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Abstract: In this paper, we first modify one of the most famous theorems on the principle of differen-
tial subordination to hold true for normalized analytic functions with a fixed initial Taylor-Maclaurin
coefficient. By using this modified form, we generalize and improve several results, which appeared
recently in the literature on the geometric function theory of complex analysis. We also prove some
simple conditions for starlikeness, convexity, and the strong starlikeness of several one-parameter
families of integral operators, including (for example) a certain µ-convex integral operator and the
familiar Bernardi integral operator.
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1. Introduction and Motivation

As usual, we use the symbolH for denoting the set of analytic functions in the open
unit disk:

U = {z : z ∈ C and |z| < 1}.

We set

H[a, n] = { f : f ∈ H and f (z) = a + anzn + an+1zn+1 + · · · },

where a ∈ C and n ∈ N, and C and N are the sets of complex numbers and positive integers,
respectively.

We also define the subclass An ofH as follows:

An = { f : f ∈ H and f (z) = z + an+1zn+1 + an+2zn+2 + · · · }.

In particular, we set A1 = A. Furthermore, we let the subclass S of A be the class of all
functions in A that are univalent in the open unit disk U.
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A function f ∈ A is said to be in the class f ∈ S∗(α) of normalized starlike functions
of order α (0 5 α < 1) in U if it satisfies the following inequality:

<
(

z f ′(z)
f (z)

)
> α (z ∈ U; 0 5 α < 1).

Specifically, we put S∗(0) =: S∗. Every element in S∗ is called a starlike function.
A function f ∈ A is said to be in the class K(α) of convex functions of order

α (0 5 α < 1) in U if it satisfies the following inequality:

<
(

z f ′′(z)
f ′(z)

+ 1
)
> α (z ∈ U; 0 5 α < 1).

In particular, we put K(0) =: K. Every element in K is called a convex function.
Recently, by using different combinations of the representations of starlike and convex

functions, many authors obtained simple conditions for the starlikeness and convexity of
analytic functions. For example, by considering the quotient of the analytic representations
of convex and starlike functions, Silverman [1] derived some new criteria for the starlike-
ness of analytic functions. Subsequently, Obradović and Tuneski [2] improved the work of
Silverman [1].

Now, for analytic functions in U with a fixed initial coefficient, we define the class
Hβ[a, n] as follows:

Hβ[a, n] = { f : f ∈ H and f (z) = a + βzn + an+1zn+1 + · · · },

where n ∈ N, a ∈ C, and β ∈ C are fixed complex numbers. Moreover, we assume that

An,b = { f : f ∈ H and f (z) = z + bzn+1 + an+2zn+2 + · · · },

where n ∈ N and b ∈ C are fixed complex numbers. In addition, we set Ab := A1,b.
For the functions f and g in H, we say that the function f is subordinate to g in U,

which is written as f ≺ g, if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| 5 |z| < 1 (z ∈ U),

such that
f (z) = g

(
ω(z)

)
(z ∈ U).

Moreover, if g is an univalent function in U, then we have the following equivalence:

f ≺ g (z ∈ U) ⇐⇒ f (0) = 0 and f (U) ⊂ g(U).

By considering the function 1+Az
1+Bz , Janowski [3] generalized the class S∗ of starlike

functions as follows.

Definition 1 (see [3]). If f ∈ A and −1 5 B < A 5 1, then we say that the function f is in the
Janowski starlike function class S∗[A, B] if and only if

z f ′(z)
f (z)

≺ 1 + Az
1 + Bz

(z ∈ U; −1 5 B < A 5 1). (1)

It is easily observed that the Janowski function ϕ(z), given by

ϕ(z) :=
1 + Az
1 + Bz

(−1 < B < A < 1),
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maps the open unit disk U onto the open disk with the center at z = C and the radius
R, where

C :=
1− AB
1− B2 and R :=

A− B
1− B2 .

So, for all f ∈ S∗[A, B], the following two-sided inequality holds true:

1− A
1− B

< <
(

z f ′(z)
f (z)

)
<

1 + A
1 + B

.

Hence, clearly, we have

S∗[A, B] ⊂ S∗
(1− A

1− B
)
.

Moreover, for several special values of the parameters A and B, the Janowski starlike
function class S∗[A, B] yields the following subclasses of A:

S∗[1,−1] =: S∗ and S∗[1− 2α,−1] =: S∗(α) (0 5 α < 1).

We also have a special case of the Janowski starlike function class S∗[A, B] given by

S∗[α, 0] :=
{

f : f ∈ A and
∣∣∣∣( z f ′(z)

f (z)

)
− 1
∣∣∣∣ < α (0 5 α < 1)

}
.

Under these and other conditions, the Janowski starlike function class S∗[A, B] has been
investigated by several authors (see, for example, [4–7]).

It is important to note that the Taylor-Maclaurin coefficients of analytic functions
play an important role in the geometric function theory of complex analysis. For example,
the bound on the second coefficient of a univalent function leads to well-known results
such as the growth, distortion, and covering theorems (see [8]). Recently, the subject of the
second-order differential subordination for analytic functions with a fixed initial coefficient
was considered by Ali et al. [9]. Furthermore, several authors (see, for example, [5,10,11])
discussed the various other properties of these functions. In addition, under some condi-
tions of analytic functions f , it was concluded in [8] that a certain µ-convex integral operator
on f can belong to the subclass S∗[1, 0] of the Janowski starlike function class. Furthermore,
Sharma et al. [12] made use of this same approach regarding analytic functions with a fixed
initial coefficient. Motivated by the developments reported in [2,10,13–16], we propose
first to extend some of the results of Sharma et al. [12]. In relation to analytic functions
with a fixed initial Taylor-Maclaurin coefficient, we then determine some conditions by the
means of which the µ-convex integral operator belongs to the Janowski starlike function
class S∗[A, B]. Various other conditions for the starlikeness of analytic functions with a
fixed initial coefficient are also discussed.

