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Abstract: Reducing carbon emissions and improving revenue in the face of global warming and
economic challenges is a growing concern for airlines. This paper addresses the inefficiencies and high
costs associated with current aero-engine on-wing washing strategies. To tackle this issue, we propose
a reinforcement learning framework consisting of a Similar Sequence Method and a Taylor DQN
model. The Similar Sequence Method, comprising a sample library, DTW algorithm, and boundary
adjustment, predicts washed aero-engine data for the Taylor DQN model. Leveraging the proposed
Taylor neural networks, our model outputs Q-values to make informed washing decisions using
data from the Similar Sequence Method. Through simulations, we demonstrate the effectiveness of
our approach.

Keywords: aircraft engine cleaning schedule; reinforcement learning; Taylor DQN model; similar
sequence method
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1. Introduction

On-wing washing is one of the maintenance tasks for aero-engines, which involves
using high-end washing equipment to remove deposits from the surfaces of aero-engine
air passages. These deposits originate from air pollutants that are ingested by the aero-
engine [1]. Accumulated deposits can reduce the airflow into the engine, leading to
incomplete combustion of fuel and increased fuel consumption and carbon emissions,
ultimately raising exhaust temperatures [2].

Aero-engine on-wing washing can restore fuel efficiency and reduce carbon emissions
by eliminating the build-up of dirt. In 2023, the world faced a serious problem of fuel
scarcity and extreme weather conditions caused by greenhouse gas emissions. Therefore,
washing has been widely recognized and applied in many countries around the world.
On-wing washing is listed as a mandatory item in the maintenance schedule.

Due to the high cost of washing, airlines need to consider “when to wash” the aero-
engine (i.e., washing strategy) according to economic and environmental benefits. Therefore,
the washing strategy for aero-engines has significant research value. The cost of renting
high-end washing equipment required for aero-engine washing is very high, so frequent
washing is not feasible. Ref. [3] studies on washing gas turbines have found the cost of
washing to be prohibitively high and, therefore, not recommended. However, aero-engines
must be washed to ensure flight safety [4–6]. Therefore, airlines need a reasonable washing
strategy to carefully balance the benefits and carbon emissions issues.
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Early research on washing strategies focused on gas turbine washing in power plants.
Fuel flow and economic costs were the main points of concern for such studies. A Fabbri
et al. [7] used gas turbines as their research objects and designed a washing frequency
based on fuel flow, production power, fuel costs, and maintenance costs. R. Klassen [8]
developed washing frequencies for aircraft bases based on economic parameters and local
atmospheric environments to reduce maintenance costs. F. S. Spüntrup et al. [9] proposed
short-term washing strategies for gas turbines to reduce carbon emissions and increase
operational profits. Dan et al. [10] developed washing frequencies with the goal of reducing
fuel consumption.

In the aviation industry, the Exhaust Gas Temperature Margin (EGTM) is to develop
aero-engine washing strategies for maintenance bases [11]. In some maintenance bases,
EGTM is used as the sole indicator of the effectiveness of engine washing. Exhaust Gas
Temperature refers to the temperature at the low-pressure turbine outlet of the aircraft
engine. Engine manufacturers provide a red line value for Exhaust Gas Temperature. When
Exhaust Gas Temperature rises to the red line value, the engine will be in a highly dangerous
state, and flight safety cannot be guaranteed [12]. EGTM refers to the distance between the
Exhaust Gas Temperature and the red line value, where a greater distance indicates greater
safety. Another commonly mentioned physical quantity in this paper is “Flight cycle”,
which is a time unit used in the field of aircraft maintenance. A cycle refers to a period of
time from one takeoff to the next takeoff, including takeoff, cruise, descent, and landing.
Figure 1 illustrates that the value of EGTM is relatively high when the engine is freshly
manufactured. EGTM will gradually decay to zero without any maintenance measures
taken [13,14]. Figure 2 shows that EGTM will quickly recover after being cleaned [15,16].
The images reflect that EGTM is highly sensitive to cleaning.
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Similarly, research in academia on aircraft engine washing strategies focuses on the
recovery level of EGTM. Zhu et al. [17] proposed a washing frequency based on Weibull
methods through EGTM data fitting. Fu et al. [18] established an evaluation model for the
engine washing effect based on EGTM data and evaluated the washing effect based on
this model. Yan et al. [19] established a transfer process neural network to predict washed
aero-engine EGTM data.

However, both the gas turbine washing strategies and aircraft engine washing strate-
gies lack adaptability to changing operating conditions. These washing strategies are
developed based on fixed, known operating scenarios and belong to “static optimization”.
When the operating conditions of the aero-engines change frequently, these optimization
plans need to be modified accordingly. The above methods cannot choose the appropriate
washing time based on real-time observations of the current status of the aero-engine to
generate washing strategies that are more targeted, efficient, and cost-effective.

Reinforcement learning (RL) can achieve adaptive washing strategies. Reinforce-
ment learning is a machine learning method used to solve the problem of how agents
learn policies to maximize profits through interactions with the environment. Romain
Gautron et al. [20] describe the application prospects of RL methods in crop management.
Seongmun Oh et al. [21] used RL methods to improve the balance between energy stor-
age system supply and demand, thereby adjusting the electricity usage time reasonably
and reducing production costs. Yanting Zhou et al. [22] proposed an improved deep RL
method to achieve energy scheduling and promote carbon neutrality. Leonardo Kanashiro
Felizardoa et al. [23] use RL algorithms to observe information about the market, such as
financial reports, news, asset price time series, and financial indicators, to make sound
financial trading decisions.

However, RL methods demonstrate low learning efficiency [24]. RL algorithms rely on
trial-and-error explorations of the environment to discover optimal policies. This process
can be time-consuming and require a large number of interactions with the environment.
The reward signal used in RL can be sparse or delayed, which means that the agent may not
receive any feedback on the quality of its actions until much later. This makes it difficult for
the agent to estimate which actions led to rewards and optimize its policy accordingly [25].

Therefore, a substantial amount of pre- and post-washing aero-engine data is required
to achieve optimization of the washing schedule. Furthermore, due to limited aero-engine
data availability, a generative model that can simulate pre- and post-washing aero-engine
data is necessary. Currently, there is a scarcity of evaluation methods for the post-washing
status of aero-engines, thus resulting in a lack of existing methods that can serve as genera-
tive models.

