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Abstract: The work is devoted to the development of a maximum entropy estimation method with
soft randomization for restoring the parameters of probabilistic mathematical models from the
available observations. Soft randomization refers to the technique of adding regularization to the
functional of information entropy in order to simplify the optimization problem and speed up the
learning process compared to the classical maximum entropy method. Entropic estimation makes
it possible to restore probability distribution functions for model parameters without introducing
additional assumptions about the likelihood function; thus, this estimation method can be used
in problems with an unspecified type of measurement noise, such as analysis and forecasting of
time series.
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1. Introduction

This work is devoted to the development of a maximum entropy estimation method
with soft randomization for restoring the values of the parameters of probabilistic mathe-
matical models from the available observations. Soft randomization is understood as the
technique of adding regularization to the information entropy functional in order to sim-
plify the optimization problem and speed up the learning process was originally proposed
in a recent work [1].

When solving regression problems, it is generally accepted to separate the classical
statistical approach, in which the model parameters are considered deterministic, and their
values are estimated, for example, using the least squares method (LS) or the maximum
likelihood method (ML) [2] and the probabilistic approach, according to which the model
parameters are assumed to be random variables, and the result of estimation is their proba-
bilistic characteristics [3]. This approach corresponds, for example, to Bayesian estimation
and entropy-robust estimation—the general maximum entropy method (GME) [4]. One
of the differences between the statistical and probabilistic approaches is that the latter
allows the use of probabilistic characteristics and properties of random variables to refine
estimates and subsequent forecasts using them.

In practice, the transition to probabilistic estimation is most common in problems
where the prerequisites of the classical least squares method and the Gauss–Markov
theorem [5] are violated. Examples are problems with a small amount of input data, when
it becomes difficult to test statistical hypotheses, and problems with non-standard types
of errors or, in general, unstructured noise. Estimates obtained by probabilistic methods
for such problems may turn out to be biased, but more efficient than classical methods
estimates, such as LS, in terms of the mean square error of estimates [6].
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It is worth noting that entropy and other entropy-based metrics are widely used in
the field of data analysis, in general, and time series analysis, in particular. For instance, in
works [7–10], the entropy concepts are used as measures of time series dependence as an
alternative to correlation-based metrics.

In [11,12], the concept of soft entropy estimation was considered, including obtain-
ing entropy-optimal probability density functions for model parameters in general form,
and the effectiveness of the proposed method of approximate maximum entropy estimation
was also investigated. This method was compared with the maximum likelihood method
and Bayesian estimation method, both experimentally and theoretically for special cases.
Estimation methods were tested on the example of a linear regression problem with various
types of errors. The experiments carried out make it possible to distinguish a class of
problems in which the proposed method is more efficient than its analogs. These problems
include cases where the distribution of model errors differs from the standard normal
distribution in terms of skewness and kurtosis. In addition, the efficiency of maximum
entropy estimation becomes more noticeable under the conditions of a small amount of
input data.

This paper presents the results of a study of the practical applicability of the soft
maximum entropy method in the problems of analysis and forecasting of time series.
The aim of this study is to analyze the effectiveness of the proposed approach for solving
practical problems of time series analysis.

The rest of the article is organized as follows: in Sections 2 and 3, we provide a brief
time series analysis review and revisit ARMA model estimation methods; in Section 4, we
present a variation of traditional maximum entropy method and apply it to the ARMA
model estimation problem; Sections 5 and 6 contain the results of experiments with syn-
thetic data and real data, respectively; and Section 7 is the conclusion and final summary of
the presented work.

2. Time Series Analysis Review

One of the most versatile and widely used models for time series analysis is the
autoregressive moving average, or ARMA model for short [13,14]. This model is used to
build a functional dependence of some target variable based on its past values and on the
values of the noise of the model.

