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Abstract: This paper studies single change-point detection in the volatility of a class of parametric
conditional heteroscedastic autoregressive nonlinear (CHARN) models. The conditional least-squares
(CLS) estimators of the parameters are defined and are proved to be consistent. A Kolmogorov—-
Smirnov type-test for change-point detection is constructed and its null distribution is provided. An
estimator of the change-point location is defined. Its consistency and its limiting distribution are
studied in detail. A simulation experiment is carried out to assess the performance of the results,
which are compared to recent results and applied to two sets of real data.
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1. Introduction

Detecting jumps in a series of real numbers and determining their number and loca-
tions is known in statistics as a change-point problem. This is usually solved by testing for
the stationarity of the series and estimating the change locations when the null hypothesis
of stationarity is rejected.

Change-point problems can be encountered in a wide range of disciplines, such as qual-
ity control, genetic data analysis and bioinformatics (see, e.g., [1,2]) and financial analysis
(see, e.g., [3-5]). The study of conditional variations in financial and economic data receives
particular attention as a result of its interest in hedging strategies and risk management.

The literature on change-points is vast. Parametric or non-parametric approaches are
used for independent and identically distributed (iid) data as well as for dependent data.
The pioneering works of [6,7] proposed tests for identifying a deviation in the mean of iid
Gaussian variables from industrial quality control. Ref. [8] proposed a test for detecting
changes in the mean. This criterion was later generalized by [9], which envisioned a much
more general model allowing incremental changes. Refs. [10-12] presented a documentary
analysis of several non-parametric procedures.

A popular alternative to using the likelihood ratio test was employed in [13,14].
Ref. [15] reviewed the asymptotic behavior of likelihood ratio statistics for testing a change
in the mean in a series of iid Gaussian random variables. Ref. [16] came up with statistics
based on linear rank statistical processes with quantum scores. Ref. [17] looked at detection
tests and change-point estimation methods for models based on the normal distribution.
The contribution of [18] is related to the change in mean and variance. Ref. [19] proposed
permutation tests for the location and scale parameters of a law. Ref. [20] developed a
change-point test using the empirical characteristic functions. Ref. [21] proposed several
CUSUM approaches. Ref. [22] proposed tests for change detection in the mean, variance,
and autoregressive parameters of a p-order autoregressive model. Ref. [23] used a weighted
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CUSUM procedure to identify a potential change in the mean and covariance structure of
linear processes.

There are several types of changes depending on the temporal behavior of the series
studied. The usual ones are abrupt change, gradual change, and intermittent change. These
are studied in the frameworks of on-line or off-line data. Some papers dealing with this
problem are [24,25]. In this paper, we focus on abrupt change in the conditional variance of
off-line data issue from a class of CHARN models (see [26,27]). These models are of the most
famous and significant ones in finance, which include many financial time series models.
We suggest a hybrid estimation procedure, which combines CLS and non-parametric
methods to estimate the change location. Indeed, conditional least-squares estimators own
a computational advantage and require no knowledge of the innovation process.

The rest of the paper is organized as follows. Section 2 presents the class of models
studied, the notation, the main assumptions and the main result on the CLS estimators
of the parameters. Section 3 presents the change-point test and the change location LS
estimation. The asymptotic distribution of the test statistic under the null hypothesis is
investigated. The consistency rates are obtained for the change location estimator and its
limit distribution is derived. Section 4 presents the simulation results from a few simple
time series models. Here, our results are compared to some recent methods. They are also
applied to two real data sets. Our work ends with a conclusion in Section 5. The proofs and
auxiliary results are given in Appendix A.

2. Model and Assumptions
2.1. Notation and Assumptions

Let! and r be positive integers. For given real functions .A(«; z) defined on a non-empty
subset of R x R?, ¢ = I,r and K(¢;z) defined on a non-empty subset of R" x R! x RP,

o= (a1,...,00), P = (p7,07), 0T = (p1,...,0r), 0T = (61,...,0;). We denote:

o A(a;z) = (g;:(oc;z) gi(a z))T

?A ..
2 o .
00 A(x;z) = (aaiawj (;2);1<4,j < E)
15),@ IK T
Kp2) = (5o 020 5o (932

2K (9:2) = (%f( 12)eees g (052

2K (w;2) = FK (P;2);1<i<r1<j<I
P9 7 aplag] 7 ISR WA

02K
2K (2) = (apiap], (W21 <ij < )

’°K
2 ) —
862K(IP’Z) - 89189] (lp l
For a vector or matrix function {(x), we denote by 977 (x), the transpose of 9 (x).
We define:

v [0.K(¢;2) N 2K (rz) 95K (¢;2)
K2 = () ana 2 0i2) = (agpmﬁ;z) ik (yr2) )
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All along the text, the notations 4, and -2 denote, respectively, the weak conver-
gence in functional spaces and the convergence in distribution.

We place ourselves in the framework where the observations at hand are assumed to
be issued from the following CHARN (p, p) model:

Xy =m(0;Zs—1) +0(0;Zi-1)er, t €Z, 1

where p € N* [ J{oo}; m(-) and o(-) are two real-valued functions of known forms depending
on unknown parameters p and 6, respectively; forall t € Z, Z; 1 = (Xt—1/ Xt o,.nn, Xt,p) T
(€t);ez is a sequence of stationary random variables with E(e; | Z;—q) = 0 and
Var(e; | Z;—1) = 1 such that ¢ is independent of the c—algebra F;_1 = o(Zy, k < t).
The case p = oo is treated in [28-30] where the stationarity and the ergodicity of the process
(Xt)e7 is studied. Although we restrict to p < oo, all the results stated here also hold
for p = oo.

Letp = (o7,0T)T € ¥ = int(®) x int(®) C R” x R/, the vector of the parameters of
the model (1) and ¥ = (p§,6])" the true parameter vector. Denote by || M|| an appropriate
norm of a vector or a matrix M. We assume that all the random variables in the whole text
are defined on the same probability space (Q), F,P). We make the following assumptions:

(A1) The common fourth order moment of the ¢; is finite.
(A2)
e  The function m(-) is twice continuously differentiable, a.e., with respect to p in
some neighborhood B; of py.
e The function o(.) is twice continuously differentiable, a.e., with respect to 6 in
some neighborhood 5, of 6.
o  There exists a positive function w such that E(w*(Zj)) < oo, and

max{ sup |m(p;z)|, sup |[dpm(p;z)|, sup Haizm(p;z)"}éw(z)
peint(®) p€int(®) p€int(O)

maxq sup |0(6;z)|, sup |9gc(6;2)]], sup HaZZU'(G;Z)H < w(z).
feint(©) feint(©) feint(©)

(A3) There exists a positive function g such that E (8%(Zj)) < oo, and forall p, p; € int(®),

and 0y, 6, € int(®),

dpm(p1;2) — Ipm(p2;2)||,
o (61;2) — 0 (62;2)],
8520(91;2) - 6520(92;2) H}
< B(z) min{[lo1 — p21l5, [[61 — 621}

max{|m(p1;z) —m(p2;2)],

|22m(p1;2) — 22mp2iz2)
|0go(01;2) — 99 (62;2) ||,

(A4) The sequence (¢t),cy is stationary and satisfies either of the following two conditions:

)9/ < oo and

e a-mixing with mixing coefficient satisfying Y,~[a(n
Eleg|>T% < oo for some & > 0;
e ¢-mixing with mixing coefficient satisfying ), -;[¢(n

]E|80\4+‘5 < oo for some 6 > 0.

NY? < o and



Mathematics 2023, 11, 4018

4 of 31

2.2. Parameter Estimation
2.2.1. Conditional Least-Squares Estimation

The conditional mean and the conditional variance of X; are given, respectively, by
E(X¢ | Fi_1) =m(p; Z;—1) and Var(X; | F;_1) = ¢%(0; Z;_1). From these, one has that for
all z € RP,

E(X; | Zo = z) = m(p;z) and IE((X1 —m(p; Z0))? | Zo = z) = %(6;2).
Therefore, for any bounded measurable functions g(-) and k(-), we have
E{[X1 — m(p; Z0)]g(Z0)} = 0 and B ({ (X1 — m(p; Z0)” — 0(8; Zo) }K(Zo) ) = 0.

Without a loss of generality, in the following we take, for all z € R?, g(z) = k(z) = 1.
Now, given X_p41,...,X 1, X0, X1, ..., Xy withn > p, welet X, = (X_p+1,. .., X1, Xo,
Xi,...,Xu) and consider the sequences of random functions

n

(Xe —E(X; | Fi1))? = ;(Xt —m(p; Zi-1))?

Qu(p) = Qu(p:Xn) =

™=

,..
I
—

(0= m(p: 2 1) = (@ 71))

I
1=

Sn(p,0) = Sulp,0;Xy)

,..
I
—

We have the following theorem:

. . . -~ e T
Theorem 1. Under assumptions (A1)—(As), there exists a sequence of estimators ¢, = (pﬁ, @;[)

such that 1, —s g almost surely, and for any € > 0, there exists an event E with P(E) > 1 —,
and a non-negative integer ng such that on E, for n > ny,

o aann (0n; X)) = 0and Qy(p; X,,) attains a relative minimum at p = py;
*  assuming py fixed, %(lﬁn;xn) = 0 and S,((pn,0);Xy) attains a relative minimum
at 0 = GAn.

Proof. This result is an extension of [31] to the case (&;);c7 is a mixing martingale difference.
The proof can be handled in the same lines and is left to the reader. [

3. Change-Point Study
3.1. Change-Point Test and Change Location Estimation

We essentially use the techniques of [32], who studied the estimation of the shift in the
mean of a linear process by a LS method. We first consider the model (1) for known p, and
0(60;Z—1) = 069(Z;—1), for some known positive real-valued function éy(-) defined on R?
and for an unknown positive real number 6. We wish to test

Hy:0=9 =% overt<n
against

8, t=1,... t*
Hy:60= % v
1= {192, t=t"+1,...,n. (01 7 62)

where ¢, ¢, and t* are unknown parameters.

