
Citation: Sabir, P.O.; Srivastava,

H.M.; Atshan, W.G.; Mohammed,

P.O.; Chorfi, N.; Vivas-Cortez, M.

A Family of Holomorphic and

m-Fold Symmetric Bi-Univalent

Functions Endowed with Coefficient

Estimate Problems. Mathematics 2023,

11, 3970. https://doi.org/10.3390/

math11183970

Academic Editor: Jay Jahangiri

Received: 14 August 2023

Revised: 2 September 2023

Accepted: 6 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Family of Holomorphic and m-Fold Symmetric Bi-Univalent
Functions Endowed with Coefficient Estimate Problems
Pishtiwan Othman Sabir 1, Hari Mohan Srivastava 2,3,4,* , Waggas Galib Atshan 5 ,
Pshtiwan Othman Mohammed 6,* , Nejmeddine Chorfi 7 and Miguel Vivas-Cortez 8,*

1 Department of Mathematics, College of Science, University of Sulaimani,
Sulaimani 46001, Kurdistan Region, Iraq

2 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
3 Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu,

Seoul 02447, Republic of Korea
4 Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
5 Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58001,

Al-Qadisiyah, Iraq
6 Department of Mathematics, College of Education, University of Sulaimani,

Sulaimani 46001, Kurdistan Region, Iraq
7 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455,

Riyadh 11451, Saudi Arabia
8 Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic

University of Ecuador, Av. 12 de Octubre 1076 y Roca, Quito 170143, Ecuador
* Correspondence: harimsri@math.uvic.ca (H.M.S.); pshtiwansangawi@gmail.com (P.O.M.);

mjvivas@puce.edu.ec (M.V.-C.)

Abstract: This paper presents a new general subfamily N u,v
Σm

(η, µ, γ, `) of the family Σm that contains
holomorphic normalized m-fold symmetric bi-univalent functions in the open unit disk D associated
with the Ruscheweyh derivative operator. For functions belonging to the family introduced here, we
find estimates of the Taylor–Maclaurin coefficients |am+1| and |a2m+1|, and the consequences of the
results are discussed. The current findings both extend and enhance certain recent studies in this
field, and in specific scenarios, they also establish several connections with known results.
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1. Introduction

Let D = {z ∈ C : |z| < 1} be an open unit disk in the complex plane and A be a
collection of functions

f (z) = z +
∞

∑
n=2

anzn (z ∈ D), (1)

which are holomorphic in D together with a normalization given by

f (0) = f ′(0)− 1 = 0.

The Hadamard product f (z) ∗ l(z) of f (z) and l(z) is defined by

( f ∗ l)(z) = z +
∞

∑
n=2

anbnzn = (l ∗ f )(z) (z ∈ D),

where the function l(z) = z + ∑∞
n=2 bnzn is also holomorphic in D.
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The Ruscheweyh derivative operatorR` : A → A (see [1]) of f ∈ A is defined as

R` f (z) =
z
(

z`−1 f (z)
)(`)

`!
=

z
(1− z)`+1 ∗ f (z) = z +

∞

∑
n=2

Γ(`+ n)
Γ(n)Γ(`+ 1)

anzn,

(` ∈ N0 = {0, 1, 2, . . .} = N∪ {0}, z ∈ D).

Denote the sub-collection of A by S , consisting of univalent functions in D, and
consider the sub-collection P of functions

p(z) = 1 +
∞

∑
n=1

pnzn (z ∈ D), (2)

that are holomorphic in D and the real part, R(p(z)), is positive.
According to the Koebe 1/4 Theorem (see [2]), the image of D under any univalent

function consists of a disk of radius 1/4. As a consequence, every function f ∈ S has an
inverse f−1 such that

f−1( f (z)) = z (z ∈ D)

and

f
(

f−1(w)
)
= w

(
|w| < r0( f ), r0( f ) ≥ 1

4

)
.

The inverse of the function f (z) has a series expansion in some disk about the origin
of the following form:

f−1(w) = w +
∞

∑
n=2

bnwn (3)

A univalent function f (z) in the neighborhood of the origin and its inverse f−1(w)
satisfy the following condition:

f
(

f−1(w)
)
= w

or, equivalently,

w = f−1(w) +
∞

∑
n=2

an

[
f−1(w)

]n
. (4)

Using (1) and (3) in (4), we get

g(w) = f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (5)

If a function f ∈ A and its inverse are both univalent on D, then f is called a bi-
univalent function. Denote the family of all bi-univalent functions in D by Σ.

