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Abstract: The development of artificial intelligence systems assumes that a machine can indepen-
dently generate an algorithm of actions or a control system to solve the tasks. To do this, the machine
must have a formal description of the problem and possess computational methods for solving it.
This article deals with the problem of optimal control, which is the main task in the development of
control systems, insofar as all systems being developed must be optimal from the point of view of a
certain criterion. However, there are certain difficulties in implementing the resulting optimal control
modes. This paper considers an extended formulation of the optimal control problem, which implies
the creation of such systems that would have the necessary properties for its practical implementation.
To solve it, an adaptive synthesized optimal control approach based on the use of numerical methods
of machine learning is proposed. Such control moves the control object, optimally changing the
position of the stable equilibrium point in the presence of some initial position uncertainty. As a result,
from all possible synthesized controls, one is chosen that is less sensitive to changes in the initial
state. As an example, the optimal control problem of a quadcopter with complex phase constraints
is considered. To solve this problem, according to the proposed approach, the control synthesis
problem is firstly solved to obtain a stable equilibrium point in the state space using a machine
learning method of symbolic regression. After that, optimal positions of the stable equilibrium point
are searched using a particle swarm optimization algorithm using the source functional from the
initial optimal control problem statement. It is shown that such an approach allows for generating the
control system automatically by computer, basing this on the formal statement of the problem and
then directly implementing it onboard as far as the stabilization system has already been introduced.

Keywords: stabilization; optimization; symbolic regression; synthesized control; evolutionary computations;
quadcopter model; ordinary differential equations

MSC: 49M99

1. Introduction

Long ago, Leonard Euler spoke about the optimal arrangement of everything in the
world: “For since the fabric of the universe is most perfect and the work of a most wise
Creator, nothing at all takes place in the universe in which some rule of maximum or
minimum does not appear”. Striving for optimality is natural in every sphere.

In order to optimally move an autonomous robot to a certain target position, currently,
as a standard, engineers first solve the problem of optimal control, obtain the optimal
trajectory, and then solve the additional problem of moving the robot along the obtained
optimal trajectory. In most cases, the following approach is used to move the robot along a
path. Initially, the object is made stable relative to a certain point in the state space. Then,
the stability points are positioned along the desired path and the object is moved along the
trajectory by following these points from one point to another [1–7]. The difference between
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the existing methods is in solving the control synthesis problem to ensure stability relatively
to some equilibrium point in the state space and in the location of these stability points.

Often, to ensure stability, the model of the control object is linearized relative to a
certain point in the state space. Then, for the linear model of the object, a linear feedback
control is found to arrange the eigenvalues of the closed-loop control system matrix on the
left side of the complex plane. Sometimes, to improve the quality of stabilization, control
channels or components of the control vector are defined that affect the movement of an
object along a specific coordinate system axis of the state space. Then controllers, as a
rule PI controllers, are inserted into these channels with the coefficients that are adjusted
according to the specified control quality criterion [3,4]. In some cases, analytical or semi-
analytical methods are used to solve the control synthesis problem and build nonlinear
stable control systems [5,7]. But the stability property of the nonlinear model of the control
object, obtained from the linearization of this model, is generally preserved only in the
vicinity of a stable equilibrium point.

The main drawback of the approach when the control object is moved along the stable
points on the trajectory is that even if this trajectory is obtained as a solution of the optimal
control problem [8], then the movement itself will never be optimal. To ensure optimality,
it is necessary to move along the trajectory at a certain speed, but when approaching the
stable equilibrium point, the speed of the control object tends to zero.

The optimal control problem generally does not require ensuring the stability of the
control object. The construction of a stabilization system that provides the stability of the
object relative to some equilibrium point in the state space is carried out by the researcher
to achieve predictable behavior of the control object in the vicinity of a given trajectory.

The optimal control problem in the classical formulation is solved for a control object
without any stabilization system; therefore, the resulting optimal control and the optimal
trajectory will not be optimal for this object with a further introduced stabilization system.
It follows that the classical formulation of the optimal control problem [9] is missing
something as far as its solution cannot be directly implemented in the real object, since
this leads to an open-loop control. The open-loop control system is very sensitive to small
disturbances, but they are always possible in real conditions, since no model accurately
describes the control object. In order to achieve optimal control in a real object, it is necessary
to build a feedback control system, which should provide some additional properties,
for example stability relative to the trajectory or points on this trajectory. The authors
of [10] proposed an extended formulation statement of the optimal control problem, which
has additional requirements established for the optimal trajectory. The optimal trajectory
must have a non-empty neighborhood with a property of attraction. Performing these
requirements provides implementation of the solution of the optimal control problem
directly in the real control object.

