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Abstract: The global supply chain is facing huge uncertainties due to potential emergencies, and
the disruption of any link may threaten the security of the supply chain. This paper considers a
disruption scenario in which supply disruption and distribution center failure occur simultaneously
from the point of view of the manufacturer. A resilient supply chain optimization model is developed
based on a combination of proactive and reactive defense strategies, including manufacturer’s raw
material mitigation inventory, preference for temporary distribution center locations, and product
design changes, with the objective of obtaining maximum expected profit. The proposed stochastic
planning model with demand uncertainty is approximated as a mixed integer linear programming
model using Latin hypercube sampling (LHS), sample average approximation (SAA), and scenario
reduction (SR) methods. In addition, an improved genetic algorithm (GA) is also developed to
determine the approximate optimal solution. The algorithm ensures the feasibility of the solution and
improves the solving efficiency through specific heuristic repair strategies. Numerical experiments
are conducted to verify the application and advantages of the proposed disruption recovery model
and approach. The experimental results show that the proposed resilient supply chain optimization
model can effectively reduce the recovery cost of manufacturers after disruption, and the proposed
approach performs well in dealing with related problems.

Keywords: resilient supply chain; disruption recovery; heuristic; genetic algorithm
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1. Introduction

In recent years, the COVID-19 pandemic has caused an unprecedented impact on the
global supply chain [1]. Unlike limited-scale shocks to supply chains caused by natural
disasters such as earthquakes, hurricanes, and floods in the past, the modern global supply
chain faces the risk of disruption on a much larger scale than ever before [2].

With the process of globalization and the increased geographic concentration of in-
dustries, disruptions at one or a few nodes can affect almost all the nodes and links in
the supply chain [3]. Prior to the pandemic, the disruptions discussed in the literature
were usually local or regional, they rarely affected the supply chain structure, they were of
limited duration, and they mostly occurred after predictable risks [4]. However, disruptions
caused by the COVID-19 pandemic can occur simultaneously or sequentially at various
points in the supply chain, including suppliers, manufacturers, facilities, and markets,
and can propagate forward and backward through material flows, ultimately affecting
the entire supply chain network [5,6]. In addition, as companies in the manufacturing
supply chain become more connected, disruptions caused by the pandemic would be
even more disruptive to assembly manufacturing industries that rely on upstream suppli-
ers [7]. Semiconductor shortages during the pandemic have impacted nearly all global auto
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manufacturers, causing production capacity losses and order backlogs [8]. The household
appliance and electronics industries were similarly plagued by supply shortages and surges
in production and orders during the pandemic [9].

To ensure the normal operation of the supply chain, it is necessary to improve the re-
silience of the supply chain network [10,11]. Strategies for resilient systems can be classified
according to their characteristics as proactive defenses and reactive defenses [12]. Proactive
strategies focus on taking action before a disruption takes place by adding redundancy.
In the case of uncertain demand or supply disruption, companies can use inventory and
reserve capacity to mitigate the risk of supply chain disruption [13,14]. The planning and lo-
cation of back-up facilities can mitigate the impact on the supply chain after a facility failure.
In the case of disruption of existing facilities due to a pandemic, the pandemic prevention
policies and the extent of the pandemic in different countries and regions will influence
the manufacturers’ location decisions. In addition, global logistics and distribution centers
have been proposed to be constructed along the Belt and Road to improve distribution
efficiency, and local policies may also influence manufacturers’ location decisions [15,16].
Some scholars have introduced a resilience theory to enhance the ability of ports and
shipping systems to withstand various risks [17,18]. This reactive strategy is to adopt the
appropriate mitigation strategy after a disruption. It is critical to develop the appropri-
ate recovery strategy for supply chain resilience after disruptions [19,20]. Hishamuddin
et al. [21] developed a disruption recovery method to obtain a production revision plan
with a minimum expected total cost by determining the optimal manufacturing lot size
and optimal recovery time for production runs within the recovery time window. Paul
et al. [22] developed a reactive mitigation approach to manage sudden supply disruptions
in the supply chain.

This paper considers a manufacturing supply chain in which supply disruption and
distribution center failure may occur simultaneously. Therefore, the challenges of this
study are twofold. On the one hand, there are disruptions originating on the supply side
that can lead to shortages of raw materials, which in turn affect production. On the other
hand, disruptions also originate from the existing distribution centers, which can lead to
disruptions in the distribution and transportation of products. In addition, the uncertainty
of demand also needs to be considered, which makes decisions more challenging in practice.
For supply disruptions, considering the long-term nature and uncertainty of disruptions in
the context of a pandemic, this paper adopts a design change strategy for multiple products
based on the work of Chen et al. [23]. The key issue is how to determine the change plan
and alternative supplier selection, and thus reconfigure the supply network and determine
a new production plan. For distribution center failure due to the pandemic, the key issue is
to determine a location for a temporary distribution center considering the manufacturer’s
selection preference and the impact of the pandemic, as well as the handling capacity and
construction cost. The contributions of this work are as follows:

• This work considers the disruption scenario in which supply disruption and distribu-
tion center failure occur simultaneously. A two-stage stochastic programming model
based on a combination of proactive and reactive defense strategies is developed to
improve supply chain resilience in manufacturing companies.

• The two-stage stochastic programming model is transformed into a mixed integer
linear programming (MILP) model using Latin hypercubic sampling (LHS), sample
average approximation (SAA), and scenario reduction (SR) to deal with continuous
demand scenarios and discrete disruptions scenarios, respectively.

• For the model characteristics, this work develops an improved genetic algorithm
combined with a heuristic algorithm to increase the efficiency of solving large-scale
problems. A specific heuristic repair strategy is designed to ensure the feasibility of
the solution.

• By analyzing the results, we verify the superiority of the proposed resilient strategy
and algorithm in settling the supply chain disruption problem.
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The remainder of this paper is organized as follows: Section 2 provides an overview of
the relevant literature. The problem definition and the underlying assumptions are given
in Section 3. Section 4 presents the notations and the mathematical model. Section 5 states
the transformation method of the model and the proposed improved genetic algorithm.
Numerical experiments and a discussion of the results are given in Section 6. Section 7
summarizes the paper and provides directions for future research.

2. Literature Review

The complexity of products, globally dispersed design, production activities, and
extensive supply chains under globalization processes pose challenges for today’s enter-
prises. These challenges affect companies’ management of their supply chain networks and
have been exacerbated by the disruptions to global supply chains caused by the COVID-19
pandemic. This situation is unprecedented, and previous studies have rarely addressed
this issue directly [24].