There is also a modification of the classical ARMA model with the addition of an
integrated component of the series (Autoregressive Integrated Moving Average—ARIMA)
in order to model non-stationary series by calculating the differences in a certain order
from its original values [15,16]. To restore dependence on other variables, terms for the
regressors of the model (ARIMAX) are added to the model, traditionally denoted by the X
matrix. In other words, the construction of the most universal time series models is based
on the classical ARMA model.

A second widely known group of models for time series analysis is the autoregressive
conditional heteroscedasticity (ARCH) models and generalized ARCH (GARCH) mod-
els [17,18]. This type of model is used to restore the dependence of the conditional variance
of a series on its past values. That is, they are rather models for analyzing the type and
distribution of the errors in a series, and, therefore, are often used in conjunction with
models of the series itself, such as ARMA/ARIMA [19].

In this paper, we propose a new estimation method for restoring the model parameters
of some functional dependence of the time series; therefore, in the future, we will consider
the ARMA model as one of the most universal for time series analysis.

3. Building an ARMA Model and Estimation Methods

The ARMA model is a combination of simpler models, namely, the autoregressive model
(AR) and the moving average (MA) model, which, in general, have the following form:
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AR(p) : yt = a0 + a1yt−1 + a2yt−2 + · · ·+ apyt−p + εt

MA(q) : yt = b0 + b1εt−1 + b2εt−2 + · · ·+ bqεt−q + εt.

Correspondingly:

ARMA(p, q) : yt = a0 + a1yt−1 + · · ·+ apyt−p + b1εt−1 + b2εt−2 + · · ·+ bqεt−q + εt.

Here, p and q are the hyperparameters of the model. The orders of the model are
chosen, as a rule, by analyzing the plots of the autocorrelation function (ACF) and partial
autocorrelation function (PCF) [20]. Another way to choose the order of the model is
to calculate the information criteria Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC) [21]. The preferred models are those that exhibit lower values
of these criteria.

We restrict ourselves here to this brief description of the methods for choosing the
model order without detailed formulas for autocorrelation functions and information
criteria, which is due to the fact that the object of study in this paper is the method of
estimating the model parameter, and not its order or structure.

The estimation of the model parameters is understood as the restoration of the values of
the parameters a0, a1, . . . , ap and b1, . . . , bq from a sample of available observations. Unlike
classical linear regression, the traditional least squares method becomes inapplicable for
the ARMA model due to the recursive structure of the model itself.

The most common method for estimating the parameters of an ARMA model is the
maximum likelihood method (maximum likelihood estimation—MLE); this method is the
“standard” for building ARMA models in most development environments, such as R,
Python, MATLAB, etc. [22,23]. The method uses the likelihood or log-likelihood function
and computational algorithms to find the maximum point. Despite the widespread use of
the MLE method, it has two significant drawbacks that make it difficult to apply in practice.

The first disadvantage is the need to make assumptions about the true form of the
likelihood function for the model noise. The traditional choice here is the normal dis-
tribution; however, there are problems in time series analysis in which the errors are
distributed differently, or the size of the input data sample is insufficient to build and test
such hypotheses [24,25]. This feature is characteristic of all estimation methods that use
a predetermined form of the likelihood function for optimization, that is, for Bayesian
estimation too [26].

Another disadvantage of the MLE method is the point nature of the resulting estimates.
As a result of solving the optimization problem, one single point will be selected; this point
will set the vector of model parameters and determine one single curve along which the
process can develop. On the other hand, in Bayesian estimation, the result of the estimate
is the distribution functions for the model parameters, which allows building confidence
intervals in order to refine the forecasts.

Among the alternative methods for estimating the parameters of ARMA models, one
can distinguish the method of moments based on the use of the values of the ACF/PCF
characteristics and sample moments [27], the method based on the Yule–Walker estimation
equations, and the analytical derivation of a solution for the model parameters [28], as well
as the so-called innovations algorithm based on successive recursive approximation of the
solution [29]. Some of the most recent works in the field of robust parameter estimation for
time series models are [30,31].