Lewin [3] conducted a study on the family Σ of bi-univalent functions and discovered
that |a2| < 1.51 for the functions belonging to the family Σ. Later, Brannan and Clunie [4]
proposed the conjecture that |a2| ≤

√
2. Subsequently, Netanyahu [5] demonstrated that

max|a2| = 4
3 for f ∈ Σ. To explore various fascinating examples of f ∈ Σ, refer to the

seminal work on this area by Srivastava et al. [6], which has revitalized the study of f ∈ Σ
functions in recent years.

Srivastava et al. [6] showed that the family Σ is nonempty by providing some explicit
examples, including the following function:

1
2

log
(

1 + z
1− z

)
, − log(1− z) and

z
1− z

whose inverses are
e2w − 1
e2w + 1

,
ew − 1

ew and
w

1 + w
,
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respectively. It worth noting that the Koebe function is not a member of Σ. Hence, Σ is
a proper subfamily of A. In fact, this pioneering work of Srivastava et al. [6] actually
revived the study of analytic and biunivalent functions in recent years. It was followed by
a remarkably huge flood of sequels on the subject.

Let 0 ≤ ϑ < 1. Brannan and Taha [7] introduced specific subfamilies of Σ, analogous
to the well-known subfamilies, starlike functions S∗(ϑ), and convex functions K(ϑ) of
order θ. A function f ∈ Σ is in the family S∗Σ(ϑ) of bi-starlike functions of order ϑ if both
f and its inverse are starlike functions of order ϑ, or is in the family KΣ(ϑ) of bi-convex
functions of order ϑ if both f and its inverse are convex functions of order ϑ. Moreover,
for 0 < ϑ ≤ 1, the function f ∈ A is classified as a strongly bi-starlike function, S∗Σ[ϑ]
(see [7,8]), if it satisfies:∣∣∣∣arg

(
z f ′(z)

f (z)

)∣∣∣∣ < ϑπ

2
and

∣∣∣∣arg
(

wg′(w)

g(w)

)∣∣∣∣ < ϑπ

2
,

where g = f−1 is defined by (5).
Recently, studying the family Σ and deriving non-sharp bounds on |a2| and |a3|,

where a2 and a3 are the initial Taylor–Maclaurin coefficients, have become an active area of
research. In particular, the pioneering work by Srivastava et al. [6] has crucially advanced
the study of certain subfamilies within Σ and identified constraints on |a2| and |a3|. A
substantial number of subsequent works have been published in the literature, building
upon the groundbreaking research by Srivastava et al. [6] and focusing on coefficient
problems for different subfamilies of Σ (see, for example, [9,10] and the above-cited works).
However, the general coefficient estimate bounds on |an|(n ∈ {4, 5, 6, . . .}) for functions f
in the family Σ remain an unsolved problem.

For f ∈ S , the function

h(z) = ( f (zm))
1
m , (m ∈ N, z ∈ D) (6)

is univalent and maps D into an m-fold symmetric region. A function f ∈ A is called
m-fold symmetric (see [11]) if it is of the form:

f (z) = z +
∞

∑
n=1

anm+1znm+1, (m ∈ N, z ∈ D). (7)

The family of all m-fold symmetric functions is denoted byAm. For a function f ∈ Am
defined by (7), analogous to the Ruscheweyh derivative operator, the m-fold Ruscheweyh
derivative D` : Am → Am is defined as follows (see [12]):

D` f (z) = z +
∞

∑
n=1

Γ(`+ n + 1)
Γ(n + 1)Γ(`+ 1)

anm+1znm+1, (` ∈ N0, m ∈ N, z ∈ D).

