditional analysis methods by estimating a family of conditional
quantile functions, providing a more nuanced understanding of variable effects.

5. Conclusions

Details are important in statistical analysis, as they can impact the final results. In our
data, the findings seemed to be robust with respect the to main decisions taken but led
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to differences in terms of accuracy and richness of information obtained. Here we point
out that although multiple imputation methods are generally useful for mitigating biases
in estimates, they may not necessarily improve the precision of standard error estimates.
Moreover, we illustrate that quantile regression can be a powerful tool in addressing
challenges associated with controversial threshold definitions and tracking analyses in
cohort studies, providing valuable additional information. Given the strengths of these
models, they should be considered in analyses of continuous outcomes, at least as a first
step for making future modeling decisions. Finally, it is always unclear what impact
different decisions would have on the obtained results, and there are always numerous
alternatives to choose from. Therefore, it is essential to describe and report precisely how
the analysis was conducted, including its limitations and strengths, even if it has to be
included in Supplementary Materials.

6. Computational Considerations

Nowadays, there are many resources that allow a wide range of statistical analyses
to be performed, including those that may require a high computational capacity, such
as the ones presented here. In this work, we used R statistical software (version 4.2.1; R
Foundation for Statistical Computing, Vienna, Austria, www.r-project.org). In particular,
we used the package MICE [32] developed by van Buuren and Groothuis-Outshoorn, which
includes several different imputation model options to perform multivariate imputation
with chained equations. The package quantreg [58] was used for QRM estimation and
inference, which provides several alternative methods to estimate model parameters and
to compute standard errors.

Supplementary Materials: The following supporting information can be downloaded at www.mdpi.
com/article/10.3390/math11194070/s1. Table S1: Number of participants with missing data for
each variable, expressed in absolute and relative frequencies, for the final sample composed by 307
children.
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NHBC New Hampshire Birth Cohort
WC/Height ratio Waist-to-height ratio
MAP Mean arterial pressure
TG Triglycerides
HDL-c High-density lipoprotein cholesterol
AC Atherogenic coefficient
HOMA-IR Homeostatic model assessment of insulin resistance
MCAR Missing completely at random
MAR Missing at random
MNAR Missing not at random
MI Multiple imputation
FMI Fraction of missing information
RE Relative efficiency
MICE Multivariate imputation by chained equations
QRMs Quantile regression models
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