We are also interested in estimating ©#;, ¢, and the change location *, when Hj is
rejected. It is assumed that t* = [n7] for some 7 € (0,1), with [x] standing for the integer
part of any real number x. From (1), one can easily check that

(Xe = m(p;Z4-1))? = 6%(Zs1) + 8%(Zs 1) (8% - 1), teZ 2
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from which we define the LS estimator #* of t* as follows:
N k 2 n 2
t* := argmin |min Z (Wt2 - 19%) + Z (Wtz - 19%) , ©)]
1<k<n |09 |12 t=k+1

where Wy = (X¢ —m(p; Z¢—1))/00(Z;—1). Thus, the change location is estimated by mini-
mizing the sum of squares of residuals among all possible sample slits.

Letting
D 1 S - 1 G
W= ) Wi, Wy =——F ), Wrand W=} W,
t=1 t=k+1 t=1

it is easily seen that for some k, the LS estimator of #?(t < k) and #3(t > k) are Wy and

W,,_x, respectively, and that (3) can be written as

P g { (- W) s E (wow,) ]

I<k<n t=1 t=k+1 4)
= argmin S%.
1<k<n
n —\2
Let S? = Z <Wt2 — W) . A simple algebra gives
t=1
§? = SE+ Uy, (5)
where ., B .,
U, = k(Wk—W) +(1’l—k) (Wn—k_w) . (6)
From (4) and (5), we have
o= arg min (52 — Uk)
1<k<n 7)
= argmax U.
1<k<n

From (6), a simple algebraic computation gives the following alternative expression

for Uy: )
k
Ue = knn_k><2(wt2 ‘W)>

t=1

n k \°
. <z k(n_k)t_l(WfW>>
Tr.

- k
It results from (7) and (8) that

®)

= argmax T}
1<k<n
= argmax |Ty/|. 9)
1<k<n

Writing Tk2 = nA%, it is immediate that

1 £ )
A = k(nk)(t;(wtz_w)>
_ (nfk)(wk_w)z.




Mathematics 2023, 11, 4018 6 of 31
Simple computations give
k(n—k) — = \2
2 _
Ay = n2 (Wn—k - Wk) ’
from which we have
t* = argmax A} = argmax |Ag|. (10)
1<k<n 1<k<n

The test statistic we use for testing Hy against Hj is a scale version of max | Ty|-
1<k<n—1

One can observe that under some conditions (e.g., ¢ i.i.d. with e;~N (0, 1)), this statistic
is the equivalent likelihood based test statistic for testing Hy against Hj (see, e.g., [33]).

Let .
n n
Cr=Y W& Coy= Y WrandC,=) W7 (11)
t=1 t=k+1 t=1

By simple calculations, we obtain
k
_ n 2 W
T = k(n — k) t; (Wf W)

() (Gl 3e))

where ¢(+) is a positive weight function defined for any x € (0,1) by g(x) = /x(1 — x).

(12)

3.2. Asymptotics
3.2.1. Asymptotic Distribution of the Test Statistic

The study of the asymptotic distribution of the test statistic under Hy, is based on that
of the the process ¢, (-) defined for any s € [0,1] by

&n(s) = Cul(s) —sCu(1), (13)
where . ,
0 fo<s<—-—and 1—-—-<s<1
n n
[ns] 5 1 1
Culs) = Wi if - Ss<l—o (14)

t=1

n
YW oifs=1,
=1
where we recall that [ns] is the integer part of ns. For some é € (1/n,1/2) and for any s in
[0,1— 0], we define

_ Gnls) _ | Tu(s)]
Tu(s) = N0 and An—Kr?gl{é 5, (15)

where q(s) = \/s(1 —s) and Gy, is any consistent estimator of

o} =E(W? —E(le))z 2y B((Wi-E(WR)) (w2 —E(W?))).

t>2

For 6 € (0,1/2), we denote by Dy = D([d,1 — 4]) the space of all right continuous
functions with left limits on [§,1 — ] endowed with the Skorohod metric. It is clear that
Cn(')/gn(') € Dpand Tn(') € Ds.

Theorem 2. Assume that the assumptions (Aq)—(A4) hold. Then, under Hy, we have
1. CYI (S)

7i>§(s)inDoasn*>oo;

Tw\/h
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2. An& sup [B(s)]
s<s<i—s Aq(s)

where {E(s), 0<s< 1} is a Brownian Bridge on [0, 1].

asmn —» oo,

Proof. See Appendix A. O

It is worth noting that if the change occurs at the very beginning or at the very end of
the data, we may not have sufficient observations to obtain consistent LSE estimators of the
parameters or these may not be unique. This is why we stress on the truncated version of
the test statistic given in [21] that we recall:

T,
A, = max |Z<S)|, forany1 <v <
Ow

v v
nSs<l—g

NI

By Theorem 2, it is easy to see that forany 1 < v < n/2,

T, B
sup | i(s>| — sup [B(s)| £> Oasn — oo,
vgecl-L Tw veec1-y Aq(s)

which yields the asymptotic null distribution of the test statistic. With this, at level of
significance a € (0,1), Hy is rejected if A, > Cq,, where Cy , is the (1 — a)-quantile of the
distribution of the above limit. This quantile can be computed by observing that under Hy,
for larger values of 7, one has

~ IP’( sup 1B(s)] > Ca,n>, where h, (n) = v
hy (n)<s<1—hy (n) q(s) n

From the following relation (1.3.26) of [34], for each h,(n) > 0, and for larger real
number x, we have

Bl | 1=\ ()

P{hv(n)gssillahv(n) q(s) 23{} T p( 2 )[1< h(n) )

1. ((A=hn)?*\ 4 1
—len(w)ww(ﬂ)}

|B(s)|/q(s). Thus,

which gives an approximation of the tail distribution of sup

hy(n)<s<1—hy(n)
using 0y, an estimation of C,, can be obtained from this approximation. Monte Carlo
simulations are often carried out to obtain accurate approximations of C, ;. In this purpose,
it is necessary to make a good choice of v. We selected v = 0.9 x n*/? as our option, which
we found to be a suitable choice for all the cases we examined. But, to avoid the difficulties
associated with the computation of C, 4, a decision can also be taken by using the p-value
method as in [35]. That is using the approximation (16), reject H if

|B(s)]
IP( 7(s) >An> <.

This idea is used in the simulation section.
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3.2.2. Rate of Convergence of the Change Location Estimator

For the study of the estimator o weletk = x, = 19% — 19% and assume without loss
of generality that x, > 0 (02 > ¢1), k, — O0asn — o (see, e.g., [36]) and that the
unknown change point t* depends on the sample size n. We have the following result:

Theorem 3. Assume that (Ay) is satisfied, t*/n € (a,1 —a) for some 0 < a < 1/2, t* = [nT]
Knv/1
Vinn

. 1
Pt =0p( ),
()

where Op denotes a “big-O” of Landau in probability.

for some T € (0,1) and as n — oo, k, — 0 and

— o0. Then, we have

Proof. See Appendix A. O

3.2.3. Limit Distribution of the Location Estimator
In this section, we study the asymptotic behavior of the location estimator. We make
the additional assumptions that x, >> n~% and that as n —» oo,

Kn\/1

— oo and n%*gxn — oo for some { € <0,1>.

Vvinn 2
By (10), we have
t* = argmaxn (A,% - Afﬁ) (17)
1<k<n

To derive the limiting distribution of #*, we study the behavior of n(AZ — A2) for
those ks in the neighborhood of * such that k = [t* + rx;; 2], where r varies in an arbitrary
bounded interval [—N, N]. For this purpose, we define

Py(r) == n{A%({t* + rK,fZD - A%(t*)},

where A,(r) = Apy. In addition, we define the two-sided standard Wiener process
{B*(r), r € R} as follows:

B*(T) L Bl(—l’) if r<0
" Ba(r) if r>0,

where B;(r), i = 1, 2 are two independent standard Wiener processes defined on [0, o)
with B;(0) =0, i =1, 2.

First, we identify the limit of the process P, (r) on |r| < N for every given N > 0. We
denote by C([—N, NJ]) the space of all continuous functions on [—N, N| endowed with the
uniform metric.

Proposition 1. Assume that (Ay) holds, that t* = [nT] for some T € (0,1) and that as n — oo,
Kn/1n
Vinn
C([—N, NJ) to the process P(r) = Z{U’WB*(T’) - %|r| }, where B*(-) is the two-sided standard

Wiener process defined above.

kn — 0and — 0. Then, for every 0 < N < oo, the process Py, (r) converges weakly in

Proof. See Appendix A. O

The above results make it possible to achieve a weak convergence result for n(AZ — AZ)
and then apply the Argmax-Continuous Mapping Theorem (Argmax-CMT). We have:
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Theorem 4. Assume that (Ay) is satisfied, that t* = [nt| for some T € (0,1) and as n — oo,
Kn/1
Vinn

—— o0. Then we have

Ky, — 0and

K%l (?* - t*) £y s
o2 !

where S = argmax{B*(u) - 1|u\, ue R}.

