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Abstract: The current study aims to identify some optimal base-stock inventory-management policies
that maximize the expected long-run profitability of cement retailers under potential supply-side
disruptions. Unlike existing articles, the proposed economic order-quantity model considers peri-
odically varying random demand rates of deteriorating items together with partially back-ordered
shortages in the face of those random disruptions. This study computes the global concavity to
execute the exemplary aspect for the optimal base-stock level under a slew of cost components and a
fixed cycle length. Regarding the optimal pricing-related policies, this study proposes that cement
retailers should stock from nearby supplier points. Unlike existing articles, we find that changes
to either the unit-holding cost or the unit-lost sales cost have hardly any determining effect on the
long-run profitability of retailers. When supply-side disruptions are more likely to occur during
peak seasons, this study advocates for a planned capacity addition and higher base-stock levels of
cement bags.

Keywords: periodic-review inventory model; base-stock policy; supply-side disruption; varying
demand rate; deterioration; partial back-ordering

MSC: 90B05; 90B06

1. Introduction

A number of recent events, including the COVID-19 outbreak in 2019, the Second
Nagorno–Karabakh War in 2020, and the ongoing Russia–Ukraine conflict in 2022 have
caused massive supply-side disruptions in the Asian thermal coal market. Due to the per-
sistently strong demand and limited supply amidst the ongoing coal crises, the Newcastle
coal benchmark index surged over 150% compared to the previous year, surpassing the
USD 400 per tonne threshold in December 2022. Likewise, the price of the spot physical
coal at Newcastle Port in Australia was USD 436.71 per ton, an all-time high in September
2022 [1]. The crises, as mentioned earlier, can potentially jeopardize the cement industry,
which is already engulfed in crisis, thus affecting the price and availability of cement in
all local markets across the globe. Industry experts believe cement is a major component
in infrastructural growth, like roads, bridges, dams, buildings, canals, and houses. Inter-
estingly, the cement market globally is expected to grow at a CAGR of 5.1% between 2022
and 2029, from USD 340.61 billion in 2022 to USD 481.73 billion by 2029 [2]. Moreover, the

Mathematics 2023, 11, 3971. https://doi.org/10.3390/math11183971 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11183971
https://doi.org/10.3390/math11183971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0000-2196-1511
https://orcid.org/0000-0003-4829-7483
https://orcid.org/0000-0003-0118-7076
https://orcid.org/0000-0003-2004-2489
https://orcid.org/0000-0001-9546-2897
https://doi.org/10.3390/math11183971
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11183971?type=check_update&version=1


Mathematics 2023, 11, 3971 2 of 34

consumption of cement indicates how any nation marks its progress. Thus, any potential
disruptions in the cement industry are troublesome for the entire economy of a nation.

Comparable to the current cement crisis, modern industrial history reports various
other instances of the devastating impacts of supply-side disruptions that are caused by
a lack of robustness and resiliency in existing organizational strategies [3]. For example,
Samsung, in 2017, had to stop the production lines of the highly popular Galaxy Note 7
because of the defectiveness of the batteries, which were delivered by its supplier [4]. At that
time, Hurricane Harvey unleashed its fury upon the Gulf Coast in August 2017, upending
the lives of over 13 million individuals across Texas, Louisiana, Mississippi, Tennessee,
and Kentucky. The aftermath of this catastrophe resulted in an astounding economic
loss of approximately USD 180 billion. Similar events have reverberated across the globe,
underscoring the vulnerability of our interconnected world. Think of Hurricane Maria’s
devastating onslaught in 2017, the seismic upheaval, and tsunamis that rocked Indonesia
in 2018, and more [5]. These incidents not only exact a toll on lives and livelihoods but also
spark an urgent demand for recovery efforts. One crucial resource that emerges as a linchpin
in the recovery process is cement. This versatile building material is essential in rebuilding
shattered communities and infrastructure. However, these dire circumstances frequently
trigger disruptions in the supply chain. Earthquakes, floods, transportation hiccups, and
even employee strikes also compound the challenges, leading to critical shortages.

In 2020, the BCI report found that a significant number of organizations lacked com-
prehensive business continuity plans. Among these, a staggering 73% had faced severe
disruptions in their supply chains due to the impact of COVID-19, ultimately resulting
in their financial collapse [6]. Consequently, a current statistic reveals that 20% of these
managers have opted to maintain higher inventory levels to mitigate potential future dis-
ruptions. Additionally, 27% are actively enhancing their supplier networks to guarantee
the uninterrupted delivery of ordered goods [7]. Very recently, amidst escalating global ten-
sions such as Russia’s invasion of Ukraine and China’s persistent threat to take over Taiwan
by force, Intel Corp. has strategically unveiled plans to invest over USD 50 billion in new
semiconductor manufacturing facilities across Poland, Germany, and Israel. Recognizing
the precarious geopolitical landscape, Intel is placing its bets on establishing manufacturing
plants in multiple countries as a protective measure against potential disruptions [8]. By
expanding its operations across these diverse locations, Intel aims to fortify its supply chain
resilience. Intel’s substantial investments and strategic maneuvering reflect its proactive
stance in safeguarding its operations against external disruptions. Typically, these external
disruptions are unpredictable yet occasional events that are caused by natural disasters,
political instability, labour unrest, industrial accidents, the advent of pandemic diseases,
etc. [9]. This study focuses solely on the supply-side-disruption-related crises of cement
retailers that result from shortages of input materials, machinery breakdowns, and soaring
input costs and continue for a random duration.

On the other hand, the rapidly fluctuating demand rate is among the major concerns of
cement retailers [10]. For example, the demand for cement bags improves in the June quarter
(i.e., before the rainy season) and slows down during the rainy season owing to sluggish
construction activities during the latter. Moreover, several local factors, such as the use
of cement in industries, the construction of large urban housing complexes, and elections,
greatly affect the demand for cement bags at local retailers. In the case of selling-price-
dependent demand, there has also been a significant role of deterioration [11]. Together with
fluctuating demand, cement retailers need to consider the probable number of sequential
supply failures that lead to a rapid increase in the inventory lead time from zero (the normal
business scenario) to multiplications of the review interval (during disruptions) [12]. When
supply-side disruptions are prolonged for various reasons, this causes shortages of cement
bags at retailers. However, the construction activities of individual home builders and
small builders, which account for 60–70% of rural sales and 40–50% of urban sales in India,
come to a complete halt without cement. During supply-side disruptions, a segment of
customers is unable to wait at a single cement retailer with a fixed cycle length and shifts to



Mathematics 2023, 11, 3971 3 of 34

other retailers. This accounts for the partial back-ordering of shortages [13]. Thus, cement
retailers need to predict and meet real-time fluctuations in demand and influence them
to achieve long-term business goals while ensuring operational agility and resilience to
potential market adversities [14]. Accordingly, many retailers employ some sort of artificial
intelligence and forecasting-based semi-autonomous decision support (SADS) systems that
can predict the demand for cement bags and communicate an upcoming order to cement
manufacturers at the start of each review cycle.

Cement is a deteriorating item [15]. Therefore, the leakage and entry of moisture into
cement bags during inventory stock-in and/or storage at any retailer lead to an irreversible
loss of cement quality, thus making some bags useless. Ghandehari and Dezhtaherian [16]
modeled a deteriorated inventory model with partial back-order. During the COVID-
19 outbreak, nearly 26% of retailers holding 400+ bags offered major discounts to avoid
spoilage. As with any periodic-review inventory system, cement retailers typically discard
deteriorated cement bags at the end of each period, incurring some additional costs. These
give the base-stock policy a capacity limit to bind the replenishment quantity in each period
significant for the planned single-item long-run periodic-review inventory system of cement
retailers [17]. Existing sub-optimal base-stock levels lead to a loss of business opportunities
for cement retailers with a fixed cycle length under stochastic supply disruptions.

Nevertheless, under probable supply-side disruptions, most existing EOQ models con-
sider specific probability distributions based on exogenous review intervals that sometimes
lead to sub-optimal replenishment decisions under longer intervals and increase the risk of
inventory obsolescence [18]. This way, to deal with probable supply-side disruptions under
a varying demand rate and partial back-ordering of shortages for deteriorating items, the
present study frames various cost components, such as expected long-run ordering, acqui-
sition, holding, deterioration, and shortage costs, including back-ordering and lost sales
costs, to obtain the retailer’s expected long-run net profit of one stochastic periodic-review
base-stock inventory model.

Regarding the structure of the rest of this paper, Section 2 deliberates on the back-
ground study in terms of two different aspects. Section 3 discusses the notations, assump-
tions, and problem statements. Next, this study formulates the proposed inventory model
of cement retailers in Section 4, while Section 5 analytically establishes the global optimal-
ity of the proposed model at the critically determined base-stock level. Later, Section 6
numerically evaluates the proposed model. The 107 managerial insights are derived from
the sensitivity analysis of several major parameters here, along 108 with comparisons to
some well-established articles with comparisons to some well-established articles. Lastly,
Section 8 concludes the paper along with some scopes of future research.

2. Literature Review

In the last few decades, well-established inventory articles have deliberated on a
number of deterministic and stochastic lot-sizing models through the progressive embed-
ding of diverse real-life scenarios. With effective management decisions being critical to
maintaining an efficient and balanced flow of the inventory models Ghasemi et al. [19], the
current review focuses on the recent and well-established inventory control and SC models
with the following focal points.