Over the past few decades, there has been significant research on the theoretical
background and key strategies of resilient supply chains to address disruption risks that
may occur [25]. The literature on strategies to enhance resilience can be divided into
two main aspects. One aspect is a proactive defense strategy to mitigate supply chain
risks through multiple sourcing, maintaining inventory and contracting with backup
suppliers [26]. Pal et al. [27] developed a three-stage supply chain model consisting of a
supplier, manufacturer, and retailer to increase inventory by purchasing raw materials in
advance, allowing for rapid production resumption in the event of a supply disruption.
Jabbarzadeh et al. [28] proposed a stochastic bi-objective optimization model in which
the two objectives were to minimize total expected costs and maximize sustainability
performance. Additional production capacity, multi-source sourcing, and selection of
alternate suppliers are considered in their model. Namdar et al. [29] investigated the
impact of purchasing strategies such as backup supplier contracts and spot purchasing
on supply chain resilience. It was found that the buyer’s early warning ability plays an
important role in improving supply chain resilience. Shahed et al. [30] considered the
simultaneous existence of supplier disruptions and demand uncertainty and developed a
mathematical model to maximize profits by adopting an appropriate inventory policy to
cope with possible disruptions in the supply chain network. Vali-Siar and Roghanian [31]
proposed a multi-objective optimization model under uncertainty using multiple sourcing,
enhanced infrastructure, redundant capacity, and dual-channel distribution strategies to
improve supply chain resilience.

Another aspect is a reactive defense strategy to enable the supply chain to recover
quickly from disruptions by developing an appropriate recovery strategy. Sawik [32]
proposed a two-period modeling approach for the selection of recovery suppliers and
recovery assembly plants and the decisions implemented during and after the disruption,
comparing it with a multi-period approach. Paul et al. [33] considered three types of
uncertain disruptions in the manufacturing supply chain: demand fluctuation, production
disruption, and supply disruption, developing a quantitative model to generate a recovery
plan after disruption. Khalilabadi et al. [34] developed a multi-stage stochastic planning
model that uses a product substitution strategy to mitigate uncertain demand fluctuations
in a multi-product supply chain. Chen et al. [35] investigated a disruption recovery strategy
from a product design change and life cycle perspective and proposed a mixed integer
linear programming model to solve the supply chain disruption recovery problem.

In the past, few scholars have combined proactive and reactive strategies in the design
of resilient supply chains. Elluru et al. [36] proposed a location routing model that combine
proactive and reactive approaches, taking into account supply chain disruptions caused
by disasters. The proactive approach considered the risk factors of the facility prior to the
disruption, and the reactive approach considered recovery strategies and the associated
penalties. However, the long duration of the pandemic and the uncertainty about the
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timing and magnitude of disruptions make it necessary for enterprises to consider both
pre-disruption defense strategies and post-disruption recovery strategies.

Recently, supply chain disruption recovery strategies for the pandemic have focused on
the impact of disruptions on supply, production, and demand fluctuation [37]. Paul et al. [20]
developed a recovery model to help enterprises for high-demand products make decisions
when designing revised production schedules after supply disruptions. Nagurney et al. [38]
considered the uncertainty of product demand and the impact of the COVID-19 pandemic
on the workforce and developed a supply chain network optimization model to cope
with supply chain disruptions. Taking into account the supply disruptions and demand
fluctuations caused by the pandemic, Sawik [39] proposed a multi-portfolio approach
and a scenario-based stochastic MIP model to optimize supply chain operations under
ripple effects using risk mitigation inventory and alternate supplier procurement strategies.
Paul et al. [40] developed a stochastic mathematical model to optimize the recovery of
a three-stage supply chain with demand, supply, and capacity uncertainties due to the
multi-dimensional impact of the COVID-19 pandemic.

Most existing studies have ignored the possible impact of the pandemic on facilities
such as distribution centers. Distribution centers may be at risk of failing to close or not
being able to meet uncertain demands. Manufacturers should consider planning backup
facilities in advance or constructing temporary distribution centers if existing facilities fail.
By properly locating distribution centers, the total cost of the supply chain can be reduced,
and the order allocation and transportation efficiency can be improved [41,42]. Amin and
Baki [43] developed a multi-objective mixed integer linear programming model for a supply
chain network including multiple plants, distribution centers, demand, and products to
select the best supplier and distribution center sites considering the uncertainty of demand.
Jakubovskis et al. [44] proposed a robust optimization modeling method for facility location
and capacity planning under uncertain demand and determined which capabilities can
contribute to solution robustness through experiments. Ortiz-Astorquiza [45] conducted
a review of multi-level facility location problems that extend several classical facility
location problems and identified three different categories of multi-level facility location
problems based on the types of decisions made in the optimization process. Saragih
et al. [46] developed a heuristic method for solving the location–inventory–routing problem
in a three-level supply chain system with uncertain demand. Fu et al. [47] developed
a simulation-based optimization approach to the facility location and capacity planning
problem under the Belt and Road initiative by considering both policy preference and
customer demand uncertainties.

Table 1 summarizes the differences between this paper and related studies in the
literature in terms of the types of disruptions considered and the resilience strategies
employed, providing additional details to distinguish studies based on resilient supply
chain optimization.

Table 1. Comparison between this paper and relevant studies in the literature in terms of encountered
disruption and methodology.

Articles Type of Disruption Strategy of Resilience Methodology

Proactive Reactive Deterministic Stochastic

Pal et al. [27] Sd √ √
Jabbarzadeh et al. [28] Sd √ √
Namdar et al. [29] Sd √ √
Shahed et al. [30] Sd, Df √ √
Vali-Siar and
Roghanian [31] Sd, Df √ √

Sawik [32] Sd, Pd √ √
Paul et al. [33] Sd, Pcu, Df √ √
Khalilabadi et al. [34] Df √ √
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Table 1. Cont.

Articles Type of Disruption Strategy of Resilience Methodology

Proactive Reactive Deterministic Stochastic

Chen et al. [35] Sd √ √
Elluru et al. [36] Dnf √ √ √
Paul et al. [20] Sd √ √
Nagurney et al. [38] La √ √
Paul et al. [40] Su, Pcu, Df √ √
Sawik [39] Sd, Df √ √
This paper Sd, Dnf, Df √ √ √

Sd: supply disruption, Su: supply uncertainty, Pd: production disruption, Pcu: production capacity uncertainty,
La: labor availability, Dnf: distribution network failure, Df: demand fluctuation.

