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Abstract: This paper considers the verification of decentralized fault pattern diagnosability for
discrete event systems, where the pattern is modeled as a finite automaton whose accepted language is
the objective to be diagnosed. We introduce a notion of codiagnosability to formalize the decentralized
fault pattern diagnosability, which requires the pattern to be detected by one of the external local
observers within a bounded delay. To this end, a structure, namely a verifier, is proposed to verify
the codiagnosability of the system and the fault pattern. By studying an indeterminate cycle of the
verifier, sufficient and necessary conditions are provided to test the codiagnosability. It is shown
that the proposed method requires polynomial time at most. In addition, we present an approach to
extend the proposed verifier structure so that it can be applied to centralized cases.

Keywords: discrete event system; decentralized diagnosis; fault pattern; codiagnosability;
computational complexity
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1. Introduction

A discrete-event system (DES) [1–3] is an event-driven system whose state space is
a discrete set and transitions from one state to another are triggered by the occurrence of
events. The state of such a system may have logical or symbolic values that change in
response to the event. In the context of DESs [2], fault diagnosis involves determining
whether or not a fault has occurred with certainty [4,5]. The problem of diagnosis has
been extensively studied [6–10]. Its formal description is located in [7]. The purpose of
diagnosability is to determine whether any predetermined failure can be diagnosed within
a finite delay (steps) after its occurrence. Experience with monitoring dynamic systems
shows that there is a large spectrum of faulty situations in practical systems [11], such as
multiple faults, intermittent faults [12], and temporary faults [13] that are not consistent
with single-event faults. In order to consider these complex situations, such as temporary
and/or intermittent faults, fault pattern diagnosis simultaneously emerges as a promising
research area, which provides a general way to solve the diagnosis problems by capturing
the occurrences of particular strings in a system and gains extensive attention from both
researchers and practitioners, leading to a bulk of documented results [14–20].

As known, Petri nets (PNs) and finite state automata are two major tools to treat
various problems in DESs. Specifically, finite state automata have been investigated for that
purpose. In [14], the authors provide the ground foundations for the fault pattern diagnosis
that relies on the synchronous product of a system with the pattern and the computation
of the determinization of the resulting structure. Then, in [15], the same authors improve
the complexity of the approach proposed in [14] by successively using the unobservable
closure and a pair verifier to replace the determinization. This also introduces fault patterns
in the problem of prediction. The authors of [16] address the fault pattern diagnosis by
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means of state isolation. In contrast to the approach in [14], which builds a diagnoser with
potentially exponential complexity, the method proposed in [16] performs state estimation
in a recursive manner. This approach offers the advantage of lower complexity for fault
pattern detection. In [17], the authors introduce different notions of diagnosability, namely
S-type and T-type pattern diagnosability, depending on whether interweaving events are
accepted in the pattern. Note that this work also focuses on S-type patterns (but the T-
type patterns are viewed as a particular subclass of S-type patterns, as mentioned in [17]).
Moreover, in comparison to existing works, the main contribution of this paper is not only
on the centralized systems but also on the decentralized frameworks, which expands the
use of fault patterns.

Some contributions also consider the fault pattern diagnosis issues in PNs. On the one
hand, the authors in [21] work on the diagnosability analysis of PNs by transforming the
diagnosis problem into model checking. Using a particular class of PNs, the diagnosis of
fault patterns has been studied according to the matching operator in [22]. With a similar
approach, the same authors extended their results to the diagnosability analysis in [23]. On
the other hand, stochastic PNs, endowed with Markovian semantics, have been studied
to extract weak diagnosability properties for fault patterns [24]. A few researchers also
consider fault patterns from the time aspects [25,26].

For the purpose of diagnosability verification, a systematic structure, namely a di-
agnoser, is proposed in [7], which provides the necessary and sufficient conditions for
diagnosability offline. It also can be used for online fault detection based on the observa-
tions of system behaviors. The state space of a diagnoser is in the worst case exponential
with respect to the size of a system model. To overcome the potential state explosion
problem, a so-called “twin machine” technique [9,10], is introduced to provide a worst-case
polynomial test with respect to the number of states of a system for diagnosability, without
constructing a diagnoser. A state-based method for DES diagnosability is proposed in [6],
which provides an algorithm for computing a sequence of test commands to detect faults.

All aforementioned works are centralized fault diagnosis, in which a centralized
diagnoser is responsible for the diagnosis in a system. However, many large-sized and
complex systems are physically decentralized, where diagnosis information collected
by decentralized local sites will be sent to a centralized site for analysis. In this case, a
variable communication delay needs to be introduced, which makes the diagnosis technique
more complicated. Although all diagnosis information can be collected centrally, due
to the data delay, a centralized fault diagnosis method may not always be suitable for
decentralized systems.