Let δm denote the family of m-fold symmetric univalent functions in D normalized
by (7). Then, the functions f ∈ S are one-fold symmetric. As stated by Koepf [11], the
m-fold symmetric p in P has the form

p(z) = 1 +
∞

∑
n=1

pnmznm, (m ∈ N, z ∈ D). (8)

Recently, Srivastava et al. [13] defined the family of m-fold symmetric bi-univalent
functions Σm analogous to the family Σ, and the inverse of functions f given by (7) is
specified as follows:
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g(w) = w−am+1wm+1 +
[
(m + 1)a2

m+1 − a2m+1

]
w2m+1

−
[

1
2
(m + 1)(3m + 2)a3

m+1 − (3m + 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · .

(9)

For m = 1, the function in (9) coincides with (5) of the family Σ. Some examples of
m-fold symmetric bi-univalent functions are given below:

[
1
2

log
(

1 + zm

1− zm

)] 1
m

, [− log(1− zm)]
1
m and

[
zm

1− zm

] 1
m

with inverses of (
e2wm − 1
e2wm + 1

) 1
m

,

(
ewm − 1

ewm

) 1
m

and
(

wm

1 + wm

) 1
m

,

respectively.
Recent research has been dedicated to analyzing the functions in the family Σm and

obtaining non-sharp bounds on |am+1| and |a2m+1|, where am+1 and am+2 are the initial
Taylor–Maclaurin coefficients. In reality, Srivastava et al. [13] have greatly advanced the
research on many subfamilies of the family Σm and obtained restrictions on |am+1| and
|a2m+1| in recent years. Later on, some scholars followed them (see, for example, [14,15]
and the above-cited works).

Motivated by the aforementioned works, the primary goal of this study is to propose a
formula to determine the coefficients of the functions for the family Σm utilizing the residue
of calculus. As an example, we construct estimates of the coefficients |am+1| and |a2m+1|
for functions belonging to a generic subfamily N u,v

Σm
(η, µ, γ, `) of Σm in D, and additional

links to previously known results are made. Furthermore, by sufficiently specializing the
parameters, some consequences of this family are demonstrated.

2. The Family N u,v
Σm

(λ, µ, γ, `) and Its Associated Coefficient Estimates

In this section, the following general familyN u,v
Σm

(η, µ, γ, `) is introduced and investigated.

Definition 1. A function f ∈ Σm given by (7) belongs to the family

N u,v
Σm

(η, µ, γ, `) (η ≥ 1, µ ≥ 0, γ ≥ 0, ` ∈ N0, m ∈ N and u, v : D→ C)

if the following conditions are satisfied:

min{R(u(z)),R(v(z))} > 0 and u(0) = v(0) = 1, (10)

(1− η)

(
D` f (z)

z

)µ

+ η
(

D` f (z)
)′(D` f (z)

z

)µ−1

+
γ(µ + 2η)

1 + 2η
z
(

D` f (z)
)′′
∈ u(D), (11)

and

(1− η)

(
D`g(w)

w

)µ

+ η
(

D`g(w)
)′(D`g(w)

w

)µ−1

+
γ(µ + 2η)

1 + 2η
w
(

D`g(w)
)′′
∈ v(D), (12)

where z, w ∈ D, u and v, holomorphic in D, are defined by the expansion (8), and the function
g = f−1 is defined by (9).
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Many choices of the functions u and v can be used to create attractive subfamilies of
the functions that are holomorphic in the family Am.

Example 1. If we let

u(z) = v(z) =
(

1− zm

1 + zm

)α

; 0 < α ≤ 1,

it can be seen that the functions u(z) and v(z) satisfy the conditions of Definition 1. Thus, if f ∈
N u,v

Σm
(η, µ, γ, `) ≡ NΣm(η, µ, γ, `; α), then f ∈ Σm and∣∣∣∣∣∣arg

(1− η)

(
D` f (z)

z

)µ

+ η
(

D` f (z)
)′(D` f (z)

z

)µ−1

+
γ(µ + 2η)

1 + 2η
z
(

D` f (z)
)′′

∣∣∣∣∣∣ < απ

2

and∣∣∣∣∣∣arg

(1− η)

(
D`g(w)

w

)µ

+ η
(

D`g(w)
)′(D`g(w)

w

)µ−1

+
γ(µ + 2η)

1 + 2η
w
(

D`g(w)
)′′

∣∣∣∣∣∣ < απ

2
,

where the function g = f−1 is defined by (9).