3. Problem Description and Assumptions
3.1. Problem Statement

This paper considers a four-tier supply chain network consisting of suppliers, manu-
facturers, distribution centers, and customers, where the distribution centers are established
by the manufacturer based on the region, the number of orders, and the level of transport
logistics. Nodes have a hierarchical relationship between the upstream and downstream
components of the supply chain. Each layer of nodes can only be connected to its neigh-
boring layer of nodes, and the layers of nodes are independent of each other. The supply
chain network structure is shown in Figure 1. Manufacturers produce a variety of products,
and each product requires a variety of parts. Different products may require the same
parts, and each part is provided by one supplier. The products are first transported by the
manufacturer to the distribution centers, each of which has a maximum capacity, and are
then transported by the distribution center to the appropriate customers within its coverage
area. Each customer’s demand for each product is uncertain.
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Figure 1. Hierarchical supply chain network. Figure 1. Hierarchical supply chain network.

Due to the COVID-19 pandemic, disruptions may occur in any link of the supply
chain, and multiple facilities in the supply chain network may fail at the same time or
one after another. Considering the ripple effect, after a disruption occurs at a certain
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point in the supply chain, it can spread upstream or downstream along the supply chain,
leading to more large-scale failures. The propagation of disruptions in the supply chain
network is shown in Figure 2, where green indicates that a node is functioning normally,
yellow indicates that a node is partially disabled, red indicates that a node is completely
disabled, and blue indicates that a node is affected. Here, (a) demonstrates a healthy
supply chain network and (b) demonstrates disruptions occurring simultaneously at the
suppliers and distribution centers, where S2 and D2 partially fail and S4 and D3 completely
fail. Additionally, (c) demonstrates the supply chain network after disruption, where the
productions of P1 and P2 are affected due to the failure of suppliers S2 and S4. Due to the
partial failure of distribution center D2, the demands of customers C2 and C4 cannot be met.
The complete failure of D3 results in an inability to handle the C5 demand, and the link
between the nodes is disconnected. (d) denotes the supply chain network after considering
the propagation of the disruption ripple effect. Due to the supply disruption, the production
capacity of product P1 decreases and the production of product P2 is stopped. Customer
C1-C4 orders for P1 may be backordered, and orders for P2 must be cancelled. All the
orders for customer C5 were cancelled due to the failure of the upstream distribution center.
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occurring simultaneously at the suppliers and distribution centers; (c) the supply chain network after
disruption; (d) the supply chain network after the propagation of the disruption ripple effect.

In order to establish a resilient supply chain network, this paper considers a combina-
tion of proactive and reactive defense strategies. The manufacturer develops appropriate
raw material inventory plans and locates and constructs temporary distribution centers
before disruptions occur. The objective is to determine the inventory quantities for each
raw material, as well as to find a subset of temporary distribution center locations un-
der conditions that simultaneously satisfy selection preferences, warehouse capacity, and
transportation capacity constraints in order to minimize raw material inventory costs and
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temporary distribution center fixed costs. Considering the uncertainty of the duration of
supply disruptions, the manufacturer can make design changes and partially reconfigure
suppliers that cannot continue production due to supply shortages, resuming production
as soon as possible. After the failure of some distribution centers, the manufacturer selects
which distribution centers to open from the constructed temporary distribution centers and
reconfigures the distribution network. The reconfigured supply chain network after the
adoption of the recovery strategy is shown in Figure 3, where TD1 and TD2 represent the
selected temporary distribution centers. When the manufacturer holds a certain amount of
raw material inventory and adds AS2 as the substitute supplier for S2, P1 can fully resume
production and P2 can resume partial production. In addition, NS1 is the new supplier of
the new product NP1 after the design change.
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This paper considers three types of disturbances that can occur in a manufacturing
supply chain, namely supply disruptions, distribution center failures, and demand uncer-
tainty, where the magnitude of supply disruptions and distribution center failures is also
uncertain. These three disturbances can occur individually or simultaneously. It is difficult
to obtain an accurate picture of the probability of disruption to suppliers and distribution
centers as well as demand fluctuations. Manufactures can only obtain estimates from
historical data. Therefore, manufacturers need to consider the following three important
questions before/after disruptions:

• How to determine the inventory quantity of each raw material before disruptions;
• How to locate the temporary distribution center;
• How to choose the product change option and alternative suppliers.

3.2. Assumptions

In order to make the study more relevant and feasible, the following basic assumptions
are made:

• The disruption of each supplier and distribution center is independent of each other,
and the disruption may cause partial or complete failure of the facility.

• Emergency procurement needs are taken into account to consider the additional
procurement cost, but the production delay caused by emergency procurement is not
considered, and there is a procurement cost difference between the backup supplier
and the original supplier.

• Product design changes require consideration of product design costs and new raw
material procurement costs.

• The manufacturer’s preference weight coefficient for the location of the new distribu-
tion center is determined by the triangular fuzzy number M(l, m, u);

• The demand of each customer for each product satisfies the normal distribution
N ∼

(
µ, σ2), and each customer’s demand is independent of the others. When the
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demand of customers cannot be met due to supply shortage, the cost of sales loss will
be incurred.

• Products are shipped immediately after production, regardless of storage at the manu-
facturer, and there are inventory capacity limitations at the distribution center.

4. Model Formulation
4.1. Notations and Decision Variables

In order to build a mathematical model, some notations are defined and listed as
follows:

List of indices:
i Index for original suppliers
j Index for alternative suppliers
p Index for products
l Index for original distribution centers
m Index for temporary distribution centers
n Index for customers
s Index for disruption scenarios

List of decision variables:
xs

ij
1 if the part from the ith original supplier is changed to the raw material from the jth

alternative supplier for the sth disruption scenario, else 0
km 1 if the mth temporary distribution center is built, else 0
ys

m 1 if the mth temporary distribution center is used for the sth disruption scenario, else 0

Xs
ij

Quantity to be procured for the sth disruption scenario from the jth alternative supplier of
the ith original supplier

Il Inventory of raw materials supplied by the ith original supplier

Zs
pl

Quantity of the pth product transported from the manufacturer to the lth original
distribution center for the sth disruption scenario

Zs
pm

Quantity of the pth product transported from the manufacturer to the mth temporary
distribution center for the sth disruption scenario