2.1. Review of Inventory Models under Various Disruptions

The shortcomings of any complicated inventory model, covering products from com-
puter chips to toilet paper, under diverse disruptions, have been evident in recent times.
Researchers have discussed various robust and resilient inventory-control strategies by
examining the ability of speedy recovery of organizations from a disruptive state to the
preceding state and/or a more desirable state, a major aspiration of inventory managers
Duchek [20]. Hosseini et al. [21] solved a cost-minimization bi-objective model under a
stochastic environment for the allocation of orders and the selection of suppliers. He
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showed the alleviation of disruption-related risk while determining the crucial suppliers
and optimal order (re)-allocation particulars.

Recently, Alena Puchkova and Thorne [22] addressed the management policies used
to reduce the effect of multiple spontaneous disruptions to an EPQ network of an industrial
power laboratory’s exhibit technique. They resolved the optimal spot and portion in
an inventory of protectors associated with other medium nodes. They examined the
part and positioning of appraisal areas across the financial exhibit grid to ensure the
punctual delivery of superior grade outcomes while observing any faults at the earlier
time. Following this, Yavari and Zaker [23] demonstrated the dangers concerning the
disturbances of a control network in a resilient form with a closed-loop deteriorated supply
chain model. They discovered that integrating two networks resulted in lower cost and
more CE.

Supply disruption is a notable crisis in the business environment, and many re-
searchers have become interested in this topic. In a pharmaceutical supply-chain-based
model with stochastic demand, Lücker et al. [24] fully characterized some efficient risk
management strategies by considering the inventory and reserve capacity strategies to-
gether with the mixed and passive acceptance strategies. Their investigation explained how
the optimal risk-mitigation strategy depended on the functional characteristics of products
and the agile characteristics of the supply chain. Concurrently, in one continuous-review
inventory model in the presence of a fully lost sale of unsatisfied demand with constant
deterministic demand, Sevgen and Sargut [25] extended an economic order quantity (EOQ)
model, in which random disruptions occur on both the supplier and retailer sides. They
considered the supply-side disruption in an available and unavailable state. But the retailer
was disrupted when all on-hand inventory was destroyed. They identified a cost-saving
non-zero reorder point and compared their model with the classical EOQ model. Subse-
quently, Konstantaras et al. [26] explained the ideal (S, T) base-stock policy minimizing the
long-run average cost of an EOQ model under the endogenous supply-side disruptions
in an exact analysis with both continuous and end-of-cycle costing schemes. They inves-
tigated the impacts of applying any heuristics on the long-run average cost by dodging
supply-side disruptions and relying on inaccurate costing information. During the time,
in a recurring appraisal of base-stock inventory policy, Saithong and Luong [27] applied
a two-phase heuristic algorithm in the existence of supply disruption with a complete
backlogging of shortages. They modeled the supply-side disruption span as a continuous
random variable that did not affect the lead time. They determined the optimal base-stock
level and expected total inventory cost per unit time under the effect of supply disruption.
On the other hand, He et al. [28] investigated the optimal ordering decision policies of
retailers in a supply-side-disruption-based SC model with correlated demand and price
uncertainty. The real-option theory-based model was put in the explicit form of the profit
function. Their investigation regarded the applicability of the suggested model in Chinese
dairy market companies, e.g., Yili, Mengniu, and Bright.

Unexpected events highly deteriorate the performance of a supply chain. Olivares-
Aguila and ElMaraghy [29] investigated the proactive and reactive strategies in disruptions
of a multi-echelon supply chain. They examined the inventory model with full and par-
tial disruptions with a consequence on the service levels, costs, profits, and inventory
levels. Their analysis demonstrated that the disruptions in the downstream levels had a
greater impact with respect to the upstream levels on the SC performance, thus requir-
ing more efforts on the disruption policies for downstream partners. On the other hand,
Fattahi et al. [30] considered a novel metric that could measure the expected escalations
in disruption-induced costs in the SC during the recovery period. They considered the
large number of disruptions by applying the quadratic conic optimization, along with the
sample average approximation methods to determine the time and cost of recovery. Their
results indicated that the increased capacity was hardly effective in designing any resilient
SC. Saithong and Lekhavat [31] formulated the optimal base-stock policy to minimize the
total cost per unit time of any supply chain with the partial back-ordering of shortages.



Mathematics 2023, 11, 3971 5 of 34

Under the continuous random-variable-type stochastic disruptions, they suggested that
retailers surge the base-stock level against any escalations in the disruption frequency
or disruption length. Thereafter, in an inventory-management model with supply-side
disruptions, Taleizadeh et al. [9] designed two periodic-review optimization models with
the base-stock policy and thus determined the corresponding minimum expected long-run
total costs. They showed that an appropriate ratio of back-ordering during any supply-side
disruptions was effective in cutting costs and reducing the obsolescence of items.

Very recently, due to the global COVID-19 pandemic, manufacturers faced long-term
supply disruptions [32]. Chen et al. [33] presented a mixed-integer linear programming
model to investigate a disruption recovery strategy of a supply chain system. They con-
sidered the life cycle and design-change time of a new product to minimize manufacturer
losses after disruptions. At the same time, Khan et al. [34] proposed an inventory model
for the period till the first lockdown ended. They looked at consumer behaviors and the
state of disruptions to supermarket supply chains in England. This research informed us
that supply-side disturbance was more critical than demand-side disruption.

2.2. Review of Backlogged and Disruptions-Induced Partially Backlogged Inventory Models

In the existence of deterioration, an EOQ model followed the expiration of products
with time. In a competitive business situation, discount facilities play an essential role.
Shaikh et al. [35] considered two different EOQ inventory models, namely the inventory
model for the zero-ending case and the inventory model for the case of the shortage. In both
models, demand depended on the price and the stock level, and the shortages were partially
backlogged at a rate with the waiting time for the next arrival. They observed that the
inventory model with partial backlogged shortage was more economical from the viewpoint
of cost minimization. Concurrently, in a non-instantaneous deteriorating inventory model,
Li et al. [36] defined a nonlinear fractional program with joint pricing, replenishment, and
preservation technology. They used the waiting-time-dependent partially backlogging
rate, price-dependent demand, and time-varying deterioration. They found that investing
in preservation technology did not always give an optimal solution. The demand of
some industries depends on the selling price and the frequency of advertisement of the
product under the financial trade credit policy. Shaikh et al. [35] allowed shortages that
were partially backlogged with a varying rate on the duration of waiting time of the
subsequent order. Nevertheless, the industry follows a three-parameter Weibull distribution
deterioration rate, where, in a continuous review of base-stock policy under the lost sales,
Kouki et al. [10] provided a method for both complete and partial rejection cases that
calculate the best cost-driven base-stock policy under more general compound Poisson
demand processes. They obtained the optimal base-stock level for the full rejection case
and the approximate base-stock level under the partial rejection policy.

In a non-deterministic inventory model, Rahman et al. [37] proposed a quantum-
behaved particle swarm algorithm for interval-valued deterioration rate items with partially
backlogged shortages. They assumed that the demand rate depended upon the selling
price. Except for the backlogging parameter, all the parameters were considered interval-
valued. They found the optimal cycle span, stock-in duration, initial demand excess, highest
deficiency, and complementary optimal intermediate returns. At the same time, using a
queuing network model, Kouki et al. [38] investigated a base-stock inventory system for
perishable products with lost sales based on available lead time and random demand. They
found some significant errors by assuming deterministic or exponential distributions for
the lifetime. For maximum profit and minimum risk, multiple-period trade credit plays an
essential role in business enterprises. Das et al. [39] established a conserving-technology-
based non-instantaneous deteriorated item with partially backlogged multi-period-based
trade credit policies with different rates of interest charged. However, the demand rate was
variable according to the selling price of the product. However, in the state of a lost sale,
Goldberg et al. [40] framed a high-dimensional perishable inventory model. They presented
the above model using the asymptotic analysis process for well-approximation. They found
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that asymptotic analysis had recently led to significant progress in lost-sales models, dual-
sourcing models, and Assemble-to-Order systems in the presence of considerable lead
times. In the state of available components, they did not serve a product until their target
crossed the backlogging level, and they maximally eliminated all those products that
exceeded the backlog target.

Recently, in many firms, backlogging has been a common phenomenon [41]. In
the case of unavailability of stock, the consumer chooses two possible paths. In some
situations, they wait for the next replenishment, which is treated as a back-order, and
those who do not want to wait for the next replenishment will lose sales. In analogous
research, Agrawal and Jia [42] formulated a base-stock-policy-based stochastic inventory-
management model. The suggested model had a convex asymptotic average cost function
under the lost sales and positive lead times with censored demand. They found the expected
infinite-horizon average cost to be a convex function in the base-stock level under the non-
zero probability for the zero-demand probability distribution. Also, they combined the
fixed and known lead time with some unknown demand distribution parameters to develop
a learning algorithm with a linearly dependent regret bound. In a sporadic examination
of perishable inventory procedures with a specified yield lifetime, Bu et al. [43] included a
base-stock policy and partial backlogging. They showed that an easy base-stock model was
asymptotically optimal for enlarging any one out-of-yield lifetime, order population extent,
unit liability cost, and unit outdating expense.

2.3. Current Contributions

In the realm of inventory management, many established EOQ models are built upon
specific probability distributions, dictating exogenous review intervals. Unfortunately,
these models often yield sub-optimal replenishment strategies and, in certain real-world
scenarios, amplify the risk of inventory obsolescence. To address this limitation and
embrace the complexities of practical situations, this research sets out to navigate the
intricacies of periodically reviewed stochastic demand rates. Moreover, this study accounts
for the partial back-ordering of shortages for items experiencing deterioration, all the while
considering the backdrop of stochastic disruptions in the supply chain.

