
Citation: Zhao, J.; Zhang, Z.; Liang,

M.; Cao, X.; Cai, Z. Start-Up

Strategy-Based Resilience

Optimization of Onsite Monitoring

Systems Containing Multifunctional

Sensors. Mathematics 2023, 11, 4023.

https://doi.org/10.3390/

math11194023

Academic Editor: Michael Todinov

Received: 24 August 2023

Revised: 19 September 2023

Accepted: 20 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Start-Up Strategy-Based Resilience Optimization of Onsite
Monitoring Systems Containing Multifunctional Sensors
Jiangbin Zhao 1,2, Zaoyan Zhang 1,2, Mengtao Liang 1,2, Xiangang Cao 1,2 and Zhiqiang Cai 3,*

1 School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
zhangzaoyan@stu.xust.edu.cn (Z.Z.); liangmengtao@stu.xust.edu.cn (M.L.)

2 Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control,
Xi’an 710054, China

3 Department of Industrial Engineering, School of Mechanical Engineering,
Northwestern Polytechnical University, Xi’an 710072, China

* Correspondence: caizhiqiang@nwpu.edu.cn

Abstract: In nonrepairable multifunctional systems, the lost function of a component can be restored
by the same function from another component; therefore, the activation mechanism of redundant
functions illustrates that multifunctional systems have resilience features. This study evaluates
the resilience of multifunctional systems and analyzes the properties of system resilience first. To
determine the optimal start-up strategy, a resilience-oriented start-up strategy optimization model
for onsite monitoring systems (OMSs) is established to maximize system resilience under a limited
budget. In this study, real-time reliability is regarded as the system performance to evaluate the
system resilience, and a two-stage local search based genetic algorithm (TLSGA) is proposed to
solve the resilience optimization problem. The results of our numerical experiments show that the
TLSGA can more effectively solve the problems for OMSs, with high function failure rates and low
component failure rates compared with classical genetic algorithms under 48 systems. Moreover,
the optimal combinations of unmanned aerial vehicles (UAVs) for an OMS under a limited budget
shows that UAVs with a higher carrying capacity should be given priority for selection. Therefore,
this study provides an effective solution for determining the optimal start-up strategy to maximize
the resilience of OMSs, which is beneficial for OMS configuration.

Keywords: multifunctional component; system resilience; nonrepairable system; start-up strategy;
onsite monitoring systems

MSC: 90B25

1. Introduction

As technology continues to advance, a component can perform multiple functions, and
such components usually have a basic function with one or more additional capabilities.
Multifunctional systems are widely used in various engineering fields, including power
transmission [1], energy storage and conversion [2,3], 3D manufacturing [4,5], and water
quality monitoring [6]. A multifunctional system containing multifunctional components
aims to provide several functions required to complete one task; however, all the functions
or components are nonrepairable. If a function in a component is lost, the corresponding
functions of other components are activated and connected to the system to ensure the
required functions. Multifunctional systems do not fail until a function is completely lost;
thus, the multifunctional system can resist external interference. Some researchers have
focused on the reliability analysis of multifunctional systems. Moreover, researchers are
focusing on the ability of complex systems to resist external disruptive events, among
which resilience is an important indicator for evaluating system performance. Many com-
plex systems should consider resilience because system suspension will cause substantial
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economic losses, especially in major engineering systems such as interdependent infras-
tructures [7], transportation systems [8], power systems [9], and container ports [10], oil
and gas supply chain management [11], logistics systems [12], international trade [13],
the large-scale optimization of damage functions [14], UAV networks [15], and epidemic
vaccination [16]. The automatic replenishment of failed functions in a multiple functional
system indicates the resistance ability of the system; therefore, it is necessary to analyze the
resilience of multifunctional systems with multifunctional components.

Resilience has become an important consideration in system design, evaluation, and
optimization [17]. Many scholars have focused on evaluating and enhancing system re-
silience to resist external risks. Several evaluation methods are available to quantify the
resistance of complex systems. In a smart grid, the resilience of a power system can be
quantitatively measured by the total load of the service [18]. Wu et al. [19] reviewed the
optimization methods for cyber-physical power system resilience from three perspectives.
For a comprehensive performance management system, a DEA framework of data envelop-
ment analysis for a dynamic network was proposed to assess the performance of a supply
chain based on resilience over time [20]. A figure of merit-based method was developed
to determine system resilience according to the constituent elements of the tradespace
processes that are currently used to select the preferred design alternatives [21]. Under
the resilience evaluation framework, a sequential Monte Carlo simulation method was
proposed to integrate the real-time weather condition [22]. Considering the influence of
hurricane wind, a fully probabilistic and analytical measurement framework has been
proposed to evaluate the resilience of a linear power distribution system [23]. A full proba-
bilistic and analytical measurement framework has been designed to assess the resilience
of linear power distribution systems affected by hurricane wind [24]. A twofold procedure
based on data envelopment analysis and the Tobit model has been proposed to evaluate
the effect of resilience conditions on the energy sector [25]. Supply chain resilience is an
increasing concern for diverse types of disturbances in quantitative methods, including
analysis frameworks [26]. Moreover, some scholars have focused on enhancing system
resilience to reduce the degradation process. The upgradation and repair of network poles
have been developed as hardening strategies to improve the resilience of the distribution
network [9]. Improving network resilience is often associated with reducing vulnerability
by using a tri-level optimization method [27]. To maximize infrastructure resilience, limited
budgets and resources must be wisely allocated to components to reduce the consequences
of low-probability high-impact events [28]. The optimal defense strategy of reconfigurable
systems was obtained using a genetic algorithm to maximize the defensive capability for
resisting external risks [29]. Resilience enhancement strategies can be obtained using a
fast non-dominated sorting genetic algorithm to minimize costs and maximize system
resilience [30]. The location selection strategy of emergency rescue facilities in a multi-
modal transport network was obtained using a cooperative coverage model to improve
system resilience [31]. In summary, considerable work has been devoted to quantifying and
describing resilience from different perspectives; however, there are no universal metrics
for evaluating the resilience of different systems under different hazards. Resilience opti-
mization is one of the most popular topics in the field of system performance optimization
under external risks. Based on the research reported in the literature, a gap analysis for
system resilience is summarized in Table 1 from the perspectives of the system performance
index and optimization algorithms. Different indices were selected to evaluate system
performance; however, system reliability was not selected as the performance index. Many
studies have focused on resilience evaluation instead of resilience optimization; however,
the optimization algorithms consist of some classical algorithms, including genetic algo-
rithms and Monte Carlo simulations. Therefore, it is necessary to develop a new system
performance index and effective optimization algorithms.
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Table 1. Research gap analysis for system resilience.