Zs
pln

Quantity of the pth product transported from the lth original distribution center to the nth

customer for the sth disruption scenario

Zs
pmn

Quantity of the pth product transported from the mth temporary distribution center to the
nth customer for the sth disruption scenario

List of parameters:
us

i 1 if the ith original supplier for the sth disruption scenario has not been disrupted, else 0

vs
l

1 if the lth original distributor center for the sth disruption scenario has not been
disrupted, else 0

Ps Probability of the sth disruption scenario
wip 1 if the ith supplier supplies raw material for the pth product, else 0
Xi Quantity to be procured from the ith original supplier
γ Inventory as a percentage of supply
Ci Unit procurement cost of raw materials from the ith supplier
Cij Unit procurement cost of raw materials from the jth alternative supplier of the ith supplier
Qij Fixed change cost for the jth alternative supplier of the ith supplier

Qcij
Unit production cost of changing the raw material for the product from the ith supplier to
the jth alternative supplier

Pcp Unit production cost of the pth product
Isi Minimum safety stock of raw materials supplied by the ith original supplier
Imax Maximum raw material inventory capacity of the manufacturer
µ Minimum percentage of inventory held by the manufacturer
CIi Unit inventory cost of the raw materials supplied by the ith original supplier
El Unit transportation cost from the manufacturer to the lth original distribution center
Em Unit transportation cost from the manufacturer to the mth temporary distribution center
Eln Unit transportation cost from the lth original distribution center to the nth customer
Emn Unit transportation cost from the mth temporary distribution center to the nth customer
Fnp Unit out-of-stock loss cost of the pth product order for the nth customer
Km Fixed cost for the mth temporary distribution center
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K′m Operating cost for the mth temporary distribution center
Aij Maximum capacity of the jth alternative supplier of the ith original supplier
Gl Maximum capacity of the lth original distribution center
Hm Maximum capacity of the mth temporary distribution center
∼
Dnp

Quantity demanded by the nth customer for the pth product, which satisfies a normal
distribution

∼
αl Capacity failure coefficient of the lth original distribution center after a disruption

βm
Preference weight coefficient for the manufacturer’s preference for the mth candidate
temporary distribution center

θ Expectation for manufacturer preference of selected locations

4.2. Model Development

It is difficult to accurately predict the probability of disruption to suppliers and
distribution centers as well as demand fluctuations. For modeling and experimentation, as
we assume that any supplier disruption and distribution center failure event is random, we
generate disruption scenarios to determine characteristics such as the disruption size and
duration. To describe disruption scenarios, A is the set consisting of all the suppliers and
distribution centers, and AS is the set of all the disrupted suppliers and failure distribution
centers under the disruption scenario s. If the probability of disruption of element a in the
set AS is pa and the elements are independent of each other, then the probability Ps of the
occurrence of scenario s can be calculated by the following equation [48]:

Ps = ∏a∈AS
pa∏a∈A\AS

(1− pa) (1)

In order to characterize the manufacturer’s preference for candidate locations, each
location is associated with a preference factor, including factors such as local policy orien-
tation, regional epidemic levels, and transportation levels, which indicate the degree of
manufacturer preference for building a distribution center in that location It is difficult to
know the exact selection preferences, and manufactures can only obtain estimates from

managers and experts. Since the manufacturer’s preference weight coefficient
∼

βm for the
temporary distribution center location is somewhat fuzzy, triangular fuzzy numbers can
represent the pessimistic, most likely, and optimistic values of the expert opinion. Therefore,
they can be used to evaluate the manufacturer’s preference for temporary distribution
centers. This paper determines the triangular fuzzy number M(l, m, u) for all alternative
locations through expert scoring, where m denotes the most likely preference weight co-
efficient for the alternative location, l and u denote the upper and lower bounds of the
preference weight coefficient for the alternative location, respectively, and the graded mean
integration method is used to represent the triangular fuzzy number, which transforms the
manufacturer’s preference weight coefficient βm from a fuzzy number to a definite value.
This can be expressed as follows:

G
( ∼

βm(α)

)
=
∫ 1

0 (
α
2 )[L

−1(α)+R−1(α)]dα∫ 1
0 αdα

=
∫ 1

0 α
[
L−1(α) + R−1(α)

]
dα

= 1
6 (l + 4m + u)

(2)

where L−1(α) and R−1(α) are the inverse functions of L(α) and R(α) (left and right function
of the triangular fuzzy number), respectively, and the values of L−1(α) and R−1(α) are
l + (m− l)α and u− (u−m)α, respectively.

In order to establish a resilient supply chain network, it is necessary to not only deter-
mine the inventory plan and the construction of temporary facilities before the disruption,
but also to decide the recovery plan based on the disruption scenario and the identified
supply chain network. Therefore, considering both proactive and reactive defense strate-
gies, a two-stage stochastic planning model is developed in this section. The first stage is
to decide on the manufacturer’s inventory plan for each raw material and the location of
the temporary distribution centers considering the manufacturer’s preference before the
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disruption. The second stage is to make decisions about product design changes, which
temporary distribution centers will be used and their processing capacity, and delivery
plans for order requirements after the disruption.

The objective function of the first stage is to maximize the total profit, which includes
the cost of raw material inventory planning, the cost of temporary distribution center
location construction, and the expected profit associated with disruption scenarios and
stochastic demand. The first-stage model is established as follows:

max Eξ R(x, y, X, Z, S, ξ)−∑i∈I CIi Ii −∑m∈M Kmkm (3)

s.t.

Ii ≤ γXi, ∀i ∈ I (4)

Ii ≥ Isi, ∀i ∈ I (5)

∑i∈I Ii ≥µImax (6)

∑i∈I Ii ≤ Imax (7)

∑m∈M βmkm ≥ θ (8)

km ∈ {0, 1}, ∀m ∈ M (9)

Ii are positive integers, ∀i ∈ I (10)

where R(x, y, X, Z, S, ξ) denotes the expected profit associated with disruption scenarios
and stochastic demand, which can be determined by the second-stage model. Constraints
(4)–(7) constrain the inventory capacity of each raw material. Constraint (8) ensures the
manufacturer’s preference for the selected locations for the temporary distribution centers.
Constraints (9) and (10) define the range of decision variables.