The current investigation of this study focuses on a comprehensive evaluation of a
periodic-review base-stock inventory model tailored for cement retailers. The crux of this
approach lies in dissecting an array of cost components, including ordering costs, acquisi-
tion costs, holding costs, deterioration costs, and the expenses incurred due to shortages
through both back orders and lost sales. By holistically assessing these components, this
study unveils the anticipated long-term net profit.

A distinctive feature of this study is the pursuit of verifying the concavity inherent in
the retailer’s projected long-term net profit across various operational scenarios. This is
anchored in the identification of a critically determined base-stock level—a juncture that
profoundly influences the dynamics of inventory control. By substantiating the concavity
of the expected net profit, this study enhances the robustness of the proposed model
and provides a more comprehensive understanding of the retailer’s optimal decision-
making landscape.

In essence, this contribution transcends the confines of conventional EOQ models
by integrating stochastic demand rates, partial back-ordering for deteriorating items, and
supply-side uncertainties. Through a judicious examination of cost components and the
validation of profit concavity, this study strives to equip cement retailers with a heightened
ability to make informed and strategic inventory-management choices. In doing so, this
study mitigates sub-optimal decisions and bolsters resilience in the face of dynamic and
uncertain market conditions (Table 1 and Figure 1).
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Table 1. Comparative review of recent inventory model studies. NA: not applicable.

Contributors Model Types Disruptions Demand Types Backlogging

Konstantaras et al. [26] unified cost supply-side fixed rate fully backlogged

Saithong and Luong [27] base-stock supply-side uncertain NA

Saithong and Lekhavat [31] base-stock supply-side deterministic partial

Taleizadeh et al. [9] base-stock supply-side deterministic partial

Das et al. [39] trade credit NA selling price dependent partial

Mashud et al. [44] hybrid payment supply-side price-sensitive partial

Bu et al. [43] base-stock NA i.i.d poisson demand partial

Chen et al. [33] disruption recovery supply-side uncertain demand partial

Agrawal and Jia [42] base-stock NA censored demand lost sale

Malmberg and Marklund [45] base-stock NA Poisson demand fully backlogged

Noble et al. [46] base-stock NA uniformly distributed lost sale

Wang [47] base-stock NA retrial demand partial

Wang et al. [48] base-stock NA truncated and convoluted demand NA

Present study base-stock supply-side selling price dependent partial

Figure 1. A comparative analysis of the existing literature on inventory models [9,11,16,18,26,31,32,
39,41,43].

3. Notations, Assumptions, and Problem Statement
3.1. Notations

This proposed model uses multiple symbols to explain parameters, variables, and
functions. The proper notations are listed below to explain their purpose (Table 2).



Mathematics 2023, 11, 3971 8 of 34

Table 2. Notations with their descriptions to be used in the proposed model.

Notations Descriptions

• Abbreviations

E(.) indicating the expected values.

SADS semi-autonomatized decision support.

EOQ economic order quantity.

• Decision variables

S base-stock level or order-up-to level of sale-able products in the inventory of the retailer.

T time interval between two successive reviews with the SADS system of the retailer.

(*) indicates the optimal values.

• Stochastic parameters

X exponential random variable at rate λ acting until the sequential disruptions begins.

Y geometric random variable representing length of sequential disruptions going on for y cycles.

Z random variable representing the length of any renewal cycle, i.e., Z = X + Y.

w1 stochastic parameter describing duration of last replenishment before disruption until the arrival of disruption.

w2 the fraction of the cycle length up to which the demand will be fulfilled in the (m + r)th inventory epoch.

w3 the fraction of the cycle length starting from the normalcy of supplier until the next replenishment in the (m + k)th

inventory epoch.

N random variable describing the number of full inventory cycles until the arrival of disruptions.

m expectation of the random variable N.

Di sale price dependent random demand rate function to be periodically reviewed by the SADS.

εi time-independent zero mean continuous random variable.

τ state random variable.

• Parameters

ch per unit holding cost at the inventory of the retailer.

co fixed ordering cost per order of the retailer.

cp procurement cost per unit item of the retailer from the supplier.

cb retailer’s per unit item back-ordering cost.

cl retailer’s per unit item lost sales cost.

pi sale price of each item in the ith inventory epoch as determined by the SADS of the retailer.

psi scrap price of each deteriorated item in ith inventory epoch to be determined by the SADS.

p the probability of supply-side disruption.

α fixed deterioration rate of the items to be stored in inventory of retailer (0 ≤ α ≤ 1).

β percentage of maximum expected shortages to be backlogged at the retailer (0 ≤ β ≤ 1).

µ the probability of reporting by the supplier that the disruption is over.

λ arrival rate of sequential disruptions in the supply of sale-able products.

k + 1 number of inventory cycles without any replenishment owing to the sequential disruptions.

w1 fraction of the cycle length after which the disruption begins with the supplier.

w2 fraction of cycle length in retailer’s last on-hand inventory cycle during disruptions.
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3.2. Assumptions

• Retailers aim to keep the competitive advantages through efficient responsiveness,
while they are highly interested in the critical responses of customers during stock-
outs. Therefore, even though the flaring holding cost of cement bags for retailers is a
matter of concern, the stock-out-related retaliations of customers under supply-side
disruptions far outweigh these, leading to adaptation of the base-stock policy in the
proposed model [9].

• This study estimates the probability of independent supply-side disruptions to occur
any number of times consecutively. A random variable τ, with the following geometric
distribution, represents the number of delivery failures of the proposed inventory
system [9]:

πτ = P(X = τ) = pτ(1− p), τ = 0, 1, . . . (1)

Thus, in a regular span (i.e., without disruption), τ = 0.
• On the basis of the market-determined sale price in the proposed single-product

periodic-review inventory system, SADS shall place an optimally determined order
quantity for cement bags at the beginning of each inventory cycle, thus countering
any possible price-sensitive demand rate in the current cycle. This study takes the
autonomically predicted random demand rate of retailers in the following additive
form:

Di(Pi) = di(Pi) + εi , i = 1, 2, . . . (2)

where di(Pi) ∈ [di, d̄i] > 0, i = 1, 2, . . . is one deterministic and strictly monotonically
decreasing function in Pi ∈ [p

i
, p̄i], i = 1, 2, . . . This ensures that di is non-negative at

all times and its inverse is a continuous, differentiable, and strictly decreasing function.
Also, εi, i = 1, 2, . . . describes a time-independent, hardly identical, zero-mean
continuous random variable with the probability density function ψi(.). Here, the
minimum price to charge is more than or equal to the discounted ordering cost of the
next cycle.

• Any unsatisfied demand during prolonged supply-side disruptions is partially back-
logged and is assumed to be fixed for the sake of simplicity alone [9]. Except for the
phases of potential supply-side disruptions, the shortages do not occur, and the stock
level to be determined using SADS is sufficient to meet any demand rate.

• The procurement lead time is promised to be nil at the time of the contract between the
supplier and retailer. During disturbances, however, the lead time rises from 0 to T, 2T,
3T, . . . based on the likelihood of the random variable returning values 1, 2, . . . .

• For the sake of simplicity alone, this study considers that all stocks deteriorate at the
same pace, regardless of their lifetime.

3.3. Communicative Problem Statement

This study plans to determine the optimal base-stock inventory and associated strate-
gies for cement retailers facing randomly varying demand rates and partially back-ordered
shortages under stochastic supply-side disruptions. Furthermore, this study investigates
how prolonged disruptions, fluctuating cost components, and other related scenarios influ-
ence cement retailers’ optimal base-stock levels and corresponding long-run profitability.

4. Formulation of the Proposed Model

The present section designs an inventory control model to measure the optimal order
up to the level that maximizes the total expected long-run net profit of the retailers. In
practice, a number of retailers selling deteriorating items, like Nestlé S.A., BRF S.A., and
Cargill, find the stock-out-related responsiveness to be more critical than the holding cost
imposed on them, thereby keeping the competitive advantages through responsiveness
at an ideal level. Accordingly, this study determines the different long-run expected



Mathematics 2023, 11, 3971 10 of 34

cost components, namely the ordering cost, the acquisition cost, the holding cost, the
deterioration cost, the shortage cost, and the ost sales cost, within both the regular span
and the disruptive spans, as illustrated as follows:

4.1. Cost Components in the Regular Span

Expected long-run ordering cost

The retailer bears the one-time fixed ordering cost while placing the replenishment
order at the beginning of any inventory cycle during the regular span. Thus, subject to unit
ordering cost co, this study determines the expected long-run ordering cost of the retailer
within the regular span as follows:

OCNDC = co(m− 1). (3)

Expected long-run holding cost

A suitable place, store, warehouse etc., is essential to store the saleable products. While
the resulting holding cost includes the cost of insurance, numerous taxes, maintenance
costs, electricity costs, and many others, researchers find this cost to be proportional to
the number of products in the inventory within the holding period. Here, the area of
the rectangle in any ith, i = 1, . . . , (m − 1) inventory epoch (see, for details, Figure 2)
is Ri = (S − DiT)T, i = 1, . . . , (m − 1), while the corresponding area of a triangle is

4i =
DiT2

2 , i = 1, . . . , (m− 1). This provides the total area under the inventory curve in any
ith, i = 1, . . . , (m− 1) inventory epoch within the regular span as follows:

Ai =
DiT2

2
+ (S− DiT)T, i = 1, . . . , (m− 1). (4)

Figure 2. Graphical illustration of the resilient inventory profile with partial back-ordering.