This means that
NΣm(η, µ, γ, `; α) ⊂ N u,v

Σm
(η, µ, γ, `)

and the family N u,v
Σm

(η, µ, γ, `) is not empty.

Example 2. If we set

u(z) = v(z) =
1− (1− 2β)zm

1 + zm ; 0 ≤ β < 1,

then the conditions of Definition 1 are satisfied for both functions u(z) and v(z). Thus, if f ∈
N u,v

Σm
(η, µ, γ, `) ≡ NΣm(η, µ, γ, `; β), then f ∈ Σm,

R

(1− η)

(
D` f (z)

z

)µ

+ η
(

D` f (z)
)′(D` f (z)

z

)µ−1

+
γ(µ + 2η)

1 + 2η
z
(

D` f (z)
)′′ > β

and

<

(1− η)

(
D`g(w)

w

)µ

+ η
(

D`g(w)
)′(D`g(w)

w

)µ−1

+
γ(µ + 2η)

1 + 2η
w
(

D`g(w)
)′′ > β,

where the function g = f−1 is defined by (9).

This means that
NΣm(η, µ, γ, `; β) ⊂ N u,v

Σm
(η, µ, γ, `).

It can be seen that, for symmetric one-fold bi-univalent functions, by specializing
η, µ, γ and `, we get several known subfamilies of Σ recently investigated by various
authors. Let us present some examples.

Example 3. Let m = 1 and ` = 0. Then, the family N u,v
Σm

(η, µ, γ, `) reduces to the family
Bu,v

Σ (η, µ, γ) inspected by Bulut [16], which is defined by the requirement that f ∈ Σ,

min{R(u(z)),R(v(z))} > 0 and u(0) = v(0) = 1,
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(1− η)

(
f (z)

z

)µ

+ η( f (z))′
(

f (z)
z

)µ−1

+
γ(µ + 2η)

1 + 2η
z( f (z))′′ ∈ u(D),

and

(1− η)

(
g(w)

w

)µ

+ η(g(w))′
(

g(w)

w

)µ−1

+
γ(µ + 2η)

1 + 2η
w(g(w))′′ ∈ v(D),

where u, v : D→ C, holomorphic in D, are given by (2), and the function g = f−1 is defined by (5).

Example 4. Let m = 1, γ = 0 and ` = 0. Then, the family N u,v
Σm

(η, µ, γ, `) reduces to the family
N u,v

Σ (η, µ) considered by Srivastava et al. [17], which is defined by the requirement that f ∈ Σ,

min{R(u(z)),R(v(z))} > 0 and u(0) = v(0) = 1,

(1− η)

(
f (z)

z

)µ

+ η( f (z))′
(

f (z)
z

)µ−1

∈ u(D),

and

(1− η)

(
g(w)

w

)µ

+ η(g(w))′
(

g(w)

w

)µ−1

∈ v(D),

where u, v : D→ C, holomorphic in D, are given by (2), and the function g = f−1 is defined by (5).

Example 5. Let m = 1, µ = 1, γ = 0 and ` = 0. Then, the family N u,v
Σm

(η, µ, γ, `) reduces to the
family Bu,v

Σ (η) studied by Xu et al. [18], which is defined by the requirement that f ∈ Σ,

min{<(u(z)),R(v(z))} > 0 and u(0) = v(0) = 1,

(1− η)
f (z)

z
+ η f ′(z) ∈ u(D),

and

(1− η)
g(w)

w
+ ηg′(w) ∈ v(D),

where u, v : D→ C, holomorphic in D, are given by (2), and the function g = f−1 is defined by (5).

Example 6. Let m = 1, η = 1, µ = 0, γ = 0 and ` = 0. Then, the familyN u,v
Σm

(η, µ, γ, `) reduces
to the family Bu,v

Σ considered by Bulut [19], which is defined by the requirement that f ∈ Σ,

min{R(u(z)),R(v(z))} > 0 and u(0) = v(0) = 1,

z f ′(z)
f (z)

∈ u(D),

and

wg′(w)

g(w)
∈ v(D),

where u, v : D→ C, holomorphic in D, are given by (2), and the function g = f−1 is defined by (5).