2

Proof. See Appendix A. O

This result yields the asymptotic distribution of the change location estimator.
Refs. [37-39] investigated the density function of the random variable S (see
Lemma 1.6.3 of [34] for more details). They also showed that S has a symmetric (with
respect to 0) probability density function y(-) defined for any x € R by

70 =3 expllxhe( 32 y/ix) - 3o 5/,

where ®(-) is the cumulative distribution function of the standard normal variable. From
this result, a confidence interval for the change-point location can be obtained, if one has
consistent estimates of x2 and c2. With ¥, consistent estimates of 19% and 93 are given,
respectively, by

2 1 g 2 1 £ 2
Ky, = /f_-\* 2 Wt - = Wt
= b t=1

A consistent estimator of ¢ that we denote by 72 can be easily obtained by taking
its empirical counterpart. So, at risk « € (0,1), letting 41— be the quantile of order 1 — 5
of the distribution of the random variable S, an asymptotic confidence interval for ¢* is

given by
Cl=t=+ T +1
B (o K2 ’

Remark 1. In the case that the parameter p is unknown, it can be estimated by the CLS method
(see Section 2.2.1), and be substituted for its estimator in Wy. Indeed, one can easily show that

1& 1 & 1 & 1 &
t=k+1

where forany t = 1,...,1, Wy = (X; — m(pn; Zi—1))/60(Zi—1) and p,, is the conditional least
squares estimators of p obtained from Theorem 1. Hence, the same techniques as in the case where p
is known can be used.

4. Practical Consideration

In this section we perform numerical simulations to evaluate the performances of our
methods and these are applied to two sets of real data. We start with the presentation of
the results of numerical simulations found with the software R 4.1.1. The trials are based
on 1000 replications of observations of lengths n = 500, 1000, 5000 and 10,000 generated

from the model (1) for p = (po, p1,02)7; 0 = (60,61,02)7; m(p; x) = (po + p1 exp(—p2x?))x;
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a(0;x) = 05y(x) with &y(x \/92—0—92x2exp( 02x2); p2 > 0, pop1 = 0, 6, > 0 and

0< Q29% <1; (&t)ez isa Wh1te noise with density function f. We also assume the sufficient
condition |pg| + |p1] + |861] + 2p0p1 < 1, to ensure the strict stationarity and ergodicity
of the process (X;),. (see, e.g., Theorem 3.2.11 of [40], p. 86 and [41], p. 5). The noise
densities f that we employed were Gaussian.

Note that in the application to real data, only the points 2-7 of the above Algorithm 1
are considered, so that the change location estimation is given by point 7.

The change-point location is estimated using the following algorithm:

Algorithm 1 Change-point location estimation
1: fori=1,...,1000 do

22 fort=1,...,ndo Wy = (Xy — m(p; Xy_1))/0(Xs-1)
3: end for

4: Z I/\/v2

5: fork=1,...,n—1do T} = 1/ ZWt—

6: end for
7. Compute t = argmax |Ty| (that is the value of k for which |Ty| is the largest)

1<k<n
8: end for L
9: Compute L = (£; + 1 +. 1000) /1000

10: Change-point location estimatlon is given by t* = [L], the integer part of L

4.1. Example 1

We consider the model (1) for pg = p1 = 0, 6 = 0, 6p(X;—1)=4/0. 04+036Xt 17
% =1, =1+ ¢and &~N(0,1). The resulting model is an ARCH(1). The change
location estimators are calculated for ¢ = 0.3, 0.8 and 1.5 at the locations t* = T x n
for T = 0.25, 0.5 and 0.75. In each case, we compute the bias and the standard error SE
(SE = SD/+/n, where SD denotes the standard deviation) of the change location estimator.
Table 1 shows that the bias declines rapidly as ¢ increases. Also, as the sample size n
increases, the bias and the SE decrease. This tends to show the consistency of #*, as
expected from the asymptotic results.

We also consider the case &; = Be;_1 + 71, where || < 1 and 7:~N (0, /1 — p2). Itis
easy to check that with this (&), is stationary and strongly mixing, and that E(e;) = 0
and Var(g;) = 1. In this case, we only study the SE for n = 5000, 10,000 and the results
are compared to those obtained for e;~A (0, 1), for the same values of ¢ as above but for
T = 0.25 and 0.75. These results listed in Table 2 show that for ¢;~AN (0, 1), the location
estimator is more accurate and the SE decreases slightly compared to the case e;~AR(1).
It seems from these results that the nature of the white noise ¢; does not much affect the
location estimator for larger values of n and ¢.

Table 1. Change location estimation, its bias and SE for several values of ¢, n and 7 for iid &;~N (0, 1).

’ t* = 0.25n (T = 0.25) t* =0.5n (T =0.5) t* = 0.75n (T = 0.75)
n o~ ~ o~
t* SE Bias t* SE Bias t* SE Bias

500 181 49667 0.1120 277 3.4284  0.0540 384 3.3993 0.0180
1000 287 3.8961 0.0370 522 24946  0.0220 767 2.8024 0.0170

03 5000 1264  0.6270 0.0028 2516  0.6260 0.0032 3765 0.8172 0.0030
10,000 2517 04398 0.0017 5015 0.4131 0.0015 7515 0.4701 0.0015
0.8 500 137 1.8286  0.0240 258 0.9659 0.0160 383 1.0514 0.0160

1000 257 0.5079  0.0070 507 0.6687  0.0070 757 0.6378  0.0070
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Table 1. Cont.
t* = 0.25n (t = 0.25) t* =0.5n (t =0.5) t* = 0.75n (t = 0.75)
n — = —~

¢ t* SE Bias t* SE Bias t* SE Bias
0.8 5000 1256 0.1874 0.0012 2506 0.1750  0.0012 3755 0.1602  0.0010
’ 10,000 2506 0.1230  0.0006 5006 0.1388  0.0006 7505 0.1169  0.0005
500 130 0.8538  0.0100 254 0.4724  0.0080 379 0.4611 0.0080
15 1000 253 0.2662  0.0030 504 0.2884  0.0040 753 0.2562  0.0030
’ 5000 1254 0.1344  0.0008 2503 0.1053  0.0006 3754 0.1174  0.0008
10,000 2504 0.0880 0.0004 5004 0.0842  0.0004 7504 0.0753  0.0004

Table 2. Change location estimation, its bias and SE for several values of ¢, n and 7 for iid er~N(0,1)

and for g;~AR(1).

t* = 0.25n (T = 0.25)

t* = 0.75n (T = 0.75)

¢ n e~N(0,1) e~AR(1) e~N(0,1) £:~AR(1)
* SE Bias T SE Bias T SE Bias T* SE Bias
03 5000 1265 0.6091  0.0030 1286 2.6225  0.0072 3766 0.6596  0.0032 3776 1.2243  0.0052
’ 10,000 2516 0.4471  0.0016 2525 0.7136  0.0025 7515 0.4182  0.0015 7523 0.6563  0.0023
0.8 5000 1256 0.1701 0.0012 1260 0.2760  0.0020 3756 0.1818  0.0012 3760 0.2870  0.0020
’ 10,000 2506 0.1482  0.0006 2510 0.1907  0.0010 7506 0.1338  0.0006 7509 0.1835  0.0009
15 5000 1254 0.1165  0.0008 1256 0.1835 0.0012 3754 0.1154  0.0008 3756 0.1784  0.0012
’ 10,000 2503 0.0807  0.0003 2506 0.1284  0.0006 7504 0.0776  0.0004 7506 0.1263  0.0006

We present two graphs showing a change in volatility at a time *. This is indicated by
a vertical red line on both graphics where one can easily see the evolution of the time series
before and after the change location estimator t*. The series in both figures are obtained
for m(p;x) =0, 8p(x) = V14 0.036x2, n =500, T = 0.65, and ¢ = 0.8. That in Figure 1a is
obtained for standard iid Gaussian ¢;s. In this case, using our method, the change location
t* = 0.65 x 500 = 325 is estimated by #* = 326. The time series in Figure 1b is obtained
with e;~AR(1). In this case, t* is estimated by = 325.

Observed value at time t

Observed value at time t

T T T T
0 100 200 300 400
Time t

(a) ARCH(1) model, 7* = 326

Figure 1. Cont.

T T T T T
500 0 100 200 300 400
Time t

(b) ARCH(1) model, F* = 325

T
500
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(c) CHARN model, 7 = 326 (d) CHARN model, F* = 326

Figure 1. Estimation of change-point in volatility for 500 observations. (a) ARCH(1) model with
change point at * = 326; (b) ARCH(1) model with change point at P = 325; () CHARN model with
change point at t* = 326; (d) CHARN model with change point at t* = 326.

4.2. Example 2

We generate n observations from the model (1) for m(p;x) = (0.5exp(—0.03x?))x
and 0 (0; x) = 05p(x), dp(x) = V1+0.02x2, 91 = 1,8, = 1+ ¢ and &,~N(0,1). We assume
p = (po,p1,02)T is unknown and estimated by CLS method and ¢(6;.) is an unknown
function that depends on the unknown parameter §. We made 1000 replications for the
lengths n = 500, 1000, 5000 and 10,000 from this model. The change location estimator,
its bias and SE are calculated for the same values of ¢ and locations t* as in the preceding
example. The results given in Table 3 are very similar to those displayed in Table 1.