The objective function of the second stage is to maximize the expected profit associated
with the disruption scenario and stochastic demand, including the manufacturer’s product
revenue, the manufacturer’s procurement cost from the original supplier, the product
change cost, the production cost, the transportation cost from the manufacturer to the
distribution centers and from the distribution centers to the customers, and the cost of lost
sales. The second-stage model is established as follows:

R(x, y, X, Z, S, ξ) =

max ∑s∈S Ps{∑p∈P Rp

(
∑l∈L Zs

pl + ∑m∈M Zs
pm

)
− [∑i∈I us

i XiCi + ∑i∈I ∑j∈J(xs
ijQij

+

Xs
ijCij + Xs

ijQc
ij
) + ∑p∈P Pcp

(
∑l∈L Zs

pl + ∑m∈M Zs
pm

)
+ ∑m∈M K′mys

m + ∑p∈P(∑l∈L ElZs
pl+

∑m∈M EmZs
pm) + ∑n∈N ∑p∈P

(
∑l∈L ElnZs

pln + ∑m∈M EmnZs
pmn

)
+ ∑n∈N ∑p∈P Fnp(

∼
Dnp−

∑l∈L Zs
pln −∑m∈M Zs

pmn)]}

(11)

s.t.

Xs
ij ≤ (1− us

i )xs
ij Aij, ∀i ∈ I, j ∈ J, s ∈ S (12)

∑j∈J xs
ij = 1− us

i , ∀i ∈ I, s ∈ S (13)

us
i Xi + ∑j∈J Xs

ij + (1− us
i )Ii ≥ ∑p∈P wip

(
∑l∈L Zs

pl + ∑m∈M Zs
pm

)
, ∀i ∈ I, s ∈ S (14)
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us
i Xi + ∑j∈J Xs

ij + (1− us
i )Ii ≤∑n∈N ∑p∈P wip

∼
Dnp, ∀i ∈ I, s ∈ S (15)

ys
m ≤ km, ∀m ∈ M, s ∈ S (16)

∑m∈M ys
m ≥ 1− vs

l , ∀s ∈ S, l ∈ L (17)

∑m∈M ys
m ≤∑l∈L(1− vs

l ), ∀s ∈ S (18)

∑p∈P Zs
pl ≤ vs

l Gl + (1− ∼αl)(1− vs
l )Gl , ∀l ∈ L, s ∈ S (19)

∑p∈P Zs
pm ≤ ys

mHm, ∀m ∈ M, s ∈ S (20)

∑n∈N Zs
pln = Zs

pl , ∀p ∈ P, l ∈ L, s ∈ S (21)

∑n∈N Zs
pmn = Zs

pm, ∀p ∈ P, m ∈ M, s ∈ S (22)

∑l∈L Zs
pln + ∑m∈M Zs

pmn ≤
∼
Dnp, ∀p ∈ P, n ∈ N, s ∈ S (23)

xs
ij, ys

m ∈ {0, 1}, ∀i ∈ I, j ∈ J, m ∈ M, s ∈ S (24)

Xs
ij, Zs

pl , Zs
pm, Zs

pln, Zs
pmn are positive integers, ∀i ∈ I, j ∈ J, p ∈ P, l ∈ L, m

∈ M, n ∈ N, s ∈ S
(25)

where (12) indicates that the supply of the alternative suppliers must be equal to or less
than their maximum supply capacity. Constraint (13) indicates that, at most, one of the
alternative suppliers of the disrupted supplier has been selected. Constraints (14) and (15)
ensure that the quantity of product produced by the manufacturer exceeds the amount
shipped to the distribution center, but does not exceed the demand. Constraints (16)–(18)
constrain which of the constructed temporary distribution centers are used. Constraints (19)
and (20) indicate that the quantity of product transported from the manufacturer to the
original distribution center and to the new distribution center does not exceed the handling
capacity of the distribution center. Constraints (21) and (22) ensure that the quantity of each
product shipped from the distribution center to the customer equals the quantity shipped
by the manufacturer to the distribution center. Constraint (23) ensures that the supply of
products from all the distribution centers to the customer cannot exceed the demand of
this customer. Constraint (24) constrains the binary nature of the decision variables xs

ij, ys
m.

Finally, (25) defines the other decision variables as positive integers.

5. Solution Approach
5.1. SAA and SR Method

The model developed in this paper contains fuzzy and random numbers. For the fuzzy
number n, the fuzzy preference weight coefficients are transformed into a deterministic
value by using the graded mean integration method to defuzzify the triangular fuzzy
number in Section 4.2 through Equation (1). Since the proposed model contains uncertain
demands, this paper considers Latin hypercube sampling (LHS) to obtain samples. Then,
the SAA method is used to handle the uncertain demand from discrete samples rather
than continuous distribution functions to approximate the expected cost [49]. Assume that
γ1, γ2, . . . , γK are K uncertain demand scenarios and k is the set of demand scenarios of
size K, since disruptions are difficult to describe using continuous probability distribution
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functions and the probability of each disruption scenario is different. Therefore, for discrete
disrupted scenarios, the scenario reduction (SR) method can be adopted to reduce the
number of disruption scenarios [50]. The main idea of the SR method is to select a subset
from the full set of scenarios, reduce the number of scenarios, and minimize the difference
between the optimal objective function value of the full scenario problem and the optimal
objective function value of the reduced scenario problem. Using the SAA and SR method,
the two-stage stochastic planning model can be rewritten as a deterministic MILP model
as follows:

max 1
K ∑k∈K{∑s∈Ŝ p̂s[∑p∈P Rp(∑l∈L Zs

plk + ∑m∈M Zs
pmk)−∑i∈I us

i XiCi−
∑i∈I ∑j∈J(xs

ijkQ
ij
+ Xs

ijkCij + Xs
ijkQc

ij
)−∑p∈P Pcp(∑l∈L Zs

plk + ∑m∈M Zs
pmk)−

∑m∈M K′mys
mk −∑p∈P(∑l∈L ElZs

plk + ∑m∈M EmZs
pmk)−∑n∈N ∑p∈P(∑l∈L ElnZs

plnk+

∑m∈M EmnZs
pmnk)−∑n∈N ∑p∈P Fnp(Dnpk −∑l∈L Zs

plnk −∑m∈M Zs
pmnk)]} −∑i∈I CIi Ii−

∑m∈M Kmkm

(26)

s.t.

