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Abstract: An optimal network refers to a computer or communication network designed, config-
ured, and managed to maximize efficiency, performance, and effectiveness while minimizing cost
and resource utilization. In a network design and management context, optimal typically implies
achieving the best possible outcomes between various factors. This research investigated the use of
fuzzy graph edge coloring for various fuzzy graph operations, and it focused on the efficacy and
efficiency of the fuzzy network product using the minimal spanning tree and the chromatic index of
the fuzzy network product. As a network made of nodes and vertices, measurement with vertices is
a parameter for domination, and edge measurement is a parameter for edge coloring, so we used
these two parameters in the algorithm. This paper aims to identify an optimal network that can
be established using product outcomes. This study shows a way to find an optimal fuzzy network
based on comparative optimal parameter domination and edge coloring, which can be elaborated
with applications. An algorithm was generated using an optimal approach, which was subsequently
implemented in the form of applications.

Keywords: fuzzy coloring; minimum spanning tree; domination number; optimal network

MSC: 05C15; 05C76

1. Introduction

A mathematical tool known as graph theory plays a vital role in numerous branches of
research and technology. A graph typically depicts a real and relevant problem graphically.
A graph is a collection of sets (K, L), where K is a collection of non-empty vertices, and L is
an edge set. Kaufman (1973) presented the concept of fuzzy graphs, and further, Rosenfeld
(1975) interpreted it. Samanta and Pal (2015, 2013) defined various forms of fuzzy graphs.
In the literature, there are many ways to color graphs. Fuzzy set theory and fuzzy graph
theory have made it possible to model most real-world situations more precisely and
adaptably than their classical counterparts [1–7]. More study is being conducted on fuzzy
graphs [8–10]. The usual graph model of a network has a collection of nodes joined by edges
or connections. The network provides a flexible framework for locating and observing
complex systems [11]. The idea of studying complex networks is essential and crosses many
academic fields. Real-world problems contain a variety of data that can be represented
using a variety of graph types, including fuzzy graphs, intuitionistic fuzzy graphs, and
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neutrosophic graphs [12–17]. Arif introduced the concepts of the soft overset and the soft
over graph [18]. Samanta and others provided an explanation for several recently created
ideas about intuitionistic fuzzy graphs (IFGs), as well as a few key concepts that had
already been established [19]. Using the concepts of intuitionistic fuzzy sets, intuitionistic
fuzzy relations, and index matrices as a foundation, a new generalization of IFGs has
been presented [20]. Many authors have studied various types of dominations [21–28] and
developed this field of study. The crisp-graph coloring technique has been used to color the
α-cuts of these fuzzy graphs. As a result, many crisp graphs are colored for different values
of α, and for identical fuzzy graphs, the chromatic index changes depending on the value
of α [29]. Additionally, Bershtein and Bozhenuk suggested using the minimax criterion
to define the ideal center allocation in fuzzy transportation networks [30]. One study
defined the concept of a fuzzy graph and determined the minimum number of colors based
on the value of the separation degree [31–38]. A new coloring technique was employed
to color a political map and to address a brand-new traffic light coloring issue [39]. A
colored vertex on fuzzy graphs was used to color maps. To overcome radio frequency
issues, Mahapatra et al. extended the coloring approach to radio fuzzy graphs [40–42].
The relationship (edges) can be more meaningful than the individual (nodes) at times.
For instance, links rather than nodes are crucial in fuzzy social networks. An associated
concept known as edge coloring is crucial for issues based on uncertainty. Regarding the
application of graph coloring to communication systems based on utilizing ring-splits, in
addition to comparing the peak throughput of NoCs for circulant and mesh topologies
using deadlock-free routing algorithms, the results of high-level modeling were presented
in [43]. The suggested method used fewer hardware resources while still achieving minimal
transmission delay and enhanced thermal efficiency [44].

The motivation of this research work is to create a new platform to identify an optimal
network in order to develop an effective optical network by utilizing various fuzzy graph
operations based on edge color and domination parameters, including the operations of
residue products, symmetric differences, max products, and lexicographic products. Using
comparative studies on domination and edge coloring, our research and analysis aimed to
assess the network’s strength. We have provided an algorithm to examine the effectiveness
and efficiency of the constructed networks, which is the main framework of this research
finding. Furthermore, we have developed applications for the product operation of these
fuzzy networks.

2. Preliminaries

Definition 1 ([12]). A Fuzzy graph (H∗FG = (V∗FG, E∗FG)) is a pair of functions (σV∗FG
: V∗FG → [0, 1]

and µV∗FG
: V∗FG ×V∗FG → [0, 1] ) where µV∗FG

(b1, b2) ≤ min{σV∗FG
(b1
∗), σV∗FG

(b2
∗)}

for b1
∗, b2

∗ ∈ V∗FG.