Table 3. Change location estimation, its bias and SE for several values of ¢, n and 7 for iid &;~N (0, 1).

t* = 0.25n (T = 0.25) t*=05n(t=05) t*=075n (T =0.75)
F* SE Bias * SE Bias F* SE Bias

500 182 49959  0.1140 280 3.2396  0.0600 387 3.0412 0.0180
1000 298 4.3560  0.0480 525 2.6278 0.0250 770 2.3343  0.0200

¢ n

03 5000 1267  1.7941  0.0034 2517  0.7852 0.0034 3767 0.7948 0.0034
10,000 2517 04716 0.0017 5016  0.4454 0.0016 7513  0.4245 0.0013

500 139 2.0945  0.0280 259 1.0386  0.0180 384 0.9061 0.0180

0.8 1000 259 1.1755  0.00900 506 0.4205 0.0060 757 0.5427  0.0070
’ 5000 1256  0.1780  0.0012 2506  0.1713 0.0012 3757  0.2107 0.0014
10,000 2506  0.1304  0.0006 5007  0.1375 0.0007 7506  0.1236 0.0006

500 135 1.8053  0.0200 256 0.9248 0.0120 382 0.7279  0.0140

15 1000 255 0.3217  0.0050 505 0.3138  0.0050 755 0.4666  0.0050

5000 1254  0.1469  0.0008 2505 0.1378 0.0010 3754  0.1325 0.0008
10,000 2505 0.1010  0.0005 5004 0.0912 0.0004 7504 0.0915 0.0004

As in the previous example, we present two graphs illustrating our method’s ability
to detect the change-point in the time series considered. On both graphics, one can easily
see the evolution of the time series before and after the change location estimator. The
series in both figures are obtained for m(p; x) = 0.5exp(—0.03x?)x, 5(x) = V1 +0.02x2,
n =500, T = 0.65, and ¢ = 1.5. That in Figure 1c is obtained for standard i.i.d. Gaussian
¢ts. In this case, using our method, the change location t* = 0.65 x 500 = 325 is estimated
by t* = 326. The time series in Figure 1d is obtained with AR(1) ¢;’s. In this case, t* is
estimated by * = 326.
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When performing our test, we used the p-value method. In other words, for the
nominal level & = 5%, we simulated 1000 samples each of length n = 100, 200, 500
and 1000 from the model (1) for m(p; x) = 0 and ¢(6; x) = 85p(x), dp(x) = v/0.99 + 0.2x2,
% =1,9 =1+ ¢ and &~N(0,1). We then calculated A, and counted the number of
samples for which

1 —A2 (1—hy(n))? 1 (1—hy(n))? 4
A Bk TR0 T P A oA /AN I PN (O Sl e VA =
ViIn p< 2 )[“( 2 (n) N TRe ) TR

and we divided this number by 1000. This ratio corresponds to the empirical power of
our statistical test for change in volatility. The results obtained are listed in Table 4. We

can clearly see that, when ¢ = 0, the empirical power of the test is almost the same as the
nominal level « for all # sizes (see Table 4).

<a,

Table 4. Statistical test powers for different ¢ values at different locations * = [nt].

n = 100 n = 200 n = 500 n = 1000
T 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
0 0.051 0.048 0.05 0.05

0.03 0.145 0.147 0.131 0.121 0.115 0.109 0.093 0.089 0.083 0.071 0.077 0.056
0.05 0.150 0.151 0.150 0.124 0.120 0.115 0.098 0.090 0.085 0.085 0.084 0.060
0.08 0.157 0.177 0.158 0.147 0.153 0.131 0.118 0.100 0.096 0.090 0.090 0.070
0.1 0.191 0.198 0.177 0.170 0.174 0.136 0.145 0.167 0.101 0.100 0.110 0.098
0.3 0.249 0.296 0.214 0.271 0.358 0.248 0.458 0.530 0.371 0.685 0.750 0.610
¢ 0.5 0.344 0.465 0.315 0.421 0.609 0.433 0.765 0.891 0.780 0.974 0.998 0.992
0.7 0.413 0.561 0.422 0.591 0.803 0.616 0.932 0.978 0.971 0.995 0.998 0.998
0.9 0.477 0.710 0.532 0.708 0.887 0.787 0.971 0.996 0.993 0.998 0.999 0.999
1.1 0.577 0.806 0.654 0.808 0.946 0.897 0.985 0.998 0.999 0.999 1.000 1.000
1.3 0.634 0.838 0.721 0.863 0.964 0.952 0.990 0.999 0.999 1.000 1.000 1.000
1.5 0.640 0.860 0.800 0.907 0.967 0.967 0.997 1.000 1.000 1.000 1.000 1.000

4.3. Comparison with Some Recent Algorithms

We compare our method, referred to as LS, with the Wild Binary Segmentation (WBS)
method studied in [42], and one of its variants, called Narrowest-Over-Threshold (NOT),
proposed by [43], as well as, the Iterative Cumulative Sum of Squares (ICSS) algorithm sug-
gested by [24]. All these methods are implemented under R software, and can, respectively,
be found in the packages wbs, not and ICSS.

Our comparison is based on n observations simulated from (1) for pg = p; = 0,
0, = 0, 6o(Xs—1) = 4/0.04+0.36X* |, %, = 1,8 = 1+ ¢ and &~N(0,1). The change
location estimators are calculated for ¢ = 0.3, 0.8 and 1.5 at the locations t* = 7 x n for
T =0.25 and 0.75.

From the results obtained (see Table 5), WBS, NOT and ICSS generate sequences of
change-point location estimates, some of which have values close to the true locations.
For n = 100 and n = 200, LS generally provides more accurate estimates t* of the true
change-point location than WBS, NOT and ICSS, for different ¢ and locations *. Among
all, it is generally the best, especially for larger values of n and ¢.
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Table 5. Estimates of change location derived from LS, WBS, NOT and ICSS for a sample with a
single break.

¢ =03 ¢ =08 ¢ =15
t* =0.25n t* =0.75n t* =0.25n t* =0.75n t* =0.25n t* =0.75n
Methods n T* T T* * T* *

LS 39 70 31 79 28 78
WBS 100 46|43 87|90 38/39 82|80 29/30 78|76
NOT 51|55 9 38|42 79/82(91|94 38|35 78|82
ICSS 12]48 68 31/43 7881 33/41 78(97

LS 57 145 54 157 52 155
WBS 200 70/66 175177 62|59 171|167 58(57 159|158
NOT 66/70|77 175|190|194 67|70 158|161 64|68 155|162
1CSS 66/87 80|159 61/76|87 159 59/66/170/187 156|173

4.4. Application to Real Data

In this section, we apply our procedure to two sets of genuine time series, namely, the
USA stock market prices and the Brent crude oil prices. As these have large values, we take
their logarithms and differentiate the resulting series to remove their trends.

4.4.1. USA Stock Market

These data of length 2022 from the American stock market were recorded daily from 2
January 1992 to 31 December 1999. They represent the daily stock prices of the S&P 500
stock market (SPX). They are among the most closely followed stock market indices in
the world and are considered as an indicator of the USA economy. They have also been
recently examined by [44] and can be found at www.investing.com (accessed on 1 August
2023).

In Figure 2, we observe that the trend of the SPX daily stock price series is not constant
over time. We also observe that stock prices have fallen sharply, especially in the time
interval between the two vertical dashed blue lines (the period of the 1997-1998 Asian
financial crisis).

7.0

Log_Price

o
3

6.0

1992 1994 1996 1998 2000
Date

Figure 2. Logarithmic series of S&P 500 stock prices from January 1992 to December 1999.

Denote by D; the value of the stock price for the SPX index at day ¢, and the first
difference of the logarithm of stock price, X; as

D
Xt = log(Dy) —log(Dy—1) = log(Dt tl >
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X; is the logarithmic return of stock price for the SPX index at day t.

The series (X;) is approximately piece-wise stationary on two segments and symmetric
around zero (see Figure 3). This brought us to consider a CHARN model with m(p; x) = 0,
So(x) = /6 + 61x2 for 6y = 1, 6; = 0, %1 and ¥, estimated by CLS described in Section 2.

Using our procedure, we found an important change point in stock price volatility on
26 March 1997, which is consistent with the date found by [44] (see Figure 3).

0.075

0.050

o
Q
o
a

Return Rate

0.000 §
¥
-0.025

-0.050

1992 1994 1996 ‘ 1998 2000
Date

Figure 3. Location of the change point in the volatility of the logarithmic stock price return series of
the SPX Index from January 1992 to December 1999.

The vertical dashed blue line of Figure 3 represents the date at which the change
occurred. It should be noted that the change in volatility coincides with the Asian crisis in
1997 when Thailand devalued its currency, the baht, against the US dollar. This decision
led to a fall in the currencies and financial markets of several countries in its surroundings.
The crisis then spread to other emerging countries with important social and political
consequences and repercussions on the world economy.

4.4.2. Brent Crude Oil

These data of length 585 are based on Brent oil futures. They represent the prices of
Brent oil (USD/barrel) on a daily basis between 4 January 2021 and 6 April 2023. They are
available at www.investing.com (accessed on 1 August 2023).

Figure 4 shows that the evolution of the daily series of Brent oil prices is non-stationary.
It also shows that stock prices fell sharply, especially in early March 2022 (the date of the
conflict between OPEC and Russia, when the latter refused to reduce its oil production in
the face of declining global demand caused by the COVID-19 pandemic).

4.7

Log_Price
I
[9,]

»
w

4.1

3.9
2021-01 2021-07 2022-01 2022-07 2023-01

Figure 4. Logarithmic series of Brent crude oil prices in (US dollars/barrel) from January 2021 to
April 2023.
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We follow the same procedure as in the previous example and obtain the logarithmic
transformation of the daily rate of return series for Brent oil (see Figure 5 below). Proceeding
as for the first data, the application of our procedure allows to find a change at 25 February
2022. The break date is marked by a dashed blue vertical line (see Figure 5).
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0.10

o
o
a

Return Rate

o
o
S

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
I
(]
]
1
1
-0.05 !
1
1
1
1

2021-01 2021-07 200801 2022-07 2023-01
Date
Figure 5. Location of change point in volatility of the logarithmic returns Brent oil series from January
2021 to April 2023.

It also performs well on these data. Indeed, oil volatility was very high in March
2022 due to the COVID-19 pandemic and the conflict between OPEC and Russia. The
health crisis led to a significant drop in global oil demand, while Russia refused to cut oil
production as proposed by OPEC, which caused oil prices to fall. Brent crude oil fell from
over 60 dollars a barrel to less than 20 dollars in a month.