To address the aforementioned issues, a proposed optimization method for aero-engine
washing strategy is presented in this paper, as illustrated in Figure 3.

Figure 3 depicts that the proposed optimization method for aero-engine washing
strategy consists of two parts, namely, the Similar Sequence Method and the Taylor Deep
Q-Network (DQN) for optimization.

The Similar Sequence Method serves as the generative model for reinforcement learn-
ing. As reinforcement learning suffers from inefficient data utilization, the data acquired
from airlines cannot satisfy the data requirements of reinforcement learning. Thus, we
propose the Similar Sequence Method to generate sufficient data.

The Similar Sequence Method computes the changes in the Exhaust Gas Temperature
Margin (EGTM) and fuel flow after washing, which are used to provide new states for
the Taylor DQN. The sample library stored in the Similar Sequence Method contains
data changes before and after washing. The DTW algorithm is employed to compare the
similarity of EGTM data and fuel flow data before washing with the sample library data
and select the most similar data corresponding to the changes in EGTM and fuel flow for
computing the data after washing.

The proposed Taylor DQN framework consists of three main components: experience
replay, the Taylor neural network, and action selection.
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Experience Replay: Experience replay is a memory buffer that stores the history of
interactions between the agent (the washing strategy optimizer) and the environment
(the aero-engine). The stored data include the old state (pre-washing data), new state
(post-washing data), action taken, and corresponding reward. By randomly sampling and
replaying these experiences during training, the agent can utilize past experiences for more
effective learning.
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Taylor Neural Network: The Taylor neural network is a key component of the Taylor
DQN model. It utilizes Taylor decomposition, a mathematical technique used for approxi-
mating functions, to decompose input information from experience replay into key feature
information. By doing so, it obtains valuable insights and patterns necessary for optimizing
the washing schedule. The Taylor neural network processes the pre-washing and post-
washing data and outputs Q-values that represent the expected future rewards for different
actions. These Q-values serve as the basis for action selection in the optimization process.

To summarize, the problem faced by cleaning optimization is that existing methods
lack adaptability to constantly changing operating conditions and rely on static optimiza-
tion plans, which cannot provide targeted, efficient, and cost-effective cleaning strategies
based on real-time observation of the current state of aviation engines. In addition, the
amount of relevant data is limited and cannot support the RL method. To address these
issues, this paper makes two main contributions:

Firstly, the Similar Sequence Method is proposed for predicting data after washing.
This method combines the sample library with the DTW algorithm to obtain the changes in
EGTM and fuel flow by seeking similar data, thereby computing the data of the washed
aero-engine.

Secondly, the proposed Taylor neural network is introduced for providing the Q-value
for action selection. The Taylor neural network is a model based on Taylor decompo-
sition that decomposes input information from experience replay to obtain key feature
information in the form of the Q-value output.
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The remaining content of this paper is as follows: in Section 2, the Similar Sequence
Method is proposed for estimating data after washing; in Section 3, the Taylor DQN is
proposed; Section 4 is the numerical simulation verification; and Section 5 is the conclusion.

2. The Proposed Similar Sequence Method

This section introduces the Similar Sequence Method for predicting data after washing,
as shown in Figure 4.
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Figure 4 shows that the proposed Similar Sequence Method includes three parts:
sample library, DTW algorithm, and boundary adjustment.

In our proposed Similar Sequence Method, the main objective is to predict data after
washing based on the available information. Our method comprises three main compo-
nents: the sample library, DTW algorithm, and boundary adjustment. These components
work together to predict the changes in Exhaust Gas Temperature Margin (EGTM) and fuel
flow (FF) after washing. The sample library plays a crucial role by storing EGTM data, FF
data, and related parameters, such as INC|EGTM, DR|EGTM, INC|FF, and DR|FF. These
parameters capture the changes in EGTM and FF after washing.

The DTW algorithm is then employed to search for the most similar data from the
sample library to the “data before washing” sequence. This allows us to estimate the
corresponding changes in EGTM and FF after the engine has undergone washing.

To make the estimation closer to reality, we introduced the boundary adjustment
technique. By collecting local extreme points of washed EGTM and FF data from other
aero-engines of the same model and grouping them based on time, we can determine upper
bounds, lower bounds, and mean curves for EGTM and FF recovery. These boundaries
provide us with realistic ranges for the changes in EGTM and FF.

By adjusting the predicted values based on these boundaries, we ensure that the
predicted data after washing align with real-world conditions. If the predicted values
exceed the upper bound or fall below the lower bound, they are corrected to the mean
value. These adjustments improve the accuracy of the predictions and mitigate the data
scarcity problem to some extent.
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2.1. Sample Library

The sample library stores EGTM data, FF data, INC|EGTM, DR|EGTM, INC|FF, and
DR|FF. The fuel flow data are defined as “ff ”. Let the aero-engine fuel flow dataset
be marked as ff : {fft}, where “t” refers to the flight cycle. Mark the washing record as
Twashing: {ti, i = 1, 2, . . .. . ., n–1}. The elements in Twashing correspond to the flight cycles
when the aero-engine was washed. “i” refers to the number of washes. Twashing can split
the ff data into n groups, labeled as:

ff(1) : { f f1, f f2, . . . , f ft1}
ff(i) :

{
f fti−1+1, f fti−1+2, . . . , f fti

}
, i ∈ [2, . . . , n− 1]

ff(n) :
{

f ftn−1+1, f ftn−1+2, . . .
} (1)

INC|FF and DR|FF are obtained by fitting linear equations to the data in Equation (1).
After the “i-th” wash, INCi|FF and DRi|FF are obtained by fitting the data ff (i + 1), using:

INCi|FF =

t(i+1)
∑

t=ti+1
t2·

t(i+1)
∑

t=ti+1
f ft−

t(i+1)
∑

t=ti+1
t·

t(i+1)
∑

t=ti+1
f ft

Length(ff(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

DRi|FF =

Length(ff(i+1))·
t(i+1)

∑
t=ti+1

t· f ft−
t(i+1)

∑
t=ti+1

t·
t(i+1)

∑
t=ti+1

f ft

Length(ff(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

(2)

where Length(ff (i + 1)) refers to the length of ff (i + 1).
Similarly, the EGTM data are defined as “e”. Let the aero-engine fuel flow dataset be

marked as e: {et}. Twashing can split the e data into n groups, labeled as:

INCi|EGTM =

t(i+1)
∑

t=ti+1
t2·

t(i+1)
∑

t=ti+1
et−

t(i+1)
∑

t=ti+1
t·

t(i+1)
∑

t=ti+1
et

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

DRi|EGTM =

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t·et−
t(i+1)

∑
t=ti+1

t·
t(i+1)

∑
t=ti+1

et

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

(3)

INC|EGTM and DR|EGTM are obtained by fitting linear equations to the data in
Equation (3). For the “i-th” wash, INCi|EGTM and DRi|EGTM are obtained by fitting the
data e (i + 1), using:

INCi|EGTM =

t(i+1)
∑

t=ti+1
t2·

t(i+1)
∑

t=ti+1
et−

t(i+1)
∑

t=ti+1
t·

t(i+1)
∑

t=ti+1
et

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

DRi|EGTM =

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t·et−
t(i+1)

∑
t=ti+1

t·
t(i+1)

∑
t=ti+1

et

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

(4)



Mathematics 2023, 11, 4046 7 of 22

Since there is no corresponding INC and DR for the “n-th” group of e and ff data, the
sample library stores n–1 groups of data, which can be obtained from Equation (5).

INCi|EGTM =

t(i+1)
∑

t=ti+1
t2·

t(i+1)
∑

t=ti+1
et−

t(i+1)
∑

t=ti+1
t·

t(i+1)
∑

t=ti+1
et

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

DRi|EGTM =

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t·et−
t(i+1)

∑
t=ti+1

t·
t(i+1)

∑
t=ti+1

et

Length(e(i+1))·
t(i+1)

∑
t=ti+1

t2−

 t(i+1)
∑

t=ti+1
t

2

(5)

2.2. Dynamic Time Warping (DTW) Algorithm

The Similar Sequence Method utilizes the DTW algorithm to calculate the distance
between the “data before washing” and all data in the expert library, thereby enabling
the prediction of changes in Exhaust Gas Temperature Margin (EGTM) and fuel flow (FF).
DTW is a dynamic programming algorithm commonly used to measure the similarity
between two time series data. It considers the non-linear variations and different lengths of
time series.

In the context of the Similar Sequence Method, the DTW algorithm allows for the
comparison and selection of the most similar data from the expert library. This is crucial
for accurately predicting the changes in EGTM and FF after washing. By considering the
non-linear variations and different lengths of time series through the DTW algorithm, the
Similar Sequence Method improves the prediction accuracy.

The proposed method, which utilizes the DTW algorithm within the similar sequence
framework, is applied to calculate the distance between the “data before washing” and all
data in the expert library. Once the minimum distance is found, the corresponding EGTM
and FF changes from the expert library are outputted.

The DTW algorithm is a dynamic programming algorithm used for measuring the
similarity between two time series data. It can be used to compare the distance between
two time series and find the shortest path. The DTW algorithm can handle time series of
different lengths, and also adapts well to cases with non-linear variations.

The key formula of the DTW algorithm is the dynamic programming equation, which
is used to calculate the distance between two time series. The dynamic programming
equation of the DTW algorithm is as follows: [26]

D(k, l) =


d(k, l) + min(D(k− 1, l), D(k, l − 1), D(k− 1, l − 1)) k > 1, l > 1

d(k, l) + min(D(k− 1, l), D(k, l − 1)) k > 1, l = 1 or k = 1, l > 1
d(k, l) k = 1, l = 1

(6)

where D (k, l) indicates the minimum distance between the first “k” elements of the “data
before washing” sequence and the first “l“ elements of the sample library’s ff or e. “d (k, l)”
represents the Euclidean distance between the “k-th” element of the “data before washing”
sequence and the “l-th” element of the sample library’s ff or e.

The set of distances between “data after washing” and all ff (i), e(i) is then solved:
{Di}, i ∈ [1, . . . , n− 1].

The output corresponds to the minimum “Di” value, which is linked to the “changes
in EGTM and FF”.

INCi|EGTM, DRi|EGTM, INCi|FF, DRi|FF = argmin{Di}
i

(7)

The recovery of EGTM and FF after the washing of the aero-engine has a range, which
is obtained through boundary adjustment aiming to ensure that changes in EGTM and FF
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correspond to reality. This paper defines the upper bound, lower bound, and mean curve
for this range, as shown in Figure 5.
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2.3. Boundary Adjustment

This paper collected the local extreme points of washed EGTM and FF data from other
aero-engines of the same model. These extreme points were grouped based on time using
the K-means algorithm. The maximum value, minimum value, and average value of each
group were calculated and fitted as the upper bound, lower bound, and mean line to adjust
changes in EGTM and FF. The revised flowchart is shown in Figure 6.
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This paper used clustering algorithms to divide all extreme points into seven areas
according to time T, expressed as T1, T2, . . .. . ., T7. For the aero-engine’s EGTM data, let eT
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represent all EGTM data extreme points in the T area. The EGTM mean value dataset eave
is defined by Equation (8):

eave : {average{eT}, T ∈ (T1, T2, . . . . . . , T7)} (8)

By using t as the independent variable, the EGTM data mean curve can be defined as:

fup(t)|EGTM = a4 log(b4t + d4) + g4 (9)

where a0, b0, d0, and g0 are model parameters fitted by the dataset eave.
The element set emax within the upper bound of EGTM is defined by Equation (10):

emax : {emax{eT}, T ∈ (T1, T2, . . . . . . , T7)} (10)

The upper bound function of EGTM is defined by Equation (11):

fup(t)|EGTM = a1 log(b1t + d1) + g1 (11)

where a1, b1, d1, and g1 are model parameters obtained by fitting the dataset emax.
The element set emin within the lower bound of EGTM for the aero-engine is defined

by Equation (12):
emin : {emin{eT}, T ∈ (T1, T2, . . . . . . , T7)} (12)

The lower bound function of EGTM is defined by Equation (13):

fdown(t)|EGTM = a2 log(b2t + d2) + g2 (13)

where a2, b2, d2, and g2 are model parameters obtained by fitting the dataset emin.
Let ffT represent all FF data extreme points in the T time area, then the FF mean value

dataset ff ave is defined by Equation (14):

f fave : {average{ f fT}, T ∈ (T1, T2, . . . . . . , T7)} (14)