Therefore, the expected long-run holding cost of the retailer within the regular span is
as follows:

HCNDC = ch

m−1

∑
i=1

Ai = ch

m−1

∑
i=1

(
1
2

(
DiT2

)
+(S− DiT)T

)
. (5)
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Expected long-run deterioration cost

The retailer discards the products that deteriorate over time from its inventory at the
end of each on-hand inventory cycle. Thus, this study considers the expected long-run
deterioration cost of the retailer within the regular span as follows:

PCNDC = α
m−1

∑
i=1

(pi − psi )Ai = α
m−1

∑
i=1

(pi − psi )

(
1
2

(
DiT2

)
+(S− DiT)T

)
. (6)

Expected long-run shortage cost

Since this study assumes that the retailer stores enough stock to fulfill the demand of
customers in any inventory cycle during the regular span, the scenario of shortages does
not occur during the regular span. Thus, the resulting expected long-run shortage cost
is nil.

Expected long-run acquisition cost

In any ith, i = 1, . . . , (m− 1) regular inventory epoch, the retailer makes replenishment
decisions for inventory up to the maximum stock level S by adding the number of sold
items in the previous cycle and the number of deteriorated items to be discarded from
inventory at the end of the current cycle. Thus, this study describes the order quantity Qi,
for which the SADS of the retailer autonomically places the order, as follows:

Qi = DiT + α

(
1
2

(
DiT2

)
+(S− DiT)T

)
, i = 1, . . . , (m− 1). (7)

In this way, this study exemplifies the long-term expected acquisition cost of retailers
within the regular span as follows:

ACNDC = cp

m−1

∑
i=1

Qi = cp

(
m−1

∑
i=1

(DiT + α(
1
2

DiT2 + (S− DiT)T)

)
. (8)

In addition, this is to note that the random variables X and m are connected through
the following relationship:

P{N = n} = P{(n− 1)T ≤ X ≤ nT} and E(N) =
∞

∑
n=1

nP{N = n}, (9)

i.e., E(N) =
1

1− e−λT = m, say.

4.2. Cost Components in the Disruptive Span

With the aim to efficiently manage the sequential disruptions occurring randomly
to the supplier in the mth inventory cycle and staying for the random duration Y (i.e.,
fy(y) = µ(1− µ)y−1), this study assumes the inventory state random variable τ to range
from the mth to at most the (m + r)th on-hand inventory cycle under the disruptions.
Whenever the successive disruptions continue to occur till the (m + r)th cycle or more, the
retailer experiences shortages. Consequently, the supplier makes the replenishment afresh
at the end of the (m + τ)th, τ = 0, . . . , (r + k + 1) inventory cycle.

Expected long-run ordering cost

The retailer does not place any request for the replenishment of stocks to the supplier
during the disruptions but asks for the one-time replenishment only after the supply-side
disruptions are over. Thus, this study obtains the expected long-run ordering cost of the
retailer during supply-side disruption cycles as follows:

OCDC = co. (10)
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Expected long-run holding cost

This study measures the expected long-run holding cost and the associated deteriora-
tion cost by determining the areas of the various shaded regions displayed in Figure 2. Here,
the mth inventory epoch follows the last replenishment before the sequential disruptions
occur. Thus, the retailer’s mth inventory cycle begins with S units of items in its inventory
during the disruptive span. Therefore, this study computes the area Vm of the trapezoidal
region under the inventory curve at the mth inventory epoch within the disruptive span
as follows:

Vm =
(S + (S− DmT))T

2
=

(
S− DmT

2

)
T. (11)

While the retailer discards the deteriorated items at the end of each on-hand inventory
cycle during the disruptive span, this study determines the area of the trapezoidal region
Vm+1 under the inventory curve at the (m + 1)th on-hand inventory epoch within the
disruptive span as follows:

Vm+1 =

(
S− DmT − αVm −

Dm+1T
2

)
T. (12)

Therefore, this study computes the area of the trapezoid representing the (m + r− 1)th

cycle as follows:

Vm+r−1 =

(
S− T

m+r−2

∑
i=m

Di − α
m+r−2

∑
i=m

Vi −
Dm+r−1T

2

)
T. (13)

All these yield the area of the trapezoid representing any τth, 0 ≤ τ ≤ (r− 1), cycle
as follows:

Vm+τ =

(
S− T

m+τ−1

∑
i=m

Di − α
m+τ−1

∑
i=m

Vi −
Dm+τT

2

)
T. (14)

Whereas Figure 2 suggests that the range of the on-hand inventory state random
variable (τ) extends from m to (m + r) during the disruptive span, this study conceives
that the retailer is capable of satisfying the demand of customers solely for the duration
w2 (0 < w2 ≤ T) in the (m + r)th inventory epoch during the disruptive span. Accordingly,
the area Vm+r of the triangle in the on-hand inventory at the (m + r)th inventory epoch is
as follows:

Vm+r =
D(m+r)w2

2

2
,

subject to the fraction w2 of the on-hand inventory period in the (m + r)th inventory epoch,
which is as follows:

w2 =
S−∑m+r−1

i=m (DiT + αVi)

Dm+r

=
S−∑m+r−1

i=m DiT − α f1(S)
Dm+r

(15)

see, for details, Appendix C.
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Thus, this study determines the area of the region of any τth, τ = 0, . . . , (m + r)
inventory epoch as follows:

Im+τ =

{
Vm+τ , if 0 ≤ τ ≤ (r− 1)

Vm+r, if τ = r.
(16)

The long-run average inventory of the retailer in the disruptive span is as follows:

E(Im+τ) =
∞

∑
τ=0

Vm+τπτ =
r−1

∑
τ=0

Vm+τπτ + Vm+rπr. (17)

In this way, subject to the per unit holding cost ch, this study measures the long-
term expected holding cost of the retailer in the disruptive span as follows (see, for details,
Appendix D):

HCDC = chE(Im+τ)

= ch

(
r−1

∑
τ=0

Vm+τπτ + Vm+rπr

)
= ch

(
f2(S) + (1− p)pr (S−∑m+r−1

i=m DiT − α f1(S))2

2Dm+r

)
. (18)

Expected long-run deterioration cost

Subject to the average on-hand inventory in the disruptive span as obtained in the
relation (13), the uniform deterioration rate α, and the unit scrap price psi , i = m, . . . (m +
r− 1) in any ith inventory epoch, this study computes the long-term expected deterioration
cost (PCDC) of the retailer in the disruptive span as follows:

PCDC =
m+r−1

∑
i=m

(pi − psi )αE(Iτ)

=
m+r−1

∑
i=m

(pi − psi )α

(
r−1

∑
τ=0

Vm+τπτ + Vm+rπr

)
(19)

=
m+r−1

∑
i=m

(
(pi − psi )α

(
f2(S) + (1− p)pr (S− DiT − α f1(S))2

2Dm+r

))
.

Negative Inventory Period

It is highly unpredictable to specify the period for which the sequential disruptions
will keep going. Nevertheless, pessimistically, the shortages start to happen after the
sequential disruptions reach the (m + r)th inventory cycle. By considering w2 to be the
fraction of the cycle length for which the demand is fulfilled from the inventory of the
retailer, this study measures the expected long-run shortage cost consisting of the expected
long-run back-ordering cost and the expected long-run lost sales cost as follows:

Expected long-run back-ordering cost

Here, the area of the right-angled triangular region A1 A2 A3 (see Figure 3) representing
the partially back-ordered inventory for the duration (T − w2) in the rth inventory cycle
post disruption (i.e., (m + r)th inventory epoch) is as follows (see Appendix B).

Here, the sides of the triangle A1 A2 A3 are expressed as A1 A2 = (T − w2) and
A2 A3 = βDm+r(T − w2).

Wm+r =
βDm+r(T − w2)

2

2
. (20)

Likewise, this study measures the area of the trapezoidal region A2 A5 A7 A3 describing
the partially back-ordered inventory within the (m + r + 1)th inventory cycle as follows.
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Here, the area of the trapezoidal region A2 A5 A7 A3 is obtained as the sum of two
regions, one rectangular region A2 A5 A6 A3 with sides A2 A5 = T and A5 A6 = βDm+r(T−
w2), the triangular region with sides A3 A6 = T, and A6 A7 = βDm+r+1T (see Figure 3).

Wm+r+1 =
βDm+r+1T2

2
+ βDm+r(T − w2)T. (21)

Figure 3. Graphical illustration of the negative inventory period.

In this way, the present study measures the area of the trapezoidal region of the
partially back-ordered inventory in any (m + τ)th, τ ≥ r + 1 inventory cycle as follows:

Wm+τ =

(
βDm+r(T − w2) +

τ−1

∑
i=r+1

βDm+iT +
βDm+τT

2

)
T, τ ≥ r + 1. (22)

Analogous to the deliberation on the long-run average inventory of the retailer, this
study computes the average back-ordering at the retailer as follows:

Jm+τ =

{
Wm+r, i f τ = r,

Wm+τ , i f τ ≥ r + 1.
(23)

Thus, the expected average back-ordering at the retailer is as follows:

E(Jm+τ) =
∞

∑
τ=r

πτWm+τ =

(
πrWm+r +

∞

∑
τ=r+1

πτWm+τ

)
. (24)

The following equations provide the expected long-run back-ordering cost of the
retailer:

BCDC = cbE(Jm+τ)

= cb(
1
2
(1− p)prβDm+r

(
T −

S−∑m+r−1
i=m DiT − α f1(S)

Dm+r

)2

+
1
2

βT2
∞

∑
τ=r+1

Dm+τπτ (25)

+ pr+1βDm+r

(
T −

S−∑m+r−1
i=m DiT − α f1(S)

Dm+r

)
T + βT2

∞

∑
τ=r+2

πτ

τ−1

∑
i=r+1

Dm+i).
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Expected long-run lost sales cost

This study measures the lost sales vertically by computing the difference between the
actual inventory position and its position at β = 1 at the end of any negative inventory
cycle (see Figure 3), thereby deducing it as follows.

