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Abstract: Drug–drug interaction (DDI) prediction is one of the essential tasks in drug development to
ensure public health and patient safety. Drug combinations with potentially severe DDIs have been
verified to threaten the safety of patients critically, and it is therefore of great significance to develop
effective computational algorithms for identifying potential DDIs in clinical trials. By modeling
DDIs with a graph structure, recent attempts have been made to solve the prediction problem of
DDIs by using advanced graph representation learning techniques. Still, their representational
capacity is limited by isomorphic structures that are frequently observed in DDI networks. To
address this problem, we propose a novel algorithm called DDIGIN to predict DDIs by incorporating
a graph isomorphism network (GIN) such that more discriminative representations of drugs can
thus be learned for improved performance. Given a DDI network, DDIGIN first initializes the
representations of drugs with Node2Vec according to the topological structure and then optimizes
these representations by propagating and aggregating the first-order neighboring information in
an injective way. By doing so, more powerful representations can thus be learned for drugs with
isomorphic structures. Last, DDIGIN estimates the interaction probability for pairwise drugs by
multiplying their representations in an end-to-end manner. Experimental results demonstrate that
DDIGIN outperforms several state-of-the-art algorithms on the ogbl-ddi (Acc = 0.8518, AUC = 0.8594,
and AUPR = 0.9402) and DDInter datasets (Acc = 0.9763, AUC = 0.9772, and AUPR = 0.9868). In
addition, our case study indicates that incorporating GIN enhances the expressive power of drug
representations for improved performance of DDI prediction.

Keywords: drug–drug interaction network; link prediction; graph isomorphism network; graph
representation learning

MSC: 92-08

1. Introduction

Drug–drug interactions (DDIs) refer to a condition in which the activity of one drug
changes due to the presence of other drugs when more than two drugs are taken simulta-
neously or consecutively [1,2]. As a common treatment practice, multidrug prescribing is
often associated with increased clinical risk, which consequently leads to many adverse
drug effects that cause severe injuries to patients and are even responsible for deaths [3,4].
As has been pointed out by [5], about 15% of older adults taking multiple medications are
at risk for severe adverse outcomes due to the presence of DDIs. Consequently, DDIs are
a major clinical problem in patient safety [6,7], and their existence has become one of the
serious threats to public health. As a result, it is important to investigate the effects of DDIs
for human health.

Recently, computational algorithms for estimating candidate DDIs have been rapidly
developed due to their promising performance, and they can minimize unexpected ad-
verse drug reactions and maximize synergistic benefits when treating disease to some
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extent [8]. In addition, network-based computational algorithms approach the DDI predic-
tion problem from a holistic perspective, typically leveraging existing DDIs to construct a
comprehensive DDI network [9,10]. Thus, the original DDI prediction problem is formu-
lated as a link prediction problem within the network framework. In order to address it,
a majority of network-based algorithms adopt sophisticated graph representation learning
models [11], which can be broadly divided into three categories [12], i.e., matrix factoriza-
tion (MF)-based [13–15], random walk (RW)-based [16], and neural network (NN)-based
algorithms [17]. Compared with the other categories, NN-based methods exhibit supe-
rior capability in handling graph-structured data and capturing global representations
from DDI networks. Therefore, a variety of NN-based prediction algorithms have been
developed to identify novel DDIs.

Purkayastha et al. [18] present an effective approach to predict DDIs using rich drug
representations by utilizing multiple knowledge sources. In this work, they obtain the
representations of all the drug pairs in a given DDI network with LINE [19] and Meta-
path2vec [20], respectively, and perform the prediction task using a logistic regression
classifier. Liu et al. [21] propose a deep attention neural network, DANN-DDI. In this
model, SDNE [22] is first utilized to learn drug embeddings. An attention neural network
is incorporated to obtain the representations of drug pairs, which are then fed into a deep
neural network for DDI prediction. To tackle the challenges posed by structure preser-
vation and sparsity, the DANN-DDI method leverages both first-order and second-order
proximities to characterize the local and global network structures. However, there is an
obvious disadvantage among these algorithms in that they only learn the embedding of the
topology structure, without considering the attributes of nodes, which include chemical
structures, targets, enzymes, and so on. As emphasized by [23,24], node attributes are
essential for a precise analysis of complicated networks.