In [11,12], an approach to solving the extended optimal control problem on the base
of the synthesized control is presented. This approach ensures obtaining a solution of
the optimal control problem in the class of practically implemented control functions.
According to this approach, initially, the control synthesis problem is solved. So, the control
object becomes stable in the state space relatively to some equilibrium point. In the second
stage, the optimal control problem is solved by determination of optimal positions of the
stable equilibrium point. Switching stable points after a constant time interval ensures
moving the control object from initial state to the terminal one optimally according to the
given quality criterion. Optimal positions of stable equilibrium points can be far from the
optimal trajectory in the state space; therefore, a control object does not slow down its
motion speed. Studies of synthesized control in various optimal control problems have
shown that such control is not sensitive to perturbations and can be directly implemented
in a real object [13,14].

In synthesized control, the optimal control problem is solved for a control object
already with a stabilization system. Another advantage of synthesized control is that the
position of the stable point does not change during the time interval; that is, an optimal
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control function is solved using the class of piece-wise constant functions, which simplifies
the search for the optimal solution.

It is possible that piece-wise constant control in the synthesized approach finds several
optimal solutions with practically the same value of the quality criterion. This circumstance
prompted in us the idea to find among all almost-optimal solutions one that is less sensitive
to perturbations. This approach is called adaptive synthesized control.

In this work, a principle of adaptive synthesized control is proposed in Section 2, meth-
ods for solving it are discussed in Section 3 and further in the Section 4, a computational
experiment to determine the solution of the optimal control problem for the spatial motion
of quadcopter by adaptive synthesized control is considered.

2. Adaptive Synthesized Control

Consider the principle of adaptive synthesized control for solving the optimal control
problem in its extended formulation [10].

Initially, the control synthesis problem is solved to provide stability of the control
object relatively some point in the state space. In the problem, the mathematical model of
the control object in the form of ordinary differential equation system is given.

ẋ = f(x, u), (1)

where x is a state vector, x ∈ Rn, u is a control vector, u ∈ U ⊆ Rm, U is a compact set that
determines restrictions on the control vector.

The domain of admissible initial states is given

X0 ⊆ Rn. (2)

To solve the problem numerically, the initial domain (2) is taken in the form of the
finite number of points in the state space:

X̃0 = {x0,1, . . . , x0,K}. (3)

Sometimes, it is convenient to set one initial state and deviations from it:

x0,j = x0 − ∆0 + 2� (j)2∆0, j = 1, . . . , 2n − 1, (4)

where x0 is a given initial state, ∆0 is a deviations vector, ∆0 = [∆1 . . . ∆n]T , � is Hadamard
product of vectors, (j)2 is a binary code of the number j. In this case K = 2n − 1.

The stabilization point as a terminal state is given by

x f1 ∈ Rn. (5)

It is necessary to find a control function in the form

u = h(x f1 x) ∈ U, (6)

where h(x): Rn → Rm, such that it minimizes the quality criterion

J0 =
K

∑
i=0

(
t f1,i + p‖x f1 − x(t f1,i, x0,i)‖

)
→ min, (7)

where t f1,i is the time of achieving the terminal state (5) from the initial state x0,i, t f1,i is
determined by an equation

t f1,i =

{
t, if t < t+and ‖x f1 − x(t, x0,i)‖ ≤ ε0

t+, otherwise
, (8)
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x(t, x0,i) is a particular solution from initial state x0,i, i = 1, . . . , K, of the differential
Equation (1) with an inserted control function (6)

ẋ = f(x, h(x f1 − x)), (9)

ε0 is a given accuracy for hitting to terminal state (5), t+ is a given maximal time for control
process, p is a weight coefficient.

Further, using the principles of synthesized optimal control the following optimal
control problem is considered. The model of control object in the form (9) is used

ẋ = f(x, h(x∗ − x)), (10)

where the terminal state vector (5) is changed into the new unknown vector x∗, which will
be a control vector in the considered optimal control problem.

In accordance with the classical formulation of the optimal control problem, the initial
state of the object (10) is given

x0 ∈ Rn. (11)

In the engineering practice, there can be some deviations in the initial position; there-
fore, in adaptive synthesized control, instead of one initial state (11) the set of initial states
used are defined by Equation (4). The vector of initial deviations ∆0 is defined as a level
of disturbances.

The goal of control is defined by achievement of the terminal state

x f ∈ Rn. (12)

The quality criterion is given

J1 =

t f∫
0

f0(x, h(x∗ − x))dt→ min, (13)

where t f is a terminal time, t f is not given but is limited, t f ≤ t+, t+ is a given limit time of
control process.

According to the principle of synthesized control, it is necessary to choose time interval
∆t and to search for optimal constant values of the control vector x∗,i for each interval

x∗ = x∗,i, if (i− 1)∆t ≤ t < i∆t, i = 1 . . . , M, (14)

where M is a number of intervals

M =

⌊
t+

∆t

⌋
. (15)

So the system (10) with the found optimal constant values of the control vector (14)
in the right-hand side of differential equations has a particular solution which reaches the
terminal state (12) from the given initial state (11) with an optimal value of the quality
criterion (13).