This work focuses on the decentralized diagnosis of the DESs with multiple local
observers, each of which possesses its own sensor without involving any communication
among diagnosers, so as to make up for the defects of the centralized diagnosis. The
authors in [27] propose a coordinated decentralized architecture with a coordinator, which
extends the notion of diagnosability from centralized systems [7] to decentralized cases.
In [28], a failure is characterized as a violation of a specification represented by a language,
and codiagnosability is studied in a specification language framework, which is later
specialized to the failure event framework. In [29], a hierarchical paradigm is developed
by incorporating the protocol in [28], which leads to a hierarchy of architectures and
encompasses many existing structures for decentralized diagnosis. Considering global
consistency conditions, the authors in [30] discuss the diagnosis problem of the distributed
setting with fault pattern and define local pattern recognizers for that purpose.

This paper deals with the decentralized fault pattern diagnosability verification of
DESs, where the fault patterns are modeled by finite automata. We develop a codiagnosabil-
ity notion to formalize the decentralized pattern diagnosability of the system and provide
an algorithm for its verification. We first compute a synchronous product structure, which
encodes a system and a pattern. A failure diagnoser structure is constructed based on the
synchronous product by considering the faulty behaviors of the system, and a non-failure
diagnoser is calculated based on the normal behaviors. Then, we present a local non-failure
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diagnoser based on the local projection. In order to verify the codiagnosability of the system
and the pattern, a verifier structure is derived by taking the product of failure diagnoser
and local non-failure diagnoser. By studying the indeterminate cycles of the verifier, we
establish necessary and sufficient verification conditions of codiagnosability. The successive
steps of the proposed approach are visualized in Figure 1.

Decentralized

system

Fault pattern

Synchronous

product verifier
Verifier

synchronous

product

Failure

diagnoser GF 

Local non-failure

diagnoser Gn  

coaccessible

part

accessible
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Non-failure

Diagnoser

Gn 

Local non-failure
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... ...

Figure 1. Methodology.

The first contribution of the paper focuses on the construction of failure and non-
failure diagnosers, which track the normal and faulty behaviors of the system, separately.
The second contribution is the computation of the local diagnoser with respect to the local
projection. The third contribution is to extend the necessary and sufficient conditions stated
for pattern diagnosability [14] to a decentralized setting. This is achieved by constructing a
verifier structure, which is the product of the failure and local non-failure diagnosers. The
proposed method is shown to be of polynomial complexity. We also present a method to
extend the proposed verifier so that it can be applied to centralized cases.

The rest of the paper is organized as follows. Section 2 reviews finite state automata.
Section 3 begins with the notions of fault patterns and then touches upon decentralized fault
pattern diagnosis in DESs. Section 4 provides an algorithm for fault pattern codiagnosability
with the local diagnosers. Section 5 analyses the complexity of the proposed method.
Section 6 concludes this research.

2. Preliminaries

In this paper, we use N to denote the set of strictly positive integers. In what follows,
we consider the model of finite automaton and its related notions.

Definition 1. A deterministic finite automaton (DFA) is a four-tuple G = (L, Σ, δ, l0), where L
is the set of states, Σ is the set of events, l0 is the initial state, and δ : L× Σ → L is the partial
transition function: l′ = δ(l, σ) means that there is a transition labeled with event σ ∈ Σ from
state l to state l′. Let Σ∗ be the set of all finite strings defined over Σ, including the empty string λ.
Transition function δ can be extended to L× Σ∗ → L in an usual way: given l ∈ L, w ∈ Σ∗, and
σ ∈ Σ, δ(l, λ) = l and δ(l,wσ) = δ((δ(l,w)), σ).

For a DFA G with partial observation, the events set Σ can be partitioned into two
disjoint subsets Σ = Σo ∪ Σuo, where Σo and Σuo represent the set of observable events
and the set of unobservable events, respectively. Given two strings w′,w′′ ∈ Σ∗, the
concatenation of the two strings is a string w = w′w′′ ∈ Σ∗, where the string w′ is followed
by w′′.