Example 7. Let m = 1, η = 1, µ = 1, γ = 0 and ` = 0. Then, the familyN u,v
Σm

(η, µ, γ, `) reduces
to the familyHu,v

Σ studied by Xu et al. [20], which is defined by the requirement that f ∈ Σ,

min{R(u(z)),R(v(z))} > 0 and u(0) = v(0) = 1,

f ′(z) ∈ u(D),

and
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g′(w) ∈ v(D),

where u, v : D→ C, holomorphic in D, are given by (2), and the function g = f−1 is defined by (5).

Now, we are able to express bounds for |am+1| and |a2m+1| for the subfamily
N u,v

Σm
(η, µ, γ, `) of the family Σm.

Theorem 1. Let f ∈ N u,v
Σm

(η, µ, γ, `) be given by (7). Then,

|am+1| ≤ min


∣∣∣u(m)(0)

∣∣∣
m!(`+ 1)ϕ1

,

√ ∣∣u(2m)(0)
∣∣+ ∣∣v(2m)(0)

∣∣
m(2m− 1)!(`+ 1)[2ϕ2 + ϕ3 + 2ϕ4]

, (13)

and

|a2m+1| ≤ min


(m + 1)

∣∣∣u(m)(0)
∣∣∣2

2[m!(`+ 1)ϕ1]
2 +

∣∣∣u(2m)(0)
∣∣∣+ ∣∣∣v(2m)(0)

∣∣∣
(2m)!(`+ 1)(`+ 2)ϕ5

,

[ϕ2 + ϕ3 + 2ϕ4]
∣∣∣u(2m)(0)

∣∣∣+ (`+ 1)|1− µ|(µ + 2ηm)
∣∣∣v(2m)(0)

∣∣∣
m(2m− 1)!(`+ 1)(`+ 2)ϕ5[2ϕ2 + ϕ3 + 2ϕ4]

,

(14)

where

ϕ1 := µ + ηm + m(m + 1)
γ(µ + 2η)

1 + 2η
, (15)

ϕ2 := (µ− 1)(`+ 1)(µ + 2ηm), (16)

ϕ3 := (m + 1)(`+ 2)(µ + 2ηm), (17)

ϕ4 := m(m + 1)(2m + 1)(`+ 2)
γ(µ + 2η)

1 + 2η
, (18)

and

ϕ5 := µ + 2ηm + 2m(2m + 1)
γ(µ + 2η)

1 + 2η
. (19)

Proof. It is implied by (10) and (11) that

(1− η)

(
D` f (z)

z

)µ

+ η
(

D` f (z)
)′(D` f (z)

z

)µ−1

+
γ(µ + 2η)

1 + 2η
z
(

D` f (z)
)′′

= u(z), (20)

and

(1− η)

(
D`g(w)

w

)µ

+ η
(

D`g(w)
)′(D`g(w)

w

)µ−1

+
γ(µ + 2η)

1 + 2η
w
(

D`g(w)
)′′

= v(w), (21)

where u(z) and v(w) satisfy the conditions of (10) and have the series representations

u(z) = 1 + umzm + u2mz2m + u3mz3m + · · · , (22)

and

v(w) = 1 + vmwm + v2mw2m + v3mw3m + · · · . (23)
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Substituting the expansions (22) and (23) into (20) and (21), respectively, yields

(`+ 1)
[

µ + ηm + m(m + 1)
γ(µ + 2η)

1 + 2η

]
am+1 = um, (24)

(`+ 1)(`+ 2)
[

1
2
(µ + 2ηm) + m(2m + 1)

γ(µ + 2η)

1 + 2η

]
a2m+1

+
1
2
(`+ 1)2(µ − 1)(µ + 2ηm)a2

m+1 = u2m,
(25)

−(`+ 1)
[

µ + ηm + m(m + 1)
γ(µ + 2η)

1 + 2η

]
am+1 = vm, (26)

and

−(`+ 1)(`+ 2)
[

1
2
(µ + 2ηm) + m(2m + 1)

γ(µ + 2η)

1 + 2η

]
a2m+1

+(`+ 1)
[

1
2
(`+ 1)(µ− 1)(µ + 2ηm) +

1
2
(m + 1)(`+ 2)(µ + 2ηm)

+m(m + 1)(2m + 1)(`+ 2)
γ(µ + 2η)

1 + 2η

]
a2

m+1 = v2m.

