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Abstract: Several integrability problems of differential equations are addressed using the concept
of a C∞-structure, a recent generalization of the notion of solvable structure. Specifically, the inte-
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1. Introduction

Solvable structures appeared in the last decade of the 20th century as a generalization
of the concept of solvable symmetry algebra [1–4], in order to characterize the integrability
by quadratures of an involutive distribution of vector fields Z on a n-dimensional mani-
fold [5–8]. Roughly speaking, a solvable structure for a distribution Z of rank r consists of
a sequence of n− r vector fields that gives rise to a chain of distributions such that each
vector field in the structure is a symmetry of the previous distribution.

Almost at the same time, C∞-symmetries were introduced as a generalization of
the classical Lie symmetry method of reduction [1,2] for ordinary differential equations
(ODEs) [9]. Since their introduction, C∞-symmetries have been extended in multiple
directions [10–25]. They are being extensively used [26–39], allowing to solve equations
that may even lack Lie point symmetries [9,40,41].

The idea that allowed extending the notion of Lie point symmetry to C∞-symmetry,
in the context of ODEs, has been adapted in [42,43] for involutive distributions of vector
fields. The condition for a vector field to be a C∞-symmetry of a distribution is less
restrictive than for a symmetry, which implies that in practice the C∞-symmetries of a
distribution are easier to find than its symmetries. When considering the notion of a
solvable structure, we let the elements be C∞-symmetries, instead of symmetries, of the
chains of distributions mentioned above, and we obtain a more general structure, which
has been called a C∞-structure in [42]. The key point in this new theory is that once a
C∞-structure for an involutive distribution Z of corank k has been determined, then Z can
be integrated by sequentially solving k integrable Pfaffian equations ([42] Theorem 3.5).
These Pfaffian equations are defined in spaces whose dimensions decrease one unit at each
stage. The Pfaffian equations are completely integrable, although, unlike solvable structures,
they may not be integrable by quadratures. The well known outcome relating integrating
factors and Lie point symmetries for first-order ODEs [1,3,4,44] has been recently extended
in [43]. The extension applies to C∞-structures and involutive distributions of arbitrary
corank by introducing symmetrizing factors. Relevant results on the role played by these
symmetrizing factors on the integrability by quadratures of the Pfaffian equations arising
by the application of the C∞-structure method have been also derived [43].
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In this work, we present some new applications of the integration procedure associated
with C∞-structures. The paper is organized as follows: in Sections 2 and 3 we recall the main
definitions and results in the theory of C∞-structures, by adapting some of the theoretical
results that were obtained in [42] to the problems that we address in this paper. In Section 4,
we explore the application of the C∞-structure method to fully integrate two systems of first-
order ordinary differential equations, one of which is a Lotka–Volterra system, frequently
used to describe the dynamics of biological systems. Additionally, we investigate three
scalar ODEs in Section 5, two of which are of the fourth order and one of the third order.
Notably, the considered equations exhibit a lack of sufficient Lie point symmetries, and
even powerful symbolic systems like Maple fail to provide explicit solutions for them.
Nevertheless, our novel integration method based on C∞-structures leads to the complete
integration of equations that are difficult to solve using conventional methods.

2. Preliminaries

In this paper, we consider all functions, vector fields, and differential forms to be
smooth (meaning C∞) within a contractible open subset U of Rn. In what follows, X(U)
and Ωk(U) are used to represent the C∞(U)-module of all smooth vector fields and k-forms,
respectively, whereas Ω∗(U) stands for the algebra of exterior differentials encompassing
all differential forms on U.

Given a set {Z1, . . . , Zr} of pointwise linearly independent vector fields on U, by
Z := S({Z1, . . . , Zr}) we denote the submodule of X(U) generated by {Z1, . . . , Zr}. In a
similar way, the submodule of Ω1(U) generated by a set of pointwise linearly independent
1-forms {σ1, . . . , σs} will be denoted by P := S({σ1, . . . , σs}). The submodule Z (resp. P)
defines a distribution (resp. a Pfaffian system) of constant rank n− r (resp. n− s).

The annihilator of Z is the set of the differential forms ω ∈ Ω∗(U) such that
ω(Y1, . . . , Yk) = 0 whenever Y1, . . . , Yk ∈ Z . This set, which will be denoted by Ann(Z),
is an ideal of Ω∗(U) locally generated by n− r pointwise linearly independent 1-forms
{ω1, . . . , ωn−r} [45,46]. In this case, we will write Z◦ = S({ω1, . . . , ωn−r}). It can be
checked that the Pfaffian systemZ◦ can be characterized in terms of the interior product [46]
or contraction y as follows:

Z◦ = {ω ∈ Ω1(U) : Z yω = 0, for each Z ∈ Z}.

Let us recall that the distributionZ is said to be involutive if [Zi, Zj] ∈ Z for 1 ≤ i, j ≤ r.
A well-known result states that Z is involutive if and only if the ideal Ann(Z) is closed
under exterior differentiation d,, i.e. if Ann(Z) is a differential ideal (see, for instance,
Proposition 2.30 and Definition 2.29 in [45]). In this case, Frobenius Theorem ([45] Theo-
rem 1.60) guarantees that, for each p ∈ U, the local existence of a unique connected integral
manifold of Z of maximal dimension ([45] Definition 1.63). Such integral manifolds can be
defined (locally) by the level sets of a complete set of first integrals I1, . . . , In−r for the dis-
tribution Z . It is clear that, in this case, the independent 1-forms {dI1, . . . , dIn−r} generate
the corresponding Pfaffian system Z◦, which is said to be completely integrable [45,46]. In
this sense, integrating a completely integrable Pfaffian system is equivalent to integrating
the corresponding involutive system of vector fields.

In such integration procedures, the notion of solvable structure, introduced by Basarab-
Horwath in [5], plays a fundamental role (see also [7]). This concept is based on the notion
of symmetry of a distribution, which generalizes Lie point symmetries: [5,47,48]:

Definition 1. A symmetry of an involutive distribution Z is a vector field X such that the set
{Z1, . . . , Zr, X} is pointwise linearly independent on U and [X,Z ] ⊂ Z .

Now we can recall the concept of solvable structure:
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Definition 2 ([5] Definiton 4). A solvable structure for Z consists of an ordered set of vector
fields 〈X1, . . . , Xn−r〉 such that X1 is a symmetry of Z and Xi is a symmetry of the distribution
Z ⊕ S({X1, . . . , Xi−1}) for i = 2, . . . , n− r.

The main result concerning solvable structures is that the knowledge of a solvable
structure allows us to find the integral manifolds of Z , at least locally, by quadratures
alone ([5] Proposition 3). A dual version of Definition 2, given in terms of differential
1-forms, was introduced in ([6] Defintion 4) by Hartl and Athorne. These authors also
re-established the integrability result by Basarab-Horwath from a dual point of view
(see [6] Proposition 5). We refer the reader also to [8,49,50] for further details on the
integration procedure associated with solvable structures.