For a state l ∈ L, the set of active events at l is defined as Λ(l) = {σ ∈ Σ|∃l′ ∈ L : l′ =
δ(l, σ)}. Given a string w ∈ Σ∗, its length is defined as the number of items in w, denoted
by |w|. A string w′ ∈ Σ∗ is said to be a prefix of w ∈ Σ∗ if there exists w′′ ∈ Σ∗, such that
w = w′w′′. The language generated by the DFA G is defined as L(G) = {s ∈ Σ∗|δ(l0, s)!},
where δ(l0, s)! means that “δ(l0, s) is defined”. Given a string w ∈ L(G), L(G)/w denotes
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the post-language of L(G) after w, defined as L(G)/w = {w′ ∈ Σ∗ | ww′ ∈ L(G)}. A run
that begins with the initial state l0 has the form:

ρ = l0
σ0−→ l1

σ1−→ . . . ln
σn−→ ln+1, (1)

where li, li+1 ∈ L, σi ∈ Σ, and li+1 = δ(li, σi) for i ∈ {0, 1, . . . , n}. In this case, we say that
the run ρ is associated with the string w = σ0 . . . σn ∈ Σ∗. A run is a cycle if ln+1 = l0.

For a decentralized system G, we use Σoi to denote the set of events observed by the
local observer, simply called the local observable event set, and use Σuoi to denote the set of
local unobservable event set, where Σuoi = Σ \ Σoi , i = 1, . . . , m, m ∈ N, m is the number of
the local sites. For a set of observable events Σo of G, Σo =

⋃m
i=1 Σoi , i = 1, . . . , m. Without

loss of generality, we assume that there is no cycle composed only of silent events in the
system G. Note that in the decentralized architecture, different sites may have events in
common, i.e., for all i, j ∈ {1, . . . , m} and i 6= j, the set of Σoi ∩ Σoj is not necessarily an
empty set. Given a site i, i = 1, . . . , m, the local projection Pi : Σ∗ → Σ∗oi

is defined as
follows: for w ∈ Σ∗ and σ ∈ Σ,

Pi(wσ) =

{
Pi(w)σ if σ ∈ Σoi

Pi(w) otherwise,
(2)

and Pi(λ) = λ. In other words, a local projection function Pi tracks only its corresponding
local observable events. For i = 1, . . . , m, a site i has its own set of observable events
and does not communicate with each other. For a string w ∈ Σ∗oi

, the inverse of the

local projection P−1
i : 2Σ∗oi → 2Σ∗ is defined by P−1

i ({w}) = {w′ ∈ L(G)| Pi(w
′) = w}.

Let G1 = (L1, Σ1, δ1, l1
0) and G2 = (L2, Σ2, δ2, l2

0). The parallel composition is defined as
G1||G2 = P−1

1 (G1)×P−1
2 (G2), where Pi : (Σ1 ∪ Σ2)

∗ → Σ∗i , i = 1, 2.

Example 1. Consider a DFA G1 shown in Figure 2 with respect to the local projection Pi, i = 1, 2,
where L = {0, 1, 2, 3, 4, 5, 6, 7} is the set of states, 0 is the initial state, Σ = {a, b, c, u, f1, f2}
is the set of events, and Σo = {a, b, c} is the set of observable events with Σo1 = {a, b} and
Σo2 = {a, c}. The transition function is defined as δ(0, a) = 1, δ(1, f2) = 2, δ(2, b) = 7,
δ(2, c) = 7, δ(7, a) = 7, δ(7, c) = 7, δ(2, f2) = 3, δ(3, b) = 4, δ(4, c) = 5, δ(5, a) = 6, and
δ(6, u) = 6. The local projection P1 of system G1 is defined as P1(a) = a, P1(b) = b, P1(c) =
P1( f1) = P1( f2) = P1(u) = λ, and P2 is defined as P2(a) = a, P2(c) = c, and P2(b) = P2( f1)
= P2( f2) = P2(u) = λ. A possible run generated by system G1 from the initial state is

ρ : 0 a−→ 1
f1−→ 2

f2−→ 3 b−→ 4 c−→ 5 a−→ 6,

where the associated string of ρ is w = a f1 f2bca. The local projection P1 of w with respect to Σo1 is
P1(w) = aba, and P2 with respect to Σo2 is P2(w) = aca.

0 7
a f  b, c

3

21

f  

4
b

5
c

6
a

a, c

u

Figure 2. Deterministic finite automaton G1.

3. Decentralized Fault Pattern Diagnosis of Automata

A fault pattern, simply called a pattern, is defined as a finite-state automaton whose
accepted language is the objective to be diagnosed, which represents the occurrence of
complex or composite faults.

Definition 2. A (fault) pattern of a DFA G = (L, Σ, δ, l0) is Ω = (S, Σ, δΩ, s0, sΩ), where S is
the set of states, Σ is the set of events, s0 ∈ S is the initial state, sΩ ∈ S is the single final state, and
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δΩ : S× Σ→ S is the transition function. The pattern Ω satisfies a complete condition, i.e., for all
s ∈ S, Λ(s) = Σ and the final state sΩ is stable, i.e., for all σ ∈ Σ, δΩ(sΩ, σ) = sΩ.