4.4.3. Comparison with WBS and ICSS

This time, we compare our LS method with both the WBS and ICSS algorithms for real
S&P 500 stock market and Brent crude oil data, just as we carried out for simulated data. The
results shown in Table 6, indicate that WBS and ICSS produce sequences of change-point
location estimates, some of which are close to the actual locations. In contrast, LS provides
more accurate £* estimates of the actual change-point location than WBS and ICSS. This clearly
demonstrates that our method remains robust for both real and simulated data. Of all these
methods, LS generally stands out as the best for the examples we have considered.

Table 6. Estimates of change location derived from LS, WBS, and ICSS for real data S&P 500 stock
prices and Brent crude oil prices.

S&P 500 Stock Prices Brent Crude Oil Prices
Methods T T
LS 26 March 1997 25 February 2022
WBS 12 May 1997 26 January 2022

22 December 1998 | 26 January 1998

1CSS 20 April 1995 | 14 November 1996

14 January 2022

5. Conclusions

In this article, we have presented a CUSUM test based on a least-squares statistics
for detecting an abrupt change in the volatility of CHARN models. We have shown that
the test statistic converges to a supremum of a weighted standard Brownian Bridge. We
have constructed a change location estimator and obtained its rate of convergence and
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its limiting distribution whose density function is given. A simulation experiment shows
that on the example tested, our method generally performs better than the competitors
considered. Applied to real equity price data and real Brent crude oil data, our procedure
finds the change locations found in the literature. This is not the case with WBS and ICSS.
The next step to this work is its extension to the detection of multiple changes in volatility
of multivariate CHARN models.
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Appendix A

This section is devoted to the proofs of the results. Here, recalling that for any i € Z,

Wi = [X; —m(p;Zi—1)]/d0(Z;i_1), the sequence (Z;);cyz is the process defined for any
i € Zby

Z; = W? —E(W?). (A1)

We first recall some definitions and preliminary results.

Appendix A.1. Preliminary Results

Recall that (Q), F,P) is a probability space. Let X := (Xj, k € Z) be a sequence of
random variables (not necessarily stationary). For —co < i < j < oo, define the o —field

]-'l.j = 0(Xg, i <k <j)and for each n > 1, define the followmg mixing coefficients:

a(n) = ?ggzx(}" W’]:]oin)'
p(n) = jlelzw(f_wffin)

The random sequence X is said to be “strongly mixing” or “a-mixing” if a(n) — 0
as n — oo, “¢-mixing” if ¢(n) — 0 as n — co. One shows that ¢(n) < a(n), so that an
a-mixing sequence of random variables is also ¢-mixing. The following corollary serves to
prove Lemma A1l below.

Corollary A1 ([45]). Let {X,,n > 1} be a sequence of ¢p-mixing random variables with

Y [cp(n)]l/z < oo and {by, n > 1} a positive non-decreasing real number sequence. For any € > 0
n=1
and positive integers m < n, then there exists a constant C > 0 such that,

) secs (B

-

£ 7)

j=m+

SN"\.

max -—
m<k<n bk

where 07 = Var(X;) = E(X; - E(X;))"
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Lemma A1l. We assume (Ay) is satisfied, then there exists a constant Ko, such that for every € > 0
and m > 0, we have

1
P| sup -
(mgkgn k ;

1

Proof. By substituting by by k, X; by W? in Corollary A1, for any € > 0 and positive integers
m < n, we obtain

L[ Var(Wf) n Var(W]-z)
P - < Ce™ _— i A2
mn<ll?i(n i ]; m?2 +].=%1 72 (A2)
Since
W2 — 8262 if 1<t <t
f ®3e2 if t* <t<n,
we have

E(W) = BIE(e}) i 1<t<r
(et <

n,

which in turn implies that for any 1 < j < n, there exists a real number M > 0 such that
2
Var(wf) - E(W}) - (E(WE)) < M. (A3)

From (A2) and (A3), we have

1 k
Pl max —|Y Z|>e| < MCe?2[ =+
(’”gkg”k z; l ) < ];H] )
3MC
Soe2m

This proves Lemma Al for Kg = 3MC. O

Remark A1. Taking by = vk and m = 1 and proceeding as in the proof of Lemma A1, one has
by (A2) and (A3), for some Cy > 0,

k n
MC; &1
_ < —
(m VAR /6) <@L
Czln}’l
< 2
from which it follows that,
sup — fz o) (\/lnn) (A4)
= P _
1<ken Ve[S

Lemma A2. We assume that (Ay4) is satisfied, and t* = [nT] for some T € (0,1), then for every
€ > 0, there exists Ly > 0 and Ne € N* such that, for all n > Ng, the estimator F* satisfies

p(;?*_t*y>L0“;’<1“”> <e
n

Proof. For proving the consistency of an estimator obtained by maximizing an objective
function, we must assert that the objective function converges uniformly in probability to a
non-stochastic function, which has a unique global maximum. More often than not, it is
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to show that the objective function is close to its mean function. Our problem’s objective
function is |Ag|, k =1,2,...,n — 1. It results from (10), that

t* = argmax A} = argmax |Ag|,

1<k<n 1<k<n
where we recall that
k(n—k) — —
mz—%TJM%rWQ (A5)

It is possible to simplify the problem by working with A without the absolute sign. We
thus show that the expected value of A, has a unique maximum at t* and that Ay — E(Ay),
is uniformly small in k for a large n.

We have

Akl = 18] < 1A% —E(8g)] + 1A — E(Ar)| + [E(A)] — [E(Ar)]

A6

< 2( sup |AkE<Ak>|>+|E<Ak>|E<At*>|. (86
1<k<n

In order to simplify without losing generality, it is assumed that n7 is an integer equal
to t*,i.e., T = t*/n. Let d = k/n and demonstrate first that

[E(Ap)] = [E(Ax)| > Keken|d — 7,

for some Ky > 0, where «,, = 93 — 92 such that x, > 0.
For this it is sufficient to consider the case where k < t* due to the symmetry. Then,
from (A5) and according k < t*, we obtain

E(A) = ]E(Wn k= Wi)
_ vk ]E<1 nw?-‘—lka)
”_kz—%l ! ki; !
* k
- OB (£ we £ ow)-lrw)
i —k i=k+1 i=t*+1 kz:l
AT ﬁ(( — k)9 + (nft*)ﬁ%)fﬁ%
/7_( — k)8 + (n— )% — (n—k)F )
i n—k
\/7'0 —n)0? + (n — t*)03
i n—k
n
4(1 d)(n k)( 19%)
1-7
= d(ld)(l_d>1cn.
In particular, E(A) = 1/7(1 — T) &, therefore we obtain

R R e (=)

_ 1_Tl¢l_f Vi (A8)
- (D[]
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1 1-71
> EKn(T —d) p
Let K; = %1 / 1_TT, then through (A8), we have shown that
|E(A#)| — |E(Ag)| = Keknld — 7. (A9)

We clearly see that the previous inequality indicates that |E(A)| achieves its maximum
atk =t*.
R From Equations (A6) and (A9) and ‘A?*
t*/n, we obtain

— |Ap| = 0, immediately by replacing d by

[E(Ar)] — [E(A3)] < 2( sup |Ay —E(Ak>l>, (A10)

1<k<n

and
KTKH T *
[E(Ae)| = [E(Ar)| > —=[F —+7]. (A11)
From (A10) and (A11), we obtain

[P — | < 2n(Kekn) ™" sup |Ap — E(Ap)]- (A12)

1<k<n

From (A5), we obtain

M—E(sy) = YKy

n
k(n—k){ 1 i 1 }
= Zi—--Y Z (A13)
n n—k. G kE
1 [k 1 n 1 k1 &
= - Zi——J1--—-Y Z
Vn nVn_kiz%—l 1 n n kz; l
It results that,
A—EB) < 2|y zl4 2 iz (A14)
k— IS —F= i\t —F= i| (-
vn vn—k|; 55 l \/Eizl l

From (A4), we deduce that the right side of the inequality (A14) is Op (\/ In n) /\/n
uniformly in k. It follows from (A4), (A12) and (A14) that

e X _ n
=t = Tl\/ﬁop(vlnn)
(\/nlnn>
= Op .
Kn

As a result, for all € > 0, there exists Ly > 0 and N € N* such that, for all n > N,

we obtain
vnlnn )
<€
Kn

P(]?*t*y > Lo

Which completes the proof of Lemma A2. O
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Appendix A.2. Proofs of Theorems

Appendix A.2.1

Proof of Theorem 2. Under Hj (i.e., §; = ), by simple will of simplicity we take ¢; = 1.
n

Let (Yi)iez = (W? — 1);ez and SY = Y Y; = C, — n. With this, E(SY) = 0 and from
=1
simple computations, E (SY)2 = Var(C,) = Var(¥}_ 1 e7).