References System Performance Indexes Optimization Algorithms

[18] Integrated response 7

[19] The disaster probability, caused damage,
and response measures in grid Generation decomposition algorithm

[20] Failure time and recovery probability Segmentation algorithm
[21] Scale function 7

[22] Recovery curve Network topology optimization
[23] Fuzzy logical relationship 7

[24] Probability for decision making Monte Carlo simulation algorithm
[25] Energy efficiency and energy security 7

[26] Analog derivation 7

[27] Failure time and recovery rate 7

[28] Examination time and functional level 7

[29] defensive capability Genetic algorithm
[30] Examination time and functional level 7

[31] Cooperative coverage model 7

Many scholars have analyzed and evaluated the performance of multifunctional sys-
tems. The reliability of a one-shot system containing multifunctional components was
analyzed using an integrated analysis of component reliability, function reliability, and
the interrelationship among the components and functions [32]. A new goal-oriented
method was presented to analyze the reliability of repairable systems with multifunctional
components [33]. The functional resonance analysis method was used to determine the
risk of multifunctional flood defenses [34]. A reliability evaluation methodology was pre-
sented for multifunctional processes that use a reliability-centered maintenance approach
and modify general power generation functions in a large-scale manufacturing environ-
ment [35]. The reliability of a multifunctional inverter was analyzed by considering actual
industrial reactive power curve injection [36]. The safety of multifunctional flood-defined
systems has been evaluated based on the failure probability of multiple reinforcement
strategies [37]. A continuous-time Markov chain method was developed to evaluate the
time-dependent reliability of a multifunctional system using a known start-up strategy [38].
The reliability of multifunctional complex systems has been presented using hazard rate
matrix and Markovian approximation [39]. In addition, some researchers have studied
the performance optimization of multifunctional systems. A multifunctional automatized
forging station with a supervisory system for process and production management was
developed in [40] to produce high-quality and low-price forgings. A reliability optimization
model for multifunctional systems with multistate units was built to minimize system cost
in [41]. By considering multifunctional maintenance windows, a state-based maintenance
decision problem was introduced but the authors of [42] to ensure a flexible balance of in-
spection and spare parts. A validated thermodynamic model was established to determine
the optimal energy and exergy configurations of a two-stage multifunctional hybrid open
absorption system [43]. An effective metaheuristic algorithm model was established to
reduce the total cost and solve the problem of preventive maintenance scheduling based on
production planning and reliability [44]. A sequential quadratic programming algorithm
was designed to solve the reliability optimization problem of multistage supply chains [45].
In summary, many scholars have focused on the reliability evaluation of multifunctional
systems; however, few scholars have focused on the resilience evaluation and optimization
of multifunctional systems.

The aim of this study is to evaluate the real-time reliability of a multifunctional system
for quantifying system resilience. Unlike in the reported study, the real-time reliability
analysis of a multifunctional system must consider when and how the start-up strategy
changes before a specific point in time, making the problem more complicated. Once a
component fails, all of its functions can no longer be used. Determining the reliability of
components or functions according to their lifetime distributions is difficult because of the
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dependency between a component and its functions. The evaluation of system resilience
mainly depends on changes in the actual system performance over time, which is one of the
most important processes for calculating system resilience. Obtaining an optimal start-up
strategy for multifunctional systems is another challenge.

The remainder of this paper is organized as follows: Section 2 introduces the defi-
nition, assumptions, and resilience evaluation of a nonrepairable multifunctional system
containing multifunctional components. Section 3 describes the resilience-oriented start-up
strategy optimization of multifunctional systems. In Section 4, a two-stage local search-
based genetic algorithm is developed to solve the optimization problem. Section 5 presents
two experiments to illustrate the performance of the proposed algorithm and optimal
start-up strategy for onsite monitoring systems under a limited budget. Finally, concluding
remarks and directions for future research are provided in Section 6.

2. Resilience Analysis of Onsite Monitoring Systems
2.1. Onsite Monitoring Systems Containing Multifunctional Sensors

An onsite monitoring system (OMS) consists of multifunctional sensors, and they are
used to complete one task with several required monitoring functions. In onsite monitoring
systems, the required functions are satisfied by combining the multifunctional sensors with
components. Maintenance activities cannot be implemented when the system is operating,
and the lost function of one component can be supplemented with the same function of
the other components. The system fails when a required function is lost and cannot be
complemented by other components. The structure of an onsite monitoring system with m
components and n required functions is shown in Figure 1.
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Figure 1. Structure of an onsite monitoring system with m multifunctional components.