Solvable structures are very useful in the study of ordinary differential equations
(ODEs), because such problems can be reformulated as the task of integrating systems of
vector fields or 1-forms. For instance, consider a system of first-order ODEs

ẋ1 = φ1(t, x1, . . . , xn),
ẋ2 = φ2(t, x1, . . . , xn),

...
ẋn = φn(t, x1, . . . , xn),

(1)

where φ1, . . . , φn are smooth functions on some open set U ⊂ Rn+1 and over dot denotes
differentiation with respect to the independent variable t. Any solution of system (1)
defines a one-dimensional integral manifold of the (trivially involutive) rank 1 distribution
generated by the vector field

Z = ∂t + φ1(t, x1, . . . , xn)∂x1 + . . . + φn(t, x1, . . . , xn)∂xn . (2)

The extension to systems of ODEs of higher order is straightforward. Consider, for
instance, a general mth-order ODE:

um = φ(x, u(m−1)), (3)

where u(m−1) = (u, u1, . . . , um−1) denotes the dependent variable u and, for 1 ≤ k ≤ m,
uk denotes the derivative of order k of u with respect to the independent variable x. By
setting x = t, x1 = u, and xk = uk−1, for 1 ≤ k ≤ m, then Equation (3) can be transformed
into a system of the form (1), whose associated vector field (2), written in terms of original
variables (x, u(m−1)), becomes

Z = ∂x + u1∂u + . . . + φ(x, u(m−1))∂um−1 . (4)

In this case, any integral manifold of the distribution generated by the vector field (4)
corresponds to the (m− 1)th-prolongation of a solution of Equation (3) [1,3,4].

Therefore, the method of solvable structures can be applied to integrate the given ODE
(or the system of ODEs) by quadratures alone. This outcome extends the classical result
stating that a system of m differential equations of order n, accompanied by a solvable Lie
point symmetry algebra of dimension mn, can be solved using quadratures. We refer the
reader to ([6] Proposition 6) and ([7] Section V) for further details on the application of
solvable structures to the integration of differential equations.

3. C∞-Structures and Integrability of Distributions

This notion of C∞-symmetry for a distribution was introduced in ([42] Definition 3.2),
as a generalization of the idea of C∞-symmetry for ODEs [9]:
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Definition 3. A C∞-symmetry of an involutive distribution Z = S({Z1, . . . , Zr}) is a vector
field X such that the set {Z1, . . . , Zr, X} is pointwise linearly independent on U and the distribution
S({Z1, . . . , Zr, X}) is involutive.

Note that by Definition 1 every symmetry X of an involutive distribution Z is also a
C∞-symmetry of Z .

The previous notion of C∞-symmetry of a distribution was used in [42] to extend the
concept of solvable structure as follows:

Definition 4 ([42] Definition 3.3). Let Z be an involutive distribution on U. An ordered set
of vector fields 〈X1, . . . , Xn−r〉 is a C∞-structure for Z if X1 is a C∞-symmetry of Z and, for
i = 2, . . . , n− r, Xi is a C∞-symmetry of the distribution Z ⊕ S({X1, . . . , Xi−1}).

Observe that a solvable structure for Z is a particular case of a C∞-structure for Z
where each Xi a symmetry of Z ⊕ S({X1, . . . , Xi−1}) instead of a C∞-symmetry.

The main result concerning C∞-structures is that they can be used to integrate the
distribution Z solving n− r Pfaffian equations which are completely integrable. Unlike
solvable structures, such Pfaffian equations may not be integrable by quadratures:

Theorem 1 ([42] Theorem 3.5). Let Z be an involutive distribution on U ⊂ Rn. Any C∞

structure for Z can be used to find the integral manifolds of Z by solving successively n − r
completely integrable Pfaffian equations.

The next subsection outlines a procedure that can be employed to integrate the dis-
tribution Z when we have a C∞-structure of vector fields. This procedure will be used in
subsequent sections to integrate various distributions that emerge in problems modeled by
differential equations.

C∞-Structure-Based Method of Integration

Given a C∞-structure of vector fields 〈X1, . . . , Xr〉 for Z , a method that can be used
to integrate Z by applying Theorem 1 proceeds as follows. Consider local coordinates
(x1, . . . , xn) on U ⊂ Rn and the volume form Ω = dx1 ∧ · · · ∧ dxn. We introduce the
1-forms

ωi = Xn−r y . . . y X̂i y . . . y X1 y Zr y . . . y Z1 yΩ, 1 ≤ i ≤ n− r, (5)

where X̂i indicates omission of Xi and y denotes interior product; and define

Pi := S({ωi+1, . . . , ωn−r}), 0 ≤ i ≤ n− r− 1. (6)

According to (5) we have that

P0 = Z◦,
Pi = (Z ⊕ S({X1, . . . , Xi}))◦, 1 ≤ i ≤ n− r− 1.

(7)

Considering that the distribution Z is involutive and that, according to Definition 4,
the distributions Z ⊕ S({X1, . . . , Xi}) for 1 ≤ i ≤ n− r− 1 are also involutive, then it can
be deduced from (7) that the Pfaffian systems given in (6) are completely integrable. More
explicitly, there exist 1-forms σi for 1 ≤ i ≤ n− r such that

dωi = σi ∧ωi +
n−r

∑
j=i+1

σ
j
i ∧ωj, (8)

for certain 1-forms σ
j
i , j = i + 1, . . . , n− r.

Since the integration of the involutive distribution Z is equivalent to the integration
of the Pfaffian system P0, we describe below how to integrate P0 step by step:
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1. For i = n− r, Equation (8) becomes dωn−r = σn−r ∧ωn−r, which implies that the Pfaf-
fian equation ωn−r ≡ 0 is Frobenius integrable. A first integral In−r = In−r(x1, . . . , xn)
for Pn−r−1 is any particular solution to the system of linear first-order PDEs arising
from the condition

dIn−r ∧ωn−r = 0.

For Cn−r ∈ R, the level set of In−r

Σ(Cn−r) = {x ∈ U ⊂ Rn : In−r(x) = Cn−r} (9)

defines an integral submanifold, of dimension n− 1, of the distribution
Z ⊕ S({X1, . . . , Xn−r−1}).

2. For 1 ≤ i ≤ n− r, we denote by ωi|Σ(Cn−r)
the restriction of ωi to Σ(Cn−r). Observe that

ωn−r|Σ(Cn−r)
= 0. The restriction to Σ(Cn−r) of Equations (8) for 1 ≤ i ≤ i = n− r− 1,

implies that ωn−r−1|Σ(Cn−r)
is Frobenius integrable. As before, a corresponding first

integral In−r−1 = In−r−1(x; Cn−r), defined for x in some open set of Σ(Cn−r), is given
by any particular solution to the system of linear homogeneous first-order PDEs
arising from the condition

dIn−r−1 ∧ωn−r−1|Σ(Cn−r)
= 0.