This article is organized as follows. In Section 2, we prove a main lemma that leads
to the important result producing the functions in the class S∗[A, B], which will then
be followed by the starlikeness of the µ-convex integral operator on analytic functions
with a fixed initial Taylor-Maclaurin coefficient. These results would extend some of
the developments which were presented in [12]. Next, by assuming some conditions,
we will show how the µ-convex integral operator leads to the class of strongly starlike
functions. In Section 3, we derive some sufficient conditions for the starlikeness of analytic
functions with a fixed initial Taylor-Maclaurin coefficient. We also deduce some corollaries
in Section 3. In addition, we establish the convexity of the Bernardi integral operator
on the functions with a fixed initial coefficient that are not necessarily convex. Finally,
in our concluding section (Section 4), we present a number of concluding remarks and
observations which are based upon our investigation in this article.

In order to prove our main results, we require a definition and a basic lemma.
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Definition 2 (see [8]). Let Q denote the set of functions q that are analytic and injective on
U \ E(q), where

E(q) :=
{

ζ : ζ ∈ ∂U and lim
z→ζ

q(z) = ∞
}

,

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

Lemma 1 (see [9]). Let q ∈ Q with q(0) = a and p ∈ Hc[a, n] with p(z) 6≡ a. If there exists a
point z0 ∈ U such that

p(z0) ∈ q(∂U) and p
(
{z : |z| < |z0|}

)
⊂ q(U),

then
z0 p′(z0) = mζ0q′(ζ0)

and

<
(

1 +
z0 p′′(z0)

p′(z0)

)
= m<

(
1 +

ζ0q′′(ζ0)

q′(ζ0)

)
,

where
q−1(p(z0)

)
= ζ0 = eiθ0

and

m = n +
|q′(0)| − |c||z0|n
|q′(0)|+ |c||z0|n

.

2. A Set of Main Results

We begin this section by proving a main lemma that will provide an important tool in
deriving the results of this article.

Lemma 2. Let the function q be univalent in U with q(0) = a. Suppose that the functions θ and φ
are analytic in a domain D ⊂ C containing q(U) and that φ(z) 6= 0 (z ∈ U). Additionally, let
0 < β 5 |q′(0)| and

h(z) = θ
(
q(z)

)
+

(
n +
|q′(0)| − β

|q′(0)|+ β

)
zq′(z)φ

(
q(z)

)
.

Assume also that
(i) the function h is convex or
(ii) the function Q(z) = zq′(z)φ

(
q(z)

)
is starlike,

and

(iii) <
(

zh′(z)
Q(z)

)
> 0.

If p ∈ Hβ[a, n], p(U) ⊂ D, and

θ
(

p(z)
)
+ zp′(z)φ

(
p(z)

)
≺ θ

(
q(z)

)
+

(
n +
|q′(0)| − β

|q′(0)|+ β

)
zq′(z)φ

(
q(z)

)
= h(z),

then p ≺ q.

Proof. The proof of Lemma 2 is similar to that of a known result ([8], p. 132, Theorem 3.4h),
so we choose to omit the details involved. Only for Case (ii), it is sufficient that we set

L(z, t) = θ
(
q(z)

)
+

(
n +
|q′(0)| − β

|q′(0)|+ β
+ t
)

zq′(z)φ
(
q(z)

)
instead of ([8], p. 133, Equation (3.4–21)) and then proceed with the proof.
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Definition 3. For µ > 0, the µ-convex integral operator Aµ is defined for f ∈ A by

F(z) = Aµ[ f ](z) :=
(

1
µ

∫ z

0
t−1 [ f (t)]

1
µ dt

)µ

(µ > 0). (2)

In our present investigation, we find it to be convenient to set

J(µ, F; z) := (1− µ)
zF′(z)
F(z)

+ µ

(
zF′′(z)
F′(z)

+ 1
)

,

It can be readily observed that (2) implies that

J(µ, F; z) =
z f ′(z)

f (z)
.

We now determine the conditions for functions in the classAn,b and, by means of these
conditions, the µ-convex integral operator given by (2) will be placed in a special subclass
of starlike functions. For this objective in view, we state and prove Lemma 3 below.

Lemma 3. Let n ∈ N, µ > 0, and −1 5 B < A 5 1. Suppose also that P ∈ H−β(1+µn)[1, n]
with B− A 5 β < 0 satisfies the following subordination condition:

P(z) ≺ 1 + Az
1 + Bz

+

(
n +

A− B + β

A− B− β

)(
µ(A− B)z

(1 + Az)(1 + Bz)

)
= h(z). (3)

If p ∈ Hβ[1, n] and
µzp′(z) + P(z)p(z) = 1, (4)

then
p(z) ≺ q(z) =

1 + Bz
1 + Az

.

Proof. Let us set
p1(z) =

1
p(z)

and q1(z) =
1

q(z)
=

1 + Az
1 + Bz

.