To better understand the structure, an onsite monitoring system consisting of three
UAVs, each carrying two different types of sensors, was introduced to collect onsite infor-
mation in a certain area, as shown in Figure 2. As shown in Figure 2, each UAV can be
regarded as a component with a carrying capacity of four sensors, and this system should
collect the three types of data (Types I, II, and III) via the coordination of three UAVs, which
are three required functions. If sensor 2 in UAV3 fails, the system loses the required Type
II data temporarily. UAV2 can activate carrying sensor 2 to complement the lost function,
but the system fails if sensor 2 in UAV2 fails. The system fails if no functions that can
complement the required functions are available from the other components.
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The start-up strategy includes the initial selection of functions and the redundancy
level, which is the number of functions for all components. An available start-up strategy
should select a subset of functions from the components to satisfy the required functions.
Moreover, the complementary mechanism of the OMS is important for guaranteeing the
required functions. Therefore, it is necessary to determine the optimal start-up strategy to
extend system survival time.

2.2. Assumptions of OMSs

Some reasonable assumptions that can be made to better evaluate the resilience and
start-up strategy optimization of OMSs are summarized as follows:

1. In a multifunctional system, the failure of one component does not affect the failure
of other components, and a functional failure does not affect the failure of another
function in the same component.

2. The failure of one component can cause all the functions of this component to be
activated regardless of the conditions of the functions.

3. If any function of a component is activated, the component is used.
4. If no components can provide one of the required functions, the system will fail.
5. Considering that sensors are electronic components, the lifetime of the components

and their functions follow exponential distributions.
6. Information on hazardous events, including the occurrence time and effect of events

on components and their functions, is known, and the failure rates of the affected
components or functions are larger.

2.3. Resilience Evaluation of OMSs
2.3.1. Real-Time Reliability Analysis of OMSs

To better analyze the real-time reliability of the OMS, changes in the start-up strategy
in a specified time duration should be considered; however, it is difficult to enumerate all
failure or activation situations. Furthermore, the usage time of components or functions is
difficult to determine; therefore, the reliability of components or functions is difficult to
obtain. Therefore, a new reliability evaluation method for evaluating the real-time reliability
of OMSs should be considered. Considering the lifetime distribution assumptions, the
reliability analysis method based on continuous-time Markov chain (CTMC) can be used
to determine the state transition process by considering the activation and redundancy
level of functions [46]. However, the difficulty of the CTMC model lies in defining the
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system states and evaluating the transition probability by carrying out the following:
(1) Define all the possible system states of the OMSs. (2) Generate all possible states based
on the redundancy levels and initial selection of functions. (3) Analyze the transition rates
between any two states by considering the failure of components or functions. (4) Calculate
system reliability based on the Kolmogorov equations. The detailed process we used is
summarized as follows:

1. The OMS states were defined. For an OMS containing m components with n required
functions, xij = 1(i = 1, · · · , m; j = 1, · · · , n) indicates that function j in component
i is initially selected in the start-up strategy; otherwise, xij = 0. All possible system
states can be represented by a m × 2n matrix, which includes the initial selection
of functions, where the redundancy levels yij represents the redundancy levels of
function j in component i, and yij = 0 indicates that the function is lost. Once all
elements in column j in the redundancy level part are 0, the system fails because no
component can provide the required functions.

2. Generate all possible states of the OMS based on a two-step iterative method. Set all
the non-zero redundancy levels as one and generate all the system states based on
the start-up strategy. Then, consider the combination of real redundancy levels yij to
enumerate all the system states.

3. Evaluation of transition rates between different states: To better analyze the transition
probability between the different states, the transition rates from state u to state v can
be divided into four situations. Situation 1 indicates that state u cannot be transferred
to state v by considering the failure of a function or a component, and the transition
rates in Situation 1 are 0. Situation 2 indicates that state u can be transferred to state
v by considering the failure of a component, and the transition rates are the failure
rates of the components. Situation 3 indicates that state u can transfer to state v by
considering the failure of a function, and the transition rates are the product of the
function’s failure rate and its redundancy levels under state u. Situation 4 indicates
that state u can transfer to state v by considering the failure of a component or a
function whose redundancy level is 1 for state u, and the transition rates are the
sum of the function’s failure rate and the component’s failure rate. In summary, the
transition rate quv(u 6= v) can be determined using the above four situations, and
quu = −∑NB

u=1,u 6=v quv, (u = v). The transition rate matrix is represented by all quv.
4. Calculation of real-time system reliability: Let E contain all the system states, and

let W be the set of all the working states. The probability that the system state is u
at time t can be denoted as Pu(t) = Pr{X(t) = u},u ∈ E or P1(0) = 1, Pu,u 6=1(0)= 0.
According to the Kolmogorov equations, P’(t) = P(t)Q, and the probability of all
states can be obtained using P(t) = P(0)eQt. Therefore, the system reliability R(t)
of OMS can be evaluated by the sum of the probabilities that the system is in the
working states, as shown in Equation (1).