Another alternative for searching for the parameters of the ARMA model can be the
method of soft maximum entropy estimation proposed in this study. This method is an
approximation of the classical maximum entropy method [32,33] in order to simplify the
optimization problem and speed up calculations [1].



Mathematics 2023, 11, 4000 4 of 15

4. Method of Soft Maximum Entropy Estimation for ARMA Model

The method of approximate maximum entropy estimation proposed in this paper is
formulated for the regression recovery problem of the following type:

y = F(X, a) + ε, a ∈ A,

where F is a vector function and ε ∈ E are measurement noise.
The traditional maximum entropy estimation method is formulated as follows [4]:

H[P(a), Q(ε)] = −
∫

A
P(a) ln P(a)da−

∫
E

Q(ε) ln Q(ε)dε⇒ max
P,Q

,

∫
A

P(a)da = 1,
∫

E
Q(ε)dε = 1,

under the constraints to the average model output (first-moment balance):

EP[Fi(X, a)] +EQ[εi] = yi, i = 1, . . . , n.

The optimization problem listed above has the solution in the general form using
Lagrange multipliers the search for which is the main computational task carried out by
the substitution of the solution for P and Q into the balance constraints, i.e., the system of
integral equations.

The accelerated variation of the maximum entropy estimation method [1] consists of opti-
mizing the modified information entropy functional with the addition of regularization terms:

J[P(a), Q(ε)] = H[P(a), Q(ε)]− Na[P(a)]− Nε[Q(ε)]⇒ max
P,Q∫

A
P(a)da = 1,

∫
E

Q(ε)dε = 1.

Here, Na[P(a)] and Nε[Q(ε)] are the average values for the Hölder model output norm
and noise norm:

Na(a) = ‖F(X, a)− y‖H , Nε(ε) = ‖ε‖H .

That is:
Na[P(a)] = E[Na(a)] =

∫
A

P(a)Na(a)da,

Nε[Q(ε)] = E[Nε(ε)] =
∫

E
Q(ε)Nε(ε)dε.

Thus, the idea of so-called soft maximum entropy estimation is to calculate the ap-
proximate maximum of the entropy functional with the minimization of the average model
error norm instead of solving the system of balance constraints.

In [11,12], the solution of the optimization problem for the soft maximum entropy
estimation method was obtained in the general form:

P∗(a) =
exp(−Na(a))∫

A exp(−Na(a))da
,

Q∗(ε) =
exp(−Nε(ε))∫

E exp(−Nε(ε))dε
.

The function P∗(a) can be treated as a posterior distribution function of the parameters
and, similar to the Bayesian approach, can be used to calculate the average values of the
parameters or MAP estimates, while additional assumptions regarding the error likelihood
function were not used to obtain them.

A feature of the proposed estimation method is the presence of a direct functional
dependence, y = F(X, a) + ε. If the autoregressive component of the time series model
corresponds to this structure and is observable, then the presence of the lag terms of the
moving average greatly complicates such a representation, as a result of which the general
maximum entropy estimation method becomes inapplicable for the ARMA model explicitly.
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Let us consider the representation of the ARMA model through the lag operator, L:

Lxt = xt−1, L2xt = xt−2, . . . , Lkxt = xt−k.

Then, omitting (without loss of generality) the constant, the autoregressive models for
the variable x will have the following form:

AR(1) : (1− aL)xt = εt

AR(p) :
(

1− a1L− a2L2 − · · · − apLp
)

xt = εt

1− a1L− a2L2 − · · · − apLp = ap(L).

Similarly, we transform the moving average models:

MA(1) : xt = (1 + bL)εt

MA(q) : xt =
(

1 + b1L + b2L2 + · · ·+ bqLq
)

εt

1 + b1L + b2L2 + · · ·+ bqLq = bq(L).

By combining the representations for AR(p) and MA(q), we obtain:

ARMA(p, q) : ap(L)xt = bq(L)εt.