Recently, there has been a growing fascination with the utilization of graph neural
networks (GNN) [25–28] in DDI prediction. To effectively aggregate the neighboring in-
formation, different aggregation strategies have been designed to develop GNN variants.
Zitnik et al. [29] propose a novel model, namely, Decagon, which applies a relational GNN
for modeling polypharmacy side effects. Asada et al. [30] utilize graph convolutional
network (GCN) [31] to encode molecular structures for DDI extraction from the litera-
ture. Zhou et al. [32] present a graph distance neural network based on GraphSAGE [33]
to predict DDIs, and they comprehensively consider the features of nodes and edges
in the graph to better generate the embeddings of drug nodes. Su et al. [34] propose a
novel attention-based knowledge graph (KG) representation learning framework, namely,
DDKG, which identifies potential DDIs from biomedical KGs in an end-to-end manner.
Although these algorithms have achieved strong performance as indicated by their experi-
mental results, their expressive power is further limited by the fact that they fall short of
learning distinguishable representations for drugs within isomorphic structures according
to the Weisfeiler–Leman (WL) graph isomorphism test [35].

To intuitively explain our motivation, we take a small DDI network associated with
the WL problem in Figure 1. This network is automorphic, as the drug nodes v2 and v4 are
isomorphic to each other. Traditional GNN models, such as GCN and GraphSAGE, attempt
to learn similar node embeddings for v2 and v4 [36] by following similar aggregation paths,
thus yielding close interaction probability scores for the drug pairs, i.e., (v1,v2) and (v1,v4).
However, in the context of the entire DDI network, v2 and v4 are actually placed at different
positions away from v1. More specifically, v2 and v4 are located at three and four hops
away from v1, respectively. In this regard, it is more reasonable to handle isomorphic
structures in a way that maps different node neighborhoods to different embeddings. As a
result, the representations learned for drugs are more discriminative even for those within
isomorphic structures, thus improving the performance of DDI prediction.

Hence, we propose a novel prediction algorithm, namely, DDIGIN, to complete the
DDI prediction task by using a graph isomorphism network (GIN) [37]. In particular,
given a DDI network, we first construct a sparse adjacency matrix, and then apply the
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Node2Vec [38] embedding approach to initialize drug representations. When propagating
the first-order neighboring information of drug nodes, DDIGIN recursively gathers such
information in an injective manner so as to accurately learn the global representations
of drug nodes by distinguishing isomorphic structures. Finally, DDIGIN calculates the
interaction probability for a query pair of drugs by simply multiplying their respective
representations. Extensive experiments are performed on two practical datasets of varying
sizes to evaluate the effectiveness of DDIGIN. The results indicate that DDIGIN achieves
superior performance over several state-of-the-art DDI prediction algorithms.

Figure 1. A small DDI network with isomorphic structures.

2. Methods

The overall pipeline of DDIGIN is illustrated in Figure 2. Specifically, DDIGIN consists
of three steps: (i) drug embedding initialization, where Node2Vec is applied to initialize
drug representations according to the topological structure of DDI network; (ii) drug repre-
sentation learning, which aims to learn the global representations of drugs by aggregating
neighboring information in an injective manner; (iii) DDI prediction, which estimates the
interaction probability for drug pairs.

Figure 2. An illustration of the overall pipeline of DDIGIN.

2.1. Notations and Problem Formulation

This section begins by presenting the mathematical notations utilized in our study,
followed by formulating the DDI prediction problem employing these notations.

Suppose G = (V , E) is a graph with the node set V and the edge set E . Throughout this
paper, we denote sets with calligraphic scripts (e.g., G, N ), vectors with lowercase boldface
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letters (e.g., h ∈ Rd), scalars and drugs with lower characters (e.g., l for the number of
layers of DDIGIN and vd ∈ V for drug nodes), and functions with mathematical formal
scripts (e.g., F ,L ).