R(t) = ∑v∈W Pv(t), (1)

2.3.2. Resilience Definition for OMSs

Under hazardous events, system resilience can be defined as the ability of a system
to resist the external environment and reduce system performance losses [47]. When haz-
ardous events occur, system performance will degrade over time. The classical evaluation
method for system resilience is equal to the ratio of the area enclosed by the real perfor-
mance curve and time axis to the area enclosed by the ideal performance and time axes [48],
as shown in Figure 3.
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If system reliability is selected as the index of system performance, the resilience of
OMSs can be evaluated by the ratio of the area enclosed by the real performance curve and
time axis Sreal to the area enclosed by the ideal performance curve and time axis Sideal . Sreal

is equal to
∫ T

0 R(t)dt, and Sideal is rectangular. Therefore, in fSR(T), the system resilience at
time T can be calculated as

fSR(T) =
Sreal
Sideal

=

∫ T
0 R(t)dt

T
(2)

∫ T
0 R(t)dt can be directly evaluated using the differential element method, though this

can be time-consuming. With the consideration of evaluating R(t) via CTMC,
∫ T

0 R(t)dt can
be easily calculated using

∫ ∞
0 R(t)dt−

∫ ∞
t0

R(t)dt, which could reduce time. The detailed

derivation of
∫ T

0 R(t)dt, which is the expected residual lifetime after t0, is listed in Proof of
Proposition 1.

Proposition 1. According to the assumptions of nonrepairable multifunctional systems, the ex-
pected residual lifetime after t0 of this type of system can be calculated using∫ ∞

t0
R(t)dt = −PW(t0)B−1eW .

In this study, we only considered the resistance ability of a multifunctional system
under several hazardous events without considering the restoration process because the
aforementioned multifunctional systems are nonrepairable. The effects of each hazardous
event on the components or functions are known, meaning that the real-time system
reliability in the interval [tl , tl+1](l = 0, 1, · · ·, nd) is recorded as Rl+1(t), which can be
evaluated using Equation (1), where tl is the occurrence time of the l-th hazardous event,
Bl+1 is the transition matrix between all working states from tl to tl+1, and eW is a column
vector whose elements are one, and the number of elements is equal to the number of
working states. The proof of Proposition 1 is as follows.

Proof of Proposition 1. The block matrix form of the Kolmogorov equation can be shown
as follows:

(P’
W(t), P’

F(t)) = (PW(t), PF(t))
(

B C
D E

)
where PW(t) = (P1(t), P2(t), · · ·, PN(t)); PF(t) = (PN+1(t), PN+2(t), · · ·, PN0(t)); B, C, D, E
are the corresponding block matrix forms of transition rates matrix Q. For the nonrepairable
system, P’

W(t) = PW(t)B.
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To solve this equation quickly, a Laplace transform was introduced to derive the final
result. The Laplace form of Pi(t) can be represented as follows:

Pi
∗(s) =

∫ ∞

0
e−stPi(t)dt, s > 0, i = 1, 2, · · ·N

The Laplace transform of P’
W(t) = PW(t)B can be shown as follows:∫ ∞

0
e−stP’

W(t)dt =
∫ ∞

0
e−stPW(t)dt · B, s > 0

The left side of the above equation can be derived using partial integration as follows:∫ ∞
0 e−stP’

W(t)dt = e−stPW(t)|∞0 +
∫ ∞

0 e−stPW(t)dt
= −PW(0) + s

∫ ∞
0 e−stPW(t)dt

Through substituting the result of the two equations above, we can obtain the following:

PW
∗(s) =

∫ ∞

0
e−stPW(t)dt = PW(0)(sI− B)−1

The expected lifetime of a nonrepairable system is equal to the meantime to the first
failure; thus,

∫ ∞
0 R(t)dt = PW

∗(0) = −PW(0)B−1eW . R(t) = PW(t)eW can be used to
obtain

∫ ∞
0 R(t)dt =

∫ ∞
0 PW(t)eWdt =

∫ ∞
0 PW(t)dt · eW . These two equations can get the

same results. Therefore, we can conclude that
∫ ∞

0 PW(t)dt = −PW(0)B−1. �

Based on the above expression, the expected residual lifetime of a nonrepairable
system after time t0 can be calculated as follows:

Tr =
∫ ∞

t0
R(τ)dτ

set t = τ − t0 ∫ ∞
0 R(t + t0)dt =

∫ ∞
0 PW(t + t0)eWdt

=
∫ ∞

0 PW(t + t0)dt · eW =
∫ ∞

0 PW(t)eBt0 dt · eW =
∫ ∞

0 PW(t)dt · eBt0 eW∫ ∞
0 PW(t)dt = −PW(0)B−1

− PW(0)B−1 · eBt0 eW = −PW(t0)B−1eW

Proposition 2. The expected lifetime of a multifunctional system in the interval [t0, T], (t0 = 0),
under known nd hazardous events can be calculated as∫ T

t0

R(t)dt = PW(T)Bnd+1
−1eW − PW(t0)B1

−1eW + ∑nd
l=1 [PW(tl)(Bl

−1 − Bl+1
−1)eW ]

Proof of Proposition 2. The expected lifetime of a nonrepairable onsite monitoring system
is the meantime to the first failure. Thus,∫ T

t0
R(t)dt = ∑nd−1

l=0

∫ tl+1
tl

Rl+1(t)dt +
∫ T

tnd
R(t)nd+1dt

= ∑nd−1
l=0 (

∫ ∞
tl

Rl+1(t)dt−
∫ ∞

tl+1
Rl+1(t)dt) +

∫ ∞
tnd

R(t)nd+1dt−
∫ ∞

T R(t)nd+1dt

= ∑nd−1
l=0

(
−PW(tl)Bl+1

−1eW + PW(tl+1)Bl+1
−1eW

)
+ PW(tnd )Bnd+1

−1eW

)
− PW(T)Bnd+1

−1eW

= PW(T)Bnd+1
−1eW − PW(t0)B1

−1eW + ∑nd
l=1 [PW(tl)(Bl

−1 − Bl+1
−1)eW ]