Algorithmically, in the second stage of the adaptive synthesized control approach,
the optimal values of the vector x∗ are found as a result of the optimization task with
the following quality criterion, which takes into account the given grid according to the
initial conditions:

J2 =
K

∑
i=1

 t f ,i∫
0

f0(x, h(x∗,i − x))dt + p‖x f − x(t f ,i, x0,i)‖

→ min
x∗

, (16)

where K is number of initial states, t f ,i is determined by Equation (8).
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3. Methods of Solving

As described in the previous section, the approach based on the principle of adaptive
synthesized optimal control consists of two stages.

To implement the first stage of the approach under consideration for solving the
control synthesis problem (1)–(9), any known method can be used. For linear systems,
for example, methods of modal control [15] can be applied, as well as such analytical
methods such as backstepping [16,17] or synthesis based on the application of the Lyapunov
function [18]. In practice, stability is ensured through linearization of the model (1) in
the terminal state and setting PI or PID controllers in control channels [19,20]. All known
analytical and technical methods have their limitations, which mostly depend on the
type of the model used to describe the control object. The mathematical formulation of
the stabilization problem as a control synthesis problem is needed to apply numerical
methods and automatically obtain a feedback control function. Today, to solve the synthesis
problem for nonlinear dynamic objects of varying complexity, modern numerical methods
of machine learning can be applied [21]. Among different machine learning techniques,
only symbolic regression allows searching both for the structure of the needed mathematical
function and its parameters. In our case, the needed function is a control function. So, in
the present paper machine learning by symbolic regression [22,23] is used.

Methods of symbolic regression search for the mathematical expression of the desired
function in the encoded form. These methods differ in the form of this code. The search for
solutions is performed in the space of codes by a special genetic algorithm.

Let us demonstrate the main features of symbolic regression on the example of the
network operator method (NOP), which was used in this work in the computational exper-
iment. To code a mathematical expression NOP uses an alphabet of elementary functions:

– Functions without arguments or parameters and variables of the mathematical expression

F0 = { f0,1 = x1, . . . , f0,n = xn, f0,n+1 = q1, . . . , f0,n+r = qn+r}; (17)

– Functions with one argument

F1 = { f1,1(z) = z, f1,2(z), . . . , f1,W(z)}; (18)

– Functions with two arguments

F2 = { f2,1(z1, z2), . . . , f2,V(z1, z2)}. (19)

Any elementary function is coded by two digits: the first one is the number of argu-
ments, the second one is the function number in the corresponding set. These digits are
written as indexes of elements in the introduced sets of the alphabet (17)–(19). The set of
functions with one argument must include the identity function f1,1(z) = 1. Functions with
two arguments should be commutative, associative and have a unit element.

NOP encodes a mathematical expression in the form of an oriented graph. Source-
nodes of the NOP-graph are connected with functions without arguments, while other
nodes are connected with functions with two arguments. Arcs of the NOP-graph are
connected with functions with one argument. If on the NOP-graph some node has one
input arc, then the second argument is a unit element for the function with two arguments
connected with this node.

Let us define the following alphabet of elementary functions:

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = q1, f0,4 = q2};
F1 = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = cos(z), f1,4(z) = sin(z)};
F2 = { f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1z2}.

(20)
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With this alphabet the following mathematical expressions can be encoded in the form
of NOP:

y1 = cos(x1) sin(x2)− sin(x1) cos(x2);
y2 = cos(q1x1 + q2 sin(x2));
y3 = q1 sin(q2x2) + q2 cos(q1x1);
y4 = q1 sin(q2 cos(x1)) + q2 cos(q1 sin(x2)).

(21)

The NOP-graphs of these mathematical expressions are presented in Figure 1. The
nodes of the graph are numbered. Inside each node there is either the number of a binary
operation or an element of the set of variables and parameters F0, and the arcs of the graph
indicate the numbers of unary operations.

In the computer memory, the NOP-graphs are presented in the form of integer matrices.

Ψ = [ψi,j], i, j = 1, . . . , L. (22)

Figure 1. NOP-graphs for mathematical expressions (21), (a) y1, (b) y2, (c) y3, (d) y4.

As the NOP-nodes are enumerated in such a way that the node number from which
an arc comes out is less than the node number to which an arc enters, then the NOP-matrix
has an upper triangular form. Every line of the matrix corresponds some node of the graph.
Lines with zeros in the main diagonal corresponds to source-nodes of the graph. Other
elements in the main diagonal are the function numbers with two arguments. Non-zero
elements above the main diagonal are the function numbers with one argument.