The goal of DDIGIN is to determine whether two arbitrary drugs, i.e., vi and vj in
G, will interact or not. To achieve this, the prediction task is formulated as learning a
scoring function F for estimating p̂(i,j), which is the probability of vi interacting with vj,
expressed as:

p̂(i,j) = F (i, j|G, Θ) (1)

where Θ denotes a set of trainable parameters involved in F .

2.2. Details of DDIGIN
2.2.1. Drug Embedding Initialization

For network-based prediction problems, feature embeddings should be constructed
for nodes and edges to form their real-valued representations [39]. DDIGIN first initializes
drug embeddings by Node2Vec [38], which uses a biased random walk parameterized by
p and q. In particular, p controls the probability of returning to the previous node, and q
controls whether to move outward (in a depth-first-search-like manner) versus inward
(in a breadth-first-search-like manner) when encoding both local and global neighbor
network characteristics.

• Random walks: Given a drug node vd, we generate a sequence S through a random
walk. By denoting Sk as the kth drug node in the walk, we take S0 = d as the starting
point, and Sk is generated with the following distribution:

P(Sk = i|Sk−1 = j) =

{Π(i,j)
z , i f (i, j) ∈ E

0, otherwise
(2)

where Π(i,j) represents the unnormalized transition probability between drugs vi and
vj, while z denotes the normalizing constant.

• Search bias: Given a 2nd order random walk with p and q guiding the walk, we
set Π(i,j) = αpq(t, i) · w(i,j) to evaluate the transition probability between drug nodes,
and its value is computed as:

αpq(t, i) =


1
p , i f dti = 0

1, i f dti = 1
1
q , i f dti = 2

(3)

where dti denotes the shortest path distance between drugs vt and vi, and vt is the
previous node of vj.

Starting from each drug, we simulate random walks of fixed length in order to compute
transition probabilities, and then uses a stochastic gradient descent to optimize drug
embeddings so that drugs with similar neighboring nodes in the DDI network are also
similar in the feature space.

2.2.2. Drug Representation Learning

Regarding drug representation learning, DDIGIN implements it with two components:
(i) information propagation and (ii) information aggregation.

Information propagation. For a given arbitrary drug node vi, the amount of its
first-order neighboring information is estimated by the linear combination of node repre-
sentations defined as:

hNi = ∑
j∈Ni

hj (4)

where hj denotes the embedding of vj.
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Information aggregation. DDIGIN introduces a learnable parameter to adjust its own
features after each hop aggregation operation. By integrating the adjusted features and
the aggregated neighbor features, DDIGIN applies a multilayer perceptron (MLP) that
can fit any rules used to update node embeddings so as to make it injective. Hence, we
combine all the hNi with the initial embedding of vi, denoted as hi, to update the global
representation of vi, according to (5):

h(1)
i = MLP(1)((1 + ε(1))h(0)

i + h(0)
Ni

) (5)

where h(1)
i is the result of the aggregation for vi at the first layer, and ε is a learnable

parameter or a fixed scalar.
Moreover, we proceed to construct the representation layer by superimposing more

propagation layers to lengthen the network paths to learn the global representation of drug
nodes. Subsequently, we aggregate the first-order neighboring information propagated
from neighbors, as depicted in Figure 3. More specifically, assuming that there are a total
of l propagation layers, the representation of drug node vi at the lth layer is recursively
formulated as:

h(l)
i = MLP(l)((1 + ε(l))h(l−1)

i + h(l−1)
Ni

) (6)

where h(0)
i = hi, and the amount of neighboring information for vi in the lth is defined as:

h(l−1)
Ni

= ∑
j∈Ni

h(l−1)
j (7)

where h(l−1)
j is the representation of vj generated from the previous layer.

Figure 3. An illustration for the representation learning layer.