�

Through combining Equation (2) and Proposition 2, the system resilience at T under
nd hazardous events can be evaluated as follows:

fSR(T|nd) =
PW(T)Bnd+1

−1eW − PW(t0)B1
−1eW + ∑nd

l=1 [PW(tl)(Bl
−1 − Bl+1

−1)eW ]

T
(3)
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Corollary 1: The system resilience at T without hazardous events can be evaluated using
fSR(T

∣∣0) = (PW(T)− PW(t0))B1
−1eW/T .

2.4. Resilience Properties of OMSs
2.4.1. Monotonic Analysis of System Resilience

According to the definition of system resilience in Equation (3), the monotonic proper-
ties of fSR(t) are summarized in Proposition 3.

Proposition 3. If the system reliability of the OMSs R(t) is known, the resilience of the multifunc-
tional system fSR(t) decreases with an increase in t, and the range of fSR(t) is [0, 1].

Proof of Proposition 3. (1) Proof of system resilience bounds: In Section 2.3.1, R(t) is a
decreasing and continuous function of time. We obtain lim

x→∞
R(t) = 0 and lim

x→∞
R(t) = 0.

Through using fSR(t) =
∫ t

0 R(t)dt/t, we can obtain the corresponding limitation of
fSR(t).

When t→ 0 , lim
t→0

fSR(t) = lim
t→0

∫ t
0 R(t)dt

t L′Hospital′s Rulelim
t→0

R(t)
1 = R(0) = 1.

Because R(t) in the interval [0, ∞] decreases and bounces, R(t) is integrable, and∫ t
0 R(t)dt is finite. Using t→ ∞ , we can obtain lim

t→∞
fSR(t) = 0. Therefore, the lower

bounce of fSR(t) is zero, and the upper bounce of fSR(t) is one.
(2) Proof of monotonicity for system resilience: Because t 6= 0 when t > 0,

f ′SR(t) =
(

tR(t)−
∫ t

0 R(t)dt
)

/t2. Set g(t) = tR(t) −
∫ t

0 R(t)dt; the purpose is to de-
termine whether g(t) is less than 0. Moreover, R(t) is differentiable and decreasing so that
R′(t) < 0 . We can obtain g′(t) = tR′(t) < 0, and g(t) will decrease as time increases. At
the same time, g(t)|t=0 = 0 . Therefore, g(t) < 0, t > 0. It is easy to find that f ′SR(t) < 0,
which means that fSR(t) decreases with an increase in time t. �

2.4.2. Changes in System Resilience as the Number of Hazardous Events Increases

System resilience is closely related to the number of hazardous events, and it is not
difficult to find that the higher the number of hazardous events, the lower the system
resilience. To illustrate the effect of the number of hazardous events, the change in system
resilience over time with different numbers of hazards when the start-up strategy is fixed is
shown in Figure 4. The occurrence times of the hazardous events were t1 = 5, t2 = 10, and
t3 = 15.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

2.4.2. Changes in System Resilience as the Number of Hazardous Events Increases 
System resilience is closely related to the number of hazardous events, and it is not 

difficult to find that the higher the number of hazardous events, the lower the system re-
silience. To illustrate the effect of the number of hazardous events, the change in system 
resilience over time with different numbers of hazards when the start-up strategy is fixed 
is shown in Figure 4. The occurrence times of the hazardous events were =1 5t , =2 10t
, and =3 15t . 

 
Figure 4. Changes in system resilience with an increasing number of hazards. 

From Figure 4, it is easy to observe that the system resilience without any hazardous 
events is much greater than that of a system with hazardous events. At t = 50, the difference 
between the system resilience at = 0dn   and system resilience at = 1dn   was approxi-
mately 0.12. However, the difference in system resilience narrowed with an increase in 
hazardous events. For example, the system resilience when = 2dn  is very close to that 

at = 3dn , and the difference between them is no greater than 0.0115. Therefore, the sys-
tem resilience with the same start-up strategy decreases with an increase in the occurrence 
of hazardous events; however, the difference between system resilience is very close when 
the number of hazardous events is large. 

2.4.3. Changes in System Resilience as Start-Up Strategy Adjusts 
When the number of hazardous events and parameters of components and functions 

are determined, different start-up strategies can cause significant differences in system 
resilience. For a multifunctional system, the number of required functions is 5, and the 
number of components is 3. From Figure 5, we can observe that the differences between 
the three different start-up strategies are significant. 

  

Figure 4. Changes in system resilience with an increasing number of hazards.



Mathematics 2023, 11, 4023 10 of 18

From Figure 4, it is easy to observe that the system resilience without any hazardous
events is much greater than that of a system with hazardous events. At t = 50, the difference
between the system resilience at nd = 0 and system resilience at nd = 1 was approximately
0.12. However, the difference in system resilience narrowed with an increase in hazardous
events. For example, the system resilience when nd = 2 is very close to that at nd = 3,
and the difference between them is no greater than 0.0115. Therefore, the system resilience
with the same start-up strategy decreases with an increase in the occurrence of hazardous
events; however, the difference between system resilience is very close when the number of
hazardous events is large.