We then have p1 ∈ H−β[1, n] and the function q1 is analytic and univalent in U. Moreover,
the Equations (3) and (4) yield

p1(z) + µ
zp′1(z)
p1(z)

≺ h(z),

where

h(z) = θ[q1(z)] +
(

n +
|q′1(0)|+ β

|q′1(0)| − β

)
zq′1(z)φ

(
q1(z)

)
,

θ(z) = z and φ(z) =
µ

z
.

We now show that the conditions mentioned in Lemma 2 are satisfied. By setting

Q(z) = zq′1(z)φ
(
q1(z)

)
,

we have

Q(z) =
µ(A− B)z

(1 + Az)(1 + Bz)
.
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Consequently, after some computation, we obtain

<
(

zQ′(z)
Q(z)

)
= 1−<

(
Az

1 + Az

)
−<

(
Bz

1 + Bz

)
>

1− |A||B|
(1 + |A|)(1 + |B|) = 0,

and so we obtain

<
(

zh′(z)
Q(z)

)
=

1
µ
<
(

1 + Az
1 + Bz

)
+

(
n +

A− B + β

A− B− β

)
<
(

zQ′(z)
Q(z)

)
> 0.

Then, by applying Lemma 2, we deduce that p1(z) ≺ q1(z), which leads us to the following
subordination: p(z) ≺ q(z) = 1+Bz

1+Az . This completes the proof of Lemma 3.

Remark 1. If we set A = 1 and B = 0, then Lemma 3 reduces to a result ([12], Lemma 2.1).
Additionally, by putting A = 1, B = 0, and β = −1 into Lemma 3, it yields another known result
([8], p. 253, Lemma 5.1a). Furthermore, since

1 + z +
nµz

1 + z
≺ 1 + z +

(
n +

1 + β

1− β

)
µz

1 + z
(−1 5 β < 0),

it is obvious that Lemma 3 would extend the aforementioned result ([8], p. 253, Lemma 5.1a) to
hold true for functions in the classHβ[a, n].

Theorem 1. Let n ∈ N, µ > 0, and −1 5 B < A 5 1. Additionally, let f ∈ An,b and
F = Aµ[ f ] with

0 <
bn

nµ + 1
5 A− B,

where Aµ is given by (2). If

z f ′(z)
f (z)

≺ 1 + Az
1 + Bz

+

(
n +

(nµ + 1)(A− B)− bn
(nµ + 1)(A− B) + bn

)(
µ(A− B)z

(1 + Az)(1 + Bz)

)
,

then
zF′(z)
F(z)

≺ 1 + Az
1 + Bz

and
∣∣∣∣ zF′(z)

F(z)
− 1− AB

1− B2

∣∣∣∣ < A− B
1− B2 .

Proof. Let us define the function p(z) as follows:

p(z) =
1

µ[ f (z)]
1
µ

∫ z

0
t−1 [ f (t)]

1
µ dt (µ > 0).

Then, according to the known result ([8], p. 11, Lemma 1.2c), p is well-defined, and

p ∈ Hβ[1, n]
(

β = − bn
nµ + 1

)
.

By putting

P(z) =
z f ′(z)

f (z)
,

a simple computation shows that p satisfies (4). Then, by applying Lemma 3, we deduce that

p(z) ≺ 1 + Bz
1 + Az

.
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We now define the function F(z) as follows:

F(z) = f (z)[p(z)]µ (µ > 0). (5)

Since p(z) 6= 0, F ∈ An, b
nµ+1

is well-defined. Furthermore, it is easily seen that F coincides

with the function introduced in (2). Upon combining (4) and (5), we obtain

zF′(z)
F(z)

=
1

p(z)
≺ 1 + Az

1 + Bz
.

Hence, clearly, we have ∣∣∣∣ zF′(z)
F(z)

− 1− AB
1− B2

∣∣∣∣ < A− B
1− B2 ,

as it is asserted by Theorem 1.

Remark 2. If we put A = 1 and B = 0, then Theorem 1 reduces to a known result ([12],
Theorem 2.3), Additionally, by setting A = 1, B = 0, and b = α + 1

n , Theorem 1 would yield the
known result ([8], p. 255, Theorem 5.1b). Since, for

0 <
nb

nb + 1
5 1,

we have

1 + z +
nµz

1 + z
≺ 1 + z +

(
n +

µn + 1− bn
µn + 1 + bn

)
µz

1 + z
,

it is fairly obvious that Theorem 1 extends the above-mentioned result ([8], p. 255, Theorem 5.1b)
to hold true for functions f ∈ An,b.

Theorem 2. Let n ∈ N, µ > 0, and −1 5 B < A 5 1. If F ∈ An,c with

0 < c 5
A− B

n

and

J(µ, F; z) ≺ 1 + Az
1 + Bz

+

(
n +

A− B− nc
A− B + nc

)(
µ(A− B)z

(1 + Az)(1 + Bz)

)
,

then
zF′(z)
F(z)

≺ 1 + Az
1 + Bz

and
∣∣∣∣ zF′(z)

F(z)
− 1− AB

1− B2

∣∣∣∣ < A− B
1− B2 .

Proof. Let f ∈ An,b. Then, because of the following equivalence:

J(µ, F; z) =
z f ′(z)

f (z)

with (2), we can write

z f ′(z)
f (z)

= J(µ, F; z) := (1− µ)
zF′(z)
F(z)

+ µ

(
zF′′(z)
F′(z)

+ 1
)

.