2.2.3. DDI Prediction

For a query pair of drugs, i.e., (vi, vj), their global representations, i.e., h(l)
i and h(l)

j , can
be obtained with (6). Then, we design the scoring function F to calculate the interaction
probability between vi and vj, and the definition of F is given as:

F (h(l)
i , h(l)

j ) = σ(h(l)
i · h

(l)
j ) (8)

where σ is defined as the sigmoid(·) activation function [40] widely adopted to address
binary classification problems [41,42].
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In our work, we approach the problem of DDI prediction as a binary classification task.
Hence, given (vi, vj), we train DDIGIN by using the binary cross-entropy loss function
defined as:

L (Θ) = −∑
i 6=j

p(i,j)log( p̂(i,j)) + (1− p(i,j))log(1− p̂(i,j)) (9)

where p̂(i,j) = F (h(l)i , h(l)j ), p(i,j) represents the binary value indicating the existence of a
DDI between vi and vj, and Θ denotes the set of trainable parameters.

3. Experiments
3.1. Datasets

For performance evaluation, extensive experiments have been conducted on two
benchmark datasets, i.e., the Open Graph Benchmark Drug-Drug Interaction (ogbl-ddi)
dataset [43], and the DDInter dataset [44]. These two datasets are different in size, and their
statistics are shown in Table 1.

• The ogbl-ddi dataset is an unweighted, undirected graph, where each node represents
a Food and Drug Administration (FDA)-approved or experimental drug from the
DrugBank 5.0 database [45], and each edge represents interactions between corre-
sponding drugs [43].

• The DDInter dataset is a comprehensive and practical DDI database that currently
contains 1833 approved drugs that have been reviewed and curated by a clinical
pharmacist team, and approximately 0.23 million DDI pairs [44].

Table 1. Statistics of the benchmark datasets used in the experiments.

Dataset # Nodes # Edges # Density

ogbl-ddi 4267 1,334,889 0.1467%
DDinter 1833 222,384 0.1324%

Density is defined as 2∗Edges
Nodes∗Nodes .

3.2. Baseline Algorithms

For the purpose of demonstrating the effectiveness of DDIGIN, several classical and
state-of-art prediction algorithms are taken as the baseline models, and their brief descrip-
tions are presented as follows.

• LINE [19]: It is an NN-based approach for network representation learning that learns
the final representation by designing two kinds of proximities and optimizing them
simultaneously.

• SDNE [22]: It can be considered as an extension of LINE, as well as the pioneering
method of applying deep learning in graph representation learning through the
utilization of an autoencoder.

• GraphSAGE [33]: GraphSAGE is a versatile inductive framework that utilizes node
feature information to generate node embeddings effectively, even for data that have
not been seen during the training phase.

• GCN [31]: Based on a first-order approximation of spectral convolutions on graphs, it
employs an effective layerwise propagation method.

• DPDDI [46]: It extracts the network structure features of drugs from a DDI network
with GCN [31,47], and then a deep neural network is trained to predict potential inter-
actions.

• GCN-DTI [48]: It learns drug representations using a traditional GCN model [49] and
then adopts a deep neural network to predict the final labels for drug pairs.

• DeepDDS [50]: It learns drug embedding vectors using a graph attention network or
GCN, adopts an MLP to extract the cell line features, and then concatenates them to
predict the synergy of drug combinations.
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• CPI-IGAE [51]: It uses the optimized inductive aggregator based on GraphSAGE for
feature extraction, and then designs the scoring function based on the inner product
to adumbrate the drug interaction probability.

3.3. Experimental Settings

DDIGIN was implemented with PyTorch [52] on a working machine equipped with
an Intel Core I7 3.2 GHz and 16 GB of RAM. The above baseline algorithms were also
deployed on the same machine. We used a dataset split function provided by OGB for the
ogbl-ddi dataset, and we randomly divided the whole dataset into a training set, validation
set, and test set with a ratio of 8:1:1 for the DDInter dataset. Moreover, for all baseline
algorithms, the embedding size was fixed at 256 and other parameters were consistent with
the original work. As for the parameters of DDIGIN, we set the hidden size, learning rate,
dropout, and the number of layers of DDIGIN to 256, 0.005, 0.5, and 3, respectively.