For Cn−r−1 ∈ R, the submanifold of Σ(Cn−r) defined by the level set In−r−1 = Cn−r−1 is
an integral manifold of the Pfaffian equation ωn−r−1|Σ(Cn−r)

≡ 0, that will be denoted
by Σ(Cn−r−1,Cn−r).

3. We continue this process, taking into account that in each stage we integrate a 1-form
defined in a space whose dimension is one unit lower than in the previous step. At the
end, we obtain the integral manifold Σ(C1,...,Cn−r) of Z◦, expressed in implicit form as
I1 = C1, where I1 denotes the first integral that arises after integrating the last Pfaffian
equation ω1|Σ(C2,...,Cn−r)

≡ 0.

The theoretical foundation behind the procedure above is explained in ([42] Theo-
rem 3.5). Readers interested in a closer exploration of the C∞-structure integration process
and related examples are referred to Sections 3.3 and 3.4 in [43].

In addition, if an element Xi of the C∞-structure is not merely a C∞-symmetry of
Z ⊕ S({X1, . . . , Xi−1}) but also a symmetry, then the corresponding Pfaffian equation
at the ith stage can be solved by quadrature using a (relative) integrating factor (see
Theorem 4.1 and Remark 4.3 in [43] for details). The integrability of the distribution
by quadrature via solvable structures turns out to be a special case of the more general
C∞-structure integration method.

In the following sections, we use the integration method described above to find exact
solutions to several problems modeled by ordinary differential equations.

4. C∞-Structures for Systems of First-Order ODEs

We are going to examine the application of the C∞-structure method to systems of
first-order ODEs.

The first system describes a Lotka–Volterra model previously considered by P. Basarab-
Horwarth in their paper on solvable structures [5]. Their procedure requires three vector
fields to produce two independent first integrals of the system. In the following subsection,
we show that only one of these vector fields is needed to construct a C∞-structure which
can be used to completely solve the system.

4.1. A Lotka–Volterra Model

Lotka–Volterra models, or predator-prey models, are systems of first-order ODEs
used to describe the dynamics between two or more interacting species in an ecosystem,
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typically a predator and its prey. The Lotka–Volterra model is a simple but powerful tool
for understanding the dynamics of predator–prey interactions and has applications in fields
such as ecology, biology, and economics (see, for example, [51–54] for further details).

P. Basarab-Horwath in ([5] Section 4) applied a method based on solvable structures to
find two first integrals for a biparametric family of 3D Lotka–Volterra models

ẋ(t) = zx− yx
AB

,

ẏ(t) = xy + Azy,

ż(t) = Bxz + yz,

(10)

with arbitrary constants A, B ∈ R, A, B 6= 0. More specifically, he provided two vector fields

Y1 = z∂x + Ay∂y + (y + Bz)∂z,
Y2 = x∂x − ABz∂z.

(11)

which are in involution with the vector field corresponding to the system:

Z =
(

zx− yx
AB

)
∂x + (xy + Azy)∂y + (Bxz + yz)∂z,

as it can be checked through the corresponding commutation relationships. However,
neither 〈Y1, Y2〉 nor 〈Y2, Y1〉 constitutes a solvable structure for S({Z}), because [Y1, Y2] /∈
S({Z, Y1}) and [Y1, Y2] /∈ S({Z, Y2}). For this reason, P. Basarab-Horwath had to provide
an additional vector field

V = x∂x + y∂y + z∂z, (12)

which is a symmetry of S(Z) and commutes with Y1 and Y2. This implies that V is a sym-
metry of both involutive distributions S({Z, Y1}) and S({Z, Y2}). Applying the theoretical
results on solvable structures, the symmetry V was used in [5] to integrate, separately and
by quadratures, the distributions S({Z, Y1}) and S({Z, Y2}).

A first integral for S({Z, Y1}) is

ϕ1 = ABx + y− Az, (13)

while
ϕ2 = xABy−Bz (14)

is a first integral for S({Z, Y2}). These first integrals are functionally independent because
Z ∧Y1 ∧Y2 6= 0.

It is interesting to note that only one of the vector fields Y1 or Y2 is necessary to integrate
system (10) by the C∞-structure method: since S({Z, Y1}) is an involutive distribution,
Y1 can be chosen as the first vector field of a C∞-structure for S({Z}). The last element
can be any vector field independent with {Z, Y1}, such as ∂z. Therefore, 〈Y1, ∂z〉 defines
a C∞-structure for S({Z}) and it can be used to integrate the system by the procedure
described in Section 3. The same procedure could be followed using Y2 instead Y1, because
〈Y2, ∂z〉 is also a C∞-structure for S({Z}).

Nevertheless, instead of using one of these two C∞-structures, which require the
knowledge of at least one of the vector fields Y1 or Y2, we show how to construct a C∞-
structure for S({Z}) directly, without using the vector fields provided by Basarab-Horwath.
It is worth noting that the method used to obtain these vector fields was not explained
in [5].

In order to find a C∞-structure for S({Z}), we first observe that a if vector field X1
is a C∞-symmetry of S({Z}), then so is any vector field in S({Z, X1}). This allows us to
simplify the search for X1 by assuming that its form is

X1 = ∂y + g(x, y, z)∂z.
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According to Definition 4, X1 must satisfy the condition [X1, Z] ∈ S({Z, X1}). Equiva-
lently, the 1-form ω2 = X1 y Z yΩ, where Ω = dx ∧ dy∧ dz, satisfies ω2 ∧ dω2 = 0,, i.e., the
Pfaffian equation ω2 ≡ 0 is completely integrable. Any of these two equivalent conditions
yields a determining equation for the function g = g(x, y, z). It can be checked that such
PDE is of the form

ρ1 gx + ρ2 gy + ρ3 gz + (Ag− 1)(ρ4 g + ρ5) = 0, (15)

where we omit the explicit expressions of the functions ρi = ρi(x, y, z), for 1 ≤ i ≤ 5,
because they are irrelevant for the following discussion. A particular solution of the
determining Equation (15) arises immediately, the constant function

g(x, y, z) =
1
A

. (16)

Therefore, the vector field

X1 = ∂y +
1
A

∂z (17)

is a C∞-symmetry of S({Z}). As the second vector field of the C∞-structure, we can choose
any vector field X2, such that {Z, X1, X2} are linearly independent. For example, we can
use the vector field X2 = ∂z.