It can be readily seen that b = c(1 + µn). Thus, by applying Theorem 1, we obtain the
result asserted by Theorem 2.
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Remark 3. If we let A = 1 and B = 0, then Theorem 2 reduces to a known result ([12], Theo-
rem 2.5). Additionally, by putting A = 1, B = 0, and c = 1

n , Theorem 2 reduces to another known
result ([8], p. 255, Theorem 5.1c). Since, for

0 < c 5
1
n

,

we have

1 + z +
nµz

1 + z
≺ 1 + z +

(
n +

1− cn
1 + cn

)
µz

1 + z
,

it is obvious that Theorem 2 extends the above-mentioned known result ([8], p. 255, Theorem 5.1c)
to hold true for functions f ∈ An,c.

Upon setting

k(z) = z(1 + Bz)
A
B−1 (−1 5 B < A 5 1 B 6= 0)

and
k(z) = zeAz (0 = B < A 5 1),

if we consider F ∈ An,c with

0 < c 5
A− B

n
,

then Theorem 2 can be shown to have the following symmetric form:

J(µ, F; z) ≺ J
(

µ

[
n +

A− B− nc
A− B + nc

]
, k; z

)
=⇒ J(0, F; z) ≺ J(0, k; z).

Next, we consider the class S∗(λ) of strongly starlike functions of order λ in U, which
was introduced by Brannan and Kirwan [11] as follows:

S∗(λ) =

{
f : f ∈ S and

∣∣∣∣arg
(

z f ′(z)
f (z)

)∣∣∣∣ < π

2
λ (z ∈ U; 0 < λ 5 1)

}
.

We define the following subclass of the strongly starlike function class S∗(λ):

S∗n,b(λ) = { f : f ∈ S∗(λ) and f ∈ An,b}.

Lemma 4. Let n ∈ N, µ > 0, 0 < λ 5 1, and −1 5 B < A 5 1. Additionally, let
P ∈ H−β(1+µn)[1, n] with (B− A)λ 5 β < 0 satisfy the following subordination condition:

P(z) ≺
(

1 + Az
1 + Bz

)λ

+

(
n +

λ(A− B) + β

λ(A− B)− β

)(
λµ(A− B)z

(1 + Az)(1 + Bz)

)
= h(z).

If p ∈ Hβ[1, n] and
µzp′(z) + P(z)p(z) = 1,

then

p(z) ≺ q(z) =
(

1 + Bz
1 + Az

)λ

.

Proof. The proof of Lemma 4 is similar to that of Lemma 3. We, therefore, omit the
analogous details of the proof.

Remark 4. If we set B = 0 and A = µ = λ = 1, then Lemma 4 reduces to a known result ([12],
Lemma 2.11). Additionally, by putting B = 0, A = µ = λ = 1, and β = −2, Lemma 4 provides
an extension of the known result ([8], p. 46, Theorem 2.5b) with c = 1.
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By analogously applying the arguments, which we used in our proof of Theorem 2,
we can demonstrate each of the following theorems.

Theorem 3. Let n ∈ N, µ > 0, 0 < λ 5 1, and −1 5 B < A 5 1. Additionally, let f ∈ An,b
and F = Aµ[ f ] with

0 <
bn

nµ + 1
5 (A− B)λ,

where Aµ is given by (2). If

z f ′(z)
f (z)

≺
(

1 + Az
1 + Bz

)λ

+

(
n +

λ(nµ + 1)(A− B)− bn
λ(nµ + 1)(A− B) + bn

)(
µλ(A− B)z

(1 + Az)(1 + Bz)

)
= h(z),

then
F ∈ S∗

n, b
nµ+1

(λ).

In its special case when B = 0 and A = λ = 1, Theorem 3 would yield the follow-
ing corollary.

Corollary 1. Let µ > 0 and suppose that f ∈ A1,b and F = Aµ[ f ] with

0 <
b

µ + 1
5 2,

where µ is given by (2). If

z f ′(z)
f (z)

≺
(

1 + z
1− z

)
+

8µ

2 + b

(
z

1− z2

)
,

then the function F is starlike in U.

Theorem 4. Let n ∈ N, µ > 0, 0 < λ 5 1, and −1 5 B < A 5 1. If F ∈ An,c with

0 < c 5
(A− B)λ

n

and

J(µ, F; z) ≺
(

1 + Az
1 + Bz

)λ

+

(
n +

λ(A− B)− nc
λ(A− B) + nc

)(
µλ(A− B)z

(1 + Az)(1 + Bz)

)
= h(z),

then F ∈ S∗n,c(λ).

3. Starlikeness of Analytic Functions with Fixed Initial Taylor-Maclaurin Coefficient

Theorem 5 below provides our first set of criteria for the starlikeness of analytic
functions with a fixed initial Taylor-Maclaurin coefficient.

Theorem 5. Let n ∈ N, 0 < δ 5 1,

N = n +
δ1 − 1
δ1 + 1

and µn =
n + 2

Cn
, (6)

where

Cn =
2n

n + 1−δ
1+δ

[
n + 1−δ

1+δ

n
+

(
n + 2

n

)
ln 2−

∫ 1

0

t
1
N

1 + t
dt

]
(7)
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and

δ1 =
[n(1− δ) + 1] +

√
[n(1− δ) + 1]2 + 4δ(n + 1)(n + 2)

2δ(n + 2)
.

If f ∈ An,b with

b =
2µδ

(n + 1)
(

n + 1−δ
1+δ

) (0 < nb 5 2),

where 0 5 µ 5 µn and
<
(
z f ′′(z)

)
> −µn, (8)

then f ∈ S∗.