Here, the amount of lost sales for the (m + r)th epoch is expressed as the length
A3 A4 = (1− β)Dm+r(T − w2). For the (m + r + 1)th epoch, the lost sales are represented
by the segment A7 A9, which is the sum of the length A7 A8 = A3 A4 = (1− β)Dm+r(T −
w2) and A8 A9 = (1 − β)Dm+r+1T. Therefore, A7 A9 = (1 − β)Dm+r(T − w2) + (1 −
β)Dm+r+1T. Likewise, the present study measures the amount of lost sales in any (m+ τ)th,
τ ≥ r + 1 cycles (see Equation (26)).

Lm+τ =


(1− β)Dm+r(T − w2), if τ = r,

Lm+r +
τ

∑
i=r+1

(1− β)Dm+iT, if τ > r.
(26)

Thus, this study finds the following:

E(Lτ) =
∞

∑
τ=r

πτ Lm+τ = πrLm+r +
∞

∑
τ=r+1

πτ Lm+τ . (27)

In this way, this study computes the expected average lost sales cost of the retailer
as follows:

LSDC = cl

(
πrLm+r +

∞

∑
τ=r+1

πτ Lm+τ

)

= cl

[
(1− β)prDm+r

(
T −

S−∑m+r−1
i=m DiT − α f1(S)

Dm+r

)
+ T

∞

∑
τ=r+1

πτ

τ

∑
i=r+1

(1− β)Dm+i

]
. (28)

Expected long-run acquisition cost

The base-stock level S and the total amount of back-ordered portion in any ith,
i = (m + r), (m + r + 1), . . . , (m + k) inventory epoch during disruption is described in
Figure 2 as Wm+τ , τ = r, r + 1, . . . , k, which have to be ordered after the completion of the
disruption. Thus, after the completion of the disruption, the SADS will place an order to the
supplier. Consequently, the expected acquisition cost of the retailer within the disruptive
span is as follows:

ACDC = cp

(
r−1

∑
τ=0

Dm+τT2

2
+

Dm+rw2
2

2
+ α

r−1

∑
τ=0

Vm+τπτ +
∞

∑
τ=r

πτWm+τ

)

= cp

(
r−1

∑
τ=0

Dm+τT2

2
+ Vm+r + α

r−1

∑
τ=0

Vm+τπτ + πrWm+r +
∞

∑
τ=r+1

πτWm+τ

)

= cp

(
r−1

∑
τ=0

Dm+τT2

2
+

(S−∑m+r−1
i=m DiT − α f1(S))2

2Dm+r
+ α f2(S)+ (29)

1
2
(1− p)prβDm+r

(
T −

S−∑m+r−1
i=m DiT − α f1(S)

Dm+r

)2

+
1
2

T2
∞

∑
τ=r+1

βDm+τπτ+

βDm+rT(T −
S−∑m+r−1

i=m DiT − α f1(S)
Dm+r

)pr+1 + T2
∞

∑
τ=r+2

πτ

τ−1

∑
i=r+1

βDm+i

)
.

4.3. Retailer’s Expected Long-Run Net Profit per Unit Time

The amount of saleable items on ith cycle is expressed as DiT, where the selling price
is pi, i = 1, 2, . . . .
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The total earnings before disruption are expressed as follows:

E(ENDC) =
m

∑
i=1

piDiT. (30)

The total earnings after disruption are the sum of sellable items with a positive inventory
level with the back-ordered portion, expressed as follows:

E(EDC) =

(
r−1

∑
τ=1

πτ pm+τ Dm+τT + πr pm+rDm+rw2

)
+(

βπrDm+r(T − w2)pm+r + β
∞

∑
τ=r+1

πτ Dm+τ pm+τT

)
. (31)

This study measures the retailer’s expected long-run aggregate earnings (by combining
Equations (30) and (31)) per cycle as follows:

E(AE) =

(
m

∑
i=1

piDiT +
r−1

∑
i=1

πi pm+iDm+iT + πr pm+rDm+rw2 + πrDm+r(T − w2)pm+rβ+ (32)

∞

∑
i=r+1

πiβDm+i pm+iT

)
.

Again, on the basis of the various cost components of retailers in both the non-
disrupted and disrupted cycles (see relation (3) for OCNDC, relation (5) for HCNDC, rela-
tion (6) for PCNDC, relation (8) for ACNDC, relation (10) for OCDC, relation (18) for HCDC,
relation (19) for PCDC, relation (25) for BCDC, relation (28) for LSDC, and relation (29) for
ACDC), this study expresses retailer’s expected long-run aggregate cost as follows:

E(TC(S)) = (OCNDC + HCNDC + PCNDC + ACNDC)+

(OCDC + HCDC + PCDC + BCDC + LSDC + ACDC). (33)

Therefore, this study represents the expected long-run net profit per cycle of the retailer
as follows (see, for the full expression, Appendix E):

E(NP) =
1
T
(E(AE)− E(TC)). (34)

5. Analytical Derivation

The present section analytically establishes the global optimality of retailers’ expected
long-run net profit using the classical optimization approach. To reduce to essentials
regarding the expected long-run net profit per cycle, this study performs the rest of the
analysis with two full inventory cycles, along with one on-hand inventory cycle and two
cycles with shortages post-disruption. Here, the proposed inventory model is a nonlinear
programming problem with the optimal base-stock level decision to be determined.

Lemma 1. Under any circumstances, the expected long-run net profit of the retailer of the proposed
inventory model is concave in shape for the base-stock level and globally attains the maximum value
at that critical order up to that level.

Proof. This study redrafts the relation (34) to obtain the expected long-run net profit per
cycle of the retailer as follows:
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E(NP(S)) =
1
T

−cb

βD4(1− p)p3T2 + βD3 p2T

T −
−α
(

ST − D2T2

2

)
− D2T + S

D3

+

1
2

β(1− p)T2
(

D5 p3 + D4 p2
)
+

1
2

βD3(1− p)p

T −
−α
(

ST − D2T2

2

)
− D2T + S

D3

2−
(

ST − D1T2

2

)
(ch + α(p1 − ps1))− ch

 (1− p)p
(
−α
(

ST − D2T2

2

)
− D2T + S

)2

2D3
+

(1− p)
(

ST − D2T2

2

))
− (1− β)cl

(
T
(

D5 p3 + D4 p2
)
+

D3 p

T −
−α
(

ST − D2T2

2

)
− D2T + S

D3

−
cp

βD3(1− p)p2T

T −
−α
(

ST − D2T2

2

)
− D2T + S

D3

+ βT2(1− p)
(

D5 p4 + D4 p3
)
+ (35)

β(1− p)T2
(

D5 p3 + D4 p2
)
+

1
2

βD3(1− p)p

T −
−α
(

ST − D2T2

2

)
− D2T + S

D3

2

+

α(1− p)
(

ST − D2T2

2

)
+

(
−α
(

ST − D2T2

2

)
− D2T + S

)2

2D3
+

D2T2

2

−
cp

(
α

(
ST − D1T2

2

)
+ D1T

)
− 2co + β(1− p)T

(
D5 p5 p3 + D4 p4 p2

)
−

α(p2 − ps2)

 (1− p)p
(
−α
(

ST − D2T2

2

)
− D2T + S

)2

2D3
+ (1− p)

(
ST − D2T2

2

)+

βD3(1− p)pp3

T −
−α
(

ST − D2T2

2

)
− D2T + S

D3

+

(1− p)pp3

(
−α

(
ST − D2T2

2

)
− D2T + S

)
+ D1 p1T + D2 p2T

)
.

To establish the concavity of E(NP(S)), this study computes the first-order derivative
of E(NP(S)) with respect to S to obtain the following relation:



Mathematics 2023, 11, 3971 18 of 34

dE(NP(S))
dS

= − 1
T

(
βpcb(αT − 1)(2(D3T + (1− p)S(αT − 1)) + D2(p− 1)T(αT − 2))

2D3
+

(1− p)ch

(
T − p(αT − 1)(D2T(αT − 2)− 2S(αT − 1))

2D3

)
−

1
2D3

(
cp

(
2
(

D3T(βp + α(βp(−T) + p− 1)) + S
(

βp2 − βp− 1
)
(αT − 1)2

)
−

D2T
(

βp2 − βp− 1
)(

α2T2 − 3αT + 2
)))

+ (36)

T(ch + α(p1 − ps1)) + (β− 1)(−p)cl(αT − 1) + αTcp+

α(1− p)(p2 − ps2)

(
T − p(αT − 1)(D2T(αT − 2)− 2S(αT − 1))

2D3

)
+

β(p− 1)pp3(αT − 1)− (p− 1)pp3(αT − 1)).

Next, under the necessary condition for the optimality of the unconstrained model, this
study equates dE(NP(S))

dS to zero. Thus, this determines the critical value of the base-stock
level S∗ as follows:

S∗ =
1

2(αT − 1)2
(

β(p− 1)pcb + (p− 1)pch + cp(βp2 − βp− 1) + α(p− 1)p(p2 − ps2)
)×(

D3T
(

βD2(p− 1)pcb(αT − 2)(αT − 1)
D3

+ 2βpcb(αT − 1) +
D2(p− 1)pch(αT − 2)(αT − 1)

D3
+

D2cp
(

βp2 − βp− 1
)(

α2T2 − 3αT + 2
)

D3
− 2(p− 1)ch + 2ch −

2(β− 1)pcl(αT − 1)
T

+ 2αcp+ (37)

2cp(α + α(−p)− βp + αβpT) +
αD2(p− 1)p(p2 − ps2)(αT − 2)(αT − 1)

D3
+ 2α(p1 − ps1)−

2α(p− 1)(p2 − ps2) +
2β(p− 1)pp3(αT − 1)

T
− 2(p− 1)pp3(αT − 1)

T

))
.