We use ΣF to denote the set of target events that lead to the occurrence of the pattern,
where ΣF ⊆ Σuo. The language of pattern Ω, denoted by L(Ω), satisfies L(Ω) = Σ∗ due
to its complete condition. We use LA(Ω) to denote the accepted language of Ω, defined
as LA(Ω) = {w ∈ L(Ω)|δΩ(s0,w) = sΩ}, and define the target language of DFA G as
LA(G) = L(G) ∩LA(Ω).

Example 2. An example of pattern Ω is shown in Figure 3 with the set of states S = {N1, N2, F},
the set of target events ΣF = { f1, f2}, the final state sΩ = F, and the initial state s0 = N1. The
accepted language of the pattern Ω is LA(Ω) = Σ∗ f1Σ∗ f2Σ∗.

\{ f }

f f
FNN

\{f }

Figure 3. Pattern Ω.

In the following, we provide a formal definition, namely codiagnosability, with respect
to the decentralized system and the pattern, detailed in Definition 3.

Definition 3. Given a DFA G, a pattern Ω, and the local projection Pi, i ∈ {1, . . . , m}, G is
codiagnosable with regard to Ω and Pi if

(∃k ∈ N) (∀w ∈ LA(G)) (∀w′ ∈ L(G)/w)
(|w′| ≥ k)⇒ (∃i ∈ {1, . . . , m})[P−1

i (Pi(ww
′)) ⊆ LA(G)].

According to Definition 3, the system G is codiagnosable with respect to the local
projection Pi and the pattern Ω if and only if for any string ww′ accepted by the pattern Ω,
there does not exist a string w′′, which is not accepted by Ω, such that Pi(ww

′) = Pi(w
′′).

An algorithm of fault pattern codiagnosability test is proposed based on searching for the
strings ww′ ∈ LA(G) and w′′ /∈ LA(G), such that, for i = 1, . . . , m, the two strings ww′ and
w′′ violate the codiagnosability condition of Definition 3.

4. Verification Algorithm

For the purpose of codiagnosability verification, we propose an algorithm and a
theorem in this section. Definition 4 introduces a structure that will be used later, namely
synchronous product, which encodes the system G and the pattern Ω.

Definition 4. Given a DFA G = (L, Σ, δ, l0), and a pattern Ω = (S, Σ, δΩ, s0, sΩ), a synchronous
product GΩ of G with respect to Ω is a DFA GΩ = (LGΩ , Σ, δGΩ , lGΩ

0 , LGΩ
F ), where LGΩ ⊆ L× S

is the set of states, Σ is the set of events, lGΩ
0 = (l0, s0) is the initial state, LGΩ

F = L× {sΩ} is the
set of final states, and δGΩ : (L× S)× Σ→ (L× S) is the transition function, defined as follows:
for σ ∈ Σ, s, s′ ∈ S, l, l′ ∈ L, δGΩ((l, s), σ) = (l′, s′) if δ(l, σ) = l′ and δΩ(s, σ) = s′.

Hereafter, we propose a structure, called a verifier, which is used to test the codiag-
nosability of the decentralized system and the fault pattern. The successive steps of the
construction are provided in Algorithm 1. Without loss of generality, we assume that m = 2,
i.e., there are two local sites with their corresponding local projections and local observable
event sets.
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Algorithm 1: Construction of the verifier.
Input: A pattern Ω and a DFA G = (L, Σ, δ, l0) with two local sites, where the set

of the local observable events is Σoi , i = 1, 2.
Output: A verifier Gv = (Lv, Σ, δv, lv

0).
1. Construct the synchronous product GΩ of G and Ω according to Definition 4.
2. Compute a failure diagnoser GF that models the faulty behaviors of the system:

1. Construct the set of states of GF as LF = {(l, s) ∈ LGΩ |∃w ∈ Σ∗ : δGΩ((l,
s),w) ∈ LGΩ

F }.
2. The initial state is lF0 = lGΩ

0 if lGΩ
0 ∈ LF, and undefined otherwise.

3. For lF, l′F ∈ LF, define the transition function δF : LF × Σ→ LF of GF

as δF(lF, σ) = l′F if there exists σ ∈ Σ, such that δGΩ(lF, σ) = l′F.
4. Define the even set of GF as ΣF = {σ ∈ Σ| ∃ lF, l′F ∈ LF : δF (lF, σ) =

l′F}. Then, GF = (LF, ΣF, δF, lF0 , lFF ), where LF
F is the set of final state

and LF
F = LGΩ

F .