3.4. Evaluation Metrics

We evaluated the prediction performance of DDIGIN using several classification
metrics, including accuracy (Acc), precision, recall, and F1 score. These metrics are defined
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(13)

where TP, FP, TN, and FN represent the numbers of true positive samples, false positive
samples, true negative samples, and false negative samples, respectively.

We also use the area under the ROC curve (AUC) and area under the precision–recall
curve (AUPR) metrics to measure the performance of DDIGIN from a global perspective
without specifying prediction thresholds.

3.5. Results

In this section, we evaluate all baselines with the above six evaluation metrics by
quantitatively measuring their performance on two benchmark datasets, respectively.
In Table 2, we present the results of all the models, where several things can be noted.

First of all, LINE and SDNE are network embedding (NE)-based algorithms, and they
solve DDI problems through conventional network representation learning methods, such
as MF and RW. Concerning the outcomes achieved by NE-based algorithms, we find
that the performance of SDNE is better than LINE. The reason is twofold. On the one
hand, LINE adopts a shallow model, while SDNE adopts a deep neural network structure
which can capture highly nonlinear network structures effectively [53]. On the other hand,
the node representations of both LINE and SDNE are learned by designing first-order and
second-order proximities [54]. However, the two optimization methods are different. LINE
is optimized separately, while SDNE is optimized simultaneously which can preserve both
global and local structures. According to Table 2, it is evident that DDIGIN consistently
outperforms NE-based algorithms for each metric across all benchmark datasets. This can
be attributed to the fact that the performance of NE-based algorithms is limited by the
representation capabilities of corresponding models. DDIGIN learns more robust initial
embeddings of drugs with Node2Vec. On average, the performance of DDIGIN is better by
15% than NE-based algorithms on the DDInter dataset across all metrics.
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Table 2. Experimental results on benchmark datasets.

Datasets Methods Acc F1 Score AUC AUPR
Precision Recall F1 Score

ogbl-ddi LINE 0.9038 0.9089 0.9033 0.9061 0.9052 0.9147
SDNE 0.9107 0.9201 0.9176 0.9188 0.9113 0.9228
GCN 0.9632 0.9692 0.9693 0.9692 0.9642 0.9782

GraphSAGE 0.9715 0.9712 0.9619 0.9665 0.9717 0.9833
DPDDI 0.9717 0.9742 0.9640 0.9691 0.9721 0.9836

GCN-DTI 0.9737 0.9775 0.9649 0.9712 0.9744 0.9848
DeepDDS 0.9717 0.9749 0.9645 0.9697 0.9721 0.9831
CPI-IGAE 0.9722 0.9761 0.9651 0.9706 0.9731 0.9842

GIN 0.9742 0.9792 0.9654 0.9717 0.9762 0.9850
DDIGIN 0.9763 0.9866 0.9682 0.9773 0.9772 0.9868

DDInter LINE 0.6604 0.7783 0.6229 0.6920 0.6742 0.8093
SDNE 0.6631 0.7825 0.6377 0.7027 0.6809 0.7912
GCN 0.7740 0.7966 0.7993 0.7979 0.7934 0.9170

GraphSAGE 0.6602 0.6654 0.6534 0.6593 0.7191 0.8868
DPDDI 0.7903 0.8388 0.8233 0.8310 0.8118 0.9179

GCN-DTI 0.8071 0.8494 0.8242 0.8366 0.8189 0.9197
DeepDDS 0.8004 0.8425 0.8237 0.8330 0.8155 0.9193
CPI-IGAE 0.8066 0.8467 0.8240 0.8352 0.8158 0.9195

GIN 0.8121 0.8579 0.8255 0.8414 0.8217 0.9287
DDIGIN 0.8518 0.9372 0.8433 0.8878 0.8594 0.9402

The best results are bolded.

