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Abstract: This paper uses the physical information neural network (PINN) model to solve a 3D
anisotropic steady-state heat conduction problem based on deep learning techniques. The model
embeds the problem’s governing equations and boundary conditions into the neural network and
treats the neural network’s output as the numerical solution of the partial differential equation. Then,
the network is trained using the Adam optimizer on the training set. The output progressively con-
verges toward the accurate solution of the equation. In the first numerical example, we demonstrate
the convergence of the PINN by discussing the effect of the neural network’s number of layers, each
hidden layer’s number of neurons, the initial learning rate and decay rate, the size of the training
set, the mini-batch size, the amount of training points on the boundary, and the training steps on the
relative error of the numerical solution, respectively. The numerical solutions are presented for three
different examples. Thus, the effectiveness of the method is verified.

Keywords: deep learning; neural network; steady state; anisotropic heat conduction
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1. Introduction

Deep learning methods are an efficient means of solving partial differential equations
(PDEs), which describe many natural phenomena and processes in modern engineering,
such as fluid mechanics, electromagnetism, quantum mechanics, etc. [1,2]. The governing
equation of anisotropic heat conduction problems differs from isotropic problems because
the mixed partial derivatives exist [3]. The deep learning method program is simple to
implement and does not require the generation of meshes [4,5]. Therefore, it is of great
significance and value to study deep learning methods for heat transfer problems [6,7].

With the increasing application of various anisotropic materials in engineering practice,
the requirements for the numerical simulation and calculation of heat conduction are also
increasing, and these problems are usually modeled by using partial differential equations
and solved using numerical methods. The finite element method (FEM) [8,9] and the
boundary element method (BEM) [10,11] are important numerical methods and have
been applied to a lot of complicated problems [12,13]. The methods are based on mesh
generation, require highly discrete meshes to model the problem, transform the original
problem into a system of algebraic equations, and then obtain numerical solutions by
solving algebraic equations [14,15]. These methods have been developed for decades and
are quite mature in dealing with complex problems. However, the numerical solution’s
computational efficiency and accuracy depend on the meshing’s quality. For complex
geometries in three-dimensional space, the fineness of the mesh must be increased to
achieve higher numerical accuracy. As the number of meshes increases, it raises labor costs
to divide the mesh, and the computational cost will increase significantly.
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Meshless methods are point-based approximations that avoid the drawbacks due to the
mesh [16–18], and they have been applied to solve many problems in science and engineer-
ing fields [19–22]. Several meshless methods have been developed for solving heat conduc-
tion problems in recent years. Cheng et al. [23–25] presented meshless methods for solving
the inverse heat conduction problem with a source parameter. Chen et al. [26–28] proposed
the complex variable reproducing kernel particle method and the complex variable element-
free Galerkin (CVEFG) method for transient heat conduction problems. Researchers have
developed meshless methods to obtain numerical solutions to anisotropic heat transfer
problems. Gu et al. [29] have solved 3D anisotropic heat conduction problems by the
singular boundary method (SBM). Lu et al. [30] proposed the modified scaled boundary
finite element method and then extended it to address layered heat conduction problems
with an anisotropic medium. Guan et al. [31] analyzed non-homogeneous anisotropic
heat conduction problems by the fragility point methods based on Petrov–Galerkin weak
forms. The authors established the local approximation using the differential quadrature
method based on the radial basis function. Shiah et al. [32] proposed a boundary inte-
gral equation using a domain mapping technique and multiple reciprocity method to
solve three-dimensional anisotropic heat conduction problems. Gu et al. [33] proposed
the meshless localized fundamental solutions method for 3D anisotropic heat conduction
modeling on a large scale. Zhang et al. [34] studied a transient heat conduction simulation
of anisotropic materials based on the EFG method, which has higher numerical solution
accuracy. However, the EFG method will inevitably result in singular matrices during
the calculation process, leading to a slower calculation. Thus, the improved element-free
Galerkin (IEFG) method is proposed using the orthogonal basis function. Zhang et al. [35]
studied the partial differential equations for 3D transient heat conduction using the IEFG
method. Cheng et al. [36] studied the IEFG method to solve two-dimensional anisotropic
heat conduction problems. The numerical solutions show that the IEFG method has a
quicker computational speed. The EFG, IEFG, and CVEFG methods are based on the
moving least-squares (MLS) approximation. The MLS approximation is obtained from
the least-squares method in mathematics [37–39]. And the least-squares method has been
applied to many problems [40,41] because it can results in the best approximation.