Definition 2 ([12]). The underlying graph of a fuzzy graph is in the form (H∗FG = (V∗FG, E∗FG)),

where V∗FG =
{

a1
∗ ∈ V∗FG : σV∗FG

(a1
∗) > 0

}
and E∗FG = {(a1

∗, a2
∗) ∈ V∗FG × V∗FG : µV∗FG

(a1
∗, a2∗) > 0}.

Definition 3 ([12]). A subset (T∗F ) of V∗FG is said to be a dominating set of a fuzzy graph if every
vertex in V∗FG − T∗FG is dominated by at least one vertex of V∗FG. The dominating set (T∗FG) is said
to be minimal if no proper subset of T∗FG is a dominating set.

Definition 4 ([12]). An arc (a1 ∗ −a2∗) is said to be strong if the value of degree of an edge
membership of an arc (a1 ∗ −a2∗) is equal to strength of connectedness between a1* and a2*.

Definition 5 ([12]). A vertex a1* dominates a2* if there is a strong arc between them.
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Definition 6 ([34]). A fuzzy graph ηec = (Vec, σec, µec) is a set that is not empty, together
with a pair of functions σec : Vec → [0, 1] and µec : Vec ×Vec → [0, 1] , such that x, y ε Vec,
µec(c, d) ≤ σec(c)Λσec(d), where σec(c) and µec(c, d) represent the vetex membership values and
the edge membership values, respectively.

Definition 7 [35]). A fuzzy graph ηec = (Vec, σec, µec) is complete if µec(p, q) = min{σec(p),
σec(q)} for all p, q ∈ Vec, where (p, q) represents the edges between the vertices p and q.

Definition 8 ([35]). A fuzzy graph ηec = (Vec, σec, µec) is said to be bipartite if vertex set Vec is divided
into two nonempty sets Vec1 and Vec2 , such that µec(Vec1 , Vec2) = 0 if vec1 , vec2ε Vec1 or vec1 , vec2ε Vec2 .
Further, if µec(Vec1 , Vec2) = min{σec(vec1), σec(vec2)} for all vec1ε Vec1 and vec2ε Vec2 , then ηec is called
a fuzzy complete bipartite graph.

Definition 9 ([29]). Let H = {h1, h2, . . ., hλ}, λ ≥ 1 be the collection of neutral hues. Then, fuzzy
set (H, k), where k: H→ (0, 1), is known as a collection of fuzzy colors, and 0 < k(hi) ≤ 1; the
color’s membership value is the quantity of each element of the combination of hi with the color
white. Hence, the color (hi, k(hi)) is referred to as the fuzzy color that matches the fundamental color
hi. Thus, the k(hi) [≤1] amount of hi is mixed with 1 − k(hi) to determine how much white color is
needed to create the fuzzy color (hi, k(hi)). As stated in the definition above, the basic color is the
building block from which all other colors are created. For example, green is a fundamental hue. A
“fuzzy green” color can be blended to create other colors with 0.8 units of green and 0.2 units of
white. This “fuzzy green” is denoted by a green value of 0.8. Similarly, another fuzzy red color (red,
0.6) may be formed by mixing 0.6 units of red with 0.4 units of white, and so on.

Definition 10 ([29]). Let ηec = (Vec, σec, µec) be a connected fuzzy graph and
cec =

(
cec1, cec2 , . . . , ceck

)
be a set of basic colors. Now, two edges are only given two fuzzy

colors whose basic colors differ if they are adjacent to one another; otherwise, they may be given
fuzzy colors whose basic colors are the same. If the color of any edge is (c eci

, fecj(ceci )), then Ceci

is the basic color of edge eecj = (p, q) and fecj(ceci ) is its membership value, which is calculated as

kecj(ceci ) =
µec(p.q)

σec(p)∧σec(q)
, where σec(p) and σec(q) are the membership values of vertices p and q,

respectively. Finally, µec(p, q) is the membership value of the edge eecj , i.e., (p, q) in the fuzzy
graph ηec.

Definition 11 ([29]). The fuzzy chromatic index of a fuzzy graph is the minimal set of fundamental
colors required to color a fuzzy graph. Suppose there are M basic hues at the minimal level, the strengths
of edges cannot be described by this chromatic index. For example, when two fuzzy graphs have identical
chromatic indices, these graphs cannot be compared using this chromatic index. Hence, there is some
weight assigned to the chromatic index. The weight is denoted by Sec, which is defined by

Sec = ∑M
i=1

{
Max f eci

(ceci )
}

where the basic color ceci is used to color edge eecj for some j and the depth of color is keci (ceci ). Thus,
S is the total of each basic color’s maximum membership values. Now, the chromatic index of a fuzzy
graph is denoted by (M, S), where M is the minimum number of basic colors to color a graph and
S is its weight. We generally follow the operations on fuzzy graph definitions from [13].