Once the C∞-structure 〈X1, X2〉 for S({Z}) has been determined, we calculate the
1-forms ω1 and ω2 given in (5):

ω1 = X2 y Z yΩ = (Ayz + xy)dx− x(ABz− y)
AB

dy,

ω2 = X1 y Z yΩ = − x(ABz− y)
A2B

(ABdx + dy− Adz).
(18)

The Pfaffian equation ω2 ≡ 0 is completely integrable and a corresponding first
integral I2 = I2(x, y, z) arises from the condition dI2 ∧ω2 = 0, which yields the following
system of PDEs:

A(I2)y + (I2)z = 0,
(I2)x + B(I2)z = 0.

(19)

The first equation in (19) implies that I2 = F(x, r), where r = Az− y and F = F(x, r)
is, in principle, an arbitrary smooth function. Then the second equation in (19) becomes

Fx + ABFr = 0,

from which the particular solution F(x, r) = ABx− r arises immediately. Therefore, a first
integral for ω2 ≡ 0 is given by I2 = F(x, Az− y) :

I2 = ABx− Az + y. (20)

Observe that I2 = ϕ1, where ϕ1 is the first integral (13) provided by Basarab-Horwath.
In order to find the remaining first integral, we restrict ω1 to the submanifold Σ(C2)

implic-
itly defined by I2 = C2, where C2 ∈ R :

ω1|Σ(C2)
=
(

ABxy− C2y + xy + y2
)

dx−
x
(

AB2x− BC2 + By− y
)

AB
dy.

The Pfaffian equation ω1|Σ(C2)
≡ 0 is completely integrable. It can be checked that

µ =
1

xy(ABx + y− C2)
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is an integrating factor for ω1|Σ(C2)
. A corresponding primitive I1 = I1(x, y; C2) arises after

integrating two rational functions:

I1 = ln(|xABy−B(ABx− C2 + y)|). (21)

If C2 in (21) is replaced by the right-hand side of (20) we obtain the function J1(x, y, z) =
I1(x, y; I2) :

J1 = AxABy−Bz,

which, up to a constant, coincides with the first integral ϕ2 in (14), previously obtained in [5].
The orbits of the system (10) can be expressed in implicit form as follows:

AxABy−Bz = C1, ABx− Az + y = C2, (C1, C2 ∈ R). (22)

In consequence, the C∞-structure method provides an alternative approach to integrate
system (10). In this procedure, only the vector field (17) has been used, instead of the three
vector fields Y1, Y2 and V in (11) and (12) required in [5] using solvable structures techniques.

In Figure 1 we show some of the orbits of system (10) for particular values of the
constants A, B, C2 and C1.

C1=0 C1=0.5 C1=1 C1=1.5 C1=2

C1=2.5 C1=3 C1=3.5 C1=4 C1=4.5

C1=5 C1=5.5 C1=6

Figure 1. Orbits (22) of system (10) for A = 1/2, B = 1, C2 = 1 and some values of C1.

4.2. Integration of a Non-Autonomous System through C∞-Structures

In the following example, we study a system of first-order ODEs which, to our knowl-
edge, cannot be easily solved by classical procedures. We will show how to construct a
C∞-structure for the system and how to use it to find its general solution, which will be ex-
pressed through a complete set of solutions of a linear second-order homogeneous equation.
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Consider the system of first-order ODEs: ẋ(t) =
2ty− t2x2 − 2yx2 − x2

2tx
,

ẏ(t) = t− x2y,
(23)

with associated vector field

Z = ∂t +
2ty− t2x2 − 2yx2 − x2

2tx
∂x + (t− x2y)∂y,

defined on the open set
M = {(t, x, y) ∈ R3 : tx 6= 0}. (24)

To find the first element X1 of a C∞-structure for the distribution S({Z}) we assume, as
in the previous example, that X1 is of the form X1 = ∂x + g(t, x, y)∂y. The determining equa-
tion for the function g(t, x, y) can be obtained from the condition [X1, Z] ∈ S({Z, X1}). This
is equivalent to the condition ω2 ∧ dω2 = 0, where ω2 = X1 y Z yΩ for Ω = dt ∧ dx ∧ dy.

In order to ease the search for a particular solution of this determining equation, we
can begin by trying to find a particular solution of the form g(t, x, y) = f (t)h(x). It can
be checked that by canceling out the coefficients of y we obtain a system of determining
equations for the functions f = f (t) and h = h(x) that, after some calculations, becomes

h(x) f (t) = tx, f ′(t) =
f (t)

t
.

By choosing the particular solution

h(x) = x, f (t) = t,

we obtain that the vector field X1 = ∂x + tx∂y is a C∞-symmetry of the distribution S({Z})
and hence it can be selected as the first vector field of a C∞-structure for S({Z}). As a
second element, we can choose any vector field X2 such that the set {Z, X1, X2} is linearly
independent, so we take X2 = ∂y. Therefore the vector fields

X1 = ∂x + tx∂y, X2 = ∂y (25)

constitute a C∞-structure for S({Z}). The corresponding commutations relationships become

[X1, Z] =
−2tx4 + t2x2 − 2x2y− 2ty− x2

tx2 X1, (26)

[X2, Z] =
−x2 + t

tx
X1 − t X2, (27)

[X2, X1] = 0. (28)

It is crucial to emphasize that neither is X1 a symmetry of S(Z), nor is X2 a symmetry
of S(Z, X1). Specifically, X1 and X2 do not correspond to symmetries of the system (23).
As a result, the integration method based on the C∞-structure presented here provides a
novel alternative to conventional symmetry procedures.

The integration procedure using the C∞-structure defined by (25) proceeds as follows:
the corresponding 1-forms given in (5) become

ω1 =
2ty− t2x2 − 2x2y− x2

2xt
dt− dx, (29)

ω2 =

(
ty− 1

2
t2x2 − 1

2
x2 − t

)
dt− txdx + dy. (30)



Mathematics 2023, 11, 3897 10 of 23

The Pfaffian equation ω2 ≡ 0 is completely integrable; it can be verified that a corre-
sponding first integral is given by the smooth function

I2(t, x, y) =
1
2

e
1
2 t2

(tx2 − 2y + 2). (31)

The restriction of the 1-form ω1 given in (29) to the level set I2 = C2, C2 ∈ R, denoted
by Σ(C2)

, becomes

ω1|Σ(C2)
=

2t− tx4 − 3x2 + 2C2(t− x2)e−
1
2 t2

2tx
dt− dx. (32)

In order to solve the Pfaffian equation ω1|Σ(C2)
≡ 0, we introduce the change x̄ = x2

which transforms the ODE associated to the Pfaffian equation into the Riccati-type equation

x̄′(t) = −x̄(t)2 − 2C2e−
1
2 t2

+ 3
t

x̄(t) + 2(C2e−
1
2 t2

+ 1). (33)

The standard change x̄(t) = ψ′(t)/ψ(t) transforms the Riccati-type Equation (33) into
the following linear second-order homogeneous ODE:

ψ′′(t) +

(
2C2e−

1
2 t2

+ 3
t

)
ψ′(t)− 2(C2e−

1
2 t2

+ 1)ψ(t) = 0. (34)

Let ψ1 = ψ1(t; C2) and ψ2 = ψ2(t; C2) be a fundamental set of solutions to the linear
ODE (34). These functions can be used to express a first integral associated with the Riccati
Equation (33) (see, for instance, Proposition 4.1 in [55]). As a consequence, a first integral of
the Pfaffian equation defined by (32) becomes:

I1(t, x; C2) =
−x2ψ1(t; C2) + ψ′1(t; C2)

−x2ψ2(t; C2) + ψ′2(t; C2)
. (35)

By replacing C2 by the right-hand side of (31) we obtain the function J1(t, x, y) =
I1(t, x; I2), which is a first integral of S({Z}):

J1(t, x, y) =
−x2ψ1(t; 1

2 e
1
2 t2

(tx2 − 2y + 2)) + ψ′1(t;
1
2 e

1
2 t2

(tx2 − 2y + 2))

−x2ψ2(t; 1
2 e

1
2 t2

(tx2 − 2y + 2)) + ψ′2(t;
1
2 e

1
2 t2

(tx2 − 2y + 2))
. (36)

From I1(t, x; C2) = C1 and I2(t, x, y) = C2 where C1, C2 ∈ R, we obtain the general
solution to system (23):

x(t) = ±
(

C1ψ′2(t; C2)− ψ′1(t; C2)

C1ψ2(t; C2)− ψ1(t; C2)

)1/2

,

y(t) = 1 + C2e−
1
2 t2

+
t
2

C1ψ′2(t; C2)− ψ′1(t; C2)

C1ψ2(t; C2)− ψ1(t; C2)
.

(37)

where ψ1 = ψ1(t; C2) and ψ2 = ψ2(t; C2) are two functionally independent solutions to the
linear ODE (34).

Some Particular Families of Solutions

For particular values of the arbitrary constant C2 ∈ R, the solutions to the corre-
sponding linear ODE (34) are well-known special functions. For instance, for C2 = 0,
Equation (34) becomes

t2ψ′′(t) + 3tψ′(t)− 2t2ψ(t) = 0. (38)
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Through the change of variables

z =
√

2t, φ(z) = tψ(t), (39)

Equation (38) becomes the modified Bessel equation

z2φ′′(z) + zφ′(z)− (1 + z2)φ(z) = 0. (40)

A fundamental set of solutions to Equation (40) are the modified Bessel functions I1
and K1 of the first and second kinds, respectively, [56]. Therefore, according to (39), the
functions

ψ1(t) =
1
t

I1(
√

2t), ψ2(t) =
1
t

K1(
√

2t), (41)

are two linearly independent solutions to Equation (38). As a consequence, a 1-parameter
family of solutions to system (23), which corresponds to (37) when C2 = 0, can be expressed
in terms of the modified Bessel functions as follows:

x(t) = ±
(
√

2
C1K′1(

√
2t)− I′1(

√
2t)

C1K1(
√

2t)− I1(
√

2t)
− 1

t

)1/2

,

y(t) =
1
2
+

√
2t

2
C1K′1(

√
2t)− I′1(

√
2t)

C1K1(
√

2t)− I1(
√

2t)
.

(42)

The derivatives of the modified Bessel functions I1 and K1 can be expressed in terms
of the modified Bessel functions I0 and K0 [56]:

K′1(z) = K0(z)−
1
z

K1(z), I′1(z) = I0(z)−
1
z

I1(z).

Then

K′1(
√

2t) = −K0(
√

2t)−
√

2
2t

K1(
√

2t), I′1(
√

2t) = I0(
√

2t)−
√

2
2t

I1(
√

2t),

and therefore (42) becomes
x(t) = ±

(
√

2
C1K0(

√
2t)− I0(

√
2t)

C1K1(
√

2t)− I1(
√

2t)
− 2

t

)1/2

,

y(t) =

√
2t

2
C1K0(

√
2t)− I0(

√
2t)

C1K1(
√

2t)− I1(
√

2t)
.

(43)

In Figure 2, some orbits of the system (23) are plotted by setting particular values to
the integration constants C1 and C2.
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Figure 2. Orbits (37) of system (23) for C2 = 0 and some values of C1.

5. C∞-Structures for Scalar ODEs with a Lack of Lie Point Symmetries

In this section, we present a collection of ordinary differential equations whose symme-
try algebras are either trivial or of lower dimension than the order of the ODE. In the latter
scenario, the Lie method encounters certain obstacles when attempting to obtain the general
solution. However, we demonstrate how the C∞-structures method successfully overcomes
these difficulties and provides exact solutions to the equations under investigation.

5.1. A Third-Order ODE with Two-Dimensional Algebra of Lie Point Symmetries

In this example, we consider a third-order ODE:

u3 = (u1 − u)u2 −
u2

1
2

+ u1 +
u2

2
, (44)

whose associated vector field is

Z = ∂x + u1∂u + u2∂u1 +

(
(u1 − u)u2 −

1
2
(u2

1 − u2) + u1

)
∂u2 .

The symmetry algebra of Equation (44) is two-dimensional and spanned by ∂x and
ex∂u, as can be checked. By employing the Lie method of reduction, the transformation

z = u1 − u, h(z) = u2 − u1, (45)

leads to the first-order ODE

h(z)h′(z) = (z− 1)h(z) +
z2

2
. (46)
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Equation (46) is an Abel-type equation whose general solution can be expressed in an
implicit form in terms of the modified Bessel functions of the first and second kinds Iα and
Kα, for α = 0, 1 [56]:

zK0

(
−
√

z2 − 2h(z)
)
−
√

z2 − 2h(z)K1

(
−
√

z2 − 2h(z)
)

zI0

(√
z2 − 2h(z)

)
−
√

z2 − 2h(z)I1

(√
z2 − 2h(z)

) = C1. (47)

The recovery of solutions to Equation (44) from (47), by means of the transforma-
tion (45), seems to be infeasible.

For this reason, we intend to integrate Equation (44) using the C∞-structures method.
Similar to the previous examples, finding the elements of a C∞-structure can be significantly
simplified by assuming some of the infinitesimals to be constant or linear in u1. By following
this approach, we obtain the following independent vector fields

X1 = ∂u + ∂u1 + ∂u2 ,
X2 = ∂u1 + (u1 − u + 1)∂u2 ,
X3 = ∂u2 .

They form a C∞-structure for S({Z}), as can be verified using the Lie brackets:

[X1, Z] = X1,
[X2, Z] = X1 + (u1 − u)X2,
[X2, X1] = 0.

It is important to emphasize that neither X1 is a symmetry of S({Z}), nor X2 is a
symmetry of S({Z, X1}). In particular, neither X1 nor X2 correspond to symmetries of
Equation (44).