NOP-matrices for the mathematical expressions (21) have the following forms:

Ψ1 =


0 0 3 4 0
0 0 4 3 0
0 0 2 0 2
0 0 0 2 1
0 0 0 0 1

, Ψ2 =



0 0 0 0 1 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 2 0 1 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 1


,
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Ψ3 =



0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 1 0 0
0 0 0 0 2 0 3 0 0
0 0 0 0 0 2 0 4 0
0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 1


, Ψ4 =



0 0 0 0 3 0 0 0 0
0 0 0 0 0 4 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 2 0 4 0 0
0 0 0 0 0 2 0 3 0
0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 1


. (23)

To calculate a mathematical expression by its NOP-matrix, initially, the vector of nodes
is determined. The number of components of the vector of nodes equals to the number of
nodes in a graph. The initial vector of nodes includes variables and parameters in positions
that correspond to source nodes, as well as other components equal to the unit elements
of the corresponding functions with two arguments. Further, every line of the matrix is
checked. If element of the matrix does not equal zero, then corresponding element of the
vector of nodes is changed. To calculate mathematical expression by the NOP-matrix, the
following equation is used:

z(i)j ←

 f2,ψj,j(z
(i−1)
j , f1,ψi,j(z

(i−1)i )), if ψi,j 6= 0

z(i−1)
j , otherwise

, i = 1, . . . , L− 1, j = i + 1, . . . , L, (24)

where

z(0)i =

{
f0,i, if ψi,i = 0
eψi,i , otherwise

, (25)

ej is a unit element for function with two arguments f2,j(z1, z2),

f2,j(ej, z) = f (z, ej) = z. (26)

Consider an example of calculating the second mathematical expression in (21) on its
NOP-matrix Ψ2.

The initial vector of nodes is

z(0) = [x1 x2 q1 q2 1 1 0 0]T .

Further, all strings in the matrix Ψ2 are checked and non-zero elements are found.

ψ1,5 = 1, z(1)5 = f2,2(z
(0)
5 , f1,1(z

(0)
1 )) = 1 · f1,1(z

(0)
1 ) = 1 · x1 = x1,

ψ2,6 = 4, z(2)6 = f2,2(z
(1)
6 , f1,4(z

(1)
1 )) = 1 · f1,4(z(1)) = 1 · sin(x2) = sin(x2),

ψ3,5 = 1, z(3)5 = f2,2(z
(2)
5 , f1,1(z

(2)
3 )) = x1 · q1 = q1x1,

ψ4,6 = 1, z(4)6 = f2,2(z
(3)
6 , f1,1(z

(3)
4 )) = sin(x2) · q2 = q2 sin(x2),

ψ5,7 = 1, z(5)7 = f2,1(z
(4)
7 , f1,1(z

(4)
5 )) = 0 + q1x1 = q1x1,

ψ6,7 = 1, z(6)7 = f2,1(z
(5)
7 , f1,1(z

(5)
6 )) = q1x1 + q2 sin(x2),

ψ7,8 = 3, z(7)8 = f2,1(z
(6)
8 , f1,3(z

(6)
7 )) = 0 + cos(q1x1 + q2 sin(x2)) = cos(q1x1 + q2 sin(x2)).

The last mathematical expression coincides with the needed mathematical expression
for y2 (21).

So, we considered the way of coding in the NOP method. Then, to search for an
optimal mathematical expression in some task, the NOP method applies a principle of
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small variations of a basic solution. According to this principle, one possible solution is
encoded in the form of the NOP-matrix Ψ0. This solution is the basic solution and it is set
by a researcher as a good solution. Other possible solutions are presented in the form of
sets of small-variation vectors. A small variation vector consists of four integer numbers

w = [w1 w2 w3 w4]
T , (27)

where w1 is a type of small variation, w2 is a line number of the NOP-matrix, w3 is a column
number of NOP-matrix, w4 is a new value of an NOP-matrix element. There are four types
of small variations: w1 = 0 is an exchange of the function with one argument, if ψw2,w3 6= 0,
then ψw2,w3 ← w4; w1 = 1 is an exchange of the function with two arguments, if ψw2,w2 6= 0,
then ψw2,w2 ← w4; w1 = 2 is an insertion of the additional function with one argument, if
ψw2,w3 = 0, then ψw2,w3 ← w4; w1 = 3 is an elimination of the function with one argument,
if ψw2,w3 6= 0 and ∃ψw2,j 6= 0, j > w2, j 6= w3 and ∃ψi,w3 6= 0, i 6= w2, then ψw2,w3 ← 0.

The initial population includes H possible solutions. Each possible solution
i ∈ {1, . . . , H} except the basic solution is encoded in the form of the set of small varia-
tion vectors

Wi = (wi,1,, . . . , wi,d), i ∈ {1, . . . , H}, (28)

where d is a depth of variations, which is set as a parameter of the algorithm.
The NOP-matrix of a possible solution is determined after application of all small

variations to the basic solution

Ψi = wi,d ◦ . . . ◦wi,1 ◦Ψ0, i ∈ {1, . . . , H}, (29)

Here, the small variation vector is written as a mathematical operator changing matrix
Ψ0.

During the search process sometimes the basic solution is replaced by the current best
possible solution. This process is called a change of an epoch.

Consider an example of applying small variations to the NOP-matrix Ψ3. Let d = 3
and there are three following small variation vectors:

w1 = [0 3 5 2]T , w2 = [2 5 6 3]T , w3 = [2 8 9 4]T

After application of these small variation vectors to the NOP-matrix Ψ3, the following
NOP-matrix is obtained:

Ψ5 =



0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 2 0 0 1 0
0 0 0 0 0 1 1 0 0
0 0 0 0 2 3 3 0 0
0 0 0 0 0 2 0 4 0
0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 2 4
0 0 0 0 0 0 0 0 1


.