3. Compute a non-failure diagnoser GN that captures the normal behaviors of
the system:

1. Construct the states set of GN as LN = {(l, s) ∈ LGΩ |(l, s) ∈ LGΩ \ LGΩ
F }.

2. The initial state is lN0 = (l0, s0).
3. For lN , l′N ∈ LN , define the transition function δN : LN × Σ→ LN of GN as

δN(lN , σ) = l′N if there exists σ ∈ Σ, such that δGΩ(lN , σ) = l′N .
4. Define the set of events of GN by ΣN = {σ ∈ Σ| ∃ lN , l′N ∈ LN : δN(lN , σ)

= l′N}. Then, GN = (LN , ΣN , δN , lN0 ).

4. For i = 1, 2, define function Ri : ΣN → ΣRi as

Ri(σ) =

{
σ if σ ∈ Σoi or σ ∈ Σ f ,
σRi if σ ∈ Σuoi \ Σ f .

Construct local non-failure diagnoser GNi = (LN , ΣRi , δNi , lN0 ), where δNi : LN

× ΣRi → LN is the transition function defined as δNi (lN , Ri(σ)) = l′N if there e-
xists σ ∈ Σ, lN , l′N ∈ LN , such that δN(lN , σ) = l′N .

5. Construct the verifier Gv = (Lv, ΣR1 ∪ ΣR2 ∪ Σ, δv, lv
0) = GN1 ||GN2 ||GF.

Note that for a state (lN1 , lN2 , lF) of Lv, it includes three components: lN1 , lN2 , and lF,
where lN1 is a state of GN1 , lN2 is a state of GN2 , and lF is a state of GF. The verifier Gv
is constructed by tracking the strings of the local non-failure diagnosers and the failure
diagnoser that have the same observation with respect to the local projection Pi, i = 1, 2.
In other words, the transition relation δv of Gv tracks three sequences: one in the local
non-failure diagnoser GN1 , one in the local non-failure diagnoser GN2 , and another in the
failure diagnoser GF, which generate the same sequence of observed labels.

In Step 1 of Algorithm 1, we construct a synchronous product of a system G and a
pattern Ω, which encodes the system and the pattern. Then, a failure diagnoser GF is
computed to track the faulty behavior of the system, which is the co-accessible part of
the synchronous product with respect to the faulty strings. By Step 3, we build a non-
failure diagnoser structure GN that is the accessible part of the synchronous product by
considering the normal behavior of the system. In Step 4, we establish a local non-failure
diagnoser GNi based on the local projection. In this way, the event set Σuoi \ Σ f can be
renamed with respect to the local projection and the set of faulty events. Finally, by taking
the product of the local non-failure diagnosers and the failure diagnoser, a verifier Gv of
the system G and pattern Ω can be set up, which is used to test the codiagnosability of the
decentralized system.
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Definition 5. Given the verifier Gv of a DFA G and a pattern Ω, for 0 < m ≤ n, m, n ∈ N,
a cycle cl : lm

v , σm, lm+1
v , . . . , ln

v , σn, lm
v of Gv is said to be an indeterminate cycle if for state

l j
v = (l j

N1
, l j
N2

, l j
F
) ∈ Lv, j = m, m+ 1, . . . , n, l j

F
∈ LF

F , and there exists σj, j ∈ {m, m+ 1, . . . , n},
such that σj ∈ Σ.

Theorem 1. Let G be a DFA with the local projection Pi, i = 1, 2, and a pattern Ω. G is not
codiagnosable with respect to Pi and Ω if and only if there exists an indeterminate cycle in Gv.

Proof. (if) Suppose that there exists an indeterminate cycle cl : lm
v , σm, lm+1

v , . . . , ln
v , σn, lm

v .
Then, there exists a string svtv generating a run lv

0 , σ0, . . . , lm
v , σm, lm+1

v , . . . , ln
v , σn, lm

v in Gv,
such that for j = m, m + 1, . . . , n, l j

F
∈ LF

F . Define

PR1 : (ΣR1 ∪ ΣR2 ∪ Σ)∗ → Σ∗R1
, (3)

PR2 : (ΣR1 ∪ ΣR2 ∪ Σ)∗ → Σ∗R2
, (4)

PΣ : (ΣR1 ∪ ΣR2 ∪ Σ)∗ → Σ∗. (5)

By Gv = GN1 ||GN2 ||GF, it concludes that L(Gv) = P−1
R1

(L(GN1)) ∩ P−1
R2

(L(GN2)) ∩
P−1

Σ (L(GF)), where L(Gv), L(GNi ), and L(GF) are the generated languages of Gv, GNi ,
i = 1, 2, and GF, respectively. Consequently, there exists a string st = PΣ(svtv) in GF, such
that s = PΣ(sv) ∈ LA(G), t = PΣ(tv), and st ∈ LA(G) (see Step 2 of Algorithm 1).