In EFG, IEFG, and CVEFG methods, essential boundary conditions are typically
imposed via the penalty or Lagrange multiplier methods. To directly impose essential
boundary conditions, researchers have proposed the interpolated EFG method [42–44] for
increasing the computational speed and accuracy of the IEFG method.

To enhance the efficiency of the IEFG method to solve 3D heat conduction problems, a
dimensional splitting meshless method [45–48] is proposed, where the three-dimensional
problem is split into a series of two-dimensional problems. These 2D problems are solved
by employing the meshless method, which the FDM treats in a splitting direction, and
the numerical solution shows that the dimensional splitting meshless method effectively
enhances the computational speed of the IEFG method for three-dimensional problems.
Although the dimensional splitting meshless methods can mitigate the drawbacks of
mesh-based partitioning and have a higher calculation speed, they still require complex
formula derivation and pose additional programming complexity when solving three-
dimensional problems.

With the development of computer technology, a machine learning technique called
physical information neural network (PINN) has been used to solve mathematical equa-
tions and physics problems [49,50]. The PINN introduces neural networks into numerical
simulations and transforms the solution of PDEs into unsupervised learning problems.
Many scholars have used it to solve 3D heat conduction problems by integrating the gov-
erning equations of the physical problem with its boundary conditions or initial conditions
into a neural network. Then, the solution of PDEs is approximated by training the neural
network to minimize the loss function.

In the present study, we use the PINN to solve the anisotropic steady-state heat con-
duction problem in three dimensions by embedding boundary conditions and governing
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equations of the heat transfer problem into a neural network, treating the neural network’s
output as a numerical solution of a partial differential equation. We use the Adam method
to optimize network parameters, and the network is trained to minimize the loss function.
Thus, the output of the network gradually approximates the exact solution.

The effects of the neural network structure, initial learning rate, decay rate, training
epochs, number of sampling points on the boundary, size of the training set, and mini-
batch size on numerical accuracy in small-batch training are discussed through numerical
examples, and the convergence of the PINN is demonstrated numerically. The results
from numerical examples verify the effectiveness of the PINN in solving the anisotropic
steady-state heat conduction problem in three dimensions.

2. Equations of 3D Anisotropic Steady-State Heat Conduction Problems

The equation governing the steady-state heat conduction problem in a three-dimensional
anisotropic system can be written as

∇(k∇u(x)) = Q, (x = (x1, x2, x3) ∈ Ω ), (1)

The boundary conditions are

u(x) = u(x), (x ∈ Γu ), (2)

q(x) = −k∇u(x) · n = q(x),
(
x ∈ Γq

)
, (3)

where u(x) is a function representing the temperature distribution of the thermal field, Q
represents the rate at which internal heat source is generated, u and q are given function
values, Γ = Γu ∪ Γq, Γu ∩ Γq = ∅, and n is the outward normal to the boundary at x. And
k is a symmetric matrix, k: = kij (kij = kji), 1 ≤ i, j ≤ n, n is the space dimension, and kij
is the thermal conductivity. In the three-dimensional problem n = 3, thus k11, k22, and
k33 represent thermal conductivities in three directions, and k12, k13, k23 represent thermal
conductivities in the Ox1 × 2, Ox1x3, and Ox2x3 planes, respectively. According to the
principles of thermodynamics and Onsager reciprocal relations, the thermal conductivity
coefficients satisfy the following equation

kii > 0, (i = 1, 2, 3 ); k11k22 > k2
12; k22k33 > k2

23; k33k11 > k2
31. (4)

In 3D anisotropic heat conduction problems, the governing equations and their coeffi-
cients represent the physical process of heat conduction by distinguishing the strengths
of heat conduction in different directions. This distinction is beneficial to understanding
the conduction mechanism in anisotropic materials thoroughly. In practical engineering
applications, the heat conduction equation is an important mathematical model for various
thermal problems and heat transfer design issues. Determining boundary conditions is cru-
cial for solving heat conduction problems as it allows for a better simulation of real-world
engineering scenarios.

3. The PINN for 3D Anisotropic Steady-State Heat Conduction Problem

Typically, within the framework of the PINN, a feed-forward, fully connected neural
network approximation is employed [49], indicated as ξ(x; θ), which is considered to
approximate u(x), where x (x1, x2, x3) is the independent variable of the partial differential
equation as input, and θ denotes the weight and bias of the numerical transmission between
neurons. The output U of the neural network is considered the PDE’s solution.