We use the volume form Ω = dx ∧ du ∧ du1 ∧ du2 to construct the corresponding
1-forms given in (5):

ω1 = −u1dx + du,
ω2 = (u2 − u1)dx + du− du1,
ω3 = (u2 + uu1 − u1 +

1
2 (u

2
1 + u2))dx + (u1 − u)du + (u− u1 − 1)du1 + du2.

(48)

A first integral for the first Pfaffian equation P2,, i.e., a function I3 = I3(x, u, u1, u2)
such that dI3 ∧ω3 = 0, is given by

I3 = ex
(

u2 −
1
2
(u1 − u)2 − u1

)
.

Let Σ(C3)
denote, as before, the level set I3 = C3, for C3 ∈ R. The restriction of the

1-form ω2 in (48) to Σ(C3)
becomes

ω2|Σ(C3)
=

(
1
2
(u1 − u)2 + C3e−x

)
dx + du− du1. (49)

In order to continue the integration process, we need to distinguish the following cases:

1. Case I: C3 > 0.
It can be checked that a function I2 = I2(x, u, u1; C3) such that dI2 ∧ ω2|Σ(C3)

= 0
becomes:

I2 =
ex/2(u1 − u)J0(

√
2C3e−x/2) +

√
2C3J1(

√
2C3e−x/2)

ex/2(u− u1)Y0(
√

2C3e−x/2)−
√

2C3Y1(
√

2C3e−x/2)
,

where Jα, Yα are the Bessel functions of the first and second kind, respectively, [56].
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Let Σ(C2,C3)
denote the submanifold of Σ(C3)

defined by I2(x, u, u1; C3) = C2, where
C2 ∈ R. The restriction of the 1-form ω3 in (48) to Σ(C2,C3)

becomes

ω1|Σ(C2,C3)
=

√2C3e−x/2
(

C2Y1(
√

2C3e−x/2) + J1(
√

2C3e−x/2)
)

C2Y0(
√

2C3e−x/2) + J0(
√

2C3e−x/2)
− u

dx + du.

A function I1 = I1(x, u; C2, C3) such that dI1 ∧ω1|Σ(C2,C3)
= 0 is given by

I1 =
√

2C3ψ(C2;C3)
(x) + e−xu.

where

ψ′(C2;C3)
(x) =

C2Y1(
√

2C3e−x/2) + J1(
√

2C3e−x/2)

C2Y0(
√

2C3e−x/2) + J0(
√

2C3e−x/2)
e−

3
2 x. (50)

Finally, the solution of (44) is obtained by setting I1(x, u; C2, C3) = C1, for C1 ∈ R,
which gives

u(x) = −
√

2C3exψ(C2;C3)
(x) + C1ex,

where the function ψ(C2;C3)
satisfies (50).

2. Case II: C3 < 0.
In this case a function I2 = I2(x, u, u1; C3) such that dI2 ∧ω2|Σ(C3)

= 0 is given by:

I2 =
ex/2(u1 − u)I0

(√
−2C3e−x/2

)
−
√
−2C3I1

(√
−2C3e−x/2

)
ex/2(u− u1)K0

(√
−2C3e−x/2

)
−
√
−2C3K1

(√
−2C3e−x/2

)
where Iα, Kα are the modified Bessel functions of the first and second kind, respec-
tively, [56].
Proceeding as in the previous case, we obtain the following solution to Equation (44):

u(x) =
√
−2C3ex ϕ(C2;C3)

(x) + C1ex,

where

ϕ′(C2;C3)
(x) =

C2K1(−
√
−2C3e−x/2)− I1(

√
−2C3e−x/2)

C2K0(−
√
−2C3e−x/2) + I0(

√
−2C3e−x/2)

e−
3
2 x.

3. Case III: C3 = 0.
It can be checked that a solution for the Pfaffian equation defined by the restriction of
the 1-form ω2 in (48) to the level set I3 = 0 is given by

I2 =
x
2
+

1
u1 − u

.

The restriction of the 1-form ω1 in (48) to the submanifold Σ(C2,0) implicitly defined
by I3 = 0, I2 = C2, C2 ∈ R becomes

ω1|Σ(C2,0)
= −

(
u +

2
2C2 − x

)
dx + du.

The solution of the Pfaffian equation ω1|Σ(C2,0)
≡ 0 is defined by the function

I1 = ue−x − 2e−2C2E1(x− 2C2),

where E1 = E1(z) denotes the exponential integral function [56]

E1(z) =
∫ ∞

z

e−t

t
dt.
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By setting I1(x, u, C2) = C1, for C1 ∈ R, we finally obtain the following 2-parameter
family of exact solutions for Equation (44):

u(x) = 2ex−2C2E1(x− 2C2) + C1ex. (51)

The graphs of some solutions, for different values of the integration constants, are
presented in Figure 3:

1 2 3 4 5 6
x

-10

-5

0

5

10
u(x)

C1=-1 C1=-0.8 C1=-0.6 C1=-0.4

C1=-0.2 C1=0 C1=0.2 C1=0.4

C1=0.6 C1=0.8 C1=1

Figure 3. Solutions (51) of Equation (44) for C2 = 0 and some values of C1.

5.2. A Fourth-Order ODE with a 1-Dimensional Algebra of Lie Point Symmetries

In this subsection, we consider the fourth-order equation

u4 = u1u3 + (x2 + 1)u2 + u2
2 −

1
2
(x2 + 1)u2

1, (52)

which has only the Lie point symmetry v = ∂u. It can be checked that the Lie reduction
method leads to a third-order equation from which it seems difficult to recover the general
solution of the initial Equation (52).

By proceeding as in the previous examples, a C∞-structure 〈X1, X2, X3, X4〉 for the
distribution generated by the vector field

Z = ∂x + u1∂u + u2∂u1 + u3∂u2 +

(
u1u3 + (x2 + 1)u2 + u2

2 −
1
2
(x2 + 1)u2

1

)
∂u3

can be explicitly determined by the following vector fields:

X1 = ∂u,
X2 = ∂u1 + u1∂u2 + (u2

1 + u2)∂u3 ,
X3 = ∂u2 + (x + u1)∂u3 ,
X4 = ∂u3 .

(53)

Since X1 = ∂u = v(3), where v(3) denotes the third-order prolongation of the Lie point
symmetry v [1], it is clear that X1 is a C∞-symmetry of S({Z}) in the sense of Definition 3.
The vector field X2 is a C∞-symmetry of S({Z, X1}) because

[X2, Z] = X1 + u1X2,
[X2, X1] = 0.
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The vector field X3 is a C∞-symmetry of S({Z, X1, X2}), since

[X3, Z] = X2 + xX3,
[X3, X1] = 0,
[X3, X2] = 0.