Xs
ijk ≤ (1− us

i )xs
ijk Aij, ∀i ∈ I, j ∈ J, s ∈ S, k ∈ K (27)

∑j∈J xs
ijk = 1− us

i , ∀i ∈ I, s ∈ S, k ∈ K (28)

Ii ≤ γXi, ∀i ∈ I (29)

Ii ≥ Isi, ∀i ∈ I (30)

∑i∈I Ii ≥µImax (31)

∑i∈I Ii ≤ Imax (32)

us
i Xi + ∑j∈J Xs

ijk + (1− us
i )Ii ≥∑p∈P wip

(
∑l∈L Zs

plk + ∑m∈M Zs
pmk

)
, ∀i ∈ I, s ∈ S, k ∈ K (33)

us
i Xi + ∑j∈J Xs

ijk + (1− us
i )Ii ≤∑n∈N ∑p∈P wipDnpk, ∀i ∈ I, s ∈ S, k ∈ K (34)

∑m∈M βmkm ≥ θ (35)

ys
mk ≤ km, ∀m ∈ M, s ∈ S, k ∈ K (36)

∑m∈M ys
mk ≥ 1− vs

l , ∀s ∈ S, l ∈ L, k ∈ K (37)

∑m∈M ys
mk ≤∑l∈L(1− vs

l ), ∀s ∈ S, k ∈ K (38)

∑p∈P Zs
plk ≤ vs

l Gl +
(

1− ∼αl

)
(1− vs

l )Gl , ∀l ∈ L, s ∈ S, k ∈ K (39)

∑p∈P Zs
pmk ≤ ys

mHm, ∀m ∈ M, s ∈ S, k ∈ K (40)

∑n∈N Zs
plnk = Zs

plk, ∀p ∈ P, l ∈ L, s ∈ S, k ∈ K (41)

∑n∈N Zs
pmnk = Zs

pmk, ∀p ∈ P, m ∈ M, s ∈ S, k ∈ K (42)
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∑l∈L Zs
plnk + ∑m∈M Zs

pmnk ≤ Dnpk, ∀p ∈ P, n ∈ N, s ∈ S, k ∈ K (43)

km, xs
ijk, ys

mk ∈ {0, 1}, ∀i ∈ I, j ∈ J, m ∈ M, s ∈ S, k ∈ K (44)

Ii , Xs
ijk, Zs

plk, Zs
pmk, Zs

plnk, Zs
pmnk are positive integers, ∀i ∈ I, j ∈ J, p ∈ P, l ∈

L, m ∈ M, n ∈ N, s ∈ S, k ∈ K
(45)

where Ŝ and p̂s denote the set of new disruption scenarios and the corresponding probability
of disruption occurrence after descending the disruption scenario.

5.2. Improved Genetic Algorithm

The proposed problem of alternative supplier selection and temporary distribution
center location is very complex, which is NP-hard by nature. Various optimization tools
have been widely used to solve similar small- and medium-sized problems, although
there are limitations in terms of long solution times and the size of the solutions. This
requires the development of an efficient and effective optimization algorithm to find the
optimal or approximate optimal solution [51]. Genetic algorithms are stochastic global
search optimization methods whose computational mechanisms are derived from natural
selection and natural adaptation processes. Therefore, considering that the model processed
using the SAA and SR methods is MILP with constraints, an improved genetic algorithm is
developed in this paper as a solution to determine the optimal value. The algorithm adopts
a number of effective strategies to solve the problem by targeting the repair heuristics for
the specific problem of the proposed model to improve the solving power of the algorithm.

The components of a chromosome are encoded in segments. The first part determines
the selection options for alternative suppliers after product design changes for each dis-
ruption scenario using integer coding. The second part indicates the quantity of each
raw material in stock using integer coding. The third part determines the location of the
temporary distribution center and is binary coded.

Since it is not easy to randomly generate raw material inventory quantities that satisfy
the manufacturer’s inventory capacity constraints and demand constraints as feasible
chromosomes, a specific repair heuristic is developed to ensure the feasibility of the solution
represented by the chromosome. The repair heuristic is presented as follows:
Step 1: Calculate the sum of the inventory of each raw material. If it exceeds the man-
ufacturer’s maximum inventory capacity, proceed to step 2, otherwise proceed to step 3.
Step 2: Count the number bi of disruptions for each supplier in all the disruption situations
S and calculate the maximum inventory of each raw material as Bi = Imax × (bi/∑i∈I bi). If
the inventory of the ith raw material exceeds Bi, it will be changed to Bi, otherwise it will
remain unchanged. Step 3: If the total inventory of raw materials is less than µImax, first
calculate bi/∑i∈I bi to sort from largest to smallest, and then increase the inventory of each
raw material in order until the requirement is satisfied, otherwise it will remain unchanged.

After generating the alternative supplier solution xs
ij after the product change and the

original raw material inventory Ii by chromosome, a heuristic strategy is designed to obtain
the procurement quantity of each alternative raw material according to the customer’s
demand for each product under a disruption scenario. The heuristic strategy is presented
as follows:

Step 1: Determine the current disruption scenario s, if ui = 0 and xij = 1, calculate
Xij = ∑n∈N ∑p∈P wipDnpk − Ii, otherwise Xij = 0.

Step 2: In order to avoid the calculated Xij violating the supply capacity limit Aij of
the selected alternative supplier, if Xij > Aij, Xij = Aij, otherwise Xij remains unchanged.

In the evaluation process, the objective function of maximizing the manufacturer’s
profit is used as the fitness function. The part of the function related to the decision variables
contained in the generated chromosome can be calculated directly. The remaining part of
the function is related to the quantity of raw materials purchased by the manufacturer, and
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the allocation of orders between the manufacturer, distribution centers, and retailers can be
formulated as an integer programming problem determined through optimization using
Gurobi. The procedures of the improved genetic algorithm are presented in Figure 4.
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6. Numerical Experiments

This section verifies the feasibility of the proposed model and the validity of the
proposed genetic algorithm through numerous examples. The parameters are determined
based on the assumptions made for the model, and values are assigned to each parameter
through a randomly generated data set. In addition, we perform a sensitivity analysis on
the different parameters to characterize the effect of their changes on the results.

6.1. Computational Results

It is assumed that eight suppliers provide raw materials for the manufacturer, and the
manufacturer produces three products, each of which requires a different combination of
raw materials. The products will first be shipped from the manufacturer to the distribution
center and then distributed to the customers according to their orders. There are five
distribution centers that deliver orders to ten customers, and the distribution areas can
overlap. After the supply disruption, five alternative suppliers are available for each
raw material that needs to be changed, and their maximum supply capacity is required
to meet the raw material quantity required for the production of the product. There
are six temporary distribution center locations to be selected, taking into account the
manufacturer’s selection preferences and the new distribution center capacity constraints.
The parameters of each part of the supply chain are determined based on the assumptions
made for the model and are generated randomly within the range of values. Table 2
presents the range of values for the parameter information of the alternative suppliers.
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Table 2. Supplier parameters.