U = ξ(x; θ). (5)

The structure of a feed-forward, fully connected neural network is shown in Figure 1.
The architecture consists of an input layer with three neurons, several hidden layers, and
an output layer with a single neuron. Each neuron in both the upper and lower layers
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is connected, and the purpose of these connections is to transfer information between
neurons. It can map input coordinates (points in 3D space) to outputs (solutions to partial
differential equations).
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The detailed configuration of hidden layers is illustrated in Figure 2. For each layer,
the input vector has a relationship with the output vector as
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The previous layer has m neurons, and the next layer has n neurons, where Wji and
bi represent the parameters for transmitting neuronal information, Wji is weight, and bi
is bias, which represents the weight of the contribution of the j-th neuron in the previous
layer to the i-th neuron in the next layer. Adjusting the activation threshold of the weighted
sum of neurons in the previous layer for the i-th neuron in the next layer, respectively, they
are also trainable parameters. Xj denotes the value of the j-th neuron in the previous layer,
and Yi denotes the value of the i-th neuron in the next layer.

The σ represents the activation function of a simple nonlinear transformation, while
some activation functions are relu, sigmoid, tanh, etc., where the tanh activation function is
symmetric, with its function image shown in Figure 3, and its functional form is Equation
(7). It can be used for second-order or higher-order partial differential equations. Therefore,
the tanh function is used in this study [49].

σ(a) =
ea − e−a

ea + e−a . (7)
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In order to train the neural network, some training data need to be prepared. The
dataset consists of Nf discrete points inside the solution domain (xi= x1

i, x2
i, x3

i, i = 1,2,. . .,Nf)
and Nb discrete points on the boundary (xj= x1

j, x2
j, x3

j, j = 1,2,. . .,Nb). The discrete points
in the interior are generated based on the Sobol sequence and the discrete points on the
boundary are uniformly sampled.

The quasi-random numbers of the Sobol sequence are more uniform than traditional
pseudo-random number generators in higher dimensional cases [51]. Figure 4 shows
the distribution of internal discrete points in space. It can be seen that these points are
uniformly distributed in three dimensions.

During the training of a neural network, the gap between the output of the model
and the true value is measured by defining an appropriate loss function. We define an f
function as follows:

f = k11
∂2U
∂x2

1
+ k22

∂2U
∂x2

2
+ k33

∂2U
∂x2

3
+ 2k12

∂2U
∂x1∂x2

+ 2k23
∂2U

∂x2∂x3
+ 2k31

∂2U
∂x3∂x1

−Q. (8)
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The zeros of the f function are the solutions of the governing equation, so the loss term
of the governing equation is given as

loss f =
1

N f

N f

∑
i=1

∣∣∣ f (xi)− 0
∣∣∣2. (9)

The lossf is the mean square error of the f function value with respect to zero, and
it can characterize the gap between the left and right terms of the governing equation
(Equation (1)), where Nf represents the number of discrete points taken inside the solu-
tion domain.

lossb =
1

Nb

Nb

∑
j=1

∣∣∣U(xj)− u
(

xj
)∣∣∣2. (10)

The lossb is the mean square error between the predicted value and the true value
at the boundary point, and it can characterize the gap between the model’s output at the
boundary and the actual value, where Nb represents the number of discrete points taken
on the boundary.

Thus, the total loss function is the sum of the following two terms:

loss = loss f + lossb. (11)

Next, the network can be trained. Automatic differentiation is used to obtain the first-
order and second-order derivatives of the numerical solution to the independent variables,
and then we can calculate the loss. The gradient of the loss to θ (∇θloss) is back-propagated.

∇θloss =

((
∂loss
∂θ1

)T
,
(

∂loss
∂θ2

)T
, · · · ,

(
∂loss
∂θL−1

)T
)T

, θI = ((W(I))
T

, (b(I))
T
)

T
,

I = 1, 2, · · · , L− 1, (12)

where W(I) and b(I) represent the weights and bias column vectors of I-th layer, respectively.
The Adam optimization updates the network parameters to minimize the loss func-

tion [52]. Once the loss function has converged, the network can obtain a numerical
solution that satisfies the requirements. Using the Adam optimizer, we can speed up the
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model’s training and avoid gradient disappearance or explosion. The rule for updating the
parameters is as follows:

θt+1 = θt − α
mt√
vt + ε

, (13)

where θt is the network parameter at step t, α is the learning rate, mt and vt are the first-
order and second-order momentum estimates, respectively, and ε is a very small positive
number to prevent division-by-zero errors; it takes the value 1 × 10−8.