Here, we consider the important property of the invertibility of the ARMA model
using the example of individual first-order models.

For example, for AR(1), the following statement is true:

AR(1) : (1− aL)xt = εt

xt = (1− aL)−1εt → MA(∞) = b(L)εt,

where b(L) = 1 + b1L + b2L2 + · · ·+ bkLk + . . . , and bk = ak∀k = 1, . . . .
The proof of this fact follows from the following expression, if we substitute the

required form of the coefficients, bk:

(1− aL)b(L) = (1− aL)
(

1 + b1L + b2L2 + · · ·+ bkLk + . . .
)

= (1− aL)
(

1 + aL + a2L2 + · · ·+ akLk + . . .
)

=
(

1− aL + aL− a2L2 + a2L2 − . . .
)
= 1− lim

k→∞
akLk = 1, while‖a‖ < 1.

Furthermore, similarly, for MA(1), it is true:

MA(1) : xt = (1 + bL)εt

(1 + bL)−1xt = εt → AR(∞) = a(L)xt,

where a(L) = 1− a1L− a2L2 − · · · − akLk − . . . , and ak = −(−b)k∀k = 1, . . . .
The proof is carried out in a similar way, substituting the required form of the

coefficients, ak:

(1 + bL)a(L) = (1 + bL)
(

1− a1L− a2L2 − · · · − akLk − . . .
)

= (1 + bL)
(

1 + (−b)L + (−b)2L2 + · · ·+ (−b)kLk + . . .
)

= (1 + bL)
(

1− bL + b2L2 − b3L3 + . . .
)

=
(

1 + bL− bL + b2L2 − b2L2 + . . .
)
= 1 + lim

k→∞
bkLk = 1, while‖b‖ < 1.
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The considered statements demonstrate the invertibility property for autoregressive
models when the autoregressive component can be represented as an infinite series of
moving average terms and vice versa.

It turns out that the more general models AR(p) and MA(q) are also invertible under
certain restrictions on the values of the coefficients [34]. In general, the condition for the
invertibility of the ARMA(p,q) model is the absence of identical roots of the characteristic
polynomials, ap(L) and bq(L), and roots exceeding modulo 1, similar to the considered
cases for a single coefficient in AR(1) and MA(1).

Then, we can represent the general ARMA model in the following form:

ARMA(p, q) : ap(L)xt = bq(L)εt

xt = (ap)−1(L)bq(L)εt = c(L)εt

bq(L) = ap(L)c(L),

or vice versa:
(bq)−1(L)ap(L)xt = εt = d(L)xt,

ap(L) = bq(L)d(L)

Thus, it is possible to represent the ARMA model in such a way that all its terms are
observable, except for one single term for the residuals of the model, similar to the classical
regression problem.

It is on the possibility of such a representation that the Hannan–Rissanen algorithm is
based on iterative calculation of parameter estimates for the ARMA model [35]. By analogy
with this algorithm, we represent the problem of maximum entropy estimation for the
ARMA model as a sequence of several stages:

1. Build an AR model of a higher order (for example, for the original ARMA(p,q) model
at this stage, starting with an estimate of AR(p+q));

2. Calculate, using the model from step 1, the values of the residuals, εt, for each time, t;
3. Using a sample of values of the target variable X and the found values of the residuals,

build an ARMA(p,q) model:

xt ∼ xt−1, . . . , xt−p, εt−1, . . . , εt−q.

After step 3, new estimates for the residuals of the model can be used to further
improve the estimates of the parameters.

Thus, at each stage, the parameters of the model are estimated, in which all terms
are observable values: first, this is the target variable itself and its past values; then,
the calculated values of the residuals of the model. Accordingly, this algorithm can use
the maximum entropy estimation method, with both based on the original maximum
entropy method (general maximum entropy—GME) and its modification proposed in this
paper—the soft maximum entropy estimation method.