Second, GNN-based algorithms, such as GCN and GraphSAGE, use variations of
GNNs to predict DDIs. According to Table 2, it is apparent that DDIGIN exhibits superior
performance compared to GNN-based algorithms on all datasets. In addition, it can be
observed that the experimental results achieved by DDIGIN are about 1.68% and 11%
better on the ogbl-ddi and DDInter datasets, respectively, than GNN-based algorithms.
The main reason for this phenomenon is that GNN-based algorithms fail to effectively
distinguish some simple graph structures, as they follow the neighborhood aggregation
architecture to generate node embedding by recursively aggregating and transforming the
feature vectors of neighborhood nodes. However, DDIGIN iteratively updates a given drug
node by aggregating feature vectors of its neighbors by using injective aggregation update
to map different feature vectors. In doing so, the drug embeddings generated by DDIGIN
retain the graph structure identification information. As a result, DDIGIN is able to achieve
a better performance when compared with GNN-based algorithms.

Furthermore, we also note that little difference is observed in the performance be-
tween GCN and GraphSAGE on ogbl-ddi, while GCN yields a better performance than
GraphSAGE on DDInter. Considering that GraphSAGE samples from neighbors of each
node during the graph propagation, especially for graphs with unbalanced distribution, its
robustness may be poor. Furthermore, it is worth noting that the experimental results of
GCN on the DDInter dataset are approximately 14% better than GraphSAGE.

Overall, DDIGIN yields the best performance in terms of all evaluation metrics on
two benchmark datasets, and the reasons are twofold. On one hand, DDIGIN incorporates
the Node2Vec approach to initialize drug embeddings, thus increasing the flexibility of
neighborhood search. On the other hand, the use of GIN allows DDIGIN to generate
higher-quality, more information-embedded representations by addressing the problem of
isomorphic structures.

3.6. Ablation Study

In order to study the influence of embedding initialization and normalization, an ab-
lation study was conducted. In addition, additional experiments were conducted on the
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performance of DDIGIN to analyze the effects of various aggregation functions. In the ex-
periment, three variants of DDIGIN are defined as below. Table 3 displays the experimental
results of these variants.

• DDIGIN+R: It simply replaces Node2Vec with a random embedding initialization.
• DDIGIN-BN: It simply removes the normalization component.
• DDIGINmax: This variant utilizes an alternative aggregation function, namely, Amax,

to aggregate the information in Amax = σ(Wmax ·MAX(h(l)
i , h(l−1)

Ni
)) by following [33].

• DDIGINmean: A modified aggregation function, i.e., Amean, is employed in this variant

to aggregates the information in Amean = σ(Wmean · MEAN(h(l)
i , h(l−1)

Ni
) by follow-

ing [31].
• DDIGINsum: The difference between DDIGINsum and DDIGIN is that DDIGINsum uses

Asum as its aggregation function, which is defined as Asum = σ(Wsum · (h(l)
i + h(l−1)

Ni
))

by following [31].

Table 3. Experimental results of the ablation study on the ogbl-ddi and DDInter datasets.

Datasets Methods Acc F1 Score AUC AUPR
Precision Recall F1 Score

ogbl-ddi DDIGIN+R 0.9679 0.9792 0.9643 0.9717 0.9673 0.9821
DDIGIN-BN 0.9718 0.9820 0.9793 0.9806 0.9723 0.9836
DDIGINmax 0.9635 0.9727 0.9648 0.9687 0.9637 0.9790
DDIGINmean 0.9692 0.9803 0.9652 0.9727 0.9700 0.9836
DDIGINsum 0.9718 0.9851 0.9673 0.9761 0.9724 0.9855

DDIGIN 0.9763 0.9866 0.9682 0.9773 0.9772 0.9868

DDInter DDIGIN+R 0.8169 0.9160 0.8104 0.8600 0.8199 0.9273
DDIGIN-BN 0.8083 0.9168 0.8034 0.8564 0.8186 0.9272
DDIGINmax 0.7669 0.9062 0.7624 0.8281 0.7909 0.9164
DDIGINmean 0.8263 0.9254 0.8234 0.8714 0.8306 0.9320
DDIGINsum 0.8495 0.9260 0.8471 0.8848 0.8518 0.9396

DDIGIN 0.8518 0.9372 0.8433 0.8878 0.8594 0.9402
The best results are bolded.