2 2

Since Var(Y.; ; €?)/n 25 02 asn — oo, E(Sy) /n 22 02 as n —» oo. This result
is guaranteed by assumption (A4) (see, e.g., [46], p. 172). It is possible to use weak
invariance principles for the sum of the underlying errors (see, e.g., [47]). Let M,, be the
random variable defined from the partial sums Sg , S}(, s, SZ (Sg = O). For points k/n in
[0,1], we set

k 1

() = PV

and for the remaining points s of [0, 1], M,(s) is defined by a linear interpolation, that is,
foranyk =1,...,n—1,and forany sin [(k —1)/n,k/n],

k k—1

P k—1 5~ k
_ n n Kk
Mn(s) = l Mn( " ) + 1 Mn(n>

n n
R ( k1> 1
Uw\f k=1 n Uw\f

Since k — 1 = [ns] if (k —1)/n < s < k/n, we may define the random function M(s)
more concisely by

My(5) = ——={ S}y + (s = [15])Yjygj 1 }-

Ow \F

Under assumption (A4) and by using a generalization of Donsker’s theorem in [46],
we have p
M, — Bin D([0,1]) asn — oo,

where {B(s), 0 < s < 1} denotes the standard Brownian motion on D([0, 1]). We can also
prove this outcome by using Theorem 20.1 of [46].
So,

Ma(s) — sMy(1) - B(s) in D([0,1]) as n — oo,

where {E (s), 0<s < 1}, stands for the Brownian Bridge on D([0,1]).
Letns=k; k=1,2,...,n, then

_ _ y |, (ns—[ns])
Mn (S) SMn(l) = Uwf{ }’lS] SS[H]} + o'w\/ﬁ Y[ns]+1'
Since
su ns—[ns] i>0asn—>c>o
0<s£l Tw\/n Yinsl1 '
we have
Uzu\f( SS[H]) B(s) in D([0,1]) as n — co. (A15)

It is easy to check that

Y
Sins] ~

SSE;] = (u(s), this according to the relation (13). (Al6)
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From (A15) and (A16), it follows that

Cn(s) d %

- — B(s) in D([0,1]) as n — oo.

N

Hence,

Cn(s) d =0\,
— B D([6,1-9¢ — 00, Al7
L B(s)in D1~ d)) asn —» o9 (A17)
from which the proof of Part 1 is handled. Note that this proof could be found using
Theorem 2.1 of [48]. For the proof of Part 2, by the continuous mapping theorem, it follows
from (A17) that
Gu(s)| D B(s)|

sup ———>— — sup
s<s<1—6 Tw\/1q(s) s<s<i—s 4(8)

asn —» oo. (A18)

Whence, as 0y, is consistent to oy, from (15) and (A18), we easily obtain

T, B
wp T 2, (o 1B
o<s<l—6  Tw 5<s<1-0 q(s)

asn —> 0. (A19)

This completes the proof of Part 2 and that of the Theorem 2. [J

Appendix A.2.2
Proof of Theorem 3. We need only to prove that T — T = Op(n~'x,,2). For this, we use
Lemmas Al and A2. From Lemma A2, we have P = Op (\/ nln n) Ky 1 which implies

P/n — t/n = Op (\/ In n) /(kpy/n), which in turn is equivalent to
T—T= (\/lnn/ (Kn\/ﬁ)>O[p>(1).

As, k, — 0and (k,/n)/VInn — oo, as n —» oo, it is clear that T — 7 = op(1),
which shows that T is consistent to T.

Since T € (a,1 — a) for some 0 < a < 1/2, using the above results, it is clear that for all
€>0,P(T¢ (a,1—a)) < e/2forlarger n. Thus, it suffices to investigate the behavior of Ay
for na < k < n — na. In this purpose, we prove that forall € > 0, IF’(\? — 1| > K(nx?2) 71) <e€

for larger n and for some sufficiently large real number K > 0.
We have

IP’(|?—T| > nﬁ;) < IP’(?—T| > % 7e (a,l—a)) +PEE (01— a))

n

< IP’(?—T| > Te (a,l—a)> + (A20)

NI ™

2 7
nx;

€
< IED<511]P|Ak| > |At*|> Y
keEk

where EX = {k: na <k<n—na, |k—t*| > Kx,2}. We study the first term in the right-
hand side of (A20). For this, it is easy to see that

P(sup|Ak| > |At*|) < P(supAk+At* go) +P<supAkAt* > O)
keEk keEk keEk (A21)
< P+P,

where P} = P(supAk + Ap < 0) and P, = P(supAk — Ap > O).
keEk keEk
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As E(Ay) > 0 for all k, it is obvious that

A +Ap <0 =

AV E(Ak) + Ap — E(At*)
A —E(A) + Ay — E(Ap)

< —E(A) —E(Ar)
< —

— E(At*)
1 1
= A~ E(Ar) < —5E(Ar) or A —E(Ar) < —5E(Ar)
1 1
— ‘Ak —E(Ak)| > EE(A;}*) or |At* —E(At*)‘ > EE(A,}*)
Then,
1 1
P < IP><51119A1<—E(Ak>| 2 ZE(At*)> +IP°<|At* —E(Ax)| 2 2E(At*)>
keEk
1
< 2P( sup|Ar —E(Af)| = E(Ag) |.
keEX 2
From (A13), we have
kn—k [ 1 & 1
Ay —E(Ay) = { Y, Zi-2Y Zi).
n n—k. g kE
Then,
1
Pl < 2P sup\Ak —E(Ak)| 2 7E(At*)
keEk 2
— n k
< 21P><sup k(n k){ ! zl—lzzl} 21E(At*)>
keEk " n—kh k= 2
k k 1 1 1
< 2P| sup (1—){ 2 Zi—zzi} >E(At*)>
(keEg n n)\n—k. k= 2
k 1 4 1 1
< 2P| sup q(){ Z ZZ—ZZZ} ZIE(At*)),
keet| \/ M=K k=S 2
where q(k/n) = /k/n(l—k/n). As0 < gq(k/n) <1lforallk =1,...,n, we can write
1 & 1¢ 1
P < 2P| sup|y — Z Z— = ZZZ' > -E(Ap)
P i ki3 2
1 1
< 2P| sup Y Zi| = -E(Ar) (A22)
k<n—nat k i=k+1 4
+2P sup1 Xk:Z > 1E(A )
- | = 7 t* .
k}mzk i=1 : 4
From (A22) and Lemma A1, there exists K; > 0 and K; > 0 such that,
1 x 2 1 Kl 5 +2 1 K2 >
na<4E(At*) na(4E(At*)>
_ 3207 N(E(Ar) (K + Ky)
~X n 7
which implies that as n — oo,
Ve >0, P < Z. (A23)



Mathematics 2023, 11, 4018 24 of 31

Now, we turn to the study of P, = P <sup Ay — Ap 2 O> . Observing that
keEk

De— B >0 = A —E(A) — (A —E(Ar)) > E(Ar) —E(ay),  (A24)

and that from (A9)
KTKn

E(Ar) —E(Ay) > [k —t7], (A25)

it results from (A13) that

n k
B —E(8) — (A —E(8r)) = q(,’j){nlkx ,1(221}

EREe G

where
Y1 & k\ 1
Fl(k)—q<n>t*; 1—q<n>ki_zlzi, (A27)
and , ,
k 1 t* 1
F(k) = q() Z; —q() - Z;. (A28)
n n_ki:;—l—l l njn—t i:;H l
By (A24)—(A26), we can observe that
KTKn
A —Ap 20 = |F1(k)+F2(k)| |k ‘
Kx Kix
= |F(k)| > T"Ik*f\orIFz()\ T”Ik*fl‘

From above, we obtain

K
Pz =P supAk — At* = 0 < P supkL*|F1(k)| = Tan
keEk keE£§| —
K (A29)
+P sup%\l—ﬂz(kﬂ > T
keEk |k — t¥| 2
= D1+ Pap.

It is suffices to consider the case where k < t* and k € Ef due to the symmetry.
Specifically, we restrict the values of k such that na < k < nt — Kx;; 2.
From (A27), F; (k) can be rewritten as follows:

)5 Fa () (DL £ oo

i=k+1
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Asq(k/n) = /k/n(l—k/n),k =1,...,n, one can easily verify that

’q(t) q(i)' < %|t* — k|, for some C > 0. (A31)

n

From Equations (A30) and (A31) and k > na, one obtains

(A32)

According to the previous inequality and the fact that na < k < nt — Kk, 2, one obtains

n 1 |& Clg 1 o
—— Rk < —|) Zil+—|) Zi|l+ —— Zi|. A
|kft*||1< )|\anrg i +an; i +a(m‘—k) i:%1 i (A33)
Inequality (A33) implies that
n Kk 1 |& Clg 1 o Kk
——|F (k)| > —\) Zil+—=|) Z Zil > —=
|k—t*]|1( 2= = anrl; ! +an; l+a(n7—k) i:;l o2
N 1 nT z|> aKix,
nt = 6 A3d
1| & aC~ 1K x, (A34)
or — ZZI' >
n|—= 6
or 1 "ZT: . aKx,
(nt—k) |, 4%, ! 6
Which implies that
Py = P supL*|F1(k)| > Katen
keEk ke — 7] 2
nt k -1
. P(l 32| > K) m(sup P CI<>
nt|—= 6 P ) P 6
nt
+P sup ;k Z Zl 2 ﬂKTK'rl
na<k<nt—Ki; 2 (nT k) i=k+1 6

= P+ Pp+Poig.