5. Results of Experiments with Model Data

This section presents the results of testing the performance and efficiency of the
proposed algorithm in model experiments on synthetic datasets.

Testing is carried out on several time series models: AR(1), MA(1), ARMA(1,1), and, in
the general case, implementation for ARMA(p,q), which is possible. In the first series
of experiments, time series data with a given model are generated under standard noise
corresponding to a normal distribution, εt ∼ N(µ = 0, σ2 = 0.1), as shown in Figure 1.
In the second series of experiments, the distribution of measurement errors is replaced by a
non-standard and asymmetric chi-square distribution—εt ∼ χ2(ν = 0.1), with examples
of noisy data that include outlier processing shown in Figure 2. Finally, the third series
of experiments demonstrates the example of other non-standard errors, in this case, expo-
nential distribution εt ∼ exp(µ = 0.2). The purpose of the experiments is to compare the
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effectiveness of various estimation methods under the conditions of different non-standard
measurement noises.

(a) AR(1) (b) AM(1)

(c) ARMA(1,1)

Figure 1. Examples of standard time series models: AR(1) first-order autoregressive model (a), MA(1)
first-order moving average model (b), and ARMA(1,1) combined model (c).

As can be seen in Figures 1 and 2, visually noisy data are practically indistinguishable
from a series with standard errors; however, this can significantly affect the results of
estimating model parameters, for example, due to the use of an incorrect likelihood function
in the MLE method, or under assumptions about the normality of the residuals in the
OLS method.

Software development and experimental testing is carried out on a standard PC with
an Intel(R) Core(TM) i7-9700F CPU 3.00 Hz and 32 GB of RAM in a MATLAB software
environment, version R2019b, and Econometrics Toolbox is used to generate and evaluate
ARMA models. In addition, by setting the initial position of the random number generator
(rng(2022)), all the results obtained are reproducible within the standard deviations.

The results of the first series of experiments are shown in Tables 1–3 for the AR(1),
MA(1), and ARMA(1,1) models, respectively. The tables for each estimation method show
the mean values (mean) of the estimated parameters and their standard deviation (MSE)
from the true values based on the result of a series of 500 experiments with a sample size
of 200 points. The estimation methods used are designated as MLE (maximum likelihood
method), SME L2 (soft maximum entropy estimation method with quadratic regularization
norm), and SME L1 + L2 using a linear combination of the L1 and L2 norms.
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(a) AR(1) (b) AM(1)

(c) ARMA(1,1)

Figure 2. Examples of time series models with asymmetric measurement errors: first-order au-
toregressive model AR(1) (a), first-order moving average model MA(1) (b), and combined model
ARMA(1,1) (c); the errors correspond to the chi-square distribution.

Table 1. Estimation results for the AR(1) model.

AR(1) : yt = µ + ayt−1 + εt, εt ∼ N(0, σ2 = 0.1)

µ = 0.3 a = 0.5

Mean MSE Mean MSE

MLE 0.31083 0.00211 0.48587 0.00433

SME L2 0.31270 0.00218 0.48286 0.00442

SME L1 + L2 0.31195 0.00252 0.48343 0.00512

Table 2. Estimation results for the MA(1) model.

MA(1) : yt = µ + bεt−1 + εt, εt ∼ N(0, σ2 = 0.1)

µ = 0.3 b = −0.5

Mean MSE Mean MSE

MLE 0.30120 0.00013 −0.51495 0.00442

SME L2 0.30123 0.00014 −0.46826 0.00588

SME L1 + L2 0.30125 0.00020 −0.46476 0.00669
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Table 3. Estimation results for the ARMA(1,1) model.