In the aggregation functions of DDIGINmax, DDIGINmean, and DDIGINsum, W rep-
resents the trainable parameters. For DDIGIN, it should be noted that DDIGIN adopts
Asum′ = σ(MLP(l)((1 + ε(l))h(l−1)

i + h(l−1)
Ni

)).
Effect of drug embedding initialization. According to previous studies [55,56],

Node2Vec outperforms other existing state-of-the-art methods in node embedding. As can
be seen from the results in Table 3, when Node2Vec is replaced by a random initialization,
the performance of DDIGIN on some metrics decreases to varying degrees, thus indicating
the importance of Node2Vec. A possible reason for this is that Node2Vec is a biased random
walk algorithm, and it adjusts different walk situations through hyperparameters to make
it explore more homogeneously or structurally, and thereby improves the performance of
DDIGIN considerably.

Effect of BatchNorm. Comparing the experimental results of DDIGIN and DDIGIN-
BN, it is evident that DDIGIN exhibits superior performance on some metrics when em-
ploying the normalization strategy which normalizes each layer to act as a decoupling.
We can see from Figure 4 that BatchNorm can accelerate the convergence rate of DDIGIN
and prevent overfitting.
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Figure 4. LOSS curves obtained by DDIGIN and DDIGIN-BN.

Effect of the aggregation function. To evaluate the effectiveness of aggregation func-
tions, the performance of DDIGIN was compared with three variants, i.e., DDIGINmax,
DDIGINmean, and DDIGINsum. The results presented in Table 3 yield several observations.
Firstly, updating node embedding only by their max embeddings is not able to learn more
distinguishable characteristics, as DDIGINmax achieves the worst performance across all
datasets. Second, compared to DDIGINmax, DDIGINmean performs a little better. Last,
DDIGINsum is better than the other aggregation functions, but it is not an optimal solu-
tion, as it simply treats h(l)

i and h(l−1)
Ni

without any difference, while DDIGIN uses a more
rational aggregation function by enhancing the relationship between them.

3.7. Case Study
3.7.1. Predicting Novel DDIs

We investigated the performance of DDIGIN in predicting unobserved DDIs. Out of
a total of 1833 drugs, DDInter contains 175,202 pairs of observed drug–drug interactions
and 47,182 pairs of unobserved DDIs. By training DDIGIN with the known DDI network
from the DDInter dataset as training samples, the possible interactions among drugs
were inferred. If an unknown drug pair is predicted with higher scores, they are more
likely to interact with each other. We collected the top 15 DDIs predicted by DDIGIN
and present them in Table 4. By searching for the evidence of these newly predicted DDIs
in the DrugBank database [45], we found that nine were confirmed. This result is a strong
indicator that DDIGIN demonstrates a superior capability in predicting potential DDIs.
Therefore, it can be considered a promising tool for gaining new insights into the prediction
of novel DDIs by utilizing a GIN to obtain feature representations.
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Table 4. Top 15 potential DDIs predicted by DDIGIN.

Number Drug Drug Evidence

1 Metformin Tacrolimus The therapeutic effectiveness of metformin may be diminished when metformin is
used in conjunction with tacrolimus.

2 Prednisolone Fexofenadine N/A
3 Nystatin Metronidazole N/A
4 Epinephrine Salbutamol The combination of epinephrine and salbutamol can increase the risk or severity of

adverse effects.
5 Cetirizine Prednisolone N/A
6 Leflunomide Dexamethasone When dexamethasone is combined with leflunomide, the risk or severity of adverse

effects can be heightened.
7 Tamsulosin Promethazine The metabolism of tamsulosin can be decreased when combined with promethazine.
8 Zolpidem Nystatin N/A
9 Nystatin Quetiapine N/A

10 Valsartan Nystatin The excretion of valsartan can be decreased when combined with nystatin.
11 Triamcinolone Fentanyl The metabolism of fentanyl can be increased when combined with triamcinolone.
12 Nabumetone Prednisolone When prednisolone is combined with nabumetone, there is an increased risk or

severity of gastrointestinal irritation.
13 Prednisolone Insulin degludec When prednisolone is combined with insulin degludec, there is an elevated risk or

severity of hyperglycemia.
14 Folic acid Furosemide The combination of furosemide and folic acid may lead to an increased excretion rate

of folic acid, potentially resulting in lower serum levels and a potential reduction in
efficacy.