This NOP-matrix corresponds to the following mathematical expression:

y5 = sin(q1 sin(q2x2 cos(−q1x1))) + q2 cos(−q1x1).

Similar to a search engine, a genetic algorithm is used. To perform the main genetic
operation of crossover, two possible solutions are selected randomly

Wα = (wα,1, . . . , wα,d),
Wβ = (wβ,1, . . . , wβ,d).

(30)
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A crossover point is selected randomly c ∈ {1, . . . , d}. Two new possible solutions
are obtained as the result of exchanging elements of the selected possible solutions after
the crossover point:

WH+1 = (wα,1, . . . , wα,c, wβ,c+1, . . . , wβ,d),
WH+2 = (wβ,1, . . . , wβ,c, wα,c+1, . . . , wα,d).

(31)

The second stage of the synthesized principle under consideration is to solve the prob-
lem of optimal control via determination of the optimal position of the equilibrium points.
Studies have shown that for a complex optimal control problem with phase constraints,
evolutionary algorithms allow the system to cope with such problems. Good results were
demonstrated [24] by such algorithms as a genetic algorithm (GA) [25], a particle swarm op-
timization (PSO) algorithm [26–28], a grey wolf optimizer (GWO) algorithm [29] or a hybrid
algorithm [24] involving one population of possible solutions and all three evolutionary
transformations of GA, PSO and GWO selected randomly.

4. Computational Experiment

Consider the optimal control problem for the spatial motion of a quadcopter. In the
problem, the quadcopter should move for a minimum time on a closed-loop circle from the
given initial state to the same terminal state, avoiding collisions with obstacles and passing
through the given areas.

4.1. Mathematical Model of Spatial Movement of Quadcopter

In the general case, the mathematical model of a quadcopter as a hard body has the
following form:

ẍ = F(cos(γ) sin(θ) cos(ψ) + sin(γ) sin(ψ))/m;
ÿ = F cos(γ) cos(θ)/m− g;
z̈ = F(cos(γ) sin(θ) sin(ψ) + sin(γ) cos(ψ))/m;
γ̈ = ((Iyy + Izz)θ̇ψ̇ + Mx)/Ixx;
ψ̈ = ((Izz + Ixx)γ̇θ̇ + My)/Iyy;
θ̈ = ((Ixx + Iyy)γ̇θ̇ + Mz)/Izz.

(32)

where F is a summary thrust force of all drone screws, m is a mass of drone, g is acceleration
of gravity, g = 9.80665, Mx, My, Mz are control moments around the respective axes.

Figure 2 shows how the angles of a quadcopter turn are linked with its axes.

Figure 2. Inertial coordinate system for quadcopter.

To transform the model (32) to a vector record, the following designations are entered:
x = x1, y = x2, z = x3, ẋ1 = x4, ẋ2 = x5, ẋ3 = x6, γ = x7, ψ = x8, θ = x9, γ̇ = x10, ψ̇ = x11,
θ̇ = x12, M1 = Mx, M2 = My, M3 = Mz.

As a result the following mathematical model is received:
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ẋ1 = x4;
ẋ2 = x5;
ẋ3 = x6;
ẋ4 = F(cos(x7) sin(x9) cos(x8) + sin(x7) sin(x8))/m;
ẋ5 = F(cos(x7) cos(x9)/m− g;
ẋ6 = F(cos(x7) sin(x9) sin(x8) + sin(x7) cos(x8))/m;
ẋ7 = x10;
ẋ8 = x11;
ẋ9 = x12;

ẋ10 = ((Iyy + Izz)x11x12 + Mx)/Ixx;
ẋ11 = ((Izz + Ixx)x10x12 + My)/Iyy;
ẋ12 = ((Ixx + Iyy)x10x11 + Mz)/Izz;

(33)

where x is a state space vector, x = [x1 . . . xn]T , M is a vector of control moments,
M = [M1 M2 M3]

T .
As a rule, quadcopters are manufactured with some angle stabilization systems. This

means that a drone can be stabilized at any angle for some interval. The system of angle
stabilization provides a stable location of the drone relatively, given angles by control moments:

Mi = wi(x∗7 − x7, x∗8 − x8, x∗9 − x9, x10, x11, x12), i = 1, 2, 3. (34)

Assume that the angular stabilization system works out the given angles of the quad-
copter quickly enough, at least in comparison with spatial movement. In this case we can
assume that the control of the spatial movement of the quadcopter is carried out using the
angular position of the drone and the thrust force. Let us define components of the spatial
control vector: x7 = u1, x8 = u2, x9 = u3, F/m = u4.