The FF mean curve is defined by Equation (15):

fave(t)|FF = a3 log(b3t + d3) + g3 (15)

where a4, b4, d4, and g4 are model parameters obtained by fitting the dataset ff max.
The element set ff max within the upper bound of FF is defined by Equation (16):

f fmax : {max{ f fT}, Ti ∈ (T1, T2, . . . . . . , T7)} (16)

The upper bound function of FF is defined by Equation (17):

fup(t)|FF = a4 log(b4t + d4) + g4 (17)

where a4, b4, d4, and g4 are model parameters obtained by fitting the dataset ff max.
The element set ff min within the lower bound of FF is defined by Equation (18):

f fmin : {min{ f fT}, T ∈ (T1, T2, . . . . . . , Tn)} (18)

The lower bound function of FF is defined by Equation (19):

fdown(t)|FF = a5 log(b5t + d5) + g5 (19)

where a5, b5, d5, and g5 are model parameters obtained by fitting the dataset ff min.
In the t-th flight cycle, INC|EGTM and INC|FF are calculated, and the following

adjustments are made using boundary conditions:
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(1) When INC|EGTM > f up(t)|EGTM or INC|EGTM < f down(t)|EGTM, the value of INC|EGTM
is corrected to f ave(t)|EGTM.

INC|EGTM = fave(t)|EGTM, when INC
∣∣EGTM > fup(t)

∣∣
EGTM or INC|EGTM < fdown(t)|EGTM (20)

(2) Similarly, when INC|FF > f up(t)|FF or INC|FF < f down(t)|FF, the value of INC|FF is
corrected to f ave(t)|FF.

INC|FF = fave(t)|FF, when INC
∣∣FF > fup(t)

∣∣
FF or INC|FF < fdown(t)|FF (21)

Based on the above, the updates for EGTM and FF data are as follows:

(1) If the engine obtains INCi|EGTM and DRi|EGTM after the i-th washing at time t0, then
e: {et} after t0 is updated as:

et = et0 + INCi|EGTM + (t− t0)× (DRi|EGTM − DRi−1|EGTM) (22)

(2) Similarly, for ff : {fft}, the updated FF data after t0 are:

f ft = f ft0 + INCi|FF + (t− t0)× (DRi|FF − DRi−1|FF) (23)

In summary, after obtaining these upper bounds, lower bounds, and mean curves
for both EGTM and FF, adjustments are made to the predicted values of INC|EGTM and
INC|FF based on the boundary conditions. If the predicted value exceeds the upper bound
or falls below the lower bound, it is corrected to the mean value. The adjustments are made
using Equations (11), (13), (17), and (19). Based on these adjustments, the EGTM and FF
data are updated using Equations (20) and (21), respectively.

The boundary adjustment process calculates the upper bounds, lower bounds, and
mean curves for EGTM and FF recovery after washing the aero-engine. These boundaries
are necessary to ensure the changes in EGTM and FF align with real-world conditions. By
using these boundaries to adjust the predicted values, the accuracy of the predictions is
improved, leading to more reliable results.

The processes of the Similar Sequence Method for post-washing data prediction are
as follows:

Step 1: Sample library creation
The sample library is established to provide materials for finding similar data of data

after washing. The database contains four parameters: INC|EGTM, DR|EGTM, INC|FF, and
DR|FF, which represent the changes and decay rates in EGTM and FF after water washing.

Step 2: Splitting data into groups
The “Twashing” records, representing the flight cycles when the aero-engine was

washed, are used to split the FF and EGTM data into n groups. Each group corresponds to
a specific wash cycle.

Step 3: Calculation of incremental and decay values
Linear equations are fitted to the FF and EGTM data within each group to obtain

parameters, such as INC|EGTM, DR|EGTM, INC|FF, and DR|FF. These parameters represent
the changes and decay rates for EGTM and FF after each wash cycle.

Step 4: Dynamic Time Warping (DTW) algorithm
The DTW algorithm is employed to search for similar sequences in the sample library.

The DTW algorithm compares the data before washing with all the data in the expert
library to find the most similar EGTM and FF sequences. The algorithm considers non-
linear variations and different lengths of time series, improving the prediction accuracy.

Step 5: Distance calculation and output
The DTW algorithm calculates the distance between the “data before washing” and all

data in the expert library. The minimum distance value obtained corresponds to the most
similar sequence, which provides predictions for changes in EGTM and FF.

Step 6: Boundary adjustment
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The boundary adjustment process aims to ensure that the predicted changes in EGTM
and FF align with real-world conditions. Local extreme points of washed EGTM and FF
data from other aero-engines of the same model are collected, grouped based on time
using clustering algorithms. Maximum values, minimum values, and average values are
calculated for each group and used to define upper bounds, lower bounds, and mean curves.
Predicted values of INC|EGTM and INC|FF are adjusted based on boundary conditions,
correcting values that exceed the upper bound or fall below the lower bound.

Step 7: Updating EGTM and FF data
After applying boundary adjustments, the EGTM and FF data are updated based on

the corrected predicted values. Equations provided in this paper (Equations (20)–(23))
outline the specific updates for EGTM and FF data.

3. The Proposed Taylor DQN Model for Optimization of Washing Schedule

The Taylor DQN comprises five components: action, state, experience replay, Taylor
DQN neural network, and Q-value. The relationship among these five components is
illustrated in Figure 7.
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As shown in Figure 7, an action is selected based on the Q-value and change in EGTM.
The selected action then upgrades the current state, which is subsequently stored in the
experience replay. This provides training data for the Taylor DQN neural network.

The experience replay stores four types of data: action, reward, old state, and new
state. The two possible actions are “wash” and “no wash,” while the reward represents
the earnings of the aero-engine in the new state. Old state refers to the aero-engine state
before the action was taken, while new state refers to the state after the action. These states
comprise six categories of data: VBW|EGTM, INC|EGTM, DR|EGTM, VBW|FF, INC|FF,
and DR|FF. These six categories of data are used as input for training the Taylor DQN
neural network.