Proof. Let us define the functions p(z) and q(z) as follows:

p(z) = f ′(z) and q(z) = 1− 2µ

n + 1−δ
1+δ

log (1 + z).

It is then readily seen that p ∈ H(n+1)b[1, n] and that q is a convex function. From (6) and (7),
we find that the constants µn and Cn are positive. Let

0 5 µ 5 µn and <
(
z f ′′(z)

)
> −µ.

We claim that p(z) ≺ q(z). Otherwise, if p 6≺ q, then (by Lemma 1), there exist points
z0 ∈ U and ζ0 ∈ ∂U \ E(q) such that

p(z0) = q(ζ0) and z0 p′(z0) = mζ0q′(ζ0),

where
m = n +

1− δ

1 + δ
.

Thus, by taking ζ0 = eit 6= −1, we deduce that

<
(
z0 p′(z0)

)
= m<

(
ζ0q′(ζ0)

)
= −m

(
2µ

n + 1−δ
1+δ

)
<
(

eit

1 + eit

)

= −m

(
µ

n + 1−δ
1+δ

)
5 −µ,

which is a contradiction. Therefore, we conclude that p ≺ q.
Now, since q is convex and symmetric to the real axis, we have

<
(

f ′(z)
)
> β = q(1) = 1− 2µ

n + 1−δ
1+δ

ln 2. (9)

However, β = 0 if

µ 5
n + 1−δ

1+δ

ln 4
.

Consequently, we have

<
(
z f ′′(z)

)
> −

n + 1−δ
1+δ

ln 4
.

It follows that <
(

f ′(z)
)
> 0.

On the other hand, by means of a simple computation, we have

µn 5
n + 1−δ

1+δ

ln 4
,
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where µn is given by (6) and (7). Hence, according to (8), we conclude that f is univalent.
We will prove that f is starlike in U. For this purpose, if we let

P(z) =
f (z)

z
(z ∈ U),

then we have P ∈ Hb[1, n] and

P(z) + zP′(z) = f ′(z) ≺ q(z) = 1− 2µ

n + 1−δ
1+δ

log (1 + z).

We now consider the following differential equation (with the initial condition):

q1(z) + Nzq′1(z) = q(z)
(
q1(0) = 1

)
, (10)

where N is defined in the statement of Theorem 5. By solving the initial-value problem (10),
we find the function q1(z) given by

q1(z) =
1

Nz
1
N

∫ z

0
q(t) t

1
N−1 dt

as its solution. Since q is convex, we can apply a known result ([8], p. 67, Theorem 2.6h) to
conclude that the function q1 is convex and, therefore, univalent in U.

In order to apply Lemma 2, we need to investigate the conditions mentioned in it.
For this purpose, it is sufficient to show that

<
(

zq′(z)
Q(z)

)
> 0,

where
Q(z) = zq′1(z) and q(z) = 1− 2µ

n + 1−δ
1+δ

log (1 + z).

However, in view of (10), we obtain

<
(

zq′(z)
Q(z)

)
= 1 + N

(
1 +

zq′′1 (z)
q′1(z)

)
> 0.

Thus, by applying Lemma 2, we deduce that

P(z) ≺ q1(z) =
1

Nz
1
N

∫ z

0
q(t) t

1
N−1 dt

= 1− 2µ

N
(

n + 1−δ
1+δ

)
z

1
N

∫ z

0
t

1
N−1 log(1 + t) dt.

Since q1 is convex and symmetric to the real axis, we have

<
(

P(z)
)
> γ = γ(µ) = q1(1) = 1− 2µ

n + 1−δ
1+δ

(
ln 2−

∫ 1

0

t
1
N

1 + t
dt

)
.

Thus, if we put

p(z) =
z f ′(z)

f (z)
,

then p ∈ Hnb[1, n], and f ′(z) = P(z)p(z). Furthermore, it can be seen that

P(z)
[
zp′(z) + p2(z)

]
= f ′(z) + z f ′′(z).
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Hence, from <
(
z f ′′(z)

)
> −µ and the Equation (9), we find that

<
(

P(z)
[
zp′(z) + p2(z)

])
> β− µ. (11)

We now show that

p(z) ≺ q3(z) =
1 + z
1− z

(z ∈ U).

Otherwise, if p 6≺ q3, then (by Lemma 1) there exist points z0 ∈ U and ζ0 ∈ ∂U \ E(q)
such that

p(z0) = q3(ζ0) and z0 p′(z0) = mζ0q′3(ζ0),

where
m = n +

2− nb
2 + nb

.

Thus, by taking
ζ0 = eit (−π < t 5 π),

we have

p(z0) = ix
(

x = cot
t
2
∈ R

)
,

and so we get

<
(

P(z0)
[
z0 p′(z0) + p2(z0)

])
= <

(
P(z0)

(
−m(1 + x2)

2
− x2

))
5 −m

2
<
(

P(z0)
)
5 −n

2
γ.

On the other hand, the Equations (6) and (7) imply that

−n
2

γ 5 β− µ (0 5 µ 5 µn).

This last inequality leads us to

<
(

P(z0)
[
z0 p′(z0) + p2(z0)

])
5 β− µ,

which is in contradiction with (11). This completes the proof of Theorem 5.

Some corollaries and consequences of Theorem 5 are worth considering next.
I. By putting n = 1 and δ = 1

2 in the assumptions of Theorem 5, we obtain

δ1 =
3 +
√

57
6

, C1 = 4.59 · · · and µ1 = 0.65 · · · .