After updating the parameters, we will perform forward and backward propagation
again, and this process will be iterated until a predetermined number of training sessions
is reached or the training reaches a certain level of accuracy. We can obtain a model that
can fit the data by continuously optimizing the parameter updates. Eventually, the relative
error between the output of the computed test data and the exact solution is calculated. If
the error approaches zero, it can be considered that the network has learned the solution to
the equation.

Thus, the PINN’s structure for solving 3D anisotropic heat conduction problems can
be represented (see Figure 5).

The specific procedure for the PINN to solve the 3D anisotropic steady-state heat
conduction is as follows, Algorithm 1:

Algorithm 1 Algorithmic Procedure

Input: Internal training data, (xi); boundary training data, (xj);
Output: Prediction of DNN, ξ(x; θ);
1: Initialize the parameters of DNN;
2: Define the loss function: loss = lossf + lossb;
3: for epoch = 1:numEpochs
4: U1 = ξ (xi; θ), ξ (xj; θ);
5: compute loss;
6: obtain gradients by automatic differential;
7: minimize the loss by Adam method;
8: end;
9: Obtain the prediction U = ξ (xk; θ);
10: return U.
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4. Numerical Examples

This section presents three numerical experiments related to anisotropic heat conduc-
tion problems in three dimensions. We will calculate the relative error of the PINN to
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verify the effectiveness of the PINN for the problems, and so the relative error equation is
defined as

Error =

(
Nk
∑

k=1

∣∣∣U(xk)− u(xk)
∣∣∣2) 1

2

(
Nk
∑

k=1

∣∣u(xk)
∣∣2) 1

2
, (14)

where xk(x1
k, x2

k, x3
k) are discrete points in the test set, Nk denotes the number of points in

the test set, U(xk) denotes the predicted value of the test point, and u(xk) denotes the actual
value of the test point.

The PINN solves three numerical cases by encoding the governing equations and
boundary conditions into a neural network, treating the neural network’s output as a
numerical solution of the partial differential equation. Then, the neural network is trained
so that the solution of the equation is approached progressively by the output.

The first example is

∂2u
∂x2

1
+

∂2u
∂x2

2
+

∂2u
∂x2

3
+

∂2u
∂x1∂x2

+
∂2u

∂x2∂x3
+

∂2u
∂x3∂x1

= 0. (15)

This problem domain is Ω = [0, 1]3.
The boundary conditions are

u|x1=0 = 0.5x2
2 − 1.5x2

3 + 0.5x2x3 + 2, (16)

u|x2=0 = 0.5x2
1 − 1.5x2

3 + x1x3 + 2, (17)

u|x3=0 = 0.5x2
1 + 0.5x2

2 − 0.5x1x2 + 2, (18)

u|x1=1 = 0.5 + 0.5x2
2 − 1.5x2

3 − 0.5x2 + x3 + 0.5x2x3 + 2, (19)

u|x2=1 = 0.5x2
1 + 0.5− 1.5x2

3 − 0.5x1 + x1x3 + 0.5x3 + 2, (20)

u|x3=1 = 0.5x2
1 + 0.5x2

2 − 1.5− 0.5x1x2 + x1 + 0.5x2 + 2. (21)

The theoretical result is

u = 0.5x2
1 + 0.5x2

2 − 1.5x2
3 − 0.5x1x2 + x1x3 + 0.5x2x3 + 2. (22)

This study will investigate the effect of various factors on the relative error of the
numerical solution obtained by a neural network. These factors include the neural net-
work’s number of layers, which impacts its capacity to capture complex relationships in the
data [53]. The number of neurons in each hidden layer influences the network’s representa-
tional power and ability to learn high-level features. The initial learning rate and the decay
value determine the rate at which the network adjusts its weights during training. The size
of the training set and the mini-batch size affect the generalization capability and training
efficiency of the network. Additionally, the amount of training points on the boundary and
the number of training steps impact the network’s ability to approximate the boundary
accurately. By examining these factors, we can gain insights into their influence on the
accuracy and performance of the numerical solution.