Let sR1 = PR1(svtv). There exists a string s1 in GN , such that PΣ(sR1) = s1 and
PΣ(sR1) = PΣ(PR1(svtv)). With a slight abuse of notation, we have P1(s1) = P1(st).
Similar to sR1 , there exists a string sR2 in GN2 and s2 in GN , such that s2 = PΣ(sR2). For the
same reason, we have P2(s2) = P2(st), where st ∈ LA(G), and s1, s2 /∈ LA(G) (see Step 3
of Algorithm 1). For the string svtv with arbitrary length, the strings s1 and s2 can also be
extended long enough. This implies that G is not codiagnosable with respect to pattern Ω
and local projection Pi.

(only if) Suppose that G is not codiagnosable with respect to Ω and Pi. Then, there
exists a string s ∈ LA(G), t ∈ LA(G)/s, and strings s1, s2 /∈ LA(G), such that P1(s1) =
P1(st), P2(s2) = P2(st).

According to Steps 3 and 4 of Algorithm 1, there exists a string sR1 in GN1 and a string
sR2 in GN2 , such that sR1 = R1(s1) and sR2 = R1(s2), where R can be extended from Σ to Σ∗

as the usual way. Consider two prefixes s′R1
of sR1 and s′R2

of sR2 , such that P1(PΣ(s′R1
)) =

P1(s) and P2(PΣ(s′R2
)) = P2(s). Since s1, s2 /∈ LA(G), PΣ(s′R1

),PΣ(s′R2
) /∈ LA(G) holds.

As a result, there exist two runs in GN1 and GN2 , beginning from lN0 and generated by s′R1
,

s′R2
, respectively, with the forms

ρs′R1
: lN0

s′R1−→ ls′R1
, and ρs′R2

: lN0
s′R2−→ ls′R2

. (6)

In addition, since s ∈ LA(G), according to Step 2 of Algorithm 1, there exists a run in
GF beginning from lF0 generated by s with the form of ρs : lF0

s−→ ls.
Similarly, three runs in GN1 , GN2 , GF can be generated by sR1 , sR2 , st, respectively, with

the form of
ρsR1

: lN0
sR1−→ lsR1

, ρsR2
: lN0

sR2−→ lsR2
, and ρst : lF0

st−→ lst (7)

such that P1(PΣ(sR1)) = P1(st) and P2(PΣ(sR2)) = P1(st). Then, there exists a run in Gv
of the form

ρv : lv
0 → . . .→ lm

v → . . .→ ln
v (8)

such that lm
v = (ls′R1

, ls′R2
, ls) and lm

v = (lsR1
, lsR2

, lst).
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The strings sR1 and sR1 are extended from the string st to be as large as possible.

Then, there eventually exist two states li
v, l j

v in ρv, m ≤ i ≤ j ≤ n, such that li
v = l j

v. For
r = i, i + 1, . . . , j, the set of states {lr

v} of GV form an indeterminate cycle. This contradicts
the assumption and ends the proof.

Theorem 1 provides an approach to verify codiagnosability by searching for the
existence of indeterminate cycles. In the case of at least one indeterminate cycle, there are
at least three strings s1, s2, and s3 with arbitrary length in non-failure diagnosers GN1 , GN2 ,
and the failure diagnoser GF, respectively, where s1 and s3 have the same observation with
respect to the projection P1, and s2 and s3 have the same observation with respect to the
projection P2, violating the codiagnosability.

Example 3. Consider a DFA G1 shown in Figure 2 with the local observable event set Σoi , i = 1, 2,
and a pattern Ω shown in Figure 3. According to the first step of Algorithm 1, we construct the
synchronous product G1Ω, as shown in Figure 4, which encodes the information of the system
G1 and the fault pattern Ω. The second step is to obtain the failure diagnoser G1F, which is the
co-accessible part of G1Ω with respect to the set of the faulty states LG1Ω

F , as shown in Figure 5a.
It should be noted that all accepted behaviors of the failure diagnoser G1F are faulty behaviors.
Continuing Algorithm 1, we compute a non-failure diagnoser G1N by taking the accessible part of
G1Ω regarding the set of normal states LG1Ω \ LG1Ω

F , as shown in Figure 5b. Note that all generated
behaviors of the non-failure diagnoser G1N are normal behaviors. Based on Step 4, we can calculate
the local non-failure diagnosers G1N1 and G1N2 , respectively, by renaming the unobservable event
sets Σuo1 \Σ f = {c} and Σuo2 \Σ f = {b} based on function Ri, as shown in Figure 5c,d. It shows
that the sets of the events of the local non-failure diagnosers G1N1 and G1N2 are ΣR1 = {a, b, f1, cR1}
and ΣR2 = {a, bR2 , f1, c}, respectively. The final step of Algorithm 1 is the computation of the
verifier G1v of G1 and Ω, which is obtained by G1v = G1N1 ||G1N2 ||GF, as shown in Figure 6.