Thus, by applying Theorem 5, we have Corollary 2 below.

Corollary 2. If f ∈ A1,b with b = 3
8 µ, where 0 5 µ 5 0.65 · · · and

<
(
z f ′′(z)

)
> −0.65 · · · ,

then f ∈ S∗.

II. By putting n = 1 and δ = 3
4 in the assumptions of Theorem 5, we find that

δ1 =
5 +
√

313
18

, C1 = 5.04 · · · and µ1 = 0.59 · · · .

Thus, by applying Theorem 5, we deduce Corollary 3 below.
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Corollary 3. If f ∈ A1,b with b = 21
16 µ, where

0 5 µ 5 0.59 · · · and <
(
z f ′′(z)

)
> −0.59 · · · ,

then f ∈ S∗.

III. By putting n = 2 and δ = 3
4 in the assumptions of Theorem 5, we obtain

δ1 =
3 +
√

153
12

, C2 = 3.75 · · · and µ2 = 1.06 · .

Thus, by appropriately applying Theorem 5, we have Corollary 4 below.

Corollary 4. If f ∈ A2,b with b = 21
90 µ, where

0 5 µ 5 1.06 · · · and <
(
z f ′′(z)

)
> −1.06 · · · ,

then f ∈ S∗.

Remark 5. If we compare Corollaries 2, 3, and 4 with the known result ([8], p. 275, Theorem 5.2c),
we observe that, by choosing different values for n and b in Theorem 5, our results improve the
known result ([8], p. 275, Theorem 5.2c).

We turn now to the general Bernardi integral operator Lγ (γ > −1), which is defined
as follows (see, for details, [15]):

F(z) = Lγ[ f ](z) =
γ + 1

zγ

∫ z

0
f (t) tγ−1 dt

(
f ∈ A; <(γ) > −1

)
. (12)

It is recorded in ([8], p.67, Theorem 2.6h) that Lγ[K] ⊂ K for <(γ) = 0, with similar
inclusion relations for the classes S∗ and C of starlike and close-to-convex functions in U.
In our next result, we will present conditions for a function f in the class An,b that are not
necessarily convex, but the Bernardi operator Lγ[ f ](z), given in (12), belongs to the class
K (see also [15]).

Theorem 6. Let n ∈ N, 0 < δ 5 1, and

N = n +
δ1 − 1
δ1 + 1

.

Additionally, let

0 < γ 5 1 and αn =
n + 2
Cn(γ)

, (13)

where

Cn(γ) =
2n

n + 1−δ
1+δ

(
(1 + γ)

(
n + 1−δ

1+δ

)
n

+

(
n + 2

n

)
ln 2

− n + 2γ2

n

∫ 1

0

t
1+γ

N

1 + t
dt

)
(14)

and

δ1 =
1 + (1− δ)(n + γ) +

√
[(δ− 1)(n + γ)− 1]2 + 4δ(n + γ + 1)(n + γ + 2)

2δ(n + γ + 2)
.
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If f ∈ An,b with

b =
2αδ

(n + 1)
(

n + 1−δ
1+δ

) and 0 <
n(n + 1)(1 + γ)b

n + γ + 1
5 2,

where 0 5 α 5 αn and
<
(
z f ′′(z)

)
> −αn,

then Lγ[ f ] ∈ K.

Proof. Let us first define the functions p(z) and q(z) as follows:

p(z) = f ′(z) and q(z) = 1− 2α

n + 1−δ
1+δ

log (1 + z).

It can then be seen that p ∈ H(n+1)b[1, n] and that q is a convex function. Thus, from (13) and (14),
we find that the constants αn(γ) and Cn(γ) are positive. Suppose that

0 5 α 5 αn and <
(
z f ′′(z)

)
> −α.

By the same argument as in the demonstration of Theorem 5, we can infer that p ≺ q, and
so (9) holds true.

First of all, we show that F is a univalent function. Indeed, upon differentiating both
sides of (12) with respect to z, we find that

zF′(z) + γF(z) = (γ + 1) f (z),

which readily yields
zF′′(z) + (γ + 1)F′(z) = (γ + 1) f ′(z). (15)

If we set P(z) = F′(z), then P ∈ Hβ1 [1, n], where

β1 =
(n + 1)(γ + 1)b

n + γ + 1
,

and we find from (15) that

P(z) +
zP′(z)
1 + γ

= f ′(z) ≺ q(z) = 1−
(

2α

n + 1−δ
1+δ

)
log (1 + z)

We now consider the following differential equation (with the initial condition):

q1(z) +
(

N
1 + γ

)
zq′1(z) = q(z)

(
q1(0) = 1

)
. (16)

It can be seen that the function q1(z), given by

q1(z) =
γ + 1

Nz
1+γ

N

∫ z

0
q(t) t

γ+1
N −1 dt,

satisfies the initial-value problem (16). By analogously applying the argument used in the
proof of Theorem 5, we can deduce that

P(z) ≺ q1(z) =
γ + 1

Nz
1+γ

N

∫ z

0
q(t) t

γ+1
N −1 dt

= 1− 2α(1 + γ)

N
(

n + 1−δ
1+δ

)
z

1+γ
N

∫ z

0
t

γ+1
N −1 log (1 + t) dt.
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Since the function q1 is convex and symmetric to the real axis, we can write

<
(

P(z)
)
> γ1 = γ1(α) = q1(1) = 1− 2α

n + 1−δ
1+δ

(
ln 2−

∫ 1

0

t
1+γ

N

1 + t
dt

)

However, we note that

γ1 = 1− 2αn

n + 1−δ
1+δ

ln 2

and

Cn(γ) = 2

(
n + 1−δ

1+δ )(γ + 1)− (n + 2γ2)
)

n + 1−δ
1+δ

+
(n + 2) ln 4

n + 1−δ
1+δ

,

so we have

Cn(γ) =
(n + 2) ln 4

n + 1−δ
1+δ

.