15 Lansoprazole Prednisone N/A

3.7.2. Distinguishing Similar Structures

To test the model’s ability to distinguish similar structures, we selected two sub-
graphs with a similar structure from the DDInter dataset, as shown in Figure 5. Moreover,
the learned embeddings of drugs in these two subgraphs are visualized in Figure 6. Tra-
ditional models attempt to learn similar node embedding for drugs by following similar
aggregation paths. However, we can see from Figure 6 that DDIGIN generates different
embeddings for drugs in these two subgraphs. The reason is that the most important
feature of DDIGIN in the aggregation process is that its aggregation function uses injective
functions to distinguish between different graph structures. As a result, the representations
learned for drugs by DDIGIN are more discriminative even for those within isomorphic
structures, thus improving the performance of DDI prediction.

Figure 5. An example of graph isomorphism problem between (a) and (b) on the DDInter dataset.
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Figure 6. The visualization results of two subgraphs. The blue area represents the visualization range
of Figure 5a, and the pink area represents the visualization range of Figure 5b.

3.8. Parameter Sensitivity Analysis

A parameter sensitivity study was further conducted to evaluate the performance
of DDIGIN with different parameter settings. In particular, we investigated the effects of
two hyperparameters that needed to be tuned, the dimension of drug embeddings, i.e., d,
and the number of layers, i.e., l. Taking the ogbl-ddi dataset as an example, the performance
of DDIGIN in terms of different evaluation metrics is presented in Figure 7.

Effect of dimension of embedding. We examined the influence of d by varying its
value from 8 to 512. The result is rather intuitive, as can be seen from Figure 7, where with
the increase in the embedding dimension d, each evaluation metric increases to varying
degrees. The best effect is achieved when the dimension is set as 128. A further increase in d
degrades the performance of DDIGIN to some extent, which may be caused by overfitting.

Figure 7. Results of DDIGIN with a varying size of d and l.
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Effect of the number of layers of DDIGIN. We investigated the influence of the
number of layers of DDIGIN by varying the value of l from one to six. According to
Figure 7, it can be observed that DDIGIN obtains its best performance when l is set to two
or three. As l increases, the number of learning nodes for the representation of a particular
drug node increases. Therefore, DDIGIN is prone to encounter noise data due to the
increase in l. Consequently, the performance of DDIGIN degrades when l > 3. Additionally,
we also note in Figure 8 that DDIGIN trained with a larger l requires more CPU time to
reach convergence due to the increase in involved nodes. Thus, l = 3 is often sufficient for
the actual situation of DDI prediction.

Figure 8. The change in CPU time taken by DDIGIN given different values of l.

4. Conclusions

In this work, DDIGIN was proposed to identify potential DDIs. First, DDIGIN initial-
ized the representations of drugs with Node2Vec according to the topological structure
and then optimized these representations by propagating and aggregating the first-order
neighboring information in an injective way. Last, it determined the interaction probability
for pairwise drugs by multiplying their representations in an end-to-end manner. Experi-
mental results showed that DDIGIN outperformed several state-of-the-art algorithms on
the DDI prediction task when using an injective aggregation function, and the incorpo-
ration of GIN enhanced the expressive power of drug representations for an improved
performance of DDI prediction.

With regard to future work, there is room for further improvement in the performance
of DDIGIN. Due to the ubiquity of the knowledge graph, we can use a KG to predict
DDI and extract drug characteristics [34,57], which provides more detailed information
about drug attributes and drug-related triple facts. In addition, there are other types
of associations in bioinformatics, such as protein–protein interactions [58–61] and drug–
disease associations [62], and we may also employ DDIGIN to predict them. However,
deep learning models have a significant interpretability problem, which can negatively
impact the model’s performance. We recommend that studies in the future think about
developing more comprehensible models.
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