2.4.3. Changes in System Resilience as Start-Up Strategy Adjusts

When the number of hazardous events and parameters of components and functions
are determined, different start-up strategies can cause significant differences in system
resilience. For a multifunctional system, the number of required functions is 5, and the
number of components is 3. From Figure 5, we can observe that the differences between
the three different start-up strategies are significant.
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From Figure 5, we can see that the system with start-up strategy 3 has the highest
resilience over time compared with the systems with the other two start-up strategies. Com-
pared with these three start-up strategies, start-up strategy 3 has two activated components
in the initial selection of function, while start-up strategies 1 and 2 have three activated
components. We can also conclude that a smaller number of activated components can
generate higher system resilience when the redundancy levels of the functions are simi-
lar [37]. To maximize the system resilience at a specific time point, the optimal start-up
strategy should be determined to increase the ability of a multifunctional system to resist
the decrease of system performance.

3. Resilience-Oriented Start-Up Strategy Optimization of Onsite Monitoring Systems

Start-up strategy optimization determines the start-up strategy for maximizing the
resilience of an onsite monitoring system with known hazardous events. The occurrence
time and effects of all of the hazardous events are known.

The objective is to maximize system resilience under a limited budget. The decision
variables are the start-up strategy, including the initial selection of functions and the
redundancy levels of all functions. The mathematical model was established as follows:

max fSR(X, Y|nd) (4)

s.t.
xij = {0, 1}, (i = 1, 2, · · ·, m; j = 1, 2, · · ·, n) (5)
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∑m
i=1 xij = 1, (j = 1, 2, · · ·, n) (6)

yij ≥ xij, yij ∈ Z, (i = 1, 2, · · ·, m; j = 1, 2, · · ·, n) (7)

∑n
j=1 yij ≤ n0, (i = 1, 2, · · ·, m) (8)

mC0 + ∑n
j=1 ∑m

i=1 cijyij ≤ Cmax (9)

Constraints (5) and (6) are related to the initial selection of the start-up strategy. In
Constraint (5), xij = 1(i = 1, · · ·, m; j = 1, · · ·, n) indicates that function j in component
i is initially selected; otherwise, xij= 0. Constraint (6) indicates that each function must
be selected from a single component. Constraints (7) and (8) define the limits of the
redundancy levels of functions. Constraint (7) shows that xij must equal zero if yij = 0
(i.e., component i does not have function j), and the redundancy levels must be integers.
Constraint (8) describes the carrying capacity of each UAV, which means that the total
redundancy levels of each UAV should be less than or equal to n0. Constraint (9) illustrates
the cost limitation of the UAVs, and the corresponding redundancy of functions is supposed
to be less than the budget Cmax, where C0 is the unit cost of the UAV.

4. Solving Algorithm

A genetic algorithm (GA) is a remarkable meta-heuristic algorithm that utilizes the
survival of the fittest idea to determine the optimal solution [49]. GA has good global
search ability because it can dynamically increase the diversity of population via crossover
and mutation; however, GA has weak local search ability [50]. Considering the advantages
of importance measures on the local search ability, a two-stage local search was developed
to enhance the local search ability of the GA [51]. To determine the optimal start-up strategy
model for onsite monitoring systems, a two-stage local search-based genetic algorithm
(TLSGA) was developed by adding a two-stage local search process to improve the GA.

4.1. Two-Stage Local Search Method

Considering the advantage of the importance measure for finding the weakest links of
a system, it can potentially cost-effectively improve the system performance by increasing
the maintenance resources for the components with the highest importance [52]. The local
search method is used to update the start-up strategy by adjusting the start-up strategy to
maximize system resilience, which involves two stages: the first stage is the redundancy
adjustment of a component based on the redundancy importance measure; the second
stage is the adjustment of the initial selection for a function. By considering the constraints
of the initial selection and redundancy level, the detailed ideas of the local search method
can be summarized as follows:

(1) To adjust the redundancy level, each component has a limit of carrying functions,
which is less than n0; a component is selected by removing and adding one redundant
function to maximize the improvement in system resilience under the unchanged carrying
capacity of the component. The detailed redundancy adjustment process of component i*
is as follows:

• Choose the function j1∗ = argmin
{

j
∣∣∣ fSR(T

∣∣∣X, Y j
i )− fSR(T

∣∣∣X, Y j
i − 1), j = 1, · · ·, n

}
with minimum resilience reduction when removing its redundant function by one.

• Choose the function j2∗ = argmax
{

j
∣∣∣ fSR(T

∣∣∣X, Y j
i + 1)− fSR(T

∣∣∣X, Y j1∗

i ), j = 1, · · ·, n
}

with maximum resilience increase when adding its redundant function by one.
• Determine the component i* with the maximum improvement of system resilience by

i∗ = argmax
{

j
∣∣∣ fSR(T

∣∣∣X, Y j2∗

i + 1)− fSR(T
∣∣∣X, Y j1∗

i − 1), i = 1, · · ·, m
}

.

(2) To adjust the initial selection of functions, the same function from other components
should be considered to replace the current function; therefore, the component with the
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maximum improvement in system resilience should be selected to provide the same func-
tion. Thus, the detailed process of start-up strategy function adjustment can be summarized
as follows:

• Find the component with the maximum improvement in system resilience by
adjusting the start-up strategy of function j according to is∗(j) =

argmax
{

i
∣∣∣ fSR(T

∣∣∣X j∗

i − 1, Y)− fSR(T
∣∣∣X j

i + 1, Y), j = 1, · · ·, n
}

.