As a result we receive the following model of spatial quadcopter movement:

ẋ1 = x4;
ẋ2 = x5;
ẋ3 = x6;
ẋ4 = u4(cos(u1) sin(u3) cos(u2) + sin(u1) sin(u2));
ẋ5 = u4 cos(u1) cos(u3)− g;
ẋ6 = u4(cos(u1) sin(u3) sin(u2) + sin(u1) cos(u2)).

(35)

In this work, this model is used to obtain optimal control for the spatial motion of
the quadcopter.

4.2. The Optimal Control Problem for Spatial Motion of Quadcopter

The model (35) of the control object is given. Here, x is a state space vector, x ∈ R6, u
is a control vector ∈ U ∈ R4. U is a compact set that defines restrictions on values of control
vector components,

u−1 = −π/12 ≤ u1 ≤ π/12 = u+
1 ,

u−2 = −π ≤ u2 ≤ π = u+
2 ,

u−3 = −π/12 ≤ u3 ≤ π/12 = u+
3 ,

u−4 = 0 ≤ u4 ≤ 12 = u+
4 .

(36)

According to the principle of synthesized control, initially the control synthesized
problem (1)–(9) is solved. The model (35) is used as a model of the control object. To con-
struct the set of initial states (4), the following vector of deviations is used:

∆0 = [2 2 2 0 0 0]T . (37)

In the problem, initial state and terminal state were equal:

x0 = x f = [0 5 0 0 0 0]T . (38)
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For calculation of the quality criterion (7), the following parameters are used: t+ = 2,
ε0 = 0.1, p = 2.

To solve the control synthesis problem, the network operator method [23] was used.
NOP found the following solution:

ui =


u+

i , if ûi > u+
i

u−i , if ûi < u−i
ûi, otherwise

, i = 1, . . . , m = 4, (39)

where
û1 = µ(C), (40)

û2 = û1 − û3
1, (41)

û3 = û2 + ρ19(W + µ(C)) + ρ17(A), (42)

û4 = û3 + ln(|û2|) + sgn(W + µ(C))
√
|W + µ(C)|+ ρ19(W)+

arctan(H) + sgn(F) + arctan(E) + exp(q2(x f
2 − x2)) +

√
q1, (43)

C = q6(x f
6 − x6) + q3(x f

3 − x3), W = V + tanh(G) + exp(D),

A = q1(x f
1 − x1) + q4(x f

4 − x4), H = G + tanh(F) + ρ18(B),

F = E + C + arctan(D)− B, E = D + sgn(x f
5 − x5) + (x f

2 − x2)
3,

V = exp(H) + cos(q6(x f
6 − x6)) + sgn(D)

√
|D|, G = F +

3√E + sin(A),

B = sin(q6(x f
6 − x6)) + q5(x f

5 − x5) + q2(x f
2 − x2) + cos(q1) + ϑ(x f

2 − x2),

D = ρ17(C) + B3 + A + ϑ(q5(x f
5 − x5)) + (x f

5 − x5)
2,

µ(z) =

{
z, if |z| < 1
sgn(z), otherwise

, ρ17(z) = sgn(z) ln(|z|+ 1),

ρ18(z) = sgn(z)(exp(|z|)− 1), ρ19(z) = sgn(z) exp(−|z|),

q1 = 7.26709, q2 = 11.46143, q3 = 12.77026, q4 = 3.20630, q5 = 8.38501, q6 = 5.56250.
In the second stage, the optimal control problem is considered. In the problem, the

mathematical model (35) is given. The initial state coincides with the terminal state (38).
It is necessary to find a control in the form of points in the state space (14). For synthe-

sized control it is necessary to minimize the following quality criterion:

J3 = t f + p1‖x f − x + (t f )‖+ p2

N

∑
i=0

t f∫
0

ϑ(ϕi(x))dt+

p3

S

∑
j=1

p3ϑ(min
t
|δj(x)| − ε)→ min

x∗
, (44)

where p1 = 2, p2 = 3, p3 = 3,

ϕi(x) = ri −
√
(xi,1 − x1)2 + (xi,3 − x3)2, (45)
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i = 1, . . . , N = 4, r1 = r2 = r3 = r4 = 2, x1,1 = 5, x1,3 = 0, x2,1 = 10, x2,3 = 5, x3,1 = 5,
x3,3 = 10, x4,1 = 0, x4,3 = 5,

δj(x) =
√
(yi,1 − x1)2 + (yj,3 − x3)2, (46)

j = 1, . . . , S = 7, y1,1 = 5, y1,3 = −2, y2,1 = 10, y2,3 = 0, y3,1 = 12,+ y3,3 = 5, y4,1 = 10,
y4,3 = 10, y5,1 = 5, y5,3 = 12, y6,1 = 0, y6,3 = 10, y7,1 = 2, y7,3 = 5, ε = 0.6.