Supplier Alternative Supplier Bij Qij Cij

S1 AS1–AS5 (19,500, 21,500) (10,000, 13,500) (3, 5)
S2 AS6–AS10 (20,000, 21,500) (12,500, 15,000) (2, 4)
S3 AS11–AS15 (9100, 9350) (10,000, 13,000) (4, 5)
S4 AS16–AS20 (19,500, 21,500) (12,500, 14,500) (3, 5)
S5 AS21–AS25 (19,500, 21,000) (10,500, 12,000) (2, 3)
S6 AS26–AS30 (20,500, 22,000) (11,500, 13,500) (3, 4)
S7 AS31–AS35 (10,500, 12,000) (10,000, 11,500) (4, 5)
S8 AS36–AS40 (9100, 9350) (11,000, 13,500) (2, 4)

The range of values for the parameters related to manufacturer selection preference,
capacity, and fixed cost of the temporary distribution centers are shown in Table 3. Table 4
presents the parameter information of the customers’ demand.

Table 3. Temporary distribution center parameters.

Distribution Center Km Hm Selection Preference

TD1 15,000 5900 (0.25, 0.30, 0.35)
TD2 16,000 6250 (0.2, 0.32, 0.56)
TD3 14,000 6000 (0.06, 0.1, 0.2)
TD4 12,500 6400 (0.04, 0.2, 0.3)
TD5 15,500 6150 (0.25, 0.45, 0.65)
TD6 17,000 6000 (0.16, 0.24, 0.28)

Table 4. Customer parameters.

Product P1 P2 P3

Customer µn1 σ2
n1 µn2 σ2

n2 µn3 σ2
n3

C1–C10 (800, 1000) (60, 100) (900, 1100) (80, 120) (900,1200) (70, 150)

The numerical experiments assume different supplier disruptions as well as distri-
bution center failures to demonstrate the validity of the proposed model of alternative
supplier selection considering product design changes, as well as temporary distribution
center location considering manufacturer selection preferences. In each disruption sce-
nario, the combination of disrupted suppliers and failed distribution centers is different,
and the disrupted suppliers and failed distribution centers are independent of each other.
Considering the huge number of disruption scenarios generated by different supplier and
distribution center combinations, we use the SR method to reduce the number of disruption
scenarios and select typical samples of disruption scenarios to test the results of the problem
to validate the proposed model and the improved genetic algorithm.

The disruption scenarios after the scenario reduction are shown in Table 5. Based on
the results in Table 5, we can determine that the 8192 disruption scenarios are reduced to 6
scenarios, which demonstrates that the SR method is effective.

Table 5. Disruption scenarios after the SR.

Supplier Distribution
Center

Disruption
Scenarios

Disruption Scenario after
SR Method

8 5 8192

(1,1,1,1,1,1,1,1|1,1,1,1,1),
(0,0,0,0,0,0,0,0|0,0,0,0,0),
(0,0,1,0,1,0,1,1|0,0,1,0,1),
(0,0,1,0,0,0,0,1|0,0,1,0,0),
(1,1,1,0,1,1,1,1|0,0,1,0,1),
(1,1,1,0,1,1,1,1|1,1,1,0,1)
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Table 6 shows the manufacturer’s total profit when the supply chain is functioning
normally, the expected profit of the manufacturer in the presence of disruption without
considering the resilient strategy, and the results of the manufacturer’s solution using
holding inventory before disruption, establishing temporary distribution centers, and using
a product design change strategy after disruption. The optimization results show that
by formulating a reasonable inventory plan, determining the location of the temporary
distribution centers before disruptions, and selecting a reasonable product change plan for
the raw materials when disruptions occur, the supply chain resilience can be improved,
and the losses caused by disruptions to the supply chain can be reduced.

Table 6. The results under different supply chain states.

State of Supply Chain Total Profit Temporary Distribution Center

Normal operation 548,798 —
Without any measure 186,624 —

Proposed resilient strategy 315,161 TD1, TD4, TD5

Table 7 shows the manufacturer’s maximum profit under different disruption scenarios
and disruption recovery plans after adopting a proactive defense strategy, developing an
inventory plan, and identifying temporary distribution center locations.

Table 7. Optimization results under different disruption scenarios.

Case Disruption Scenario Total Profit Alternative Supplier Options Distribution Center Options

1 (1,1,1,1,1,1,1,1|1,1,1,1,1) 388,122 — —

2 (0,0,0,0,0,0,0,0|0,0,0,0,0) −71,626 AS5, AS9, AS15, AS19, AS24,
AS28, AS33, AS37 TD1, TD4, TD5

3 (0,0,1,0,1,0,1,1|0,0,1,0,1) 224,590 AS5, AS9, AS19, AS28 TD1, TD4

4 (0,0,1,0,0,0,0,1|0,0,1,0,0) 163,221 AS5, AS9, AS19, AS24, AS28,
AS33, TD1, TD4, TD5

5 (1,1,1,0,1,1,1,1|0,0,1,0,1) 409,376 AS19 TD1, TD4
6 (1,1,1,0,1,1,1,1|1,1,1,0,1) 418,586 AS19 TD4

Figure 5 gives the results of the supply chain reconfiguration optimization in the
disruption scenario of Case 3. The original suppliers S1, S2, S4, and S6 were disrupted, and
the production of products P1, P2, P3 are affected. By incorporating design changes for the
disrupted raw materials, AS5, AS9, AS19, and AS28 are selected as new suppliers and a new
supply network is established. Considering the manufacturer’s selection preference as well
as the handling capacity and construction cost of the temporary distribution center, TD1,
TD4, and TD5 are identified as temporary distribution centers. Due to the pandemic, the
original distribution centers D1, D2 and D4 failed at the same time. Considering the failure
situation and customer demands, the temporary distribution centers TD1 and TD4 are
opened. Taking the maximum total profit as the objective, the production, transportation,
and distribution plans of the reconstructed supply chain network are determined.