• Determine the function of the component by maximizing the improvement in system
resilience by js∗ = argmax{j|i∗s (j), j = 1, · · ·, n}.
In summary, we should choose the optimal component redundancy and start-up

strategy adjustment to maximize the improvement in system resilience.

4.2. TLSGA Procedures

The TLSGA takes advantage of the better global search ability of the GA and better
local search ability of the two-stage local search method. The procedures of the TLSGA are
similar to those of the GA, which is a classical meta-heuristic algorithm with a standard
process that includes initialization, selection, crossover, and mutation. The real number
encoding method is used to represent the start-up strategy in the TLSGA, which is an
m× 2n matrix. The difference between the TLSGA and GA is that the local search process
is added after the mutation process in the TLSGA. A flow chart of the TLSGA procedures is
shown in Figure 6.
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5. Numerical Experiments
5.1. Performance Comparison between TLSGA and GA
5.1.1. Experimental Design

The performance of the TLSGA and GA in different systems was compared in an
experiment (Experiment 1). For Experiment 1, the high and low failure rates of components
and their functions were categorized into four groups: low λ f and low λc, high λ f and low
λc, low λ f and high λc, and high λ f and high λc. For each group, there are 12 systems, the
symbols of which are listed in Table 2; each system has a different component number m,
required number of system functions n, carrying capacity of component n0, and number of
hazardous events nd.

Table 2. The symbols of the 12 systems with different parameters.

System # Component
Number m

The Number of
Required System

Functions n

Carrying
Capacity of

Component n0

The Number of
Hazardous
Events nd

1 2 3 4 0
2 2 3 4 1
3 2 3 4 2
4 3 3 2 0
5 3 3 2 1
6 3 3 2 2
7 3 3 4 0
8 3 3 4 1
9 3 3 4 2
10 3 5 4 0
11 3 5 4 1
12 3 5 4 2

The UAV fails more easily than the sensors; therefore, the failure rate of the components
is higher than that of the functions. A low λc is randomly selected from the interval [0.1, 0.3],
and a high λc λc is randomly selected from [0.8, 1]; a low λ f λc is randomly selected from
[0.01, 0.02], and a high λ f λc is randomly selected from [0.08, 0.1]. Hazardous events occur
at the 3rd and 7th hour, respectively. Moreover, the parameters of the TLSGA and GA
included a population size of 100, a maximum number of generations of 200, a crossover
probability of 0.9, and a mutation probability of 0.1. For each system, the TLSGA and GA
were employed 50 times.

Two indices were used to analyze the performance of the TLSGA and GA: the im-
proved number (IN) and the mean ratio of system resilience (MRSR). IN is used to count
the number for which the result of the TLSGA is not less than that of the GA, and MRSR is
the average ratio of the system resilience obtained by the TLSGA to that obtained by the
GA. A higher IN or higher MRSR indicates that the performance of the TLSGA is better
than that of the GA. Moreover, the applicability of the TLSGA can be analyzed using the
average percentage improvement in system resilience. The improvement percentage Pisr
can be evaluated using Equation (10) as follows:

Pisr =
RTLSGA − RGA

RGA
(10)

where RTLSGA is the system resilience obtained by the TLSGA, and RGA is the system
resilience obtained by the GA.

5.1.2. Experimental Results

The experimental results are listed in Table 3. Table 3 shows that IN decreased with
an increase in the scale of the systems. The INs are almost 50 for systems S1–S6 in these
four groups, but the INs become smaller for systems S7–S12. The lowest IN was 45, which
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means that at least 90% of the results obtained by the TLSGA were better than those of
the GA. By analyzing the MRSR, we found that the performance of the TLSGA and the
GA were similar when the system scale is small, as is the case in S1, S2, and S3. However,
the MRSR in S1, S2, and S3 is smaller than that in the other systems, which means that the
performance of the TLSGA improves with an increase in n. Therefore, the performance of
the TLSGA is generally better than that of the GA.

Table 3. The simulation results of Experiment 1.

System #
High λf and High λc High λf and Low λc Low λf and High λc Low λf and Low λc

IN MRSR IN MRSR IN MRSR IN MRSR

S1 50 1.0001 50 1.0015 50 1.0001 50 1.0005
S2 50 1.0002 50 1.0022 50 1.0015 50 1.0023
S3 50 1.0009 50 1.0012 50 1.0002 50 1.0027
S4 50 1.0194 50 1.1854 50 1.0009 49 1.0140
S5 50 1.0064 50 1.0539 49 1.0035 50 1.0023
S6 49 1.0434 50 1.0045 50 1.0070 50 1.0192
S7 47 1.0274 46 1.0868 41 1.0127 49 1.0491
S8 47 1.0398 47 1.0923 47 1.0163 49 1.0409
S9 49 1.0489 48 1.0754 48 1.0175 48 1.0400
S10 49 1.0736 49 1.0362 47 1.0145 44 1.0228
S11 45 1.0211 46 1.0381 48 1.0106 47 1.0135
S12 48 1.0093 46 1.0297 47 1.0321 45 1.0463

The average percentage improvement in the resilience of each system can be used to
discuss the performance of the TLSGA in four different groups to analyze its applicability.
The average improvement percentages are shown in Figure 7. Although the improvement
percentage is lower in systems with low λ f and high λc, the performance of the TLSGA
is better than that of the GA because the percentage is positive. A positive percentage
indicates that the TLSGA can achieve a higher system resilience than the GA. From Figure 7,
it can be seen that the TLSGA is more suitable for solving systems with high λ f and low λc
because the improvement percentage is much higher than that of the other three groups.
Regarding the improvement percentage, the TLSGA and the GA in systems with high λ f
and λc have similar performances in systems with low λ f and λc. Therefore, the TLSGA
can solve the optimization model and obtain a better solution than the GA, especially for
systems with high λ f and low λc.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 7. The improvement percentage of system resilience obtained by TLSGA. 