3. Operations on Fuzzy Graphs Using Edge Coloring

Mahabathra et al. [29] introduced Definition 11 to determine the weight of colors in
a fuzzy graph. By focusing on the optimality of the fuzzy network, we can compare the
formula given in Definition 11 with the sum of the minimal membership value of each color
used in the fuzzy network. Hence, this research defines and modifies the formula in terms
of the sum of the minimum value of the edge membership values of each color according
to the fuzzy network, which yields the optimum value of the created network and helps
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us determine how effective it is. The chromatic number of a fuzzy graph represents the
minimum number of colors required to color the graph. Let us assume that Mmin is the
minimum number of colors used to color the graph. The degree of membership of such
crisp graphs is not sufficient to determine the strength of edges, and hence, some weight
is associated with the chromatic number. These weights of the edges can influence the
coloring process by indicating the strength of association of an edge with a particular color.
The weighted minimum of basic colors used is denoted as Wmin and is defined as

Wmin =
M

∑
p=1

{
min geq(cp)

}
3.1. Residue Product of Two Fuzzy Graphs

Let RF1 = (σec1 , µec1 ) and RF2 = (σec2 , µec2) be two fuzzy graph networks of crisp
graphs GRF1 = (Vec1 , Eec1) and GRF2 = (Vec2 , Eec2), respectively. Then, its residue product
RF1·RF2 = (σ1·σ2, µ1·µ2) is defined as

(i) ∀ (a, b) ∈ V1 × V2, ( σ1· σ2)(a, b) = σ1(a) ∧ σ2(b).
(ii) ∀ (a, b) ∈ E1 and c 6= w ∈ V2, (µ 1· µ2)((a, c), (b, w)) = µ1(a, b).

3.1.1. Example

G1 = RF1 and G2 = RF2 are the two fuzzy graphs of GRF1 = (Vec1 , Eec1)
and GRF2 = (Vec2 , Eec2), depicted in Figures 1 and 2, respectively. Then, the residue
product of the fuzzy network is denoted by RF1·RF2, as shown in Figure 3.
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Using Definition 10, the edge membership values of the above constructed RF1·RF2
are calculated and shown in Figure 3.

From Figure 3, the minimum number of basic colors used in RF1·RF2 is 4. The weight
minimum number of basic colors used in constructed residue product RF1·RF2 = 0.16 + 0.2
+ 0.16 + 0.16 = 0.68. Thus, the Wmin of RF1·RF2 is 0.68.

3.1.2. Find the Weight of the Minimal Spanning Tree Using Kruskal’s Algorithm

To find the minimum spanning tree (MST) using the given set of edges, we follow the
following steps:

Table 2 shows the weight of the graph, and Table 1 sorts the edges in ascending order
based on their weight. We begin by adding the edge ay-bz with a specific weight to the
MST. Next, we add the edge by-az to the MST with a weight of 0.16. This edge does not
create a cycle within the MST. Moving on, we include the edge by-cz with a weight of 0.16
in the MST. This edge also does not create any cycles. We continue by adding the edge
cy-bz, with a weight of 0.16, to the MST. Once again, this edge maintains the property of
not creating a cycle. Another edge, cy-dz, with a weight of 0.2, is added to the MST without
causing any cycles. The edge dy-cz, with a weight of 0.2, is added to the MST, ensuring that
no cycles are formed. We proceed by adding the edge ax-bzy, weight 0.28, to the MST. The
inclusion of this edge does not result in any cycles. The edge cx-by, having a weight of 0.28,
is included in the MST without creating cycles. Moving forward, we add the edge bx-cy
with a weight of 0.33 to the MST; no cycles are introduced by this inclusion. Similarly, the
edge dx-cy with weight 0.33 is integrated into the MST without creating any cycles. Lastly,
we come across the edge ax-bz with weight 0.42. However, adding this edge would create
a cycle within the MST. Thus, we discard it. Having visited all the nodes and ensuring that
the number of edges is fewer than the number of nodes, we can conclude that the algorithm
can now be stopped.

Table 1. The edges, sorted by weight in ascending order.

Edge ay-bz by-az by-cz cy-bz cy-dz dy-cz ax-by cx-by bx-cy dx-cy ax-bz

Weight 0.16 0.16 0.16 0.16 0.2 0.2 0.28 0.28 0.33 0.33 0.42
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Table 2. The weight of a given graph (Figure 4).