ARMA(1, 1) : yt = µ + ayt−1 + bεt−1 + εt, εt ∼ N(0, σ2 = 0.1)

µ = 0.3 a = 0.8 b = −0.2

Mean MSE Mean MSE Mean MSE

MLE 0.33200 0.01036 0.78004 0.00434 −0.19619 0.00987

SME L2 0.33500 0.01102 0.77804 0.00461 −0.19496 0.00993

SME L1 + L2 0.33423 0.01398 0.77857 0.00585 −0.19527 0.01188

Before proceeding to the analysis of the results given in Tables 1–3, it is worth noting
that the application of the soft maximum entropy estimation method with the L2 norm
is equivalent to the application of the least squares method. In addition, with normal
errors, the maximum likelihood estimates are also the same as the least squares estimates.
Therefore, in this series of experiments, where normal errors are used, the first two lines in
Tables 1–3 practically coincide. The results obtained are consistent with the results of a sim-
ilar experiment in [36], which also used 200 points of the time series and 500 repetitions for
the same models with the same parameter values: the MSE value for the model parameters
is about 0.004, and for the constant, it about 0.002.

As can be seen in the data in Tables 1–3, the standard MLE method turned out to be
the most effective estimation method in all three models because this method shows the
lowest MSE error. The method of soft maximum entropy estimation with a quadratic norm
coincides with this result, and with a combined norm it is slightly inferior in efficiency in
terms of MSE. This result is quite natural and expected since it is known that in the case of
normal errors, it is the classical estimation methods (OLS and MLE) that are unbiased and
most effective for estimating regression parameters. However, the method proposed in this
paper based on approximate maximum entropy estimation shows results that are close in
efficiency, which proves its efficiency for time series models.

Tables 4–6 show the experimental results for the same AR(1), MA(1), and ARMA(1,1)
models, but under the conditions of non-standard measurement noise corresponding to a
chi-square distribution. Likewise, the results of experiments with exponential measurement
noise are demonstrated Tables 7–9. In this series of experiments, the classical OLS and MLE
estimation methods turn out to be less effective due to the violation of the hypothesis about
the normality of regression residuals.

Table 4. Estimation results for the AR(1) model under χ2-noise.

AR(1) : yt = µ + ayt−1 + εt, εt ∼ χ2(0.1)

µ = 0.3 a = 0.5

Mean MSE Mean MSE

MLE 0.41299 0.02388 0.31391 0.06467

SME L2 0.41643 0.02442 0.30817 0.06614

SME L1 + L2 0.38428 0.01564 0.35991 0.04327

Table 5. Estimation results for the MA(1) model under χ2-noise.

MA(1) : yt = µ + bεt−1 + εt, εt ∼ χ2(0.1)

µ = 0.3 b = −0.5

Mean MSE Mean MSE

MLE 0.35323 0.00318 −0.29074 0.05228

SME L2 0.35327 0.00319 −0.27237 0.05906

SME L1 + L2 0.34370 0.00215 −0.27470 0.05807



Mathematics 2023, 11, 4000 10 of 15

Table 6. Estimation results for the ARMA(1,1) model under χ2-noise.

ARMA(1, 1) : yt = µ + ayt−1 + bεt−1 + εt, εt ∼ χ2(0.05)

µ = 0.3 a = 0.8 b = −0.2

Mean MSE Mean MSE Mean MSE

MLE 0.34022 0.01316 0.77824 0.00528 −0.28223 0.02000

SME L2 0.34038 0.01439 0.77811 0.00582 −0.28425 0.02164

SME L1 + L2 0.33783 0.01518 0.77823 0.00617 −0.26824 0.01918

Table 7. Estimation results for the AR(1) model under exp-noise.

AR(1) : yt = µ + ayt−1 + εt, εt ∼ exp(0.2)

µ = 0.3 a = 0.5

Mean MSE Mean MSE

MLE 0.80318 0.25697 −0.00930 0.26453

SME L2 0.80318 0.25691 −0.00927 0.26439

SME L1 + L2 0.79710 0.25090 −0.00731 0.26251

Table 8. Estimation results for the MA(1) model under exp-noise.