In order to validate the performance of the proposed improved genetic algorithm, we
conducted extensive numerical experiments on test problems with randomly generated
data for different sizes of suppliers, product types, distribution centers, and customers. For
small-scale problems, the proposed genetic algorithm has similar performance in terms
of the approximate optimal solutions obtained compared to Gurobi, and high-quality
solutions can be found for small-scale problems. When the problem size is larger, although
the quality of the solution obtained by the proposed genetic algorithm decreases, it is still
within the acceptable range of error. In addition, for the proposed stochastic programming
model, Gurobi is unable to find a solution to the problem after running for a long time, as
the disruption scenario and the sampling samples have increased. In Table 8, the optimality
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gap between the optimal solution obtained using the proposed algorithm and the optimal
solution obtained using Gurobi is illustrated.
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Table 8. Results of Gurobi and the proposed genetic algorithm.

Instance Supplier Distribution
Center Customer Disruption

Scenario Sample TCGA−TCGurobi
TCGurobi

1 8 5 10 6 10 0.023
2 30 0.021
3 50 0.025
4 10 25 8 10 0.032
5 30 0.036
6 50 0.038
7 12 5 10 8 10 0.045
8 30 0.05
9 50 0.048

10 10 25 9 10 0.054
11 30 0.049
12 50 *
13 16 5 10 9 10 0.076
14 30 0.072
15 50 *
16 10 25 10 10 0.082
17 30 *
18 50 *

* Gurobi cannot locate the solution to the problem after running for a long time.
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6.2. Sensitivity Analysis

The manufacturer’s total profit varies with different parameters. In this section, a
sensitivity analysis is performed to illustrate the effects of various parameters on the ex-
pected profit of the proposed resilient supply chain. Imax and Hm are important parameters
in the formulation of a proactive defense strategy, and Qij is an important parameter for
determining the raw material change plan and selecting alternative suppliers after disrup-
tion. We examine the sensitivity of the objective function value with respect to changing
these pricing parameters. To characterize the impact, a sensitivity analysis is performed for
different parameters. Only one parameter is changed for each analysis, and the remainder
are kept the same as in Section 6.1. We change the parameters to−50%, −25%, +25%, +50%,
and +75% of the original value to solve for the result.

Figure 6 shows the variation in the manufacturer’s expected total profit with the
maximum raw material inventory capacity. It can be seen that as the maximum inventory
capacity increases, the expected profit also increases. However, when the capacity increases
to a certain value, profits no longer change. As the capacity continues to increase, the profit
decreases due to redundancy.
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Figure 7 shows the variation in the manufacturer’s total profit with the capacity of
the temporary distribution center. When the other parameters are fixed, the expected
profit of the manufacturer increases as the capacity of the temporary distribution center
increases. The manufacturer’s expected profit is more sensitive to the capacity of the
temporary distribution center, and small changes in the parameter values can quickly
change the resultant values. When it increases to a certain value, the profit tends to be
constant. Therefore, it is necessary to plan the capacity of the temporary distribution center
when selecting its location. Figure 8 shows the variation in the manufacturer’s total profit
with the cost of product change. It can be seen that the total profit decreases as the product
change cost increases.
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6.3. Managerial Insights

This paper considers a four-tier supply chain with uncertain demand. When the supply
chain faces supply disruptions and the distribution center failures due to the pandemic,
the manufacturer adopts a combination of proactive and reactive strategies. Mitigation
and recovery decisions to improve supply chain resilience include raw material mitigation
inventories and temporary distribution center locations before disruptions, as well as
emergency sourcing and product changes after disruptions. This work can be used in a
wide range of manufacturing industries to effectively reduce losses in the manufacturing
supply chain in the event of supply disruptions and distribution center failures. This work
is also applicable to changes in product and distribution networks caused by changes in
demand. Our research can provide managers with the following insights:

• The computational results show that a combination of proactive and reactive resilience
strategies can significantly improve expected profits under pandemic disruptions and
ripple effects. The proposed model can help managers consider factors such as market
demand, distribution center capacity, and the supply situation in the decision process
of designing a resilient supply chain to cope with unexpected disruptions similar to
those caused by a pandemic.



Mathematics 2023, 11, 3955 20 of 22

• The first stage of the model can help manufacturers effectively set mitigation inventory
and the location of temporary distribution centers to compensate for possible supply
shortages and existing distribution center failures in the event of pandemic disruptions,
avoiding greater losses. To reduce the cost of redundancy, managers should reasonably
plan inventory capacity and temporary distribution center capacity.

• The second-stage model can help managers make decisions about the product design
change plan and the selection of alternative suppliers, as well as product transportation
and delivery plans, taking into account the cost of product change and the sale loss
caused by it, as well as the compensation cost for failing to deliver to customers on
time and other factors.

• The improved genetic algorithm developed in this paper can help decision-makers to
quickly assess the impact of different measures in response to the risk of a potential
pandemic disruptions under different disruption scenarios in the future.

7. Conclusions

This paper investigates a resilient supply chain disruption recovery problem with
the context of the COVID-19 pandemic, which considers a supply chain network with
supply disruptions and distribution center failure risks, as well as the presence of demand
fluctuations, adopting a make-to-order approach. A mathematical model is developed
based on raw material inventory management and temporary distribution center location
before disruption, and a product design change strategy is developed after the disruption
with the objective of maximizing the manufacturer’s profit. The two-stage stochastic
programming model with demand uncertainty is approximated as an MILP model using
SAA and LHS methods. To overcome the impact of a large number of disruption scenarios
on the solution of the MILP model, SR is used to select representative disruption scenarios
among them. First, a small-scale numerical example is given to illustrate the problem of
selecting alternative suppliers, developing an integrated production plan and locating
temporary distribution centers in the disruption scenario. The numerical experiment shows
that the proposed model is effective in reducing the manufacturer’s losses in the case of
supply chain disruption. In addition, to efficiently solve large-sized problems, an improved
genetic algorithm is proposed. Then, extensive numerical experiments are conducted using
randomly generated test problems of different sizes. The results show that the proposed
genetic algorithm has similar performance to Gurobi in finding the approximate optimal
solution and can obtain a high-quality solution within the acceptable error range.

There are still issues in this paper that deserve further research and discussion. Firstly,
we will consider a more realistic multi-product supply chain network and consider the
impact of third-party distribution centers. Secondly, this work can be extended to multi-
stage stochastic programming and the design of algorithms to obtain high quality solutions.
Thirdly, considering the influence of the relationships between each link of the supply chain
and the optimization results can be another research direction in the future.
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