(27)

In light of (24) and (26), we conclude that

um = −vm, (28)

and

2(`+ 1)2 ϕ2
1a2

m+1 = u2
m + v2

m (29)

where ϕ1 is given by (15).
If the equalities (25) and (27) are added, we obtain the relation

(`+ 1)
[

ϕ2 +
1
2

ϕ3 + ϕ4

]
a2

m+1 = u2m + v2m (30)

where ϕ2, ϕ3 and ϕ4 are given by (16), (17) and (18), respectively.
Therefore, from (29) and (30), we have

a2
m+1 =

u2
m + v2

m

2(`+ 1)2 ϕ2
1

, (31)

and

a2
m+1 =

2(u2m + v2m)

(`+ 1)[2ϕ2 + ϕ3 + 2ϕ4]
, (32)

respectively. Therefore, taking the absolute value of (31) and (32), and using (28), we
deduce that

|am+1|2 ≤

∣∣∣u(m)(0)
∣∣∣2

[m!(`+ 1)ϕ1]
2 , (33)

and

|am+1|2 ≤

∣∣∣u(2m)(0)
∣∣∣+ ∣∣∣v(2m)(0)

∣∣∣
m(2m− 1)!(`+ 1)[2ϕ2 + ϕ3 + 2ϕ4]

, (34)

respectively. Thus, we have the desired result as asserted in (13).
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Then, to obtain |a2m+1|, subtract (27) from (25),

(`+ 1)(`+ 2)ϕ5a2m+1 − (`+ 1)
[

1
2

ϕ3 + ϕ4

]
a2

m+1 = u2m − v2m (35)

where ϕ5 is given by (19).
Now, putting the value of a2

m+1 from (29) into (35), it follows that

a2m+1 =
(m + 1)

(
u2

m + v2
m
)

4(`+ 1)2 ϕ2
1

+
u2m − v2m

(`+ 1)(`+ 2)ϕ5
. (36)

Therefore, taking the absolute value of (36) and using the relation given by (28), we
deduce that

|a2m+1| ≤
(m + 1)

∣∣∣u(m)(0)
∣∣∣2

2[m!(`+ 1)ϕ1]
2 +

∣∣∣u(2m)(0)
∣∣∣+ ∣∣∣v(2m)(0)

∣∣∣
(2m)!(`+ 1)(`+ 2)ϕ5

. (37)

By putting the value of a2
m+1 from (30) into (35), we obtain

a2m+1 =
[ϕ2 + ϕ3 + 2ϕ4]u2m + (`+ 1)(1− µ)(µ + 2ηm)v2m

(`+ 1)(`+ 2)ϕ5

[
ϕ2 +

1
2 ϕ3 + ϕ4

] . (38)

Therefore, taking the absolute value of (38), we conclude the following bound

|a2m+1| ≤
[ϕ2 + ϕ3 + 2ϕ4]

∣∣∣u(2m)(0)
∣∣∣+ (`+ 1)|1− µ|(µ + 2ηm)

∣∣∣v(2m)(0)
∣∣∣

m(2m− 1)!(`+ 1)(`+ 2)ϕ5[2ϕ2 + ϕ3 + 2ϕ4]
. (39)

Finally, from (37) and (39), we get the relevant estimate as asserted in (14). This
completes the proof.

3. Corollaries and Consequences

If we put

u(z) = v(z) =
(

1− zm

1 + zm

)α

; (0 < α ≤ 1),

in Theorem 1, then Corollary 1 can be obtained.

Corollary 1. Let f (z) ∈ NΣm(η, µ, γ, `; α) be of the form (7). Then,

|am+1| ≤
2α√

(`+ 1)
[
(`+ 1)(1− α)ϕ2

1 + α
[

ϕ2 +
1
2 ϕ3 + ϕ4

]] ,

and

|a2m+1| ≤
4α2

(`+ 1)2 ϕ2
1
+

4α

(`+ 1)(`+ 2)ϕ5
,

where ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5 are given by (15), (16), (17), (18) and (19), respectively.