MA(1) : yt = µ + bεt−1 + εt, εt ∼ exp(0.2)

µ = 0.3 b = −0.5

Mean MSE Mean MSE

MLE 0.79594 0.24670 −0.00886 0.24663

SME L2 0.79587 0.24665 −0.00664 0.24848

SME L1 + L2 0.79129 0.24220 −0.00428 0.25104

Table 9. Estimation results for the ARMA(1,1) model under exp-noise.

ARMA(1, 1) : yt = µ + ayt−1 + bεt−1 + εt, εt ∼ exp(0.2)

µ = 0.3 a = 0.8 b = −0.2

Mean MSE Mean MSE Mean MSE

MLE 0.38372 0.02422 0.77478 0.00643 −0.33653 0.03244

SME L2 0.38376 0.02558 0.77488 0.00682 −0.33795 0.03415

SME L1 + L2 0.37813 0.02683 0.77610 0.00754 −0.33177 0.03327

From the results of Tables 4–9, it can be noted that in this experiment all estimates
are biased due to the asymmetry of errors; however, it is the estimates using the soft
maximum entropy estimation method that show the smallest deviation from the true
values, although their bias does not differ in order of magnitude from the rest of the
methods. Under conditions of χ2-noise (Tables 4–6), all estimation methods showed a
comparable decrease in efficiency compared to similar experiments in Tables 1–3, so the
value of the dispersion of estimates increased by about 1.5–2 times for the autoregressive
model AR(1) and for the moving average model MA(1). To a lesser extent, the combined
ARMA(1,1) model is prone to errors, which is probably due to the nature of the Hannan–
Rissanen estimates, where the moving average component is restored through the estimates
of autoregressive models of higher orders. The estimation results in Tables 7–9 are highly
biased relative to the true values due to the asymmetry and tailness of the exponential
distribution with significant mean value. In this case, all the methods under consideration
suffer a considerable drop in efficiency as well as estimation bias.
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Next, using the asymptotic normality of the estimates by the method of soft maximum
entropy, we analyze the statistical significance of the results obtained for χ2-noise by testing
the hypothesis that the means of two normal distributions are equal. To do this, for each
estimated parameter, the null hypothesis, H0 : µsme = µMLE, is tested against the alternative
hypothesis about the inequality of means, H1 : µsme < µMLE, using Student’s t-test. In this
case, the symbols µ denote not the average values of the parameters, but their average
deviations (the so-called bias) from the true values given in Tables 1–6 for all tested models.
The results of hypothesis testing are presented in Table 10. The solid black circle indicates
cases in which the null hypothesis is rejected at a significance level of 95%; therefore,
the difference in the results of the estimates is significant.

Table 10. Statistical significance of the estimation results for χ2-noise.

SME L2 vs. MLE SME L1 + L2 vs. MLE

µ a b µ a b

AR(1) ◦ • – • • –

MA(1) • – ◦ • – ◦

ARMA(1, 1) ◦ ◦ ◦ • ◦ •

During the calculations, the statistical significance of the difference in the estimation
results was confirmed not in all of the experiments and not for all of the parameters. So,
for example, estimates of all three parameters of the ARMA model turned out to be indis-
tinguishable for the likelihood method and entropy estimation with the L2 regularization
norm. On the other hand, entropy estimation with the combined norm shows more sta-
ble results, and the improvement in estimates was recorded in five cases out of seven.
Therefore, this method will also be applied to experiments with real data.

6. Results of Experiments with Real Data

As an example of real data, we will use the NASDAQ stock exchange composite index
data collection (Data_EquityIdx dataset in MATLAB since version R2012). The time series
is the consecutive daily values of the index at the close of the exchange, and there are no
gaps in the data. A graph of the NASDAQ index values from January 1990 to November
1997 is shown in Figure 3a, and A corresponding plot of the first difference in values is
shown in Figure 3b.