The most critical factor influencing the relative error is the structure of a neural
network. We have shown the relative error of the numerical solution using different
combinations of the neural network’s number of layers and each hidden layer’s number of
neurons, from three to eight layers and four to twelve neurons. As shown in Figure 6, the
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smaller relative error of a numerical solution can be achieved with a neural network with
five layers and nine neurons.
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Furthermore, the initial learning and decay rates directly impact the network’s training
performance; thus, we have investigated the effect of different initial and decay learning
rates on the relative error. The error is minimized for the initial value of the learning rate as
0.03 and the decay rate as 0.005 (Figure 7).
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In this study, the boundary conditions of problems are embedded within the neural
network. Consequently, we investigate the effect of the number of training points on each
boundary of the problem domain on the relative error of the numerical solution (Figure 8).
The results indicate that a small relative error can be obtained when the number of training
points on each boundary surface of the problem domain is set to 19 × 19.
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This study uses a small-batch training method to divide the training data into multiple
small batches for model parameter updates. Only the current small batch of data is used for
parameter tuning with each update to improve training efficiency and potentially improve
model performance and generalization. We have investigated the impact of training sets of
different sizes and batch configurations on the relative error (Figure 9). The results show
that a small relative error can be achieved when the training set comprises 100 discrete
points divided into four batches.
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Figure 10 shows how the numerical solution’s relative error varies as the iteration
steps increase during the network training. The results indicate that the relative error will
no longer decrease after the iteration steps exceed 2500.



Mathematics 2023, 11, 4049 11 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 23 
 

 

500 1000 1500 2000 2500 3000 3500 4000
0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020
 

 

Er
ro

r

Epochs

 Error

 
Figure 10. Relationship between epochs and error. 

Therefore, the neural network is structured with three hidden layers and nine neu-
rons per layer. An initial learning rate of 0.03 and a decay value of 0.005 are specified. The 
training set comprises 100 discrete points generated by the Sobol sequence, divided into 
four small batches to improve training efficiency. We sampled 19 × 19 points on each 
cube-shaped problem domain boundary surface. The test set comprises 11 × 11 × 11 dis-
crete points uniformly distributed in the problem domain. The results showed that the 
numerical solution’s relative error is 0.0722% with 2500 training steps. 

Figures 11–13 compare the numerical and analytical solutions on a certain line in 
three different directions, respectively. Figures 14 and 15 show the numerical and ana-
lytical solutions’ distribution on the plane where x3 = 0.25, respectively. 

0.0 0.2 0.4 0.6 0.8 1.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
 

 

u(
x 1,0

.8
,0

.5
)

x1

 Analytical
 PINN

 
Figure 11. Numerical solutions of the PINN along x1-axis for the first example. 

Figure 10. Relationship between epochs and error.

Therefore, the neural network is structured with three hidden layers and nine neurons
per layer. An initial learning rate of 0.03 and a decay value of 0.005 are specified. The
training set comprises 100 discrete points generated by the Sobol sequence, divided into
four small batches to improve training efficiency. We sampled 19 × 19 points on each
cube-shaped problem domain boundary surface. The test set comprises 11 × 11 × 11
discrete points uniformly distributed in the problem domain. The results showed that the
numerical solution’s relative error is 0.0722% with 2500 training steps.

Figures 11–13 compare the numerical and analytical solutions on a certain line in three
different directions, respectively. Figures 14 and 15 show the numerical and analytical
solutions’ distribution on the plane where x3 = 0.25, respectively.
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There is a good agreement between the numerical solutions yielded by the PINN and
the analytical solutions.

It can be seen that the numerical solutions obtained by the PINN are very close to the
analytical solutions.

The second example is

∂2u
∂x2

1
+ 0.8

∂2u
∂x2

2
+ 0.6

∂2u
∂x2

3
+ 0.2

∂2u
∂x1∂x2

+ 0.6
∂2u

∂x2∂x3
+ 0.4

∂2u
∂x3∂x1

= 0. (23)

This problem domain is Ω = [0, 1]3.
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The boundary conditions are

u|x1=0 = 0.25x2
2 +

5
12

x2
3 − x2x3, (24)

u|x1=1 = 0.15 + 0.25x2
2 +

5
12

x2
3 − x2 − x3 − x2x3, (25)

u|x2=0 = 0.15x2
1 +

5
12

x2
3 − x1x3, (26)

u|x2=1 = 0.15x2
1 + 0.25 +

5
12

x2
3 − x1 − x1x3 − x3, (27)
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u|x3=0 = 0.15x2
1 + 0.25x2

2 − x1x2, (28)

u|x3=1 = 0.15x2
1 + 0.25x2

2 +
5

12
− x1x2 − x1 − x2. (29)

The theoretical result is

u = 0.15x2
1 + 0.25x2

2 + (5/12)x2
3 − x1x2 − x1x3 − x2x3. (30)

For this example, we set the structure of the neural network as three hidden layers
with eight neurons in each layer. The initial learning rate value is 0.01, and the decay value
is 0.005. The training set uses 100 discrete points generated from the Sobol sequence, and
then a small-batch training method is used to improve the training efficiency, and each
batch is set to 20 discrete points. The 11 × 11 training points are taken on each boundary
surface of the cube-shaped problem domain, and then we adopt the Adam optimizer for
training the PINN.