Finally, X4 is a C∞-symmetry of S({Z, X1, X2, X3}) because {Z, X1, X2, X3} are point-
wise linearly independent. In this example, X2, X3, and X4 do not correspond to symmetries
of Equation (52).

We use the volume form Ω = dx ∧ du ∧ du1 ∧ du2 ∧ du3 to calculate 1-forms given
by (5):

ω1 = u1dx− du,
ω2 = −u2dx + du1,
ω3 = −(u1u2 − u3)dx + u1du1 − du2,
ω4 = (−u2(x2 + xu1 + 1) + 1

2 (x2 + 1)u2
1 + xu3)dx + (xu1 − u2)du1 − (x + u1)du2 + du3.

1. We begin by solving the Pfaffian equation ω4 ≡ 0. It can be checked that a smooth
function I4 = I4(x, u, u1, u2, u3) such that dI4 ∧ω4 = 0 is given by:

I4 =

(
1
2

xu2
1 − u1u2 − xu2 + u3

)
e

1
2 x2

.

2. The restriction of ω3 to the submanifold Σ(C4)
implicitly defined by I4 = C4, C4 ∈ R,

becomes

ω3|Σ(C4)
=

(
−1

2
xu2

1 + xu2 + C4e−
1
2 x2
)

dx + u1du1 − du2.

A smooth function I3 = I3(x, u, u1, u2; C4) such that dI3 ∧ ω3|Σ(C4)
= 0 can be ex-

pressed in the form:

I3 = −1
2

C4
√

πErf(x) +
(

u2 −
1
2

u2
1

)
e−

1
2 x2

,

where Erf = Erf(z) denotes the error function defined by [56]

Erf(z) =
2√
π

∫ z

0
e−t2

dt. (54)

3. The restriction of ω2 to the submanifold Σ(C3,C4)
of Σ(C4)

implicitly defined by
I3(x, u, u1, u2; C4) = C3, where C3 ∈ R, becomes

ω2|Σ(C3,C4)
= −

(
1
2

C4
√

πErf(x)e
1
2 x2

+
1
2

u2
1 + C3e

1
2 x2
)

dx + du1.

It can be checked that a function I2 = I2(x, u, u1; C3, C4) such that dI2 ∧ω2|Σ(C3,C4)
= 0

is given by

I2 = −u1ψ2(x; C3, C4) + 2ψ′2(x; C3, C4)

u1ψ1(x; C3, C4) + 2ψ′1(x; C3, C4)
, (55)

where ψ1 = ψ1(x; C3, C4) and ψ1 = ψ1(x; C3, C4) constitute a fundamental set of
solutions to the following two-parameter family of Schrödinger-type equations:

ψ′′(x) = −1
2

e
1
2 x2
(√

π
C4

2
Erf(x) + C3

)
ψ(x). (56)
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4. Finally, the restriction of ω1 to the submanifold Σ(C2,C3,C4)
of Σ(C3,C4)

defined by
I2(x, u, u1; C3, C4) = C2, with C2 ∈ R, becomes

ω1|Σ(C2,C3,C4)
=

2
(
C2ψ′1(x; C3, C4) + ψ′2(x; C3, C4)

)
C2ψ1(x; C3, C4) + ψ2(x; C3, C4)

dx + du.

A function I1 = I1(x, u; C2, C3, C4) such that dI1 ∧ω1|Σ(C2,C3,C4)
= 0 can be calculated

by a simple quadrature and becomes

I1 = u + 2 ln(C2ψ1(x; C3, C4) + ψ2(x; C3, C4)).

As a result of the previous procedure of integration, using the C∞-structure defined
by (53), the initial fourth-order Equation (52) has been completely integrated. A funda-
mental set of solutions of ψ1(x; C3, C4) and ψ2(x; C3, C4) of (56) can be used to express the
general solution of the given problem in the form:

u(x) = −2 ln(C2ψ1(x; C3, C4) + ψ2(x; C3, C4)) + C1, (57)

where Ci ∈ R for i = 1, 2, 3, 4.

Some Particular Solutions in Terms of Elementary Functions

For some particular values of the arbitrary constants in (57), the general solution
to Equation (52) can be expressed in terms of elementary functions. This is the case, for
instance, when C3 = C4 = 0. For these particular values, the Schrödinger-type Equation (56)
turns out to be simply ψ′′ = 0 and therefore a corresponding fundamental set of solutions
is given by ψ1(x) = 1 and ψ2(x) = x.

In this case, the expression (57) provides the following two-parameter familiy of exact
solutions for Equation (44):

u(x) = −2 ln(x + C2) + C1, C1, C2 ∈ R.

The graphs of some solutions of this type are plotted in Figure 4:
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Figure 4. Solutions (57) of Equation (52) for C1 = C3 = C4 = 0 and some values of C2.
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5.3. A Fourth-Order ODE without Lie Point Symmetries

This example illustrates the success of the C∞-structure-based method in solving
ODEs for which the classical Lie method cannot be applied due to the absence of Lie point
symmetries in the equation. This is the case of the fourth-order ODE

u4 = −uu1 + uu3 + 3u1u2 + x + u2, (58)

whose associated vector field is

Z = ∂x + u1∂u + u2∂u1 + u3∂u2 + (−uu1 + uu3 + 3u1u2 + x + u2)∂u3 .

It can be checked that the determining equations for a Lie point symmetry of Equation (58),
in the form v = ξ(x, u)∂x + η(x, u)∂u, yield the trivial solution ξ = η = 0. Therefore
Equation (58) does not admit Lie point symmetries.

Finding a C∞-structure for S({Z}) can be simplified by assuming that some of the
infinitesimals of the corresponding elements are constant or linear with respect to u1 and
u2. This is similar to the approach used in the previous examples. In this way, we find the
ordered set 〈X1, X2, X3, X4〉 given by the following vector fields:

X1 = ∂u + u∂u1 + (u2 + u1)∂u2 + (u3 + 3uu1 + u2)∂u3 ,
X2 = ∂u1 + u∂u2 + (u2 + 2u1)∂u3 ,
X3 = ∂u2 + (u− 1)∂u3 ,
X4 = ∂u3 .

It can be verified that the vector field X1 is a C∞-symmetry of S({Z}), since [X1, Z] = uX1.
On the other hand, the vector field X2 is a symmetry of S({Z, X1}), because

[X2, Z] = X1,
[X2, X1] = 0.

Finally, X3 is a C∞-symmetry of S({Z, X1, X2}), since the following commutation
relations are satisfied:

[X3, Z] = X2 − X3,
[X3, X1] = 0,
[X3, X2] = 0.

Thus, in accordance with Definition 4, and considering the pointwise linear indepen-
dence of X1, X2, X3, X4, the ordered set 〈X1, X2, X3, X4〉 forms a C∞-structure for S(Z).