Edge ax-by ax-bz bx-cy cx-by dx-cy ay-bz by-az by-cz cy-bz cy-dz dy-cz

Weight 0.28 0.42 0.33 0.28 0.33 0.16 0.16 0.16 0.16 0.2 0.2

Using Kruskal’s algorithm, the weight of the minimal spanning tree of RF1··RF2 is
shown to be 2.68.

3.1.3. Lower Domination Number of RF1.RF2

It is possible for there to be more than one minimal dominating set in an established
network. The set with the lowest domination number among all minimal dominating sets
is considered to be the created network’s lowest domination number, which allows us to
test the network’s optimality. Let GDN = (σDN , µDN ) be the fuzzy graph of the crisp graph
GDN = (VDN, EDN), and let SDN1 , SDN2 , . . . , SDNr be the minimal dominating set of GDN. Fi-
nally, let the corresponding dominating number be denoted by γDN1 , γDN2 , γDN3 , . . . , γDNr .
Among this, the lowest cardinality of the domination number is called lower domination
number and is denoted by γLDN.

Let S(1)RF1 . RF2
, S(2)RF1.RF2

, S(3)RF1 . RF2
and S(4)RF1 . RF2

be the sum of the minimal dom-
inating set of RF1.RF2 (refer to Figure 3)

S(1)RF1.RF2
= {ay, by, cy, dy}; S(2)RF1.RF2

= {ax, bx, cx, dx};

S(3)RF1.RF2
= {az, bz, cz, dz}

γ
(1)RF1.RF2

of S(1)RF1.RF2
= 0.3 + 0.6 + 0.6 + 0.3 = 1.8

γ
(2)RF1.RF2

of S(2)RF1.RF2
= 2.6.

γ
(2)RF1.RF2

of S(3)RF1.RF2
= 2.1.

γLDN−RF1.RF2
of RF1 RF2 is 1.8.

3.2. Symmetric Difference of Two Fuzzy Graphs

Let SDF1 = (σec1 , µec1) and SDF2 = (σec2 , µec2) be two fuzzy graphs of crisp graphs
GSDF1 = (Vec1 , Eec1) andGSDF2 = (Vec2 , Eec2), respectively. Then, the symmetric difference
between SDF1 and SDF2 is denoted by SDF1 ⊕ SDF2 = (σec1⊕ σec2 , µec1⊕µec2 ) and is defined
as follows

1. ∀(a, b) ∈ V1 ×V2, σSDF1⊕σSDF2(a, b) = σSDF1(a) ∧ σSDF2(b).

2. ∀a ∈ V1 and (b, c) ∈ E2 (µ SDF1
⊕ µSDF2

)(
(a, b), (a, c) = σSDF1(a) ∧ µSDF2(b, c) .

3. ∀a ∈ V2 and (b, c) ∈ E1 (µ SDF1
⊕ µSDF2

)
((b, a), (c, a)) = µSDF1(b, c) ∧ σSDF2(a).

4. ∀(a, b) /∈ E1 and (c, w) ∈ E2, (µ SDF1
⊕ µSDF2

)
((a, c), (b, w)) = min{σSDF1(a),

σSDF1(b), µSDF2(c, w)}.
5. ∀(a, b) ∈ E1 and (c, w) /∈ E2, (µ SDF1

⊕ µSDF2

)
((a, c), (b, w)) = min{µSDF1(a, b),

σSDF2(c), σSDF2(w)}.

3.2.1. Example

Let G1 = SDF1 and G2 = SDF2 be the two fuzzy graphs of crisp graphs
GSDF1 = (Vec1 , Eec1) and GSDF2 = (Vec2 , Eec2), depicted in Figures 1 and 2, respectively.

The symmetric difference of fuzzy network SDF1⊕SDF2 is shown in Figure 5.
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Using Definition 10, the edge membership values of the above constructed
SDF1 ⊕ SDF2 are calculated, as shown in Figure 5.

As shown in Figure 5, the minimum number of basic colors used in SDF1 ⊕ SDF2 is 7.
The weight minimum number of basic colors used in the constructed symmetric difference
network SDF1 ⊕ SDF2 = 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.75 + 0.5 = 3.75. Thus, the Wmin of
SDF1 ⊕ SDF2 is 3.75.

Using Kruskal’s algorithm, the weight of the minimal spanning tree of SDF1 ⊕ SDF2
was found to be 7.

3.2.2. Lower Domination Number of SDF1 ⊕ SDF2

Let S(1)SDF1⊕SDF2
, S(2)SDF1⊕SDF2

, S(3)SDF1⊕SDF2
and S(4)SDF1⊕SDF2

be some of the mini-
mal dominating set of SDF1 ⊕ SDF2 (see Figure 5)

S(1)SDF1⊕SDF2
= {ax, ay}; S(2)SDF1⊕SDF2

= {az, ay};

S(3)SDF1⊕SDF2
= {dx, dy}; S(4)SDF1⊕SDF2

= {dy, dz}.