From Lemma Al, all the three terms P, 1 1, P> 12 and P, 1 3 tend to O for larger n and for
some sufficiently large real number K > 0. This implies that for larger values of n and for
alle > 0,1 <e/8and P,y < €/8. It easily follows from these that for larger values of n,

€

Ve >0, Py < 5 and Py < g (A35)
It follows from (A21), (A23), (A29) and (A35) that
Ve >0, P( sup|A > |An] | < <. (A36)
keEk 2

Thus, for larger values of n and for some sufficiently large real number K > 0,
from (A20) and (A36), we can conclude that, foralle > 0, P(|T — 7| > K/ (nx2)) < ¢, that
isT— 1 = Op(1/(nx3)), equivalently
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. 1
Pt =0p( = ),
()

which completes the proof of Theorem 3. [

Appendix A.2.3

Proof of Theorem 4. It suffices to use Proposition 1 and apply the functional Contin-
uous Mapping Theorem (CMT). Let Cmax([—N, N]) be the subset of continuous func-
tions in C([—N, N]) for which the functions reach their maximum at a unique point in
[—N, N], equipped with the uniform metric. It creates no doubt that Proposition 1 im-
plies that the process n{A2([t* +rx,2]) — A%(t*)} converges weakly in C([—N, N]) to
2{owB*(r) — |r|/2}. Now, from (17), we define

t = argmax {n(ATt*HKZ] — A%), —-N<r< N}.
lg[t*+rx;2]<n :

Since the Argmax functional is continuous on Cmax([—N, N]), by the Continuous
Mapping Theorem,

N 1
K2 (t — ) N arg max Z{UwB*(r) — 2r|}.

r

Since bB*(r) and B* (b?*r) have the same distribution for every b € R, by the change of
variable r = o3, it is easy to show that

1 1
arg max Z{UwB*(r) - 2|r} = arg max Ui{B*(u) - 2|u|},
u

r
and it follows that

(B — )

%

1 —-N N
N arg max {B*(u) - §|u\, ue |:Uzzulaz2u] }

Clearly, almost surely, there is a unique random variable Sy, such that

) 1 sy 1 N N
B*(Sn) — §|SN| = sup{B (u) — EM’ uec |:‘7-¢2(;/025211:| }’

and Sy — Sas.,as N — oo, where S is an almost surely unique random variable
such that

() - 3151 = sup{ B (1) = 3lu]}.

ueR

Hence,

AGESS 1
(= F) 2, arg max {B*(u) - ]u|},
o2 2
w ueR
and the proof of Theorem 4 is completed. [

Appendix A.3. Proof of Propositions

Proof of Proposition 1. We just study the case where r is negative. The other case can be
handled in the same way by symmetry. Let EY be the set defined by

E,Il\] = {k; k= {t*—i—m;z} forall —-N<r go}.
We have

n(A% - A%*) = 2nAp (Mg — Ap) + (A — A )?
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= 2n(Ap —E(Ar))(Ax — Ap) + 1D — Ap)?
+271]E(At* ) (Ak - At* ) (A37)

We first show that the first two in the right-hand side of the above equality are
negligible on EY. As from (A14), \/n(Ap — E(Ar)) is stochastically bounded, it is therefore
sufficient to show that \/7(A; — As+) is negligible over EY. For this, we write

VilAe—Ap| < VA —E(A) — Ap + E(Ar)| + Vi [E(Ar) — E(Ar)]|
VlFi (k) + B2 (k)| + Vn[E(Ar) — E(Ar)]
ViR (k)] + Va|B(K)| + Val[E(Ar) - E(Ar)],

where F; (k) and F, (k) are defined by (A27) and (A28), respectively, and prove that each of
the right-hand terms of the above last inequality converges uniformly to 0 on EY. Notice
that if k € Efy then k < t* and there exists 0 < a < % such that k > na. Thus, the
inequality (A32) holds and we have

N

C n(t* —k) | & n| &
ViR < YE K Sl =Ry g VI Yzl (ass)
ant an i1 an |, 5=
On the one hand, for k € E,Il\[, we can write
e # -2 £
NI * ' g NK,: 1 5 1‘
ant = at* | \/n ‘=
N |1 &
< —=|—=) Z
anti? | Vn l; : (A39)
1
= @OP( lnn>
= op(1)

uniformly in k, where op denotes a “little-0” of Landau in probability. This is due to (A4) and
to the fact thatas n — oo, nK%/\/ Inn — oo because n%’gm — oo for some { € (O, %)
In a similar way, we have

C\f t*—

k

Z

=1

_2\[

ClTl

N

111’11(2 le
ez 02 (Vi)

= O]P’(l)

uniformly in k. On the other hand, if k € EN, there exists b > 0 such that x,, < b/ (t* — k).
Consequently, we have

p* I
ﬁ Z Zi‘ = Kn Z Z;
an | i=k+1
b 1 i
< z
V zkz—&-l l
= Kn\/ﬁolp(vlnn)
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uniformly in k, and we have proved that \/n|F; (k)| = op(1) uniformly on EJ. Based on
the same reasoning and the same way, we can establish that /n|F,(k)| = op(1) uniformly
on EN.

From (A7), we have

0 <E(Mr) —E(A) = /t(1—7)Kn — d(l—d)(i_;)xn

I
=
7 N
2R
~__
b
&
|
=
Y
S|
~
==
]I
> %
2
=

I
N
-
VR
%
N———
|
)
N
S| =
N———
S~
=
N
_|_
-
7 N
S| =
N——
2%
L]
=
=
2

From (A31), since k € EY, it is obvious that

t*—kK
n—k "

VilE(Ar) — E(A)|

N

\/ﬁ<5|t* - k|1cn) +/n

- ()

= op(1)

uniformly in k. Thus, we have proved that \/n(A — A+ ) = op(1) uniformly on EL.
Now study the asymptotic behavior of 2nE(Aw)(A; — Ap) for k € EN. For this,
we write

ZHE(At*)(Ak — At*) = ZnW Kn <A{t*+m;2] o A[t*]) (A40)

= 24/7(1— 1) nx, (A[t*+rx,;2] - A[t*]).

2

For the sake of simplicity, we assume that t* + rx;, 2 and r«; 2 are integers. Then,

from (A26), we have

nKy (A[t*_"_m;z] — A[t*]) = l’lKn(Ak - At*)
nin{ A — E(Ag) — (A — E(Ap))} — nkn (E(Ap) — E(A)) (A1)
= nky(F (k) + F(k)) — niy (E(Ap) — E(Ag)),

where Fj (k) is given by (A30). Using the same reasoning as the one which led to (A39), one
can prove easily that the first two terms of (A30) multiplied by nx, are negligible on EY,

and that
#\1 & #\ n &
”K”q(n)k Y & = 4<n>k ) Zi)

i=k+1 i=t g 241

#\ n AT
q <n> 7 21 Zj+t*+rx;2
]:

t* n “'flK;z]
- q(n>k K 2 Zjrrin? |-

j=1

_2 (see,

A functional central limit theorem (invariance principle) is applied to Z T

e.g., [49]). Thus, we have

[Irlxi?]
d .
Kn Zj+t*+TK;2 — UwB1(|r|) m C([_N’ 0])’
=
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where By (-) is a standard Wiener process defined on [0, c0) with B;(0) = 0. It is clear
that if k € EY, then n/k converges to T—! and g(t*/n) converges to q(t) = /7(1 — 7).
Consequently,

oy (£ + i, 2) = V71 =) YouBy(|r]) in C([-N, 0)).

By the same reasoning, one can show that

-2
- #\ n (17| ]
niy B (t* + 7K, 2) =op(1) + q<n> — (Kn . Zipimi? |

j=1

and that
Ow

i, (pl (t* n m;z) + F2(t* + rxﬁz)) o NG

By(|r]) in C([-N,0)).  (A42)

From (A7) and (A8), we have

e (B(8) ~B(3)) = (/71— 1) A=) (155 ) )
~1
= nK%(I:§)<\/i+\/E> .

Using the fact that for k = t* +rx,? and d = k/n converges to T, we find
nx2(t —d) = —rand

i (E(Ap)) =E(Be i) ) %N% (A43)

From (A40)—(A43), we conclude that

2nE<A[t*]) (A[t*wﬂ - Am) A, 2{%31@) - Z'} in C([—N,0]).

From the previous result and (A37), we find that

n{ (83 ([ +m2])) - 83} < 2w - B inci-n,
which writes again
Pa(r) - 2{UwB1 (r) — |;|} in C([-N,0)).
By the same reasoning, one can prove that
Putr) 5 2{oupa(r) = b in co ),

where B,(-) is a standard Wiener process defined on [0, c0) with B;(0) = 0.
Given that By (+) and B,(-) are two independent standard Wiener processes defined
on [0, 00),
P.(r) - 2{%3*@) - Z'} in C([-N, NJ),
where B*(.) is a two-sided standard Wiener process. This completes the proof of
Proposition 1. [



Mathematics 2023, 11, 4018 30 of 31

References

1. Hocking, T.D.; Schleiermacher, G.; Janoueix-Lerosey, I.; Boeva, V.; Cappo, J.; Delattre, O.; Bach, F,; Vert, ].P. Learning smoothing
models of copy number profiles using breakpoint annotations. BMC Bioinform. 2013, 14, 164 . [CrossRef] [PubMed]

2. Liu, S; Wright, A_; Hauskrecht, M. Change-point detection method for clinical decision support system rule monitoring. Artif.
Intell. Med. 2018, 91, 49-56. [CrossRef]

3. Lavielle, M.; Teyssiere, G. Adaptive detection of multiple change-points in asset price volatility. In Long Memory in Economics;
Springer: Berlin/Heidelberg, Germany , 2007; pp. 129-156.

4. Frick, K,; Munk, A.; Sieling, H. Multiscale change point inference. ]. R. Stat. Soc. Ser. B (Stat. Methodol.) 2014, 76, 495-580.
[CrossRef]

5. Bai, J.; Perron, P. Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica 1998, 66, 47-78. [CrossRef]

6. Page, E.S. Continuous inspection schemes. Biometrika 1954, 41, 100-115. [CrossRef]

7.  Page, E. A test for a change in a parameter occurring at an unknown point. Biometrika 1955, 42, 523-527. [CrossRef]

8.  Pettitt, AN. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126-135.
[CrossRef]

9.  Lombard, F. Rank tests for changepoint problems. Biometrika 1987, 74, 615—-624. [CrossRef]

10. Scariano, S.M.; Watkins, T.A. Nonparametric point estimators for the change-point problem. Commun. Stat. Theory Methods 1988,
17,3645-3675. [CrossRef]

11.  Bryden, E; Carlson, ].B.; Craig, B. Some Monte Carlo Results on Nonparametric Changepoint Tests; Federal Reserve Bank of Cleveland:
Cleveland, OH, USA, 1995.