5.2. Numerical Case for Onsite Monitoring Systems 
The optimal design of the onsite monitoring system determines the optimal combi-

nations of the number of UAVs m and the carrying capacity of a UAV n0 to maximize the 
system resilience. Once the number of required system functions and the maximum 
budget are determined, the optimal system resilience with different m and n0 can be ob-
tained using the TLSGA. The hazardous event occurs on the third hour, and its effect was 
recorded. The maximum budget was USD 55,000, the unit price of the sensors was USD 
1000, and the unit price of the UAV depended on the carrying capacity of the sensors, 
which was equal to 1000n0. The maximum system resilience at t = 10 h was obtained by 
the TLSGA. Therefore, the optimal system resilience with different combinations of m and 
n0 can be obtained using the TLSGA. 

From Figure 8, we can see that the maximum system resilience is 0.2003 when t = 10 
h, and the optimal combination occurs when the number of UAVs is three and the carrying 
capacity of each UAV is five. When the maximum budget is USD 55,000, the system resil-
ience increases with an increase in the carrying capacity when m = 3 and 4. Similarly, sys-
tem resilience increases with an increase in the number of UAVs when n0 = 2 and 3 because 
the carrying capacity of each UAS is small. With an increase in the number of UAs, the 
redundancy of the entire system will increase; thus, the system resilience will increase. 
However, the system resilience decreases when m is 5 and n0 is greater than 3. To some 
extent, the sensors in the UAV may have lower redundancy when they carry more types 
of sensors, which may decrease the system resilience. From the results of Experiment 2, 
the maximum budget cannot provide sufficient sensors with an increase in m and n0; there-
fore, some UAVs may carry sensors whose amount does not reach the maximum carrying 
capability. From our experimental results, we can observe that the number of UAVs cannot 
be too large because of the limited budget, and a UAV with a higher carrying capacity 
should be selected first. Moreover, the TLSGA can determine the optimal configuration of 
OMSs under a limited budget by considering the combination of the number of UAVs and 
carrying capability to maximize system resilience. The TLSGA can be applied to integer 

Figure 7. The improvement percentage of system resilience obtained by TLSGA.



Mathematics 2023, 11, 4023 15 of 18

5.2. Numerical Case for Onsite Monitoring Systems

The optimal design of the onsite monitoring system determines the optimal combi-
nations of the number of UAVs m and the carrying capacity of a UAV n0 to maximize the
system resilience. Once the number of required system functions and the maximum budget
are determined, the optimal system resilience with different m and n0 can be obtained using
the TLSGA. The hazardous event occurs on the third hour, and its effect was recorded.
The maximum budget was USD 55,000, the unit price of the sensors was USD 1000, and
the unit price of the UAV depended on the carrying capacity of the sensors, which was
equal to 1000n0. The maximum system resilience at t = 10 h was obtained by the TLSGA.
Therefore, the optimal system resilience with different combinations of m and n0 can be
obtained using the TLSGA.

From Figure 8, we can see that the maximum system resilience is 0.2003 when t = 10 h,
and the optimal combination occurs when the number of UAVs is three and the carrying
capacity of each UAV is five. When the maximum budget is USD 55,000, the system
resilience increases with an increase in the carrying capacity when m = 3 and 4. Similarly,
system resilience increases with an increase in the number of UAVs when n0 = 2 and 3
because the carrying capacity of each UAS is small. With an increase in the number of UAs,
the redundancy of the entire system will increase; thus, the system resilience will increase.
However, the system resilience decreases when m is 5 and n0 is greater than 3. To some
extent, the sensors in the UAV may have lower redundancy when they carry more types of
sensors, which may decrease the system resilience. From the results of Experiment 2, the
maximum budget cannot provide sufficient sensors with an increase in m and n0; therefore,
some UAVs may carry sensors whose amount does not reach the maximum carrying
capability. From our experimental results, we can observe that the number of UAVs cannot
be too large because of the limited budget, and a UAV with a higher carrying capacity
should be selected first. Moreover, the TLSGA can determine the optimal configuration of
OMSs under a limited budget by considering the combination of the number of UAVs and
carrying capability to maximize system resilience. The TLSGA can be applied to integer
program problems under nonlinear constraints in practical engineering by adjusting the
initialization method and fitness function.
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6. Conclusions

This study evaluated the resilience of OMSs by considering real-time reliability and
system performance, and the novelty of this study lies in the fact that we evaluated real-
time system reliability based on CIMC. A TLSGA was developed to effectively solve the
resilience-oriented start-up strategy optimization problem, especially for systems with high
λ f and low λc. Moreover, under a limited budget, a UAV with a higher carrying capacity
should be selected first to determine the optimal combinations of m and n0. The proposed
method focuses on exponential distribution and known risk situations. In Future, more
research works should focus on complex and uncertain risk situations and other types of
distributions of components and their functions.
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