Therefore, by combining the above relations, we obtain

<
(

F′(z)
)
> γ1 = 0. (17)

If we let

p1(z) =
zF′′(z)
F′(z)

+ 1 (z ∈ U),

then we have p1 ∈ Hβ2 [1, n] with

β2 =
n(n + 1)(1 + γ)b

n + γ + 1
.

Moreover, we find from (15) that

P(z) · p1(z) = F′(z) + zF′′(z) = (γ + 1) f ′(z)− γF′(z). (18)

Upon differentiating both sides of (18) with respect to z and using the Equation (15),
we obtain

P(z)[zp′(z) + p2(z)] = γ2F′(z) + (1− γ2) f ′(z) + (1 + γ)z f ′′(z).

Thus, by applying the Equations (9) and (17), in conjunction with the hypothesis of
Theorem 6, we have

<
(

P(z)
[
zp′(z) + p2(z)

])
> γ2γ1 + (1− γ2)β− (1 + γ)α.

Finally, just as in the case of Theorem 5 for proving the starlikeness of f , we can
conclude that

p1(z) ≺ q3(z) =
1 + z
1− z

.

Hence, clearly, we have Lγ[ f ] ∈ K.

IV. By putting n = 2, γ = 1, and δ = 3
4 in Theorem 6, we find that

δ1 =
7 +
√

1009
30

, C2(1) = 5.38 · · · and α2 = 0.74 · · · .

Then, as a consequence of Theorem 6, we can deduce the following corollary.
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Corollary 5. If f ∈ A2,b with b = 21
90 α, where

0 5 α 5 0.74 · · · and <
(
z f ′′(z)

)
> −0.74 · · · ,

then L[ f ] ∈ K.

Remark 6. If we compare Corollary 5 with the known result ([8], p. 279, Theorem 5.2e), we
observe that, by choosing different values for n and b in Theorem 6, our result would improve this
known result ([8], p. 279, Theorem 5.2e).

We next state and prove the following result.

Theorem 7. Let n ∈ N, γ > −1 and 0 < δ 5 1. If f ∈ An,b with

b =
(n + γ + 1)Mδ

(1 + n)
(

1 + γ + n + 1−δ
1+δ

)
and

| f ′(z)− 1| < M (z ∈ U), (19)

where

0 < M 5
n + 1−δ

1+δ + γ + 1

(1 + γ)

√(
n + 1−δ

1+δ + γ + 1
)2

+ (γ + 1)2 + |γ|
, (20)

then Lγ[ f ] ∈ K.

Proof. Let us introduce the functions q(z) and P(z) as follows:

P(z) = F′(z) and q(z) = 1 +
(1 + γ)Mz

1 + γ + n + 1−δ
1+δ

.

It is then clear that P ∈ Hβ[1, n] with

β =
(1 + γ)(1 + n)b

n + γ + 1
,

and that the function q is convex.
Upon differentiating both sides of the Equation (12) with respect to z, we obtain

zF′(z) + γF(z) = (γ + 1) f (z)

and
zF′′(z) + (γ + 1)F′(z) = (γ + 1) f ′(z). (21)

Consequently, the Equation (19) implies that

P(z) +
zP′(z)
1 + γ

= f ′(z) ≺ 1 + Mz = h(z).

We now consider the following differential equation (with the initial condition):

q(z) +
(

n +
1− δ

1 + δ

)
zq′(z)
1 + γ

= 1 + Mz = h(z)
(
q(0) = 1

)
. (22)



Mathematics 2023, 11, 3919 17 of 20

It can be easily seen that the function q(z), given by

q(z) = 1 +
(1 + γ)Mz

1 + γ + n + 1−δ
1+δ

,

satisfies the initial-value problem (22). Thus, if we set

Q(z) =
zq′(z)
1 + γ

,

it is then obvious that

<
(

zh′(z)
Q(z)

)
> 0.

Therefore, by applying Lemma 2, we can deduce that

P(z) = F′(z) ≺ q(z) = 1 +
(1 + γ)Mz

1 + γ + n + 1−δ
1+δ

. (23)

If we put

R =
(1 + γ)M

1 + γ + n + 1−δ
1+δ

, (24)

then the Equation (23) yields
|P(z)− 1| < R. (25)

In view of (24) and (20), we find that R < 1. Therefore, the equation (25) implies that
|F′(z)− 1| < 1. Hence, clearly, F is univalent. Thus, if we let

p(z) =
zF′′(z)
F′(z)

+ 1,

then p ∈ Hβ1 [1, n] with

β1 =
n(n + 1)(1 + γ)b

n + γ + 1
.