γ
(1)SDF1.⊕SDF2

of S(1)SDF1⊕SDF2
= 2.2

γ
(2)SDF1.⊕SDF2

of S(2)SDF1⊕SDF2
= 1.6.

γ
(3)SDF1.⊕SDF2

of S(3)SDF1⊕SDF2
= 2.2.

γ
(4)SDF1.⊕SDF2

of S(4)SDF1⊕SDF2
= 1.9.

γLDN−SDF1⊕.SDF2
of SDF1 ⊕ SDF2 is 1.6.
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3.3. Max Product of Two Fuzzy Graphs

Let MF1 = (σ m f 1
, µm f 1

)
and MF2 =

(
σm f 2

, µm f 2

)
be two fuzzy networks of crisp

graphs GMF1 =
(

Vm f 1
, Em f 1

)
and GMF2 =

(
Vm f 2

, Em f 2

)
, respectively. The maximal prod-

uct of fuzzy graphs MF1 and MF2 is represented by MF1 * MF2 = (σ m f 1
* σm f 2

, µm f 1
*, µm f 2

)
and is defined as:

(i) ∀ (a, b) ∈ Vm f 1
× Vm f 2

,
(

σm f 1
*σm f 2

)
(a, b) = σm f 1

(a) ∨ σm f 2
(b).

(ii) ∀ a ∈Vm f 1
and (b, c) ∈Em f 2

, (µ m f 1
*µm f 2

)
((a, b), (a, c)) = σm f 1

(a) ∨ µm f 2
(b, c).

(iii) ∀ a ∈Vm f 2
and (b, c) ∈Em f 1

,
(

µm f 1
*µm f 2

)
((b, a), (c, a)) = µm f 1

(b, c) ∨ σm f 2
(a).

3.3.1. Example

G1 = MF1 and G2 = MF2 defines the two fuzzy graphs of crisp graphs
GMF1 = (Vec1 , Eec1) and GMF2 = (Vec2 , Eec2), depicted in Figures 1 and 2, respectively.
The max product of the fuzzy network MF1 * MF2 is shown in Figure 6.
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Using Definition 10, the edge membership values of the above constructed MF1 * MF2
were calculated, as shown in Figure 6.

As shown in Figure 6, the minimum number of basic colors used in MF1 * MF2 is 4.
The weight minimum number of basic colors used in the constructed maximal product
network MF1 * MF2 = 0.37 + 1 + 0.83 + 0.83 = 3.03. Thus, the Wmin of MF1 * MF2 is 3.03.

Using Kruskal’s algorithm, the weight of the minimal spanning tree of MF1 * MF2 was
found to be 9.29.

3.3.2. Lower Domination Number of MF1 * MF2

Let S(1)MF1∗MF2
, S(2)MF1∗MF2

, S(3)MF1∗MF2
and S(4)MF1∗MF2

be some of the minimal dom-
inating set of MF1 * MF2 (see Figure 6)

S(1)MF1∗MF2
= {ay, cx, cz, dy}S(2)MF1∗MF2

= {ay, bx, by, dy};
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S(3)MF1∗MF2
= {bx, cx, ay, dy}; S(4)MF1∗MF2

= {ax, bz, cx, dz}.

γ
(1)MF1.∗MF2

ofS(1)MF1∗MF2
= 6.5;γ

(2)MF1.∗MF2
of S(2)MF1∗MF2

= 6.7;

γ
(3)SMF1.∗MF2

ofS(3)MF1∗MF2
= 7.2;γ

(4)MF1.∗MF2
of S(4)MF1∗MF2

= 5.7;

γLDN−MF1.∗MF2
of MF1 ∗MF2 is 5.7.

3.4. Lexicographic Product of Two Fuzzy Graphs

Let LF1 = (M1, P1) and LF2 = (M2, P2) be two fuzzy graphs of the crisp graphs
GLF1 = (Vec1 , Eec1) and GLF2 = (Vec2 , Eec2) respectively.

The lexicographic product of the two graphs is denoted as LF1·LF2 in fuzzy graph pair
(M, P), such that

(i) M(a1, b2) = min(M1(a1), M2(b2)), ∀(a1, b2) ∈ M1 ×M2.
(ii) P((x, b2)(x, d2) = min(M1(x), M2(b2d2) , ∀x ∈ M1, b2d2 ∈ P2.
(iii) P((a1, b2)(c1, d2)) = min(P1(a1c1), P2(b2d2)), ∀a1b1 ∈ P1 and b2d2 ∈ P2.