INC|EGTM and INC|FF denote the step changes in EGTM data and fuel flow data
after washing the engine, respectively. These parameters are utilized in engineering to
reflect the cleaning efficiency. DR|EGTM and DR|FF refer to the linear decay rates of EGTM
data and fuel flow data, respectively, after washing the engine. DR|EGTM and DR|FF
are employed in engineering to reflect the long-term effect of washing on the EGTM and
fuel flow of aero-engines. VBW|EGTM denotes the value of EGTM before washing, while
VBW|FF represents the value of fuel flow before washing. VBW|EGTM and VBW|FF serve
as parameters used in engineering to reflect the pre-washing state of aero-engines. These
six types of data are the essential basis for cleaning decisions. Therefore, this paper utilizes
the Taylor DQN neural network to learn these six types of data, to provide a reference for
the make action’s Q-value in advance.

3.1. Taylor DQN Neural Network

We propose the Taylor DQN neural network to extract crucial information from the
state and output it in the form of Q-values. The Taylor network estimates the first-order
Taylor expansion of the state data. Compared to existing neural network models, the Taylor
network has stronger interpretability.

The Taylor DQN neural network extracts key information from the current state and
outputs the Q-value for each action, as shown in Figure 8.
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The Taylor DQN neural network performs a first-order Taylor expansion of the input
state, discarding the truncation error, while retaining the critical information. The network’s
weighted input is defined as wx + b, with its output being f (wx + b). When f (wx + b) is
differentiable at wx, f (wx + b) can be expanded at wx:

f (z) = f (z0) + f ′(z0)(z− z0) + o(z− z0) (24)

where f (wx) + f′(wx) ((wx + b)−wx) represents the key information extracted from the state
data, and o ((wx + b) − wx) is the useless information that cannot be described by regular
rules. Therefore, using f (wx) + f′(wx) ((wx + b) − wx) as key information, Equation (25)
can be stated as:

f (z) ≈ f (z0) + f ′(z0)(z− z0) (25)

Due to the fast convergence rate of the activation function tanh, this paper chooses the
tanh function as f (wx + b), with the activation function tanh determined by Equation (26).

f (wx + b) =
ewx+b − e−wx−b

ewx+b + e−wx−b (26)

Expanding Equation (26) at wx yields Equation (27):

f (wx + b) = ewx+b−e−wx−b

ewx+b+e−wx−b +
(

1 + ewx+b−e−wx−b

ewx+b+e−wx−b

)
⊗
(

1− ewx+b−e−wx−b

ewx+b+e−wx−b

)
⊗ b

= f (wx) + (I − f (wx)⊗ f (wx))⊗ b
(27)

Equation (27) depicts the Taylor neuron with tanh, as shown in Figure 9.
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The backpropagation of the Taylor neuron with tanh can be solved using the chain
rule. The gradient of b in Figure 9 can be calculated by Equation (28).

∇b =
∂e
∂b

=
∂e

∂ f (b)
· ∂ f (b)

∂b
= ∇e (28)

Similarly, the gradient of w can be calculated by Equation (29).

∇w =
∂e
∂w

=
∂e
∂ f
· ∂ f

∂w
= ∇e · f ′(wx) · xT − 2∇e · f ′(wx) · xT ⊗ f (wx)⊗ b (29)
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The Taylor neural network has a three-layer structure, as shown in Figure 10.
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The input layer is a fully connected layer that compresses the input information. The
hidden layer is a Taylor neuron layer that extracts key information from the compressed
data. The output layer outputs the key information in the form of Q-values. Based on
the input and output data, the number of nodes in the input layer (nin) and output layer
(nout) are six and two, respectively. The number of nodes in the middle layer (nhid) can be
obtained using the empirical formula in [27].

nhid =
√

nin × nout =
√

6× 2 = 3.46 ≈ 4 (30)

Based on the Taylor neural network, the Taylor DQN model is constructed, as shown
in Figure 11.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 23 
 

 

The input layer is a fully connected layer that compresses the input information. The 
hidden layer is a Taylor neuron layer that extracts key information from the compressed 
data. The output layer outputs the key information in the form of Q-values. Based on the 
input and output data, the number of nodes in the input layer (nin) and output layer (nout) 
are six and two, respectively. The number of nodes in the middle layer (nhid) can be ob-
tained using the empirical formula in [27]. 

hid in out 6 2 3.46 4n n n= × = × = ≈  (30)

Based on the Taylor neural network, the Taylor DQN model is constructed, as shown 
in Figure 11. 

 
Figure 11. Taylor DQN model. 

Figure 11 shows that two proposed Taylor neural networks are used as the evaluation 
Taylor neural network and the target network, with the same network structure. The eval-
uation Taylor neural network takes the old state in the experience replay as input and 
outputs Q. The target Taylor neural network takes the new state in the experience replay 
as input and outputs Qnext. Qtarget is calculated using Qnext and Reward.  

target nextmaxQ Reward Qα= +  (31)

where α is the learning rate.  
The loss function is calculated based on Qtarget and Q. 

( )2

target
1
2

loss Q Q= −  (32)

3.2. Action Selection  
The actions in the Taylor DQN model consist of two options: “wash” and “no-wash.” 

Let A = {�wash�, �no-wash�}. 

Figure 11. Taylor DQN model.



Mathematics 2023, 11, 4046 14 of 22

Figure 11 shows that two proposed Taylor neural networks are used as the evaluation
Taylor neural network and the target network, with the same network structure. The
evaluation Taylor neural network takes the old state in the experience replay as input and
outputs Q. The target Taylor neural network takes the new state in the experience replay as
input and outputs Qnext. Qtarget is calculated using Qnext and Reward.

Qtarget = Reward + αmaxQnext (31)

where α is the learning rate.
The loss function is calculated based on Qtarget and Q.

loss =
1
2
(
Qtarget −Q

)2 (32)

3.2. Action Selection

The actions in the Taylor DQN model consist of two options: “wash” and “no-wash”.
Let A = {‘wash’, ‘no-wash’}.

The model determines whether to wash the aero-engine by evaluating the change in
EGTM data after washing. The research conducted by airlines indicates that if the increase
in EGTM data is more than 15 ◦C, the washing was done too late. If the increase in EGTM
data is less than 10 ◦C, the washing was done too early.