Additionally, from the equation (21), we have

F′(z)[p(z) + γ] = (1 + γ) f ′(z). (26)

Thus, if we first substitute (26) into (19) and then use (24), we obtain

|P(z)(p(z) + γ)− (γ + 1)| <
(

1 + γ + n +
1− δ

1 + δ

)
R. (27)

We note that, since <
(

F′(z)
)
> 0, we have P(z) 6= 0. Thus, in order to prove that

<
(

p(z)
)
> 0 (z ∈ U),

we suppose that there exists a point z0 ∈ U such that p(z0) = iρ (ρ ∈ R). We show that
this leads to

|P(z0)(iρ + γ)− (γ + 1)| =
(

1 + γ + n +
1− δ

1 + δ

)
R. (28)

If we set
P(z0) = u(z0) + iv(z0) = u + iv,
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then we have

E ≡ |P(z0)[iρ + γ]− (γ + 1)|2

= (u2 + v2)ρ2 + 2v(1 + γ)ρ + (γu− γ− 1)2 + γ2v2

= (u2 + v2)ρ2 + 2v(1 + γ)ρ + |γP− (1 + γ)|2,

which, in view of (25) and the triangle inequality, yields

|γP(z)− (γ + 1)| = 1− |γ|R.

We thus find that
E = (u2 + v2)ρ2 + 2v(1 + γ)ρ + (1− |γ|R)2.

Now, if

E−
(

γ + 1 + n +
1− δ

1 + δ

)2
R2 = F(ρ) = 0,

where

F(ρ) ≡ (u2 + v2)ρ2 + 2v(1 + γ)ρ + (1− |γ|R)2 −
(

γ + 1 + n +
1− δ

1 + δ

)2
R2,

then the inequality (28) holds true. Moreover, since u2 + v2 > 0, we have F(ρ) = 0 if

(1 + γ)2v2 − (u2 + v2)

[
(1− |γ|R)2 −

(
γ + 1 + n +

1− δ

1 + δ

)2
R2

]
5 0,

that is,

v2

[
(1 + γ)2 − (1− |γ|R)2 +

(
γ + 1 + n +

1− δ

1 + δ

)2
R2

]

5 u2

[
(1− |γ|R)2 −

(
γ + 1 + n +

1− δ

1 + δ

)2
R2

]
.

Upon some simple calculation and the use of (25), (24), and (20), we conclude that

v2

u2 5
R2

1− R2 5
1− |γ|R2 −

(
γ + 1 + n + 1−δ

1+δ

)2
R2

(1 + γ)2 − (1− |γ|R)2 +
(

γ + 1 + n + 1−δ
1+δ

)2
R2

,

which completes the proof of Theorem 7.

Lastly, in this section, we apply Theorem 7 in order to establish the following corollary.

Corollary 6. Under the assumptions of Theorem 7, if f ∈ An,b and

| f ′′(z)| < nM, (29)

then Lγ[ f ] ∈ K, where Lγ is given by (12) and

0 < M 5
n + 1−δ

1+δ + γ + 1

(1 + γ)

√(
n + 1−δ

1+δ + γ + 1
)2

+ (γ + 1)2 + |γ|
.



Mathematics 2023, 11, 3919 19 of 20

Proof. By using the Schwarz lemma (see, for example, [17]), we find that

| f ′′(z)| 5 nM|z|n−1,

which means that

| f ′(z)− 1| =
∣∣∣∣∫ z

0
f ′′(ζ) dζ

∣∣∣∣ = ∣∣∣∣z ∫ 1

0
f ′′(zt) dt

∣∣∣∣ < ∫ 1

0
nMtn−1 dt = M. (30)

Now, by applying Theorem 7, we complete the proof of Corollary 6.

4. Concluding Remarks and Observations

In our present investigation, we have first modified one of the most famous theorems
on the principle of differential subordination to hold true for normalized analytic functions
with a fixed initial Taylor-Maclaurin coefficient. Then, by making use of this modified
form, we have generalized and improved a number of results, which appeared, in recent
years, in the literature on the geometric function theory of complex analysis. We have also
proved some simple conditions for the starlikeness, convexity, and strong starlikeness of
such one-parameter families of integral operators as (for example) the familiar Bernardi
integral operator and a certain µ-convex integral operator.

Here, in this article, we have established a total of seven main results (Theorems 1 to 7).
By suitably specializing the parameters, which are involved in our main results, we have
deduced several (known or new) corollaries and consequences thereof. Moreover, wherever
possible, we have shown how some of our main results, as well as many of their corollaries
and consequences, are related to various results, which are available in the current literature
on the subject of our investigation. Remarkably, our Theorems 5 to 7, which involve a fixed
second Taylor-Maclaurin coefficient b of the functions in the normalized analytic function
class An,b, have been proven here for the first time and, to the best of our knowledge, even
some of their corollaries would provide notable improvements of the available results in
the literature.

The various results, which are proven in this article, together with their corollaries
and consequences, are potentially useful in encouraging further researches on the subject.
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2. Obradović, M.; Tuneski, N. On the starlike criteria defined by Silverman. Zesz. Nauk. Politech. Rzesz. Mat. 2001, 24, 59–64.
3. Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [CrossRef]
4. Avdiji, S.; Tuneski, N. Sufficient conditions for starlikeness using subordination method. Adv. Math. Sci. J. 2020, 12, 10707–10716.

[CrossRef]
5. Kumar, S.S.; Kumar, V.; Ravichandran, V.; Cho, N.E. Sufficient conditions for starlike functions associated with the lemniscate of

Bernoulli. J. Inequal. Appl. 2013, 2013, 176. [CrossRef]

http://doi.org/10.1155/S0161171299220753
http://dx.doi.org/10.4064/ap-28-3-297-326
http://dx.doi.org/10.37418/amsj.9.12.55
http://dx.doi.org/10.1186/1029-242X-2013-176


Mathematics 2023, 11, 3919 20 of 20
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