To show the sufficiency part, this study computes the second-order derivative of
E(NP(S)) with respect to S at said critical point S∗, resulting in the following expression:

d2E(NP(S))
dS2 =

−
(αT − 1)2(β(1− p)pcb + (1− p)pch + β(1− p)cp + cp + α(1− p)(p2 − ps2)p2)

D3T
< 0. (38)

This expression is less than zero and independent of S∗ under any circumstances. The
proof is thus complete.

Derivations

On the basis of the analysis, this study makes the following deductions (see the
description of symbols in Appendix G):

• Back-ordered portions in a base-stock inventory model impact the operational ef-
ficiency and customer satisfaction. They signify unmet demand due to stock-outs,
potentially leading to lost sales and customer dissatisfaction. Balancing back orders
optimally helps minimize excess holding costs while meeting demand. The proper
management of back orders ensures smoother supply chain operations and enhances
customer loyalty by fulfilling orders promptly and efficiently. Hence, it is crucial to
establish the correlation between the optimal base-stock level and the back-ordered
portion in a cycle, as inferred from the condition dE(NP(S))

dS = 0, as shown below:
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S =
B1 + B2

βB3 + 1
+ B1. (39)

Thus, S ∝ 1
β . The relationship between the base-stock level and the back-order portion

is such that an increase in the back-order portion tends to decrease the base-stock level.
• Lost sales cost (cl) within inventory management involves assessing the expenses

incurred per unit of an item that cannot be fulfilled through back orders. In instances of
negative inventory, some customers opt to purchase from alternative sources, leading
to lost sales. So lost sales occur. Consequently, the dynamic interplay between the
base-stock level and the cost of lost sales holds considerable influence over the model.
Thus, establishing a relation between the optimal base-stock level of the proposed
model and the corresponding lost sales cost is important. This connection can be
derived from the condition dE(NP(S))

dS = 0, as elaborated below:

S = C2cl + C1. (40)

Therefore, S ∝ cl . Hence, the base-stock level is directly proportional to the lost sales
cost. As the lost sales cost increases, the base-stock level also increases.

• The acquisition cost (cp) is calculated per unit of purchased cost. The retailer deter-
mines replenishment choices for inventory, maintaining it to the maximum stock level
S. This includes adding the number of items sold in prior cycles and those damaged,
earmarked for removal at the current cycle’s end. These units must be procured, each
incurring a per-unit acquisition cost. Thus, the connection between the acquisition
cost and the optimal base stock level holds significance. This connection arises from
the condition dE(NP(S))

dS = 0, as illustrated below:

S =
E2

E3 + cpE4
+ E1. (41)

Thus, S ∝ 1
cp

. Hence, an inverse relationship exists between the base-stock level
and the acquisition cost: when the acquisition cost rises, the base-stock level tends
to decrease.

• The holding cost (ch) is the per-unit value of the carrying cost. It represents the
expenses and financial implications a business incurs for storing and maintaining its
inventory over a certain period. Companies aim to balance holding enough inventory
to meet customer demand while minimizing carrying costs. Holding costs play a
crucial role in determining a business’s overall cost structure and profitability. So the
relationship between holding cost and base-stock level is essential and is expressed
from the state dE(NP(S))

dS = 0, as elaborated below:

S =
F2

F4ch + F3
+ F1. (42)

Thus, S ∝ 1
ch

. As holding costs increase, the base-stock level decreases, and vice versa.

6. Numerical Results

The current section numerically validates the proposed SC model. Accordingly, this study
considers the numerical data from several well-established articles, like Taleizadeh et al. [9],
Saithong and Luong [27], and Daryanto et al. [49]. Here, Table 3 enlists the values (data are
scaled in the 1000 s) of various parameters of the proposed model.
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Table 3. Various parameters of the proposed inventory model.

Parameters Values Parameters Values

Di 10 units per unit time β 0.5

ch USD 1 per unit cb USD 30 per unit item

cp USD 30 per unit item cl USD 40 per unit item

α 0.1 per unit time pi USD 100 per item

p 0.15 ps USD 40 per unit item

T 0.47 day co USD 100 per order

εi 0

Optimal Results

This study computes the optimal base-stock level that maximizes the retailer’s ex-
pected long-run net profit in any cycle, obtained as follows (∗ denotes optimality): (the
calculation is in Appendix F) (Figure 4)

S∗ = 5.53 units and E(NP∗(S∗)) = USD 1184.74. (43)

Figure 4. Concavity of the long-run net profit with respect to base-stock level.

This optimal result indicates that the proposed SC model is economically viable for the
retailer in the long run. Here, this study employs the popular WOLFRAM MATHEMATICA
(2019) software in one portable computer with an Intel® CORETM i7 processor, 16 GB in
RAM, and the Windows 10® operating system.

7. Sensitivity Analysis, Managerial Insights, and Comparison of Results

This section performs the sensitivity analysis of several major parameters of the
proposed SC model, thereby extracting a number of useful managerial insights. Then, this
study compares the current research with some well-established articles in this regard.

7.1. Sensitivity Analysis

The optimal expected long-run net profit of the proposed inventory model changes
due to various modifications of system parameters, such as demand rate (Di), selling price
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(pi), cycle length (T), probability of disruption at the supplier side (p), deterioration rate
(α), back-order portion (β), acquisition cost (cp), lost sales cost (cl), and unit holding cost
(ch), with each parameter being changed −50%, −25%, 25%, or 50% each time while the
other parameters are at their original levels. In this way, this study derives the following
observations (see, for results, Table 4 with Figure 5):

• The optimal values of the base-stock level (S∗) in the proposed inventory model exhibit
swift escalation (reduction) in response to increases (decreases) in the values of D, T,
and p, as well as decreases (increases) in the values of β and α.

• Optimal expected long-run net profit values for retailers experience a substantial rise
(fall) in response to heightened (reduced) values of D and pi.

• Reduced values of parameter cp correspond to lofty optimal base-stock levels for retailers.
• A higher value of parameter T corresponds to an increased expected long-run net

profit for retailers, while an exceedingly low value of T rapidly reduces the expected
long-run net profit.

• Retailers’ expected long-run net profit changes inversely to the changes in cp.
• The values of S∗ are moderately sensitive to any changes in the values of pi and cl .
• Changes in the parameter value of ch have a minimal impact on the sensitivity of the

values of S∗.
• The value of E(NP)∗ remains relatively unaffected using variations in ch, cl , α, and p,

while changes in β exert minimal influence on the values of E(NP)∗.

Table 4. Sensitivity analysis of major parameters of the proposed inventory model.

Parameters
(Initial Values) % Changes % Changes in S∗ % Changes in NP∗(S∗)

Di (10)

50 49.99 67.96

25 25 33.98

−25 −25 −33.98

−50 −50 −67.96

pi (100)

50 −7.61 85.52

25 −3.84 42.75

−25 3.91 −42.72

−50 7.89 −85.41

T (0.47)

50 23.98 6.19

25 12.14 4.22

−25 −12.42 −8.71

−50 −25.11 −28.64

p (0.15)

50 26.82 1.73

25 14.07 0.8

−25 -15.63 -0.56

−50 −33.13 −0.79

α (0.1)

50 −23.3 −1.91

25 −11.42 −1.07

−25 10.98 1.29

−50 21.55 2.78
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Table 4. Cont.

Parameters
(Initial Values) % Changes % Changes in S∗ % Changes in NP∗(S∗)

β (0.5)

50 −19.48 3.91

25 −10 1.87

−25 10.56 −1.68

−50 21.75 −3.17

cp (30)

50 −7.22 −16.65

25 −4.28 −8.34

−25 6.84 8.39

−50 19.49 16.89

cl (40)

50 8.2 −1.24

25 4.1 −0.63

−25 −4.1 0.67

−50 −8.2 1.36

ch (1)

50 −2.51 −0.24

25 −1.26 −0.12

−25 1.26 0.13

−50 2.52 0.26

(a) Sensitivity analysis of Di (b) Sensitivity analysis of pi

(c) Sensitivity analysis of T (d) Sensitivity analysis of p

Figure 5. Cont.
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(e) Sensitivity analysis of α (f) Sensitivity analysis of β

(g) Sensitivity analysis of cp (h) Sensitivity analysis of cl

Figure 5. Sensitivity analysis of the major parameters of the proposed model.

7.1.1. Analysis of Simultaneous Change in (α, p)

In this analysis involving the simultaneous alteration of two key parameters, namely
the deterioration rate (α) set at 0.1 and the probability of supply-side disruption (p) set at
0.15, several noteworthy insights have emerged (see Table 5).

Upon examination, it becomes evident that the optimal base-stock level is significantly
influenced by the joint manipulation of these parameters. However, intriguingly, the long-
run optimal net profit does not exhibit a pronounced and drastic transformation under
these conditions.

When confronted with a scenario characterized by both a significant increase in
deterioration rate and a heightened probability of supply-side disruptions, it becomes
imperative for managers to elevate their base-stock levels. In such circumstances, the
consideration of implementing preservation technology becomes particularly relevant,
especially if adequate financial resources are available to support this strategic decision.

In cases where a minor alteration in the deterioration rate coincides with a heightened
(diminished) likelihood of disruptions, it is consistently advisable to adjust the base-stock
level upwards (downwards) to optimize profit potential.