Based on the research results, this paper designs the following guidelines for action
selection: (1) choose ‘wash’ if the predicted increase in EGTM data after washing exceeds
15 ◦C; (2) choose ‘no wash’ if the predicted increase in EGTM data after washing is less than
10 ◦C; (3) if the predicted increase in EGTM data after washing is greater than 10 ◦C, but
less than 15 ◦C, according to reference [18], we set a 90% probability of deciding whether
or not to wash based on the Q-value outputted by the DQN and a 10% chance of randomly
selecting an action. The action selection process is shown in Figure 12.
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3.3. Reward

This study centers around the Airbus A320 aircraft as the object of research. The
term “Reward” in the text refers to the revenue generated during a specific flight cycle.
When the flight cycle is denoted by c and the action as Ac, Rc (Ac) specifies the Reward.
When Ac = ‘wash’, Rc (Ac) includes flight revenue, carbon emissions tax, fuel tax, and
washing costs:

Rc(Ac) = income− tax− costoil −Washing operation f ee, i f Ac = wash (33)

In Equation (33), income refers to the revenue of a single aero-engine flight. The
average duration of a flight cycle for the A320 aircraft is two hours [28]. The revenue of
an aircraft is USD 10,549 per hour [29]. Based on on-site research, the washing operation
fee is about USD 180,000. The income of a single aero-engine can be deemed as half of the
income of an aircraft; thus, the income equals USD 10,549. The tax refers to the carbon
emissions tax, which is set at USD 10 (USD/ton):

tax = Carbon tax× EXH = 10(USD/ton)× EXH (34)

where EXH represents the amount of carbon emissions, expressed as:

EXH = CEI × f fc(lb/h)× Average f light time (35)

where CEI denotes the carbon emission index, which has a value of 3.153 [10]. According
to reference [30], the Average flight time is 2 h, therefore:

EXH = 3.153× f fc(lb/h)× 2 h = 6.306× f fc(lb) = 0.00286× f fc(ton) (36)

In Equation (33), costoil reflects the fuel cost of the engine:

costoil = Fuel cost× Fuel f low× Average f light time (37)

where the fuel cost is USD 0.75 (USD/kg) [31], thus:

costoil = 0.75(USD/kg)× f fc(lb/h)× 2 h = 0.68 f fc(USD) (38)

When Ac = ‘no wash’, the revenue of the flight cycle includes the flight revenue, carbon
emissions tax, and fuel tax, namely:

Rc(Ac) = income− tax− costoil , i f Ac = nowash (39)

4. Experiments

This section includes two contents: Boundary Conditions of Aero-Engine State Model,
and validation of the optimization effect of reinforcement learning framework based on
DQN. Among them, the Boundary Conditions of Aero-Engine State Model modifies the
prediction results of the proposed Similar Sequence Method. Due to the reinforcement
learning framework using the proposed Similar Sequence Method to calculate action
rewards, this paper first completes the fitting of the correction function and then evaluates
the optimization effect of the reinforcement learning framework.

The experiment was completed in a Python environment, with the CPU platform
being Core2Duo at 2.80 GHz. The data in this paper are collected from real data of a certain
engine model. This section arranges a comparison with three cleaning schemes, DQN,
Q-learning [18], and Reliability [9], to examine their carbon emissions, company revenue,
cleaning frequency, and fuel savings. Finally, the experimental results were analyzed. The
EGTM data of the engine come from the outlet temperature of the low-pressure turbine;
the FF data of the engine come from the aircraft’s fuel level indicator system. The system
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installs a set of capacitive probes in the fuel tank to measure the fuel level, and a density
gauge sensor is installed in the inner fuel tank of each wing to calculate the fuel quantity.

In this study, the relevant data of the aircraft engine after cleaning required for the
model are shown in Table 1.

Table 1. Relevant data after aero-engine washing.

No. DR|EGTM INC|EGTM (L) DR|FF INC|FF (L)

1 −0.05170 4.729298 0.10181431 9.3142548
2 −0.05216 9.173977 0.10272434 18.067957
3 −0.04414 14.41007 0.086929068 28.380323
4 −0.04054 14.87963 0.079834566 29.305111
5 −0.05371 8.632453 0.10578030 17.001436
6 −0.00955 8.616881 0.018806942 16.970768
7 −0.02466 12.85495 0.048560031 25.317556
8 −0.03951 12.91277 0.077819802 25.431421

4.1. Boundary Conditions of Aero-Engine State Model

In order to obtain the formula parameters for the average line and upper and lower
boundaries, this study collected data from four aero-engines, spanning from the time of
manufacturing to decommissioning. This paper used K-means to divide the data into seven
groups, calculating the mean, maximum, and minimum values for each group. Figure 13a
shows the fitting results for f ave(t)|EGTM, f up(t)|EGTM, and f down(t)|EGTM. The computed
results for f ave(t)|FF, f up(t)|FF, and f down(t)|FF are displayed in Figure 13b. The seven sets
of data in Figure 13 are marked with seven different colors.
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The data presented in Figure 13 can reflect that the restoration of EGTM and fuel flow
after aero-engine washing is concentrated in a fixed area. A logarithmic function will be
applied to fit the data. The upper boundary formula for EGTM data can be fitted as:

fup(t)|EGTM = 50.51 + 9.54× log10(t) (40)

The lower boundary formula for EGTM data can be fitted as:

fdown(t)|EGTM = −235.67 + 81.95× log10(t) (41)

The performance average descent curve for EGTM data can be fitted as:

fave(t)|EGTM = −183.82 + 64.74× log10(t) (42)

Similarly, for FF data, their upper boundary formula can be fitted as:

fup(t)|FF = 13601.48− 4194.60× log10(t) (43)

The lower boundary formula for FF data can be fitted as:

fdown(t)|FF = 7019.64− 2345.74× log10(t) (44)

The performance average descent curve for FF data can be fitted as:

fave(t)|FF = 7100.71− 2373.73× log10(t) (45)

4.2. Other Washing Strategy

This paper involves four washing strategies: the real washing strategy provided by the
airline company, the Taylor DQN-based washing strategy, the DQN-based washing strategy,
and the reliability-based washing strategy. The real washing strategy was obtained from
the data provided by the airline company, while the Taylor DQN method was introduced
in Section 3. The other two washing strategies are described as follows:

A. Washing strategy based on DQN
A three-layer neural network-based DQN is established as a comparative solution for

the Taylor DQN in this paper. Based on the three-layer neural network, the DQN takes
six states as input and outputs Q(wash) and Q(no-wash). According to Equation (30), the
number of nodes in the middle layer is set to 4. The activation function of the hidden layer
is set to ReLU, while the output layer uses the linear function. The optimizer is Adam, and
the loss function is the mean squared error. The training process of DQN is the same as
that of Taylor DQN.