3.4.1. Example

Let G1 = LF1 and G2 = LF2 be two fuzzy graphs of crisp graphs GLF1 = (Vec1 , Eec1)
and GLF2 = (Vec2 , Eec2), depicted in Figures 1 and 2, respectively. The lexicographic
product of the fuzzy network is denoted by LF1·LF2, as shown in Figure 7.
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Using Definition 10, the edge membership values of the above constructed LF1·LF2
were calculated, as shown in Figure 7.

As shown in Figure 7, the minimum number of basic colors used in LF1·LF2 is 6. The
weight minimum number of basic colors used in the constructed lexicographic product of
network LF1·LF2 = 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 = 3. Thus, the Wmin of LF1·LF2 is 3.
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Using Kruskal’s algorithm, the weight of the minimal spanning tree of LF1·LF2 was
found to be 5.5.

3.4.2. Lower Domination Number of LF1·LF2

Let SLF1∗LF2 be the minimal dominating set (only one dominating set) of LF1·LF2 (see
Figure 7)

SLF1∗LF2 = {ay, by, cy, dy}.γLDN−LF1.∗LF2
of SLF1∗LF2 is 3.

Algorithm 1 provides comparative studies of fuzzy domination and fuzzy coloring in
operations of fuzzy networks.

4. Algorithm to Find an Optimal Network
4.1. Algorithm

This algorithm explores how to determine an optimal network using the product
operations of a fuzzy network.

Algorithm 1: Find an optimal network using the operations of a fuzzy network

Input: Two fuzzy networks FG1 = (σc1 , µc1 ) and FG2 = (σc2 , µc2 ) of crisp graphs
GF1 = (Vc1 , Ec1 ) and GF2 = (Vc2 , Ec2 ), respectively.
Output: Optimal fuzzy network
Begin
Step 1: Construct a collection of finite networks, e.g., N1, N2, . . . , Nr, by performing separate
operations on a fuzzy network with vertex sets V = Vc1 ×Vc2 .
Step 2: Calculate kecj (ceci ) =

µec(p.q)
σec(p)∧σec(q)

of all edges. Vertices are to be labeled as 1, 2, 3,. . ., n

Step 3: Find the membership function value for each node and edge of N1, N2, . . . , Nr using the
operations applied to the constructed network.
Steps 4: In the constructed network, e.g., N1, identify vertex ‘1′ of the maximum degree and color
all its incident edges such that no two incident edges receive the same color.
Step 5: Next, focus the direct neighbors of vertex 1, color the incident edges of the neighboring
vertex, and label them as 12, 13, . . ., 1m, if there are m neighbors. If the number of neighbors is
less than m, then use the minimum number of the same color used for vertex ‘1′.
Step 6: Proceed with Step 5 again until all the edges receive the colors. From the above step, we
get the minimum number of colors used to color the given network. Steps 4, 5, and 6 will continue
for the other constructed networks N2, . . . , Nr to find the minimum number of colors used to
color the edges of the networks.
Step 7: Find the minimal edge coloring set with the minimum number of colors used to color the
established network and the corresponding optimal weight of the colors.
Step 8: Find the lower domination number of established network N1, N2, . . . , Nr and let it be
γLDN1 , γLDN2 , γLDN3 , . . . , γLDNr , respectively.
Step 9: Find the minimum number of colors used to color the established network,
e.g., Sec1 , Sec2 . . . Secr , and its corresponding weight, e.g., WSec1, , WSec2 , . . . , WSecr of
N1, N2, . . . , Nr, respectively.
Step 10: Determine the minimal spanning tree of the constructed networks, e.g.,
ST1, ST2, . . . , STr of N1, N2, . . . , Nr, respectively, and let its corresponding minimum weight of
ST1, ST2, . . . , STr be MST1, MST2, ..., MSTr,

Step 11: Let ODNi denote the sum of the lower domination number of established network Ni and
the minimum weight of spanning tree Ni, that is, ODNi = γLDNi + MSTi . ONi is the sum of the
weight of the basic colors used in establised network Ni and the minimum weight of spanning
tree Ni, that is

ONi = WSeci + MSTi

Step 12: Optimal value of the established network using
domination,Oopt−DN = min

{
ODNi

}
i = 1, 2, . . . , r, and optimal value of the established network

using chromatic index, Oopt−CI = min
{

ONi

}
i = 1, 2, . . . , r.

Step-13: Effective optimal value of the established

network,Oe f f−opt−val = min
{

Oopt−DN , Oopt−CI

}
i = 1, 2, . . . , r.