The PINN was trained using 20,000 epochs of the training data, and the test set
comprises 11 × 11 × 11 discrete points uniformly distributed in the problem domain to
obtain a small relative error of the numerical solution of 0.4925%.

The numerical solutions of the PINN were contrasted with the analytical ones shown
in Figures 16–18 which show the numerical and analytical solutions compared on a certain
line in three perpendicular directions, respectively. The numerical and analytical solutions
distributed on the plane of x3 = 0.25 are shown in Figures 19 and 20, respectively.
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It is visually apparent that the numerical solutions obtained through the PINN closely
correspond to the analytical solutions.

The third example is

10−4 ∂2u
∂x2

1
+ 10−4 ∂2u

∂x2
2
+ 10−4 ∂2u

∂x2
3
+ 2× 10−5 ∂2u

∂x2∂x3
= 0. (31)
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This problem domain is Ω = [0, 1]3.
The boundary conditions are

u|x1=0 = x2
2 + x2 − 5x2x3, (32)

u|x1=1 = x2
2 + x2 + x3 − 5x2x3, (33)

u|x2=0 = x1x3, (34)

u|x2=1 = 2 + x1x3 − 5x3, (35)

u|x3=0 = x2
2 + x2, (36)

u|x3=1 = x2
2 + x2 + x1 − 5x2. (37)
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The theoretical result is

u = x2
2 + x2 + x1x3 − 5x2x3 (38)
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For this example, the neural network is constructed by two hidden layers and nine
neurons in every layer; the initial value of the learning rate is 0.03 and the decay value
is 0.005. The training set uses 100 discrete points generated from the Sobol sequence.
The training process uses a small-batch method to improve efficiency, with each batch
containing 20 discrete points. Sampling is taken on each cube-shaped problem domain
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boundary surface at 11 × 11 points. Finally, the PINN training is optimized with the
Adam optimizer.

The PINN was trained using 5000 epochs of the training data. The test set comprises
11 × 11 × 11 discrete points uniformly distributed in the problem domain. As a result, a
small relative error of 0.2279% can be obtained for the numerical solution.

The numerical solutions of the PINN are compared with the analytical ones and
are shown in Figures 21–23 which show the comparison between the numerical and
analytic solutions on a certain line in three different directions. Figures 24 and 25 show the
distribution of numerical and analytic solutions on a plane of x3 = 0.25, respectively.
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tribution of numerical and analytic solutions on a plane of x3 = 0.25, respectively. 
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Figure 21. Numerical solutions of the PINN along x1-axis for the third example. 
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Figure 22. Numerical solutions of the PINN along x2-axis for the third example. Figure 22. Numerical solutions of the PINN along x2-axis for the third example.
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A visual inspection confirms that the numerical solutions obtained by using the PINN
provide a high level of agreement with the analytical solutions, indicating the efficacy
of the PINN in solving 3D anisotropic heat conduction problems with great computa-
tional accuracy.
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5. Conclusions

This study utilizes the PINN to solve anisotropic steady-state heat conduction prob-
lems in three dimensions. By integrating the neural network into the numerical simulation
process, the PINN incorporates the problem’s governing equations and boundary condi-
tions into the network, treating the neural network’s output as the numerical solution of the
PDE. Additionally, the PINN transforms the solution of a partial differential equation into
an unsupervised learning problem and trains the network to minimize the loss function.
The effectiveness of the PINN in solving the 3D anisotropic heat conduction problem is
demonstrated through numerical examples.

Physical information neural networks offer a simple and efficient approach to solving
challenging problems without the need for complex formula derivations. These networks
utilize clear and simple codes and can conduct efficient parallel computations. The high
flexibility allows physical information neural networks to tackle various scenarios and
numerical computation problems easily.

While neural networks perform well in function fitting, their limitations require further
research and development. Therefore, future efforts must be focused on exploring novel
algorithms and techniques to improve the generalization ability, decrease training time,
and increase the interpretability of neural networks.
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