In the optimal control problem, the terminal time t f is determined by the Equation (8)
with t+ = 14.4, ε0 = 0.1. It is necessary to find coordinates of control points on each time
interval, ∆t = 0.8. The desired vector includes 3M parameters, where

M =

⌊
t+

∆t

⌋
=

⌊
14.4
0.8

⌋
= 18, (47)

that is, q∗ = [q1 . . . q54]
T . The hybrid evolutionary algorithm has found the following

optimal solution:

x∗,1 = [4.83910 1.14025 − 5.22899]T , x∗,2 = [11.07056 6.79389 − 2.48647]T ,
x∗,3 = [9.19808 1.54674 15.87195]T , x∗,4 = [−0.12204 0.12276 − 1.82381]T ,

x∗,5 = [−4.08347 2.93658 5.89553]T , x∗,6 = [ 16.72896 2.18022 2.27907]T ,
x∗,7 = [1.18106 2.56582 14.41088]T , x∗,8 = [8.67198 5.78737 − 2.90409]T ,

x∗,9 = [8.59478 2.73948 11.33252]T , x∗,10 = [−1.25924 [−1.97448 − 1.42747]T ,
x∗,11 = [2.45445 7.42257 − 0.38164]T , x∗,12 = [8.68306 − 0.78496 15.41667]T ,
x∗,13 = [0.60972 7.02724 7.66403]T , x∗,141 = [−0.59975 0.39324 − 1.31307]T ,

x∗,15 = [−2.39004 7.95279 3.02003]T , x∗,16 = [2.52642 6.69332 9.17356]T

x∗,17 = [−0.95896 4.42529 − 0.36318]T , x∗,18 = [−0.01193 5.02821 15.40007]T .

(48)

For the found solution (48), the value of the quality criterion is J3 = 14.7010.
In Figure 3, projections of the optimal trajectory on the horizontal plane {x1; x3} are

presented. Here, red circles are phase constraints described by (45), small black circles are
passing areas described by (46) and small black boxes are control points (48).

Figure 3. Optimal trajectory for synthesized control.

For the new adaptive synthesized control proposed in this paper, the set of initial
states is determined by Equation (3) with deviation vector

∆0 = [0.2 0.2 0.2 0 0 0]T . (49)
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It is necessary to find the same number of control points according to the following
quality criterion:

J4 =
K

∑
k=1

t f ,k + p1‖x f − x(t f ,i, x0,i) + p2

N

∑
i=0

t f∫
0

ϑ(ϕi(x))dt+

p3

S

∑
j=1

p3ϑ(min
t
|δj(x)| − ε)

)
→ min

x∗
, (50)

where K = 7, t f ,k is defined by Equation (8). Other parameters of the criterion are the same
as for the criterion (44).

Again, the hybrid algorithm was applied and the following optimal solution has
been found:

x∗,1 = [17.46361 1.14030 − 8.00000]T , x∗,2 = [11.07060 6.79390 − 2.48650]T ,
x∗,3 = [9.19810 2.05890 15.87207]T , x∗,4 = [−0.27800 2.51633 − 1.99493]T ,
x∗,5 = [−3.98430 2.27048 13.40976]T , x∗,6 = [17.18235 0.26253 2.19246]T ,

x∗,7 = [−3.56784 3.44842 14.94369]T , x∗,8 = [4.53881 2.20612 − 2.99328]T ,
x∗,9 = [9.06419 2.49928 11.30274]T , x∗,10 = [−0.16333 − 1.88939 − 0.75766]T .
x∗,11 = [2.17956 6.92983 − 1.06412]T , x∗,12 = [10.24873 − 0.51465 5.82840]T ,

x∗,13 = [1.12164 2.84506 7.93804]T , x∗,14 = [0.10678 3.23489 − 1.55778]T ,
x∗,15 = [−2.54374 0.99732 2.82005]T , x∗,16 = [7.41006 6.49634 12.02799]T ,

x∗,17 = [−0.67510 4.03845 − 0.28527]T , x∗,18 = [−0.18037 4.62980 6.89661]T .

(51)

A value of the quality criterion (50) for one initial state x(0) = [0 5 0 0 0 0]T , is
J4 = 15.6090. In Figure 4, projections of the optimal trajectory on the horizontal plane
{x1; x3} found by the adaptive synthesized control (51) are presented.

Figure 4. Optimal trajectory for adaptive synthesized control.

Since the initial state in the problem coincided with the terminal state, in order to force
the control object to move along a closed path, mandatory conditions for passing through
certain areas were added to the quality criterion. For trajectories that meet the criteria for
passing through the specified areas, the value of the quality criterion will not change at
p3 = 0. This is seen in Figures 3 and 4 as both trajectories pass through all specified areas.

Let us check the sensitivity of the obtained solutions to random perturbations of the
initial state

xi(0) = x0
i + β0(2ξ(t)− 1), i = 1, . . . , n = 6, (52)
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where ξ(t) is a function generator of random noise, which returns a random number from
interval (0; 1) at every call, β0 is a constant level of noise.

In Figures 5 and 6, the optimal (in blue) and eight perturbed trajectories (in black) for
β0 = 0.1 for the solutions obtained by synthesized (Figure 5) and adaptive synthesized
(Figure 6) control are presented.

Figure 5. Optimal and eight disturbance trajectories of synthesized control.