B. Washing strategy based on Q-learning
Reference [20] combines the Mixed transfer process neural network with Q-learning

for optimizing washing strategies. The optimization strategy for Q-learning is as follows:

Q(c, A)← Q(c) + α

(
Rc+1 + γmax

A
Q(c + 1, A)

)
(46)

C. Weibull distribution approaches
Reference [17] established a reliability formula based on EGTM data to guide washing

strategies. Let x denote the washing cycle, which refers to the time of several flight cycles.
WB denotes the Weibull distribution function, which is determined by Equation (47):

WB(∆t|λ, k) =
∫ ∆t

0
kλ−kxk−1e−(

x
λ )

k
dt = 1− e−(

∆t
λ )

k
(47)

where λ denotes the scale, and k denotes the shape.
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The physical meaning of WB is the frequency of occurrence of washing cycles. The
washing records of the airline are statistically analyzed into WB probability, as shown in
Table 2:

Table 2. Frequency of WB for the washing period.

WB (%) Washing Period ∆t (Flight Cycles)

5 39
6 95
34 151
43 207
21 263
17 318
25 374
31 430
14 485
8 541
6 848

By substituting the data of Table 2 into Equation (47), a = 10.41 and b = 1.79 are obtained.
Therefore, the washing cycle formula can be derived as follows [17]:

x = 10.41(− ln(1−WB))
1

1.79 (48)

where 1 − WB represents reliability. If the airline company requires a reliability of
1 −WB = 99%, then x = 49.94 ≈ 50. Thus, it is recommended to wash every 50 flight cycles.

4.3. Comparison of Washing Strategies and Methods

Table 3 presents the cleaning benefits of a single aero-engine in 2750 flights under four
different cleaning strategies. These benefits include the total number of cleanings, average
EGTM, fuel savings, reduced carbon emissions, and increased profits. Fuel savings refer to
the difference between the fuel consumption of the current strategy and that of the actual
strategy. Reduced carbon emissions refer to the difference between the carbon emissions of
the current strategy and those of the actual strategy. Increased profits denote the difference
between the total profits of the current strategy and those of the actual strategy.

Table 3. The washing effect of the three optimization schemes.

Washing Strategy Taylor DQN DQN Q-Learning Weibull
Method

The Real
Strategy

Total washing times 16 15 12 55 6
Average EGTM/◦C 72.04 71.56 65.96 72.28 67.65

Fuel saving/ton 40.48 38.51 21.04 41.49 0
Reduce carbon
emissions/ton 170.20 161.91 66.37 174.42 0

Increase in profit/USD +28,600 +22,293 +3110 −23,360 0

Table 3 reveals that Taylor DQN recommends 1 more washing cycle than DQN and
4 more than Q-learning, but 39 cycles less than the Weibull method and 10 more cycles than
The Real Strategy. Furthermore, Taylor DQN’s average EGTM is 0.4 ◦C higher than DQN’s
and 6.0 ◦C higher than Q-learning’s, but 0.2 ◦C lower than the Weibull method and 4.3 ◦C
higher than The Real Strategy. In addition, Taylor DQN saves 1.97 tons more fuel than
DQN, 25.89 tons more fuel than Q-learning, and 1.01 tons less than the Weibull method.
Taylor DQN also brings in USD 6307 more profit than DQN, USD 25,490 more profit than
Q-learning, and USD 51,960 more profit than the Weibull method.

It can be inferred from Table 3 that Taylor DQN’s strategy is more fuel-efficient, emits
fewer carbon emissions, and has lower cleaning costs than DQN’s strategy and Q-learning’s
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strategy, ultimately leading to greater profitability. Therefore, in this task, the Taylor DQN
model outperforms the DQN model and the Q-learning model.

Table 3 reflects that although the benefits brought by traditional DQN are lower than
those of Taylor DQN, they are higher than those of Q-learning. The recommended cleaning
frequency for traditional DQN is three times more than that learned by Q. The Average
EGTM of traditional DQN is 5.6 ◦C higher than that of Q-learning. Traditional DQN saves
17.47 tons of fuel compared to Q-learning. Traditional DQN reduces carbon emissions by
95.54 tons compared to Q-learning. The benefits brought by traditional DQN are USD
19,183 more than those of Q-learning.

Table 3 indicates that the Weibull method achieved a marginal improvement through
frequent cleaning, but at the cost of significant profit losses. Therefore, the Weibull method
is not suitable for this task. By using Taylor neural networks to enhance learning ability,
Taylor DQN achieves a high degree of EGTM with fewer cleaning cycles. Although the
Weibull method maintains the highest degree of EGTM and fuel efficiency throughout the
entire process, its cleaning approach results in lower economic benefits compared to the
Taylor DQN method.

4.4. Discussion of Results

Our experimental results demonstrate both convergence and divergence when com-
pared to previous research. Converging with prior studies, we found that regular engine
cleaning can lead to improvements in EGTM and fuel efficiency and reduced carbon emis-
sions. This aligns with the consensus in the literature that proper maintenance and cleaning
contribute to enhanced engine performance.

However, there are also notable divergences between our results and some previous
research findings. For instance, in comparison with the reliability-based washing strategy,
our Taylor DQN model recommended fewer cleaning cycles, while maintaining a high
degree of EGTM and achieving significant fuel savings. This differs from the Weibull
method, which suggests more frequent cleaning at the cost of reduced profitability. This
discrepancy may be attributed to differing methodologies, datasets, or assumptions used
in previous studies.

It is important to note that our study has certain limitations. The data collected for
analysis were specific to a particular engine model, and the experiments were conducted
under controlled conditions. Therefore, the convergence or divergence of our results with
previous research may be influenced by these factors.

Overall, our findings demonstrate both alignment and disparities with previous re-
search. These differences indicate the potential of our proposed Taylor DQN model to
outperform traditional methods, such as DQN and Q-learning, in terms of fuel efficiency,
carbon emissions reduction, and profitability. Further research and comparative analy-
ses with a broader range of engine models and real-world data would be valuable in
establishing the generalizability and robustness of our results.