12.  Bhattacharya, P; Zhou, H. Nonparametric Stopping Rules for Detecting Small Changes in Location and Scale Families. In From
Statistics to Mathematical Finance; Springer: Cham, Switzerland, 2017; pp. 251-271.

13. Hinkley, D.V. Inference about the change-point in a sequence of random variables. Biometrika 1970, 57, 1-17. [CrossRef]

14. Hinkley, D.V. Time-ordered classification. Biometrika 1972, 59, 509-523. [CrossRef]

15.  Yao, Y.C,; Davis, R.A. The asymptotic behavior of the likelihood ratio statistic for testing a shift in mean in a sequence of
independent normal variates. Sankhya Indian J. Stat. Ser. A 1986, 48, 339-353.

16. Csorgo, M.; Horvéth, L. Nonparametric tests for the changepoint problem. J. Stat. Plan. Inference 1987, 17, 1-9. [CrossRef]

17.  Chen, J.; Gupta, A. Change point analysis of a Gaussian model. Stat. Pap. 1999, 40, 323-333. [CrossRef]

18. Horvéth, L.; Steinebach, J. Testing for changes in the mean or variance of a stochastic process under weak invariance. J. Stat. Plan.
Inference 2000, 91, 365-376. [CrossRef]

19. Antoch, J.; Huskova, M. Permutation tests in change point analysis. Stat. Probab. Lett. 2001, 53, 37-46. [CrossRef]

20. Huskovd, M.; Meintanis, S.G. Change point analysis based on empirical characteristic functions. Metrika 2006, 63, 145-168.
[CrossRef]

21. Zou, C,; Liu, Y;; Qin, P; Wang, Z. Empirical likelihood ratio test for the change-point problem. Stat. Probab. Lett. 2007, 77, 374-382.
[CrossRef]

22. Gombay, E. Change detection in autoregressive time series. |. Multivar. Anal. 2008, 99, 451-464. [CrossRef]

23. Berkes, I.; Gombay, E.; Horvéth, L. Testing for changes in the covariance structure of linear processes. J. Stat. Plan. Inference 2009,
139, 2044-2063. [CrossRef]

24. Inclan, C.; Tiao, G.C. Use of cumulative sums of squares for retrospective detection of changes of variance. J. Am. Stat. Assoc.
1994, 89, 913-923.

25. Fryzlewicz, P; Subba Rao, S. Multiple-change-point detection for auto-regressive conditional heteroscedastic processes. J. R. Stat.
Soc. Ser. B Stat. Methodol. 2014, 76, 903-924. [CrossRef]

26. Hardle, W.; Tsybakov, A. Local polynomial estimators of the volatility function in nonparametric autoregression. J. Econom. 1997,
81,223-242. [CrossRef]

27. Hardle, W,; Tsybakov, A.; Yang, L. Nonparametric vector autoregression. J. Stat. Plan. Inference 1998, 68, 221-245. [CrossRef]

28. Bardet, ].M.; Wintenberger, O. Asymptotic normality of the Quasi Maximum Likelihood Estimator for multidimensional causal
processes. Ann. Stat. 2009, 37, 2730-2759. [CrossRef]

29. Bardet, ].M.; Kengne, W.; Wintenberger, O. Multiple breaks detection in general causal time series using penalized quasi-likelihood.
Electron. ]. Stat. 2012, 6, 435-477. [CrossRef]

30. Bardet, ].M.; Kengne, W. Monitoring procedure for parameter change in causal time series. J. Multivar. Anal. 2014, 125, 204-221.
[CrossRef]

31. Ngatchou-Wandji, J. Estimation in a class of nonlinear heteroscedastic time series models. Electron. ]. Stat. 2008, 2, 40-62.
[CrossRef]

32. Bai,]. Least squares estimation of a shift in linear processes. J. Time Ser. Anal. 1994, 15, 453—472. [CrossRef]

33. Hawkins, D.M. Testing a sequence of observations for a shift in location. J. Am. Stat. Assoc. 1977, 72, 180-186. [CrossRef]

34. Csorgd, M.; Horvéth, L. Limit Theorems in Change-Point Analysis; Wiley: Hoboken, NJ, USA, 1997.

35. Joseph, N.W.; Echarif, E.; Harel, M. On change-points tests based on two-samples U-Statistics for weakly dependent observations.
Stat. Pap. 2022, 63, 287-316.

36. Antoch, J.; Huskova, M.; Veraverbeke, N. Change-point problem and bootstrap. . Nonparametr. Stat. 1995, 5, 123-144. [CrossRef]


http://doi.org/10.1186/1471-2105-14-164
http://www.ncbi.nlm.nih.gov/pubmed/23697330
http://dx.doi.org/10.1016/j.artmed.2018.06.003
http://dx.doi.org/10.1111/rssb.12047
http://dx.doi.org/10.2307/2998540
http://dx.doi.org/10.1093/biomet/41.1-2.100
http://dx.doi.org/10.1093/biomet/42.3-4.523
http://dx.doi.org/10.2307/2346729
http://dx.doi.org/10.1093/biomet/74.3.615
http://dx.doi.org/10.1080/03610928808829826
http://dx.doi.org/10.1093/biomet/57.1.1
http://dx.doi.org/10.1093/biomet/59.3.509
http://dx.doi.org/10.1016/0378-3758(87)90097-8
http://dx.doi.org/10.1007/BF02929878
http://dx.doi.org/10.1016/S0378-3758(00)00188-9
http://dx.doi.org/10.1016/S0167-7152(01)00009-8
http://dx.doi.org/10.1007/s00184-005-0008-9
http://dx.doi.org/10.1016/j.spl.2006.08.003
http://dx.doi.org/10.1016/j.jmva.2007.01.003
http://dx.doi.org/10.1016/j.jspi.2008.09.004
http://dx.doi.org/10.1111/rssb.12054
http://dx.doi.org/10.1016/S0304-4076(97)00044-4
http://dx.doi.org/10.1016/S0378-3758(97)00143-2
http://dx.doi.org/10.1214/08-AOS674
http://dx.doi.org/10.1214/12-EJS680
http://dx.doi.org/10.1016/j.jmva.2013.12.004
http://dx.doi.org/10.1214/07-EJS157
http://dx.doi.org/10.1111/j.1467-9892.1994.tb00204.x
http://dx.doi.org/10.1080/01621459.1977.10479935
http://dx.doi.org/10.1080/10485259508832639

Mathematics 2023, 11, 4018 31 of 31

37.

38.
39.

40.
41.
42.
43.
44.
45.
46.
47.
48.

49.

Bhattacharya, PK. Maximum likelihood estimation of a change-point in the distribution of independent random variables:
general multiparameter case. J. Multivar. Anal. 1987, 23, 183-208. [CrossRef]

Picard, D. Testing and estimating change-points in time series. Adv. Appl. Probab. 1985, 17, 841-867. [CrossRef]

Yao, Y.C. Approximating the distribution of the maximum likelihood estimate of the change-point in a sequence of independent
random variables. Ann. Stat. 1987, 15, 1321-1328. [CrossRef]

Taniguchi, M.; Kakizawa, Y. Asymptotic theory of estimation and testing for stochastic processes. In Asymptotic Theory of Statistical
Inference for Time Series; Springer: New York, NY, USA, 2000; pp. 51-165.

Ngatchou-Wandji, ]. Checking nonlinear heteroscedastic time series models. J. Stat. Plan. Inference 2005, 133, 33—-68. [CrossRef]
Fryzlewicz, P. Wild Binary Segmentation for multiple change-point detection. Ann. Stat. 2014, 42, 2243-2281. [CrossRef]
Baranowski, R.; Chen, Y.; Fryzlewicz, P. not: Narrowest-over-Threshold Change-Point Detection, R package version 1 ; CRAN: Vienna,
Austria, 2019.

Kouamo, O.; Moulines, E.; Roueff, F. Testing for homogeneity of variance in the wavelet domain. Depend. Probab. Stat. 2010,
200, 175.

Gan, S.; Qiu, D. On the Hajek-Rényi inequality. Wuhan Univ. J. Nat. Sci. 2007, 12, 971-974. [CrossRef]

Billingsley, P. Convergence of Probability Measures; John Wiley: New York, NY, USA, 1968.

Doukhan, P; Portal, F. Principe d’invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et
mélangeant. Probab. Math. Stat. 1987, 8, 117-132.

Wooldridge, ].M.; White, H. Some invariance principles and central limit theorems for dependent heterogeneous processes.
Econom. Theory 1988, 4, 210-230. [CrossRef]

Hall, P; Heyde, C.C. Martingale Limit Theory and Its Application; Academic Press: Cambridge, MA, USA, 1980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/0047-259X(87)90152-7
http://dx.doi.org/10.2307/1427090
http://dx.doi.org/10.1214/aos/1176350509
http://dx.doi.org/10.1016/j.jspi.2004.03.013
http://dx.doi.org/10.1214/14-AOS1245
http://dx.doi.org/10.1007/s11859-007-0029-5
http://dx.doi.org/10.1017/S0266466600012032

	Introduction
	Model and Assumptions
	Notation and Assumptions
	Parameter Estimation
	Conditional Least-Squares Estimation


	Change-Point Study
	Change-Point Test and Change Location Estimation
	Asymptotics
	Asymptotic Distribution of the Test Statistic
	Rate of Convergence of the Change Location Estimator
	Limit Distribution of the Location Estimator


	Practical Consideration
	Example 1
	Example 2
	Comparison with Some Recent Algorithms
	Application to Real Data
	USA Stock Market
	Brent Crude Oil
	Comparison with WBS and ICSS


	Conclusions
	Appendix A
	Appendix A.1
	Proofs of Theorems
	
	
	

	Proof of Propositions

	References