When juxtaposing a higher deterioration rate alongside a lower chance of disruption,
these findings indicate that the inventory manager is compelled to maintain a substantially
diminished base-stock level. This relationship underscores the crucial role of balancing
inventory in response to varying operational dynamics.

Interestingly, when confronted with a scenario where the deterioration rate is ex-
ceptionally low while the disruption probability remains high, the inventory manager is
compelled to maintain a heightened base-stock level, enabling them to capitalize on the
enhanced profit potential despite the potential for disruptions.
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Table 5. Sensitivity analysis of simultaneous change in (α, p) in the proposed inventory model.

% Changes of α
(Changed Values) % Changes of p % Changes in S∗ % Changes in

NP∗(S∗)

50 (0.15)

50 5.96 −1.23

25 −7.91 −1.68

−25 −40.47 −1.82

−50 −59.8 −1.28

25 (0.125)

50 16.58 0.15

25 3.29 −0.55

−25 −27.8 −1.32

−50 −46.17 −1.17

−25 (0.075)

50 36.7 3.48

25 24.46 2.33

−25 −3.96 0.43

−50 −20.64 −0.14

−50 (0.05)

50 46.25 5.42

25 34.48 4.06

−25 7.24 1.64

−50 −8.68 0.76

7.1.2. Analysis of Simultaneous Change of (β, p)

In this analysis concerning the simultaneous manipulation of two significant param-
eters, specifically the back-order portion (β) set at 0.5 and the probability of supply-side
disruption (p) set at 0.15, a series of intriguing observations come to light (see Table 6).

Table 6. Sensitivity analysis of simultaneous change in (β, p) in the proposed inventory model.

% Changes of β
(Changed Values) % Changes of p % Changes in S∗ % Changes in

NP∗(S∗)

50 (0.75)

50 −0.24 6.46

25 −9.38 5.18

−25 −30.76 2.71

−50 −43.54 1.67

25(0.625)

50 12.82 3.93

25 1.98 2.86

−25 −23.36 1.02

−50 −38.42 0.42

−25 (0.375)

50 41.85 −0.09

25 26.96 −0.99

−25 −7.55 −2.05

−50 −27.67 −1.94

−50 (0.25)

50 58.05 −1.48

25 40.73 −2.47

−25 0.9 −3.42

−50 −22.03 −3.05
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Evidently, the optimal base-stock level is notably responsive to this dual parameter
adjustment, underscoring the inherent sensitivity of inventory-management decisions to
such variations. However, it is noteworthy that despite the significant influence on the
optimal base-stock level, the long-run optimal net profit remains relatively stable, lacking a
pronounced and dramatic alteration under these conditions. In scenarios where a higher
potential for back orders exists alongside an elevated probability of supply-side disruptions,
inventory managers can adhere to their regular base-stock levels to enhance their long-
term optimal net profit. Increasing item storage is unnecessary, even in the face of raised
disruption probabilities.

Even in scenarios where a higher back-order portion is placed with a very low probabil-
ity of supply-side disruption, the inventory manager is inclined to maintain an exceptionally
reduced base-stock level. This phenomenon emphasizes the trade-off between inventory
holding costs and the cost of unmet demand, highlighting the strategic balancing act that
inventory managers must navigate.

The analysis demonstrates that when facing a situation characterized by a low back-
order portion and a high probability of supply-side disruptions, a substantial augmentation
of the base-stock level is imperative to effectively optimize long-term net profit.

7.2. Managerial Insights

The aforementioned explorations in Section 7.1 consequently offer a number of in-
sights for average inventory managers. These can be useful in choosing a proficient trade
scenario and suppleness scheme throughout the existence of supply-side disruptions and
deterioration of products, which are noted as follows.

• As the cement industry maintains a distinct regional focus, the ability of organizations
to uphold price discipline amid fierce competition plays a pivotal role in shaping the
dynamics of cement bag supply and demand. Recent sensitivity analysis underscores
a critical relationship: even the slightest fluctuation in the procurement cost of cement
bags wields an inverse impact on the retailer’s optimal base-stock level and the resul-
tant anticipated long-term net profit.
Consequently, retailers are advised to meticulously scrutinize and negotiate before
committing to substantial stock purchases from neighboring supplier hubs. On the
front of sales strategy, a clear trend emerges: higher price points for cement bags di-
rectly correlate with heightened retailer profitability. This revelation prompts various
strategic recommendations to empower retailers to enhance their market position. This
study advocates for the bundling of products and services, the strategic refinement of
the product mix, the phased discontinuation of lower-priced offerings, the meticulous
curation of complementary products for specific purchase contexts, targeted employee
training initiatives, and the exploration of multifaceted strategies. Moreover, for
emerging retailers, an astute approach involves setting a relatively higher sale price,
underpinned by a concerted effort to amplify the perceived value of their offerings.

• A substantial rise in the demand rate for cement bags translates to a swift escalation
in the retailer’s projected long-term net profit. Consequently, the retailer is advised
to proactively undertake steps in this trajectory, including enlisting adept technical
marketeers, implementing effective market-mapping strategies, tackling customer-
centric challenges head-on, and exploring additional measures to capitalize on this
potential growth opportunity.
Furthermore, an uptick in demand for cement bags mandates a notably expanded
inventory space requirement for the retailer. As a result, this study advocates for
a strategic approach to planned capacity augmentation aimed at counteracting any
potential surge in demand.

• In instances where the probability of supply-side disruptions is higher (or lower),
this research proposes that retailers should consider bolstering (or trimming) their
inventory of cement bags. The retailer’s optimal base-stock level also experiences an
upward surge during extended review intervals.



Mathematics 2023, 11, 3971 26 of 34

Although these scenarios lead to a commensurate rise in the cement retailers’ optimal
expected long-run net profit, an excessively extended review interval contributes to
the further degradation of the cement stored within the bags. Consequently, these
compromised bags may go unsold, exacerbated by a subsequent decline in their
salvage value.

• In contrast to several existing articles, alterations to either the unit holding cost
or the unit lost sales cost exhibit minimal impact on the long-term profitability of
cement retailers.

• However, the retailer’s optimal base-stock level demonstrates a proportional variation
in response to unit shifts in lost sales costs. Therefore, this research recommends
that retailers facing constraints in enhancing stock capacity should diligently moni-
tor instances of lost sales, enhance demand forecasting through AI-driven Seasonal
Autoregressive Integrated Moving Average (SADS) models, establish contingency sup-
pliers, consider strategic capital investments, and implement other suitable measures.

7.3. Comparison of Results

In operations management, effective inventory control ensures optimal resource allo-
cation and cost-efficiency. In this comparison, this study examines two well-established
articles with this model that address different aspects of inventory management. The
articles Taleizadeh et al. [50] and Saithong and Lekhavat [31] focus on constant demand
scenarios and neglect the effect of deterioration. Instead, this work considers selling price-
dependent demand and constant deterioration, which is more realistic and essential for
accurate modeling in certain industries. Like the above-mentioned articles, this model
also considered supply-side disruption, along with partial back-ordering of shortages. The
inventory-replenishment policies of Taleizadeh et al. [50] and Saithong and Lekhavat [31]
are designed to maintain a fixed stock level to meet efficiently customer demand. While the
constant-demand assumption simplifies calculations, it is not an accurate representation
of real-world scenarios. Many products experience fluctuating demand due to various
factors such as seasonality, market trends, and economic changes. This paper introduces a
more realistic inventory-management model that considers both price-dependent demand
and deterioration. The variations in selling price can influence demand and, consequently,
inventory-replenishment decisions.

In a comparison of managerial insights in the articles of Taleizadeh et al. [50] and
Saithong and Lekhavat [31], increased odds of disruptions, such as supply chain bottlenecks
or unexpected market shifts, can negatively affect profitability and demand a higher stock
level, While in this work as well, a higher rate of disruption reduces the profitability but
significantly reduces the base-stock level. In the articles Taleizadeh et al. [50] and Saithong
and Lekhavat [31], higher holding costs, such as warehousing expenses, directly impact the
optimal base-stock level; on the other hand, in this work, optimal base-stock level and the
profits of retailers are not affected for any increases in holding cost. An increase in demand
can moderately affect retailers’ optimal base-stock level and the profitability of the model
Taleizadeh et al. [50], while Saithong and Lekhavat [31] did not investigate this. In this
proposed model, any increase in demand rapidly increases the optimal base-stock level
and profitability of retailers.

Here, Table 7 compares the current research with some existing and well-established
articles by considering both the analytical and the managerial aspects of the proposed
inventory model.

Table 7. Comparison of current research with well-established articles.

Aspects Taleizadeh et al. [9] Saithong and Lekhavat [31] This Study

Modeling

Deterministic demand for non-
deteriorating items, partial back-ordering
of shortages under geometric distribution-
based stochastic supply-side disruptions

Deterministic demand for non-deteriorating
items, partial back-ordering of shortages un-
der exponential distribution-based stochas-
tic supply-side disruptions

Price sensitive demand for deteriorating ce-
ment bags, partial back-ordering of short-
ages under geometric distribution based
stochastic supply-side disruptions
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Table 7. Cont.