According to Theorem 1, one can know that the verification of the fault pattern codiagnosability
is to search for the indeterminate cycles in G1v. The verifier of Figure 6 has several cycles (for example,

the cycles 7N27N22N2
CR1−−→ 7N27N22N2, 7N27N26F

CR1−−→ 7N27N26F, and 7N27N26F u−→
7N27N26F). Notice that only the cycle 7N27N26F u−→ 7N27N26F is an indeterminate cycle
(Definition 5). The existence of the indeterminate cycle 7N27N26F u−→ 7N27N26F implies that the
system G1 is not codiagnosable with respect to the local projection Pi, i = 1, 2, and the pattern Ω
(Theorem 1).

0N 7N
a f  b, c

3F

2N1N
f  

4F
b

5F
c

6F
a

a, c

u

Figure 4. Synchronous product G1Ω of G1 and Ω.

0N
a f  

3F

2N1N
f  

4F
b

5F
c

6F
a

u

0N 7N
a f  b, c

2N1N

a, c

(b)

(a)

0N 7N
a f  

2N1N 1
, Rb c

1
, Ra c

(c)

0N 7N
a f  

2N1N
2
,Rb c

(d)

a,c

Figure 5. (a) Failure diagnoser G1F, (b) non-failure diagnoser G1N , (c) local non-failure diagnoser
G1N1 , and (d) local non-failure diagnoser G1N2 .
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0N 0N 0N

7N22N22N2

2N22N23F

7N27N22N2

7N22N23F

2N27N23F

7N22N24F

7N27N23F

7N27N24F

7N27N25F

7N27N26F

f  

2R
b

f  

1Rc

2Rb

b

f  

1Rc

f  

1Rc
2Rb

1Rc

1Rc

b 1Rc

2Rb

c

c
1Rc

a

a

1
, Ru c

2N22N22N2

f  

2N27N22N2

2Rb

1N N N

1Rc
1Rc

1Rc

1Rc

Figure 6. Verifier G1v of G1 and Ω.

Example 4. Consider a DFA G2 shown in Figure 7a with the local projection Pi, i = 1, 2 and
a pattern Ω in Figure 3, where Σ = {a, b, c, f1, f2} is the set of events, Σo1 = {a, b}, and
Σo2 = {a, c}. According to the first step of Algorithm 1, we can construct the synchronous
product G2Ω, as shown in Figure 7b. Continuing Algorithm 1, the failure diagnoser G2F can be
computed accordingly, as shown in Figure 8a. By Steps 3 and 4 of Algorithm 1, we can obtain the
non-failure diagnosers and the local non-failure diagnosers successively. For the sake of simplicity,
we keep the local non-failure diagnosers G2N1 and G1N2 , which will be used later, as shown in
Figure 8b,c. Continuing Step 5 of Algorithm 1, we can calculate the verifier G2v with respect to the
local projections, as shown in Figure 8d.

Observe that there exist three cycles in the verifier G2v, i.e., 5N22N24F
CR1−−→ 5N22N24F,

5N25N24F
CR1−−→ 5N25N24F, and 5N25N24F C−→ 5N25N24F, and the cycle 5N25N24F C−→

5N25N24F is indeterminate (Definition 5). As a consequence, the system G2 is not codiagnosable
with respect to the local projection Pi, i = 1, 2, and the pattern Ω (Theorem 1).

0 5
a f  b

3

21

f  

b 4

c

c

0N 5N
a f  b

3F

2N1N

f  

4Fb

c

c

(a) (b)

Figure 7. (a) Deterministic finite automaton G2 and (b) synchronous product G2Ω.

0N 5N
a f  

2N1N

(b)

0N 7N
a f  

2N1N

(c)

c

0N
a f  

2N1N

c
f  

3F 4F
b

(a)

b

0N 0N 0N

2N25N22N2 2N25N23F 5N25N24F
b

a

2N22N22N2

f  

2N22N23F

2Rb

1N N N

f  

5N22N24F

b

f  

1Rc

2Rb

b

(d)

1
,Rc c

2Rb

1Rc

Figure 8. (a) Failure diagnoser G2F, (b) local non-failure diagnoser G2N1 , (c) local non-failure diag-
noser G2N2 , and (d) verifier G2v.