End
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4.2. Flow Chart of the Algorithm

Figure 8, shows the flow chart of algorithm. We derived the following from Section 3.
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Let WSec1 , WSec2 , WSec3 , and WSec4 be the weight of the minimum number of basic
colors used in the residue product, symmetric difference, max product, and lexicographic,
respectively, and let its corresponding minimum weight of the spanning tree be MST1 ,
MST2 , MST3 and MST4 . Let ON1 , ON2 , ON3 , and ON4 be the sum of the weight of the
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minimum number of basic colors used in the established network and the minimum
weight of the spanning tree of the residue product, symmetric difference, max product, and
lexicographic, respectively.

WSec1 of RF1·RF2 is 4.68, and MST1 is 2.68. Hence ON1 = 4.68 + 2.68 = 7.36.

WSec2 of SDF1 ⊕ SDF2 is 10.75 and MST2 is 7. Hence ON2 = 10.75 + 7 = 17.75.

WSec3of MF1 ∗MF2 is 7.03 and MST3 is 9.29. Hence ON3 = 7.03 + 9.29 = 16.32.

WSec3 of LF1·LF2 is 9, and MST3 is 5.5. Hence ON4 = 9 + 5.5 = 14.5.

Let ODN1 , ODN2 , ODN3 , and ODN4 be the sum of the lower domination number and
minimum weight of the spanning tree of residue product, symmetric difference, max
product, and lexicographic, respectively

γLDN−RF1.RF2
of RF1·RF2 is 1.8, γLDN−SDF1⊕.SDF2

of SDF1 ⊕ SDF2 is 1.6.

γLDN−MF1.∗MF2
of MF1 ∗MF2 is 5.7 and γLDN−LF1.∗LF2

of

SLF1∗LF2 is 3.

Hence, ODN1 = 1.8+2.68 = 4.48, ODN2 = 1.6+ 7 = 8.6, ODN3 = 5.7 + 9.29 = 14.99 and

ODN4 = 3 + 5.5 = 8.5

The optimal value of the established network : Oopt−CI = mini
{

ONi

}
, i = 1, 2, 3, 4 = 3.36.

The optimal value of the established network using domination: Oopt−DN = min
{

ODNi

}
i = 1, 2, 3, 4 = 4.48

The effective optimal value of the established network: Oe f f−opt−val = min{Oopt−DN ,
Oopt−CI} i = 1, 2, 3, 4 = 3.36.

Comparison between the optimal value using the weight of the minimum basic colors
used and the domination number of the established network, as shown in Table 3.

Table 3. Comparison of ODNi and ONi .

S. No Established Network ODNi ONi

1 RF1·RF2 4.48 3.36
2 SDF1 ⊕ SDF2 7.6 7.75
3 MF1* MF2 14.99 12.32
4 LF1·LF2 8.5 8.5

Hence the effective optimal value of the established network using edge coloring is
more effective than the network using the domination number.

4.3. Applications of a Fuzzy Graph in a Social Network

Social networks have been around for a very long time. They apply the simple process
of extending the number of individuals you know by connecting with peers and so on.
Indeed, many of us now utilize social media platforms like Facebook and Twitter to promote
our present and potential enterprises. People who want to connect with other business-
related acquaintances frequently go to sites like LinkedIn. LinkedIn is a social media
website built especially for professional networking to assist people in finding a job, locating
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sales leads, and connect with possible business partners. Let us assume the presence of
group of people in a network, where G3·G4 is the network of organizations linked between
them. When these two networks collaborate, it is via a new fuzzy network created by
lexicographic product operation G3· G4. Here, the organizations that collaborated with
the people, if an applicant’s demands meets the organization’s needs, are represented as
vertices, and the information shared between them is represented as edges. Let us consider
a, b, c, and d as people with distinct skills and x, y, and z as organizations; see Table 4.

Table 4. Roles of vertices.

S. No Vertices Characteristic of Each Vertex

1 a Technical skills
2 b Data-driven skills
3 c Management skills
4 d Marketing skills
5 x Technology Company
6 y Consulting firms
7 z Retail and consumer goods company

Every applicant satisfies the minimum demand of the organization in terms of their
skills, so they are allowed to see what they are working on. Applying lexicographic product
operation, LinkedIn provides more personalized networking recommendations.