If we set

u(z) = v(z) =
1− (1− 2β)zm

1 + zm ; (0 ≤ β < 1),

in Theorem 1, then Corollary 2 can be obtained.

Corollary 2. Let f (z) ∈ NΣm(η, µ, γ, `; β) be of the form (7). Then,
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|am+1| ≤ min

{
2(1− β)

(`+ 1)ϕ1
,

√
8(1− β)

(`+ 1)[2ϕ2 + ϕ3 + 2ϕ4]

}
,

and

|a2m+1| ≤ min

{
4(1− β)2

(`+ 1)2 ϕ2
1
+

4(1− β)

(`+ 1)(`+ 2)ϕ5
,

8(1− β)[ϕ2 + ϕ3 + 2ϕ4]

(`+ 1)(`+ 2)ϕ5[2ϕ2 + ϕ3 + 2ϕ4]

}
,

where ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5 are given by (15), (16), (17), (18) and (19), respectively.

By letting

u(z) = v(z) =
(

1− z
1 + z

)α

; (0 < α ≤ 1),

in Theorem 1 for the subfamily N u,v
Σ (η, µ, γ, `) of the family Σ := Σ1 that contains normal-

ized holomorphic and bi-univalent functions, then Corollary 3 can be derived.

Corollary 3. Let f (z) ∈ NΣ(η, µ, γ, `; α) be of the form (1). Then,

|a2| ≤
2α√

(1− α)(`+ 1)[(`+ 1)[µ + η + 2(µ + 2η)τ]2 + α(µ + 2η)[1 + µ(`+ 1) + 6(`+ 2)τ]]
,

and

|a3| ≤
4α2

(`+ 1)2[µ + η + 2(µ + 2η)τ]2
+

4α

(`+ 1)(`+ 2)(µ + 2η)(1 + 6τ)

where

τ :=
γ

1 + 2η

By putting

u(z) = v(z) =
1− (1− 2β)z

1 + z
; (0 ≤ β < 1)

in Theorem 1 for the subfamily N u,v
Σ (η, µ, γ, `) of the family Σ that contains normalized

holomorphic and bi-univalent functions, then Corollary 4 can be derived.

Corollary 4. Let f (z) ∈ NΣ(η, µ, γ, `; β) be of the form (1). Then,

|a2| ≤ min

{
2(1− β)

(`+ 1)ε1
,

√
4(1− β)

(`+ 1)ε2

}
,

and

|a3| ≤ min

{
4(1− β)2

(`+ 1)2ε2
1
+

4(1− β)

(`+ 1)(`+ 2)ε3
,

4(1− β)ε4

(`+ 1)(`+ 2)ε2ε3

}
,

where
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ε1 := µ + η +
2γ(µ + 2η)

1 + 2η
,

ε2 := 1 + (`+ 1)µ +
6γ(`+ 2)

1 + 2η
,

ε3 := µ + 2η +
6γ(µ + 2η)

1 + 2η
,

and

ε4 := 3 + µ + `(µ + 1) +
12γ(`+ 2)

1 + 2η
.

The following corollary follows from Theorem 1 for one-fold symmetric bi-univalent
functions.

Corollary 5. Let f (z) ∈ N u,v
Σ (η, µ, γ, `) be of the form (1). Then,

|a2| ≤ min

 |u′(0)|Ω1
,

√
|u′′(0)|+ |v′′(0)|

2Ω2


and

|a3| ≤ min

{
|u′(0)|2

Ω2
1

+
|u′′(0)|+ |v′′(0)|

2(`+ 1)Ω3
,
[2Ω3 + Ω4]|u′′(0)|+ (`+ 1)|1− µ|(µ + 2η)|v′′(0)|

2Ω2Ω3

}
,

where

Ω1 := (`+ 1)
[

µ + η +
2γ(µ + 2η)

1 + 2η

]
,

Ω2 := (`+ 1)(µ + 2η)

[
1 + µ(`+ 1) +

6γ(`+ 2)
1 + 2η

]
,

Ω3 := (`+ 2)(µ + 2η)

[
1 +

6γ

1 + 2η

]
,

and

Ω4 := (`+ 1)(µ− 1)(µ + 2η).