Example 5. In order to compare the codiagnosability with the system G2, we consider a DFA G3,
as shown in Figure 9a, and the pattern Ω in Figure 3. The local projection of G3 is Pi, i = 1, 2,
where Σ = {a, b, c, d, f1, f2} is the set of events, Σo1 = {a, b, d}, and Σo2 = {a, c, d}. Following
Algorithm 1, the resulting structure can be obtained step by step. For simplicity, we detail the
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verifier G3v, as shown in Figure 9b. Note that there is no indeterminate cycle (Definition 5). This
implies that the system G3 is codiagnosable with respect to the local projection and the pattern Ω
(Theorem 1).

0 5
a b

3

21

f  
b

4

c

d

(a)

0N 0N 0N

2N25N22N2 2N25N23F 5N25N24F
b

1Rc

a

2N22N22N2

f  

2N22N23F

2Rb

1N N N

f  

5N22N24F

b

f  

1Rc

2Rb

b

f  

(b)

Figure 9. (a) Deterministic finite automaton G3 and (b) verifier G3v.

Note that the pattern diagnosability verification in the centralized case can be easily
obtained by marking m = 1 of Algorithm 1, i.e., the number of the local site is 1. Therefore,
the verifier automaton for the centralized case is given as Gvc = GN1 ||GF, and the necessary
and sufficient condition for the non-diagnosability of G is the existence of an indeterminate
cycle in Gvc , such that at least one event in the cycle is an event of Σ.

5. Complexity Analysis

From Definitions 1 and 2, we know that the number of states of the system G is |L|,
and the number of states of the pattern Ω is |S|. Assume that the number of the local sites
is m.

The complexity of performing Step 1 of Algorithm 1, which constructs the synchronous
product GΩ, is O(|L| × |S|), and that of Step 2 of Algorithm 1, which constructs the fail-
ure diagnoser GF, is O(|L| × |S|). The complexity of performing Step 3 of Algorithm 1,
which computes the non-failure diagnoser GN by deleting all the final states of GΩ, is
O(|L| × |S \ {sΩ}|). The complexity of obtaining the local non-failure diagnoser GNi in Step
4 of Algorithm 1, i = 1, . . . , m, is O(|L| × |S \ {sΩ}|). By Step 5, the complexity of verifier
Gv construction is O(|L|m × |S \ {sΩ}|m × |L| × |S|).

Thus, the complexity of Algorithm 1 is O(|L|m+1 × |S \ {sΩ}|m × |S|), which is poly-
nomial with respect to the number of the states of G and Ω, i.e., O((|L||S|)m+1).

6. Conclusions

The objective of this work is the verification of pattern diagnosability for decentralized
DESs. In particular, the fault patterns are modeled by finite automata, providing a general
way to formalize different types of failures. This improves the method in [29,31], which
only targets single fault scenarios. To this end, we introduce a codiagnosability notion to
encapsulate decentralized fault pattern diagnosability, and present an algorithm to test this
property. In detail, we first compute a synchronous product structure to encode the system
and the pattern. A failure diagnoser and a non-failure diagnoser are calculated based
on the synchronous product, where the two structures are obtained by considering the
normal and faulty behaviors, respectively. Then, we present a local non-failure diagnoser
based on the local projection of the system. A verifier for codiagnosability verification is
derived by taking the product of the failure diagnoser with the local non-failure diagnoser.
Consequently, the verifier structure can track the strings of the failure and local non-failure
diagnosers that have the same observations. The proposed method boasts polynomial
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complexity, marking an improvement over methods in [17,21]. Moreover, the approach
proposed in this paper can be used for decentralized systems as well as centralized systems,
enhancing the method presented in [14,15] for centralized systems.

Our future work will consider decentralized diagnosis issues of timed fault patterns,
which are characterized by a sequence of events that occur in a given order at specific
values of time or within specific time intervals. In certain cases, the time value of the system
is compulsory. For example, in some flexible manufacturing systems, the operation of the
robot must be finished in a specified time. At this point, a time value needs to be assigned
to each event of the system, and the diagnoser should be calculated based on not only the
event but also the time value. Another limitation of the algorithm is that an external attack
is not considered in the system. With this in mind, we will consider different types of attack
forms in future work, including insertion, deletion, and replacement of observations. These
observations refer to sequences of observable events observed by external observers as well
as intruders (aliases of attackers). Such tampering with system-generated observations may
mislead system operators to make inexact, conservative, or even incorrect state estimations
that are critical for many problems in the context of DESs, such as supervisory control,
opacity verification, enforcement, detectability analysis, and fault diagnosis. Certainly,
these problems can be addressed under the framework of centralized and/or decentralized
system architectures.
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