Above Figures 9 and 10 shows the fuzzy graph G3 and G4. When these networks
collaborate, they share information, form business-to-business relationships, provide ser-
vices to find jobs, and share market products in the network. A network of lexicographic
products of two graphs was constructed, as shown in Figure 7. For example, if “ax” is a
technology organization with one person with technical skills, they may have expertise in
the job of data scientist and they may share information about the needs of the organization
with “ay “(Big data developer) and” by” (Private Equity Analyst). With experts in the
fields of technical and data-driven skills, they collaborate to meet their own needs and,
likewise, share information. Using lexicographic products provides a comprehensive view
that can potentially reduce the complexity of analyses. This fully connected network makes
employees as well the organization more flexible in terms of sharing information that may
be depicted using six distinct colors, where each color represents the most efficiently shared
information; also, time management is taken into consideration, while the colors of the
edges, such as red, green, yellow and blue, provide information regarding the minimum
possible weight of the edges. The amount of information shared through edge coloring
is effective in networking; the chromatic index of the edges is the minimum that leads
to the optimization of the network. Vertices ay, by, cy, and dy seem to have a significant
influence and dominate in the network with minimum time management. The informa-
tion is used to curate relevant collaborations, thereby increasing knowledge sharing as
well as the profits benefits for the organizations and making the network more optimal.
Hence, using domination in the connected network, i.e., the colored minimum weighted
edges, enhances the allocation of resources by considering the timing and coordination of
interactions. The minimum weight of the edges contributes to more harmonious network
dynamics, ultimately improving the experience of users and achieving the network goals
more effectively.
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4.4. Applications of Fuzzy Graph Coloring in a Communication Network

Fuzzy graph coloring is used to build fault-tolerant routing schemes with acyclic
subnetwork in on-chip networks. Fuzzy graph coloring is a mathematical technique
that extends traditional graph coloring by allowing vertices to be partially colored with
fractional or fuzzy values, rather than being strictly assigned a single color. This approach
has been used in various applications, including fault-tolerant routing schemes in on-chip
networks with acyclic subnetworks. Fuzzy graph coloring can be applied in this context in
the following ways:

4.4.1. Fault-Tolerant Routing in On-Chip Networks

On-chip networks are essential components of modern microprocessors, enabling
communication among different cores and memory banks on a single chip. To ensure
reliability in these networks, fault-tolerant routing schemes are employed. These schemes
aim to find alternative routes in the presence of faults (e.g., faulty links or routers) to
maintain communication.

4.4.2. Acyclic Subnetworks

In some on-chip network topologies, acyclic subnetworks are used. Acyclic networks
have no cycles, meaning there are no closed paths or loops in the network. This property
simplifies routing but can introduce challenges in fault tolerance, since alternative paths
must be carefully chosen to avoid loops.

4.4.3. Fuzzy Graph Coloring

Fuzzy graph coloring can be applied to model and optimize the assignment of com-
munication routes within an on-chip network, taking into account the acyclic subnetwork
structure and fault tolerance requirements. It works as follows:

Vertex Coloring

In a traditional graph coloring problem, each vertex (representing a router or node in
the network) is assigned a single color, and adjacent vertices cannot have the same color. In
fuzzy graph coloring, vertices are assigned fractional colors, allowing multiple vertices to
share the same color value to a certain degree.

Edge Weights

In the context of fault-tolerant routing, edge weights can represent the reliability or
quality of network links. Faulty or less reliable links are assigned lower weights.

4.4.4. Optimization Objective

The goal is to minimize the total conflict among adjacent vertices while maximizing
the reliability of communication paths. This can be formulated as an optimization problem
where the fractional coloring of vertices and the selection of routes are jointly optimized.

4.4.5. Fault Tolerance

By allowing vertices to share colors to some extent and optimizing the assignment of
routes based on edge weights (reliability), the fuzzy graph coloring approach can help in
finding fault-tolerant routing schemes. The algorithm can find alternative routes that avoid
faulty components while maintaining the acyclic nature of the subnetwork.
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4.4.6. Implementation

Implementing fuzzy graph coloring for fault-tolerant routing schemes in on-chip
networks may require specialized algorithms and software tools. This implementation
may consider factors like the network topology, fault models, and communication patterns
specific to the on-chip network architecture.

Fuzzy graph coloring can be a useful technique for designing fault-tolerant routing
schemes in on-chip networks with acyclic subnetworks. It enables the optimization of
communication paths while considering fault tolerance and network reliability, ultimately
improving the robustness and performance of on-chip communication systems.

5. Conclusions

The implications of this study extend beyond theoretical frameworks and hold prac-
tical significance. The insights gained from our research have the potential to inform
decision-making processes, optimize calculations, and offer valuable guidance in various
real-world applications. This paper has described operations such as residue product,
symmetric difference, max product, and lexicographic on fuzzy graphs. Additionally, we
have tried to discover some of their characteristics to determine how effective they are, and
we have discussed how the lexicographic operation may be used in the real world while
using a minimal spanning tree approach, which was developed to perform activities with
minimal strength in a social network. The study will eventually cover additional processes
and include methods for maximizing the created network’s efficiency. In the future, we will
extend our studies to include intuitionistic fuzzy networks and neutrosophic networks.
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