Aspects Taleizadeh et al. [9] Saithong and Lekhavat [31] This Study

Insights

Increased odds of disruptions reduce the
profitability while asking to stock more
items, higher holding cost reduces the
optimal base-stock level, and soaring de-
mand modestly improves optimal base-
stock and profit of retailers

Increased odds of disruptions reduce the
profitability (i.e., higher daily cost) while
asking to stock more items, higher holding
cost reduces the optimal base-stock level,
not investigating the impact of demand

Increased odds of disruptions reduce the
profitability while significantly reducing the
optimal base-stock level, optimal base-stock
and profit of retailers are unaffected by in-
creased holding cost, and soaring demand
swiftly improves the optimal base-stock and
profitability of retailers

7.4. Limitations of the Proposed Approach

• In the classical optimization approach to the nonlinear programming problem, the
presence of a large number of decision variables can significantly increase the difficulty
in solving them and can result in an impractical amount of time to find a solution.

• Many real-world commerce problems involve complex and nonlinear relationships,
multiple objectives, and constraints that may not be easily represented within the
framework of classical optimization. Some commerce problems involve discrete
decision variables, such as selecting the best combination of products to stock or
determining the optimal product mix in a manufacturing process. Classical opti-
mization methods that rely on continuous variables may not handle such discrete
decisions efficiently.

• Classical optimization approaches may not fully capture the complexities of human
behavior and preferences. In rapidly changing markets, the assumptions made by
classical optimization models may quickly become outdated, rendering their solutions
less relevant.

• In the case of higher-degree variables, the objective function leads to non-convex
optimization problems. In such cases, the function may have multiple local optima,
making it difficult to ensure that the solution found is the globally optimal one. Due to
higher-degree variables, the search space can grow exponentially, making the search
for global optimality computationally expensive.

8. Conclusions

The findings of this study have unveiled sustainable base-stock inventory strategies
that can effectively enhance the anticipated long-term profitability of cement retailers.
These strategies account for the inherent variability in demand, which fluctuates randomly
over time, as well as the occasional occurrence of partially back-ordered shortages during
stochastic disruptions on the supply side. The proposed decision-support framework has
rigorously established the global optimality of the retailer’s expected long-run net profit at
a strategically determined base-stock level. This achievement is accomplished by factoring
in a comprehensive range of cost components and a fixed cycle length. Furthermore, this
research underscores the importance of meticulous evaluation and negotiation prior to
undertaking substantial stock procurements from neighboring suppliers. It highlights
the significance of setting a competitive sales price while enhancing the attractiveness
of offerings, along with a proactive approach to planned capacity expansion aimed at
mitigating potential increases in demand.

The current research area needs more exploration, as there are some limited assump-
tions considered. For example, they can determine the most appropriate locations for ce-
ment retailers in a staggering market. Also, this work should consider the following points.

• Inventory-management systems should be improved by incorporating constant lead
time before disruptions and developing strategies to handle unforeseen events more
efficiently. During disruptions, such as natural disasters, supplier issues, transporta-
tion problems, or unexpected events, the lead time can become unpredictable and
variable. This variability can lead to challenges in inventory management [51].

• Rather than a fixed deterioration rate, the possibility of time-dependent deterioration
indicates situations where the quality or usability of inventory items degrades over
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time. This can have a significant impact on inventory management and can affect
various aspects of the inventory model [52].

• Solutions can be obtained using metaheuristic algorithms rather than classical algo-
rithms. Metaheuristic algorithms are optimization techniques that are particularly
useful for solving complex, nonlinear, and combinatorial problems, such as inventory
optimization [53].

• The uncertainty aspects can be studied under the environment of Intuitionistic Fuzzy
Sets (IFSs) and Neutrosophic Sets (NSs). IFSs and NSs are extensions of classical fuzzy
sets and consider the uncertainty and vagueness inherent in real-world inventory-
management problems (Wang et al. [54], Barman et al. [55]).
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Appendix A

This study determines the area under the curve as follows: Area of the ith triangle4i
when the demand rate is Di:

4i =
1
2

(
DiT2

)
. (A1)

Area of the ith rectangle Ri when the demand rate is Di:
Ri = (S− DiT)T. (A2)

Thus, the area of the ith trapezoid Vi is as follows:

Ai =
1
2

(
DiT2

)
+(S− DiT)T. (A3)

Thus, the total area ∑m−1
i=1 Ai up to the (m− 1)th inventory epoch under the inventory

curve is as follows:
m−1

∑
i=1

Ai =
m−1

∑
i=1

(
1
2

(
DiT2

)
+(S− DiT)T

)
. (A4)

Appendix B

The area of the (m + r)th inventory cycle is as follows:

B(m+r) =
βDm+r(T − w2)

2

2
. (A5)

The area of the (m + r + 1)th inventory cycle is as follows:

B(m+r+1) =
βDm+r(T − w2) + (βDm+r(T − w2) + βTDm+r+1)T

2

=

(
βDm+r(T − w2) +

βTDm+r+1

2

)
T. (A6)
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The area of the (m + r + 2)th inventory cycle is as follows:

B(m+r+2) =

(
βDm+r(T − w2) + βTDm+r+1 +

βTDm+r+2

2

)
T. (A7)

The area of the τth, τ ≥ (m+ r+ 2) inventory cycle of the proposed model is as follows:

Bτ =



βDm+r(T − w2)
2

2
, if τ = m + r,(

βDm+r(T − w2) +
βTDm+r+1

2

)
T, if τ = m + r + 1,(

βDm+r(T − w2) +
τ−1

∑
i=m+r+1

βTDi +
βTDτ

2

)
T, if τ ≥ (m + r + 2).

(A8)

Thus, this study computes the expected average back-order of the retailer as follows:

E(Bτ) =
∞

∑
τ=m+r

πτ Bτ = πm+rBm+r + πm+r+1Bm+r+1 +
∞

∑
τ=m+r+2

πτ Bτ . (A9)

Appendix C

The current study finds the following:

f1(S) = (Vm + Vm+1 + ... + Vm+r−1)

= (Vm+r−1 + Vm+r−2 + ... + Vm)

= (1− αT)(Vm+r−2 + Vm+r−3 + ... + Vm) + ST − T2
m+r−2

∑
i=m

Di −
T2

2
Dm+r−1

= (1− αT)r−1Vm + ST(1 + (1− αT) + ... + (1− αT)(r−2))− T
α

r−2

∑
i=0

Dm+i(1− (1− αT)(r−i−1))− (A10)

T2

2

(
Dm+r−1 + (1− αT)Dm+r−2 + (1− αT)2Dm+r−3 + ... + (1− αT)r−2Dm+1

)
= (1− αT)r−1

(
ST − DmT2

2

)
+

S
α
(1− (1− αT)r−1)− T

α

r−2

∑
i=0

Dm+i(1− (1− αT)r−1−i)−

T2

2

(
r−1

∑
i=1

Dm+r−i(1− αT)i−1

)
.

Appendix D

In this study, we deduce the following:
r−1

∑
τ=0

Vm+τπτ = Vmπ0 + Vm+1π1 + ... + Vm+r−2πr−2 + Vm+r−1πr−1 = f2(S). (A11)

Since πτ = pτ(1− p), τ = 0, 1, 2, ... we obtain the following:

f2(S) = (1− p)(pr−1Vm+r−1 + pr−2Vm+r−2 + ... + pVm+1 + Vm)

= (1− p)[pr−1(−αT)(Vm+r−2 + Vm+r−3 + ... + Vm)+

Pr−2(−αT)(Vm+r−3 + Vm+r−4 + ... + Vm) + ... + p(−αT)Vm + Vm] + STp(1− pr−1)−

T2
r−1

∑
i=1

Dm+i−1 pi(1− pr−i)− T2

2
(1− p)

r−1

∑
i=1

Dm+i pi

Using Appendix C, this study finds the following:
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=(1− p)[(−αT)
[

pr−1(1− αT)r−2Vm + pr−2(1− αT)r−3Vm + · · ·+ pVm

]
+ Vm

− ST(

[
r−2

∑
i=1

pr−i(1− (1− αT)r−1−i)

]

+ T2
r−2

∑
j=1

r−j−2

∑
i=0

Dm+i(1− (1− αT)r−j−i−1 pr−j +
αT3

2

(
r−1

∑
k=2

Dm+r−k

k−1

∑
i=1

pr−k+i(1− αT)i−1

)

+ STp(1− pr−1)− T2
r−1

∑
i=1

Dm+i−1 pi(1− pr−i)− T2

2
(1− p)
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Appendix F

By substituting the value of the parameters of Table 3 into Equation (35), we transform
the long-run net profit with respect to variable S, and it is expressed as

E(NP(S)) = −3.35433S2 + 37.1061S + 1082.12 (A14)

Here, the optimal base-stock level does not depend on the constant term in Equation (A14).
So considering, E(NP1(S)) = −3.35433S2 + 37.1061S and differentiating equation

E(NP1(S)) with respect to S, we achieve the first derivative equation.

d(E(NP1(S)))
dS

= 37.1061 − 6.7086S (A15)

The necessary and sufficient condition for the critical value is d(E(NP1(S)))
dS = 0.

The critical value of the base-stock level is obtained from Equation (A15).

S∗ = 5.53 (A16)

Differentiating Equation (A15) again with respect to S, we find that the long-run net
profit is optimal for S∗ = 5.53.

d2E(NP(S))
dS2 = −6.7086 < 0 (A17)

Also, the optimal net profit is as follows: NP∗(S∗) =USD 1, 184.74.

Appendix G

B1 =
1

2(1− p)(1− αT)
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(p− 1)p

(
cb + cp
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.

C1 =
1

2p(αT − 1)2 (D2 pT(αT − 2)(αT − 1)− 2D3T+

1
(p− 1)p

(
β
(
cb + cp

)
+ ch + α(p2 − ps2)

)
− cp

(
2D3

(
βpTcb(αpT − 1) + pTch + αβp2T2cp− (A21)
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) (A22)
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E1 =
T
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F1 =
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