(a) (b)

Figure 3. Graphs of daily values (a) and the first difference in values (b) of the NASDAQ index from
2 January 1990 to 25 November 1997.

The selected segment is 2000 time reports, and we will use it to test the proposed
estimation method. To do this, the sample is divided in a ratio of 80% and 20% into the
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training set, by which the model will be evaluated, and into the test set, by which we will
calculate the average forecast error.

The model is chosen according to the Box–Jenkins methodology [37] based on the
values of autocorrelation (ACF) and partial autocorrelation (PCF) functions. Graphs of the
corresponding functions for the difference in index values are shown in Figure 4. Analysis
of these graphs shows a probable ARMA(1,1) model or, taking into account the previously
calculated difference from the original values, we obtain the ARIMA(1,1,1) model.

Figure 4. Plots of autocorrelation (top) and partial autocorrelation (bottom) functions, where red
dots are functions values and blue lines are confidence bound.

The model parameters are estimated in three ways: the first and second are the soft
maximum entropy estimation (SME) method proposed in this paper with regularization
norm L2 and combined L1 + L2 norm, and the third is the maximum likelihood method
(MLE), which is standard for constructing ARMA models in MATLAB (arima function
from Econometric Toolbox). The calculation results are shown in Table 11.

Table 11. Parameter estimation results for the ARMA(1,1) model.

ARMA(1, 1) : yt = µ + ayt−1 + bεt−1 + εt

µ a b σ2

MLE 0.4554 −0.000878 0.1839 33.313

SME L2 0.4731 −0.0308 0.2137 33.454

SME L1 + L2 0.4900 −0.0230 0.2079 33.454

On the estimation interval, all three methods showed similar results, the values of
the parameters are in the range of 5–10%, and the variance in the residuals differs slightly.
Moreover, the parameter a for the first-order autoregression in all three cases turned out to
be insignificant (using Student’s t-test).

The resulting estimates were used to build a forecast and compare with real values
from the remaining 20% of the data sample. In Figure 5, the forecast results are presented
using estimates obtained by the soft maximum entropy estimation method, and the average
curve (Avg. forecast) and the 95% confidence interval tube (95% CI) are marked on the
graph. The maximum point of the posterior distribution density (MAP) obtained by
sampling the entropy-optimal density for the model parameters was used as a point
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estimate of the model parameters, and the 95 percent interval was calculated over the entire
ensemble of sampled values.

Figure 5. Prediction result with ARMA(1,1) model.

As in the estimation interval, during testing, all the obtained models also showed close
results; on the graph, they would be indistinguishable at a given scale. Thus, the value
of the root-mean-square error RMSE for all points of the forecasting stage was 151.73 for
estimates using the MLE method, and for estimates using the SME method, the values were
151.06 and 147.61 using the L2 and L1 + L2 norms, respectively.

Taking into account the true values of the NASDAQ index in this interval, we can say
that the three forecasts received are within 2–3% of each other. The normalized root-mean-
square error (NRMSE) values obtained by dividing by the mean of the predictor are 0.1124,
0.1119, and 0.1093 for the MLE, SME L2, and SME L1 + L2 estimates, respectively.

7. Conclusions

In this work, the concept of applying the method of soft maximum entropy estimation
to build time series models, such as an autoregressive model, a moving average model,
and a combined ARMA model, was developed. The main advantage of the proposed
method compared to the traditional maximum entropy estimation method is the elimination
of solving the system of balance constraints. The disadvantage of the proposed method is
the necessity for explicit regression form with observed variables.

Experimental testing of the proposed approach was carried out, both for synthetic
data and for real data on the NASDAQ exchange index. The simulation of synthetic data
was carried out in the presence of measurement noise, both according to the law of the
standard normal distribution, and noise of a non-standard asymmetric type, according
to the chi-square law. The results of the experiments demonstrate the operability of the
proposed approach and an efficiency close to the classical methods of estimation.
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