By specializing the parameters in Corollary 3, it can be seen that several estimate
bounds for known subfamilies of Σ can be attained as special cases.

Example 8. Put ` = 0 in Corollary 5. Then, the family N u,v
Σ (η, µ, γ, `) reduces to the family

Bu,v
Σ (η, µ, γ) studied by Bulut [16], and for a function f ∈ Bu,v

Σ (η, µ, γ) of the form (1), we have

|a2| ≤ min

 |u′(0)|
µ + η + 2γ(µ+2η)

1+2η

,

√√√√ |u′′(0)|+ |v′′(0)|
2(µ + 2η)

[
1 + µ + 12γ

1+2η

]
,

and
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|a3| ≤ min

 |u′(0)|2[
µ + η + 2γ(µ+2η)

1+2η

]2 +
|u′′(0)|+ |v′′(0)|

4(µ + 2η)
[
1 + 6γ

1+2η

] ,

[
3 + µ + 24γ

1+2η

]
|u′′(0)|+ |1− µ||v′′(0)|

4(µ + 2η)
[
1 + µ + 12γ

1+2η

][
1 + 6γ

1+2η

]
.

Example 9. Let ` = γ = 0 in Corollary 5. Then, the family N u,v
Σ (η, µ, γ, `) reduces to the family

N u,v
Σ (η, µ) considered by Srivastava et al. [17], and for a function of the form (1) in this family,

we have

|a2| ≤ min

{
|u′(0)|
µ + η

,

√
|u′′(0)|+ |v′′(0)|
2(µ + 1)(µ + 2η)

}
,

and

|a3| ≤ min

{
|u′(0)|2

(µ + η)2 +
|u′′(0)|+ |v′′(0)|

4(µ + 2η)
,
(3 + µ)|u′′(0)|+ |1− µ||v′′(0)|

4(µ + 1)(µ + 2η)

}
.

Example 10. Set ` = γ = 0 and µ = 1 in Corollary 5. Then, the family N u,v
Σ (η, µ, γ, `) reduces

to the family N u,v
Σ (η) investigated by Xu et al. [18], and for f ∈ Bu,v

Σ (η) of the form (1), we have

|a2| ≤ min

{
|u′(0)|
1 + η

,
1
2

√
|u′′(0)|+ |v′′(0)|

(1 + 2η)

}
,

and

|a3| ≤ min

{
|u′(0)|2

(1 + η)2 +
|u′′(0)|+ |v′′(0)|

4(1 + 2η)
,
|u′′(0)|

2(1 + 2η)

}

Example 11. Let ` = γ = µ = 0 and η = 1 in Corollary 5. Then, the family N u,v
Σ (η, µ, γ, `)

reduces to the family N u,v
Σ investigated by Bulut [19], and for a function of the form (1) in this

family, we have

|a2| ≤ min
{∣∣u′(0)∣∣, 1

2

√
|u′′(0)|+ |v′′(0)|

}
,

and

|a3| ≤ min
{∣∣u′(0)∣∣2 + 1

8
[∣∣u′′(0)∣∣+ ∣∣v′′(0)∣∣], 1

8
[
3
∣∣u′′(0)∣∣+ ∣∣v′′(0)∣∣]}.

Example 12. Let ` = γ = 0 and µ = η = 1 in Corollary 5. Then, the family N u,v
Σ (η, µ, γ, `)

reduces to the familyHu,v
Σ investigated by Xu et al. [20], and for a function f ∈ Hu,v

Σ of the form (1),
we have

|a2| ≤ min

{
1
2

∣∣u′(0)∣∣, 1
2

√
|u′′(0)|+ |v′′(0)|

3

}
,

and

|a3| ≤ min
{

1
4

[∣∣u′(0)∣∣2 + 1
3
[∣∣u′′(0)∣∣+ ∣∣v′′(0)∣∣]],

1
6

∣∣u′′(0)∣∣}.
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4. Conclusions

In this paper, a general family of holomorphic and m-fold symmetric bi-univalent
functions was defined and studied. The coefficient bounds |am+1| and |a2m+1| for functions
in this family were derived, showing how the results are generalized from some recent
works. Furthermore, by sufficiently specializing the parameters, some consequences of this
family were mentioned.
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