Figure 6. Optimal and eight disturbance trajectories of adaptive synthesized control.

For comparison, for a model (35) without stabilization systems (39), the problem of
optimal control directly was solved, where control was sought in the form of a piece-wise
linear function, taking into account restrictions (36).

ui =


u+

i , if ũi > u+
i

u−i , if ũi < u−i
ũi, otherwise

, i = 1, . . . , m = 4, (53)



Mathematics 2023, 11, 4035 15 of 18

where

ũi = (qi+jm − qi+(j−1)m)
t− (j− 1)∆t

∆t
+ qi+(j−1)m, i = 1, 2, 3, 4, (54)

(j− 1)∆t ≤ t < j∆t, j ∈ {1, . . . , K + 1}, qi is a component of desired parameters vector,
i = 1, . . . , m(M + 1),

q = [q1 . . . qm(M+1)]
T . (55)

In this work, we set the same time interval ∆t = 0.8; therefore, from (15) M = 18,
and it is necessary to find m(M + 1) = 4 · 19 = 76 parameters, q = [q1 . . . q76]

T .
To solve the optimal control problem, the same hybrid algorithm was used. As a result,

the following solution was obtained:

q = [12.57045 − 4.58471 − 2.74617 2.90422 − 9.26325 − 0.10990
−2.63222 18.36841 0.00816 − 17.35177 0.00165 4.28718
−11.81492 1.88489 − 8.01206 15.87943 10.84894 0.06505
9.65475 19.51903 2.79860 − 4.06408 − 0.88992 10.50507
−19.19030 17.90240 12.52431 19.00010 4.76513 − 11.97648
0.00010 8.85464 2.92334 0.14238 8.60919 7.83194
5.74904 − 8.35383 − 3.42757 12.87671 18.58717 15.43057
9.06137 12.55621 − 1.54628 1.47314 2.40706 8.67602
0.00091 − 11.91236 − 19.94063 17.08304 19.92640 − 1.33145
−7.77258 15.54094 − 19.93278 − 17.37121 − 9.31290 5.03257
−0.90297 − 5.22021 0.62653 4.21368 − 2.04314 − 0.53192
0.09353 14.25213 − 0.11587 9.05588 − 0.03270 11.23667
0.03826 − 16.78047 0.18220 19.81652]T .

(56)

In Figure 7, the projection of the optimal trajectory obtained by the direct method
is presented.

Figure 7. Optimal trajectory of direct control.

In Table 1 there are values of the quality criterion (44) of ten experiments for perturbed
solutions obtained by the synthesized (column Synthesized), the adaptive synthesized
(column Adaptive) control and the direct solution (Direct). In two last strings of the table,
average values of the functionals and standard deviations for all experiments are presented.

As can be seen from Figures 5 and 6 and Table 1, the solutions obtained by adaptive
synthesized control are less sensitive to perturbations of initial states than the solutions
obtained by simple synthesized control or, especially, by the direct approach.
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Table 1. Sensitivity of decisions to perturbations of initial states.

No Synthesized Adaptive Direct

1 14.7651 15.4892 19.2082
2 20.7377 15.4829 19.8854
3 15.2888 15.6947 16.7706
4 16.9743 15.4935 16.2334
5 18.6159 16.0397 19.2815
6 19.5227 15.7950 19.3866
7 20.0937 15.4178 16.8263
8 17.5416 16.1424 23.3437
9 20.1225 17.0695 19.6251

10 19.9257 15.3893 20.8163

Av 18.3588 15.8014 19.1377

SD 2.1234 0.5167 2.1285

5. Conclusions

A new method for solving the problem of optimal control in the class of implemented
functions, an adaptive synthesized control principle is presented. Unlike synthesized con-
trol, the new method takes into account the perturbations of the initial state when solving
the optimal control problem. Therefore, the value of the quality criterion is calculated as
the sum of the quality criterion values for the different initial states. As a result of this
approach, a solution is chosen in such a way that for the origin initial state it may not give
the best quality criterion value, but in the case of disturbances of the initial state, the quality
criterion value changes slightly.

6. Discussion

Obtaining a solution based on replacing the optimal solution is less optimal, but also
less sensitive to disturbances. At first glance, this seems obvious and can be applied to any
method of solving the optimal control problem. However, this is not the case. A direct
solution to the optimal control problem results in control in the form of a time function and
an open-loop control system. Perturbation of the initial conditions for such a system gives
large variations in quality criterion values, which cannot be reliably estimated from the
average value due to the large variance.

The synthesized control method firstly makes the control object stable relative to some
equilibrium point in the state space. This means that the perturbed and unperturbed
trajectories at each point in time move towards a stable equilibrium point. The adap-
tive synthesized control method sets the positions of the equilibrium points so that all
disturbed trajectories are located in some tube that does not violate phase constraints
whenever possible.

In the future, when using the adaptive synthesized control method, it is necessary to
assess the required size of the initial state region and reduce the number of initial state
points, since this significantly increases the time for finding the optimal solution.
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