In what follows, we employ the integration method outlined in Section 3 to achieve
our objective of solving Equation (58). The corresponding 1-forms provided in (5) yield the
following expression when using Ω = dx ∧ du ∧ du1 ∧ du2 ∧ du3 :

ω1 = u1dx− du,
ω2 = (uu1 − u2)dx− udu + du1,
ω3 = −(uu2 + u2

1 − u3)dx + u1du + udu1 − du2,
ω4 = −(−uu1 − uu2 − u2

1 + x + u2 + u3)dx− (u1 + u2)du− (u + 2u1)du1
+(1− u)du2 + du3.

(59)

The results obtained after applying the integration procedure, as described in Section 3,
are presented below.

1. The Pfaffian equation ω4 ≡ 0 is completely integrable and a function I4 =
I4(x, u, u1, u2, u3) such that dI4 ∧ω4 = 0 can be chosen as

I4 = (−u2
1 − u1u− (u− 1)u2 + x + u3 + 1)e−x.
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2. The restriction of the 1-form ω3 given in (59) to Σ(C4)
provides

ω3|Σ(C4)
= (C4ex + u1u− x− u2 − 1)dx + u1du + udu1 − du2.

A function I3 = I3(x, u, u1, u2; C4) such that dI3 ∧ω3|Σ(C4)
= 0 is

I3 = −1
2

C4e2x − ex(uu1 − x− u2).

3. We now restrict the 1-form ω2 in (59) to Σ(C3,C4)
, resulting in

ω2|Σ(C3,C4)
= −

(
1
2

C4ex − x + C3e−x
)

dx− udu + du1.

A function I2 = I2(x, u, u1; C3, C4) such that dI2 ∧ω3|Σ(C3,C4)
= 0 can be calculated by

simple quadrature:

I2 = −1
2

C4ex +
1
2

x2 − 1
2

u2 + u1 + C3e−x.

4. Finally, the restriction of the 1-form ω1 given in (59) to Σ(C2,C3,C4)
turns out to be:

ω1|Σ(C2,C3,C4)
=

(
1
2

u2 +
1
2

C4ex − 1
2

x2 − C3e−x + C2

)
dx− du. (60)

The integration of the Pfaffian equation ω1|Σ(C2,C3,C4)
≡ 0 is equivalent to solve the

following first-order ODE:

u1 =
1
2

u2 +
1
2

C4ex − 1
2

x2 − C3e−x + C2, (61)

which is of Riccati-type. Equation (61) can be mapped into the following Schrödinger-
type equation by means of the standard transformation u = −2ψ′(x)/ψ(x):

ψ′′(x) =
(

1
4

x2 − 1
4

C4ex +
1
2

C3e−x − 1
2

C2

)
ψ(x). (62)

Therefore, if ψ1 = ψ1(x; C2, C3, C4) and ψ2 = ψ2(x; C2, C3, C4) form a fundamental set
of solutions to Equation (62), a first integral I1 = I1(x, u; C2, C3, C4) for the Riccati
Equation (61) is given by ([55] Proposition 4.1)

I1 =
uψ1(x; C2, C3, C4) + 2ψ′1(x; C2, C3, C4)

uψ2(x; C2, C3, C4) + 2ψ′2(x; C2, C3, C4)
(63)

By setting I1(x, u; C2, C3, C4) = C1, where C1 ∈ R, we obtain the general solution for
Equation (58), expressed in terms of a fundamental set of solutions to Equation (62):

u(x) =
−2
(
C1ψ′1(x; C2, C3, C4) + ψ′2(x; C2, C3, C4)

)
C1ψ1(x; C2, C3, C4) + ψ2(x; C2, C3, C4)

, (64)

where Ci ∈ R, for i = 1, 2, 3, 4. In consequence, the C∞-structure approach successfully
solves the fourth-order Equation (58), despite the absence of Lie point symmetries.
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Some Families of Exact Solutions in Terms of Special Functions

For particular values of the constants C2, C3, and C4 appearing in (62), a fundamental
set of solutions to the Schrödinger-type Equation (62) can be expressed in terms of well-
known special functions. For instance, when C3 = C4 = 0, Equation (62) becomes

ψ′′(x) =
(

1
4

x2 − 1
2

C2

)
ψ(x),

which admits the following linearly independent solutions:

ψ1(x; C2) =
W 1

4 C2, 1
4

(
x2

2

)
√

x
, ψ2(x; C2) =

M 1
4 C2, 1

4

(
x2

2

)
√

x
, (65)

where Mµ,ν = Mµ,ν(z) and Wµ,ν = Wµ,ν(z) denotes the corresponding Whittaker func-
tions [56], i.e., two linearly independent solutions to the equation

φ′′(z) +

−1
4

+
µ

z
+

1
4
− ν2

z2

φ(z) = 0.

Therefore, a two-parameter family of solutions that corresponds to (64) when C3 =
C4 = 0, is given by

u(x) =
−x2 + C2 + 1

x
+

4C1W 1
4 C2+1, 1

4

(
1
2 x2
)
− (C2 + 3)M 1

4 C2+1, 1
4

(
1
2 x2
)

x
(

C1W 1
4 C2, 1

4

(
1
2 x2
)
+ M 1

4 C2, 1
4

(
1
2 x2
)) . (66)

Since Whittaker functions can be defined in terms of hypergeometric or Kummer
functions, the family of solutions (66) could have alternatively been expressed using other
special functions. Furthermore, by selecting different values for C2 in (66), we can generate
1-parameter families of solutions that involve various types of special functions, such as
the following examples:

• For C2 = 0, (66) provides the next 1-parameter family of exact solutions

u(x) = −x
C1I− 3

4

(
1
4 x2
)
−K 3

4

(
1
4 x2
)

C1I 1
4

(
1
4 x2
)
+ K 1

4

(
1
4 x2
) , (67)

where Iν and Kν denote the modified Bessel functions of the first and second kinds,
respectively.

• When C2 = −1, we obtain the following 1-parameter family of exact solutions for
Equation (52):

u(x) = −x +
4e−

1
2 x2

2C1 −
√

2πErf
(

1
2

√
2x
) , (68)

where Erf denotes the error function (54).

Several particular solutions for Equation (52) of the type (68) are plotted in Figure 5:
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Figure 5. Solutions (64) of Equation (58) for C4 = C3 = 0, C2 = −1 and some values of C1.

6. Concluding Remarks

In this work, the effectiveness of the C∞-structure procedure as a novel tool to deal
with integrability problems in differential equations has been demonstrated. By applying
the integration method based on C∞-structures, several models have been fully integrated,
including a Lotka–Volterra model and equations for which the Lie method encounters
certain obstacles when trying to obtain the general solution.

Consequently, C∞-structures offer significant contributions to solving problems that
cannot be solved by classical methods, expanding our understanding and analytical capa-
bilities in tackling intricate mathematical problems.
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