There are some key factors contributing to the superior performance of the Taylor
DQN model:

Complex Input Data Utilization: The model makes use of complex input data in-
volving six different categories: VBW|EGTM, INC|EGTM, DR|EGTM, VBW|FF, INC|FF,
and DR|FF. These data points, which reflect various parameters before and after wash-
ing the aero-engine, serve as a rich basis for making informed decisions regarding the
washing schedule.

Taylor Expansion for Data Interpretability: The Taylor DQN neural network utilizes
a first-order Taylor expansion to process the input state data, which enhances data inter-
pretability. This process retains the essential information, while discarding the truncation
error, hence focusing on the most critical data components that influence decision making.

Flexible and Adaptive Learning: The model employs learning and loss functions
that enable adaptive learning, optimizing the Q-value calculations over time. Moreover, it
features a learning rate (α), which helps in tuning the model for better performance.
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The generalizability limitations and challenges of applying the model to different
aero-engines or complex systems are as follows:

Data Dependency and Specificity: The model is developed based on specific data
categories (VBW|EGTM, INC|EGTM, etc.) that pertain to particular aero-engine attributes.
Applying the model to different engines might necessitate adjustments to account for
variations in data attributes, characteristics, and behaviors, potentially requiring substantial
re-engineering and data preprocessing.

Reward System Applicability: The reward system, which is currently centered
around the Airbus A320 aircraft, might not directly translate to other types of aircraft
or engines. This could necessitate a restructuring of the reward system to accommodate
different operational dynamics and cost structures associated with other aero-engines.

Environmental and Regulatory Compliance: Different aero-engines and regions
might have varying environmental and regulatory compliance standards. Adapting the
model to accommodate these variations could present a significant challenge, requiring
modifications to ensure alignment with diverse compliance standards.

4.5. Comparative Analysis of Optimization Approaches

In this section, we aim to critically discuss and compare various optimization ap-
proaches, shedding light on their respective strengths and weaknesses, setting the stage
for underscoring the innovative elements of the Taylor DQN model within the complex
landscape of aero-engine washing schedules optimization.

A. Traditional DQN (Deep Q-Networks)
Strengths: DQNs excel at recognizing complex patterns in data due to their deep neu-

ral network structure, facilitating the resolution of problems with high-dimensional inputs.
Leveraging experience replay, DQNs can break the correlation between consecutive experi-
ences, enhancing the stability of the learning process. Utilizing separate target networks
aids in stabilizing the learning algorithm by temporarily fixing the Q-value targets.

Weaknesses: Data Efficiency: DQNs may require a substantial volume of data for
effective training, which can prolong training times and increase computational costs.
Hyperparameter Sensitivity: DQNs’ performance can be considerably sensitive to the
configuration of various hyperparameters, demanding meticulous tuning for optimal
results. The complexity inherent in DQNs can pose implementation and adjustment
challenges, especially for teams with limited deep learning expertise.

B. Q-learning
Strengths: Compared to deep learning approaches, Q-learning algorithms are gen-

erally simpler and more straightforward to implement. Q-learning algorithms are theo-
retically guaranteed to converge to the optimal policy under specific conditions. Being a
model-free approach, Q-learning does not require knowledge of the environmental model,
which can be advantageous in environments where the model is unknown or challenging
to define.

Weaknesses: When dealing with problems characterized by large state and action
spaces, Q-learning may encounter scalability issues. Striking the right balance between
exploration and exploitation can be a significant challenge, potentially affecting the algo-
rithm’s ability to identify the optimal policy. The performance of Q-learning is sensitive
to the learning rate parameter, influencing the stability and convergence properties of
the algorithm.

C. Weibull Distribution Function
Strengths: Utilizes statistical analysis for predictive maintenance, potentially reducing

unexpected failures and extending equipment life. The Weibull distribution can model
a wide variety of data distributions, from exponential to normal distributions, offering a
versatile approach to reliability analysis.

Weaknesses: The accuracy of predictions can be significantly influenced by the quality
and quantity of available data. Estimating the shape and scale parameters accurately can
sometimes be challenging, potentially affecting the reliability of predictions.
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5. Conclusions

In our paper, we propose that the Taylor DQN model, with its underlying Taylor neural
network, enhances the learning efficiency and provides more cost-effective and profitable
washing strategies for airlines. It is essential to reiterate that even slight improvements in
revenue generated from a single engine can have a significant impact on an airline’s overall
profitability when considering the larger scale of their operations.

The Taylor DQN model is a deep reinforcement learning method composed of the
Taylor neural network. The Taylor neural network uses Taylor decomposition to analyze
aero-engine states, enhancing the model’s learning efficiency. Compared with other meth-
ods, the results confirm that the washing strategy recommended by the Taylor DQN model
is more cost-effective and yields the highest profit for airlines.

This paper proposes the Similar Sequence Method for predicting post-washing aero-
engine data, providing new states for the Taylor DQN model. The Similar Sequence Method
constructs a sample library based on a large amount of collected data and predicts data
changes and future trends by calculating the DTW distance between pre-washing data and
samples in the library. To improve accuracy, the Boundary Adjustment method is proposed
to adjust data changes. The experimental results show that the proposed method can save
40.48 tons of fuel and reduce carbon emissions by 170.2 tons in one wing cycle for an engine,
increasing the airline’s revenue by USD 28,600.

While our current study focuses on one aircraft engine, the approach can be easily
extended to hundreds of engines within an airline’s fleet. Discussing the potential cumula-
tive impact on the airline’s revenue and environmental footprint when applying the Taylor
DQN model to multiple engines will help underscore its significance.

In the future, we will collect more data to enhance our research. The proposed method
can provide maintenance strategies for various complex instruments. The performance
of the proposed methods can be further improved by incorporating more advanced tech-
niques. For instance, the Taylor neural network can be enhanced with additional layers or
alternative architectures to handle more complex and diverse aero-engine states.

One possible direction is to explore the application of the Taylor DQN model and
the Similar Sequence Method in other engineering domains beyond aero-engine washing
strategies. These methods have the potential to be generalized and adapted to optimize
maintenance strategies for various complex instruments, such as power plants, manufac-
turing